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Abstract: Pedestrians are vulnerable road users that are directly exposed to road traffic crashes with
high odds of resulting in serious injuries and fatalities. Therefore, there is a critical need to identify
the risk factors associated with injury severity in pedestrian crashes to promote safe and friendly
walking environments for pedestrians. This study investigates the risk factors related to pedestrian,
crash, and built environment characteristics that contribute to different injury severity levels in
pedestrian crashes in Santiago, Chile from a spatial and statistical perspective. First, a GIS kernel
density technique was used to identify spatial clusters with high concentrations of pedestrian crash
fatalities and severe injuries. Subsequently, partial proportional odds models were developed using
the crash dataset for the whole city and the identified spatial clusters to examine and compare the
risk factors that significantly affect pedestrian crash injury severity. The model results reveal higher
increases in the fatality probability within the spatial clusters for statistically significant contributing
factors related to drunk driving, traffic signage disobedience, and imprudence of the pedestrian. The
findings may be utilized in the development and implementation of effective public policies and
preventive measures to help improve pedestrian safety in Santiago.

Keywords: pedestrian safety; spatial analysis; traffic injury; kernel density estimation; partial proportional
odds

1. Introduction

Walking is a common human activity that provides health and economic benefits, and
helps reduce traffic congestion, air pollution, carbon emissions, and energy consumption [1].
Thus, walking contributes to a better quality of life and sustainability. However, pedestrians
are vulnerable road users with a high likelihood of being injured or killed when involved
in traffic crashes. Pedestrians are directly exposed to the impact of these crashes, and thus,
the fatality risk of pedestrians is higher than vehicle occupants [2,3].

According to the World Health Organization (WHO), over 300,000 pedestrian fatalities
were reported worldwide in 2018, accounting for 26% of all traffic deaths, while millions of
victims are injured in pedestrian crashes every year [4]. In recent years, pedestrian safety has
been a relevant research area as increased efforts have focused on promoting active travel
such as walking in the population [5]. Chile has the highest walking rate in Latin America
with an average of 5204 steps per day, which has helped improve public health campaigns
to fight obesity [6]. However, Chile has the highest fatality rate of pedestrians in traffic
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crashes among other Organization for Economic Co-operation and Development (OECD)
country members with 3.6 road deaths per 10,000 motorized vehicles. Pedestrians represent
the largest share of casualties with 34% among all road user groups, and approximately
20% of all severely injured victims due to road traffic crashes nationwide [7].

Santiago is the capital and largest city of Chile with over 700 km2 of extension and a
population of 7.1 million inhabitants, representing approximately 40% of the total popu-
lation of Chile [8]. Walking is the major mode of transportation in Santiago [9,10]. Over
six million walking trips are generated every day in the city [11]. People walk on average
0.67 km every day to commute to work, and 19% of these inhabitants walk more than
1 km to reach a specific destination [12]. Although sidewalks are abundant, the majority
of major road infrastructure favors automobile users, making pedestrian infrastructure in
some places inhospitable and disrupted [13]. Thus, pedestrian safety is a critical concern.
Nearly 30% of all pedestrian crashes reported nationwide occur in Santiago, yielding more
than 40% of all crash fatalities and 27% of all crash severely injured victims that arise
in Chile [14]. Therefore, there is an imperative need to investigate the risk factors that
contribute to pedestrian crash severity in Santiago for implementing preventive measures
that will have the most significant impact on pedestrian safety.

2. Literature Review

Different risk factors (such as demographics, crash, and built environment characteris-
tics) that affect pedestrian crash injury severity and casualty have been identified by several
studies [15–28]. From the demographic perspective, males and the elderly are found to be
more prone to incur serious injuries and fatalities than other age groups when involved in
pedestrian crashes [16,17,29,30]. Other studies have concluded that more severe pedestrian
injuries and fatalities are associated with temporal factors, such as time of day, day of the
week, and season [15,19,31,32]. For instance, mechanisms that explain increases in crash
severity may be the lack of visibility at night-time. Among different contributing factors
of pedestrian crashes, the influence of alcohol consumption has shown to increase injury
severity in pedestrian crashes [26,33,34]; at-fault drivers cause fatalities and serious injuries
when not yielding right-of-way to pedestrians at intersections and crosswalks [35,36]; and
the irresponsible or careless behavior of pedestrians have proven to be associated with
more serious crash injuries [37,38]. In terms of built environment factors, high rates of
pedestrian crash casualties tend to occur in neighborhoods of lower socioeconomic status
(SES), meaning that pedestrians that walk in deprived neighborhoods have higher probabil-
ity of being killed or seriously injured in a crash than in affluent neighborhoods [5,39–42].
Additionally, the odds of crashes that result in injured or killed pedestrians increase in
commercial and residential areas particularly due to large flow of pedestrians and vehicles,
and high intersection density [15,43]. In addition, studies suggest that there is a higher risk
of crashes with fatal and severe injury outcomes in areas with higher population density, in
which pedestrians are more exposed to crashes [5,16]. Public transportation accessibility
has been associated with pedestrian crash injury severity, suggesting the need of safety
zones near bus stops and subway stations to protect pedestrians [15,23,44,45]. Finally,
studies have concluded that pedestrians suffer more severe injuries at road intersections
due complex traffic operations inherent to such intersections [3,21,36,46,47].

Econometric methods have been widely employed to analyze the effect of risk fac-
tors on injury severity and fatalities in pedestrian crashes, such as multinomial logit
models [26,48,49], mixed logit models [19,44,50], and ordered logit or probit models [16,47,51].
However, multinomial logit models and mixed logit models assume that all injury severity
levels are non-ordered without considering the inherent hierarchical nature of crash injury
severities [19], whereas the ordered logit or probit models are ordered-response models
that account for the inherent ordered nature of the dependent variable (i.e., levels of injury
severity). In addition, multinomial logit models are less parsimonious and more difficult
to interpret than the ordered response models [52]. Ordered logit or probit models follow
the parallel-lines assumption, in which parameter estimates are equal and constant across
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different levels of the dependent variable. This is usually not the case with crash injury
severity outcomes since explanatory variables may have the same or dissimilar effects on
different injury severity levels [30]. The partial proportional odds (PPO) model relaxes the
parallel-lines assumption, allowing certain variables to violate the parallel-lines assumption
while other variables are constrained to this assumption [52], and thus, the model results
are more correct and complete than ordered logit or probit models.

Studies have developed PPO models to study risk factors affecting crash injury
severity concerning at-fault drivers and not at-fault drivers [53], heavy trucks [27,54,55],
bicycles [56], work zones [57], rural highways [58], and wrong-way driving [59], among
others. PPO models have also proven to outperform other statistical models when examin-
ing the effect of risk factors of pedestrian injuries and fatalities in traffic crashes [18,24,25,60].
Thus, the PPO model is used in this study to explore the main risk factors that significantly
affect severity injury of pedestrian crashes, as in studies by Lin and Fan [17], Pour et al. [32],
and Lu et al. [46].

In traffic crash analysis, kernel density estimation (KDE) is a commonly used spatial
analytical tool to identify hazardous road locations. KDE adds a significant value to
the statistical methods by revealing high-risk areas for pedestrians, in which there is
an increased likelihood of crashes based on spatial dependency [31,61,62], and where
authorities need to focus on specific countermeasures [43,63]. Thus, studies have combined
KDE and statistical methods for analyzing injury severity in clusters with high density of
pedestrian crashes, which are summarized in Table 1 [15,22,43,62–65].

Table 1. Description of pedestrian crash studies using KDE and statistical methods.

Authors Year Study Description

Xie et al. [65] 2017
The authors computed pedestrian crash costs weighted by injury severity using
KDE, and employed a tobit model to relate the contributing factors to the
crash costs.

Chimba et al. [62] 2018
The authors identified high concentrations of pedestrian crashes in Tennessee
using KDE and applied a negative binomial to test the statistical significance of
explanatory variables related to sociodemographic characteristics.

Ouni & Belloumi [22] 2018

The authors implemented an integrated two-step approach by first identifying
spatial clusters of vulnerable road user (e.g., pedestrians) crashes, and second,
assessing the influence of personal and environmental factors on injury severity
in Tunisia using multinomial logit models.

Yao et al. [63] 2018 KDE was applied to estimate pedestrian crash density in Shanghai, China, and
then the random forest method was employed for modeling pedestrian crashes.

Hu et al. [15] 2020

KDE was utilized to identify clusters of pedestrian crashes and other variables,
and subsequently explored the relationship and interaction between building
environment characteristics and pedestrian injury risk using binary logistic
regression and tree-based models.

Bajada & Attard [43] 2021

A statistical analysis was performed using multivariate techniques to investigate
the association between variables related to crash characteristics and pedestrian
fatalities and injuries in Malta, and, subsequently, KDE was used to identify
high-risk areas with increased likelihood for pedestrian injury crashes.

Chen et al. [64] 2022
The authors introduced the geographically and temporally weighted ordered
logistic regression model integrated with KDE to model pedestrian crash
severity in rural highways of the Anhui Province, China.

To the best of our knowledge, this is the first study that contributes to the literature by
investigating the risk factors associated with pedestrian crash injury severity in Chile from
a spatial and statistical perspective. First, a KDE method is employed in a GIS environment
to identify spatial clusters with high likelihood of pedestrian crashes that resulted in serious
injuries and fatalities. Subsequently, the PPO models are developed to understand different
risk factors related to the pedestrian, crash, and built environment characteristics that



Int. J. Environ. Res. Public Health 2022, 19, 11126 4 of 21

significantly affect injury severity levels of pedestrian crashes within the identified spatial
clusters, which are then compared with the PPO model results for the whole pedestrian
crash dataset in Santiago. Therefore, this study contributes to better inform current debates
regarding appropriate countermeasures to enhance pedestrian safety.

3. Data

During the 2012–2016 period, the Chilean police reported 4874 pedestrian crashes
with different injury severity levels that occurred in Santiago, of which 4216 (86.5%) were
successfully geocoded [14], as shown in Figure 1. The remaining crash locations were not
geocoded because the addresses or intersections were incomplete, incorrect, or non-existent.
The pedestrian crash database that includes demographics and crash characteristics was
requested from the Chilean National Road Safety Commission (CONASET) through the
Transparency Law [66]. The built environment characteristics, such as socioeconomic status,
land use, and access to public transportation, are other risk factors considered in the injury
severity analysis that were provided by private and public entities (e.g., National Statistics
Institute, Spatial Data Infrastructure-City Observatory, and Center for Sustainable Urban
Development). Among the built environment characteristics considered in this study, a risk
factor related to the amount of exposed population to pedestrian crashes was computed
using the number of residents that reside in the vicinity of pedestrian crashes using the 2017
Census [8], which is a surrogate factor to the pedestrian volume counts near these crashes
that actually account for the quantity of walking people. Based on the provided crash data,
a three-point ordinal scale from lowest to highest was used to define injury severity level
(1 = less serious injury, 2 = serious injury, 3 = fatal injury, denoting B, A, K, respectively,
in the KABCO scale established by the United States Federal Highway Administration).
Crashes with at least one injured pedestrian or one pedestrian that died within 24 h of the
crash were considered in the analyses.
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Figure 1. Pedestrian crashes with injury severity in Santiago during the 2012–2016 period, Source:
Prepared by the authors.

Table 2 shows the descriptive statistics with the frequency and percentages of pedes-
trian crashes for each analyzed risk factor and the percentages for the three injury severity
levels examined in this study. This table indicates that pedestrian crash occurrence yielded
less seriously injured pedestrians (22.2%), seriously injured pedestrians (64.8%), and fatal
severities (13.0%). Approximately 50% of all persons involved in pedestrian crashes are
adults (25–65 years old) and the proportion of males involved in pedestrian crashes is



Int. J. Environ. Res. Public Health 2022, 19, 11126 5 of 21

higher than females (57% males vs. 43% females). For the relative location factor, pedestrian
crashes that occurred along straight road sections represent the highest share with 42.1%,
followed by intersections with functioning traffic lights with 33.7%.

Table 2. Descriptive statistics of variables and their pedestrian crash severity outcomes for the
whole dataset.

Variable Frequency
Injury Severity (%)

Less Serious Serious Fatal

Pedestrian crashes 4216 (100.0%) 22.2 64.8 13.0
Demographics

Age a

Child (<18 years old) 666 (15.8%) 24.3 66.4 9.3
Young adult (18–24 years old) 412 (9.8%) 28.4 62.4 9.2
Adult (25–65 years old) 2081 (49.4%) 22.0 65.4 12.6
Elderly (>65 years old) 1057 (25.1%) 18.8 63.7 17.5

Gender a Female 1812 (43.0%) 24.1 66.1 9.8
Male 2404 (57.0%) 20.8 63.9 15.3

Crash characteristics

Relative location a

Straight road section 1775 (42.1%) 22.7 62.8 14.5
Curved road section 10 (0.2%) 20.0 70.0 10.0
Intersection without signage 142 (3.4%) 17.6 70.4 12.0
Intersection with functioning traffic lights 1420 (33.7%) 18.9 67.2 13.9
Intersection with yield sign 220 (5.2%) 24.5 68.6 6.8
Intersection with stop sign 184 (4.4%) 31.0 60.3 8.7
Sidewalk or shoulder 50 (1.2%) 30.0 56.0 14.0
Disabled access 30 (0.7%) 10.0 73.3 16.7
Other 385 (9.1%) 28.1 63.9 8.1

Time a

Early morning 702 (16.7%) 19.7 68.5 11.8
Morning 998 (23.7%) 22.8 64.1 13.0
Afternoon 1101 (26.1%) 22.9 67.7 9.4
Night 1415 (33.6%) 22.5 61.3 16.3

Day a
Weekday 3054 (72.4%) 22.7 65.1 12.2
Weekend 1054 (25.0%) 20.6 63.8 15.7
Holiday 108 (2.6%) 25.0 67.6 7.4

Season a

Fall 1115 (26.4%) 22.5 65.7 11.8
Winter 1190 (28.2%) 22.7 63.7 13.6
Spring 1050 (24.9%) 21.4 66.0 12.6
Summer 861 (20.4%) 22.1 63.9 14.1

Contributing cause a

Imprudence of driver 1280 (30.4%) 26.4 65.1 8.5
Imprudence of pedestrian 1436 (34.1%) 17.3 62.6 20.1
Driving under the influence of alcohol 74 (1.8%) 35.1 40.5 24.3
Pedestrian under the influence of alcohol 125 (3.0%) 18.4 58.4 23.2
Speeding 28 (0.7%) 28.6 50.0 21.4
Loss of control of vehicle 60 (1.4%) 16.7 71.7 11.7
Signage disobedience 249 (5.9%) 21.7 51.4 26.9
Undetermined causes 527 (12.5%) 23.7 72.8 3.5
Other causes 437 (10.4%) 24.1 74.6 1.3

Built environment characteristics

Socioeconomic status b

Low 150 (3.6%) 16.0 64.0 20.0
Medium-low 1391 (33.0%) 21.5 63.6 14.9
Medium 1337 (31.7%) 23.8 62.5 13.7
Medium-high 741 (17.6%) 22.1 67.2 10.7
High 597 (14.2%) 21.9 70.0 8.0
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Table 2. Cont.

Variable Frequency
Injury Severity (%)

Less Serious Serious Fatal

Land use b

Commercial (m2) 3451 (33.9%) 21.6 66.0 12.4
Industrial (m2) 1611 (15.8%) 22.1 65.1 12.8
Office space (m2) 1766 (17.4%) 21.8 66.0 12.1
Residential (m2) 3339 (32.8%) 20.8 68.4 10.8

Population exposure b
Low (0–500 inhabitants) 1539 (36.5%) 22.2 62.6 15.3
Medium (500–1000 inhabitants) 1423 (33.8%) 22.6 65.8 11.6
High (≥1000 inhabitants) 1254 (29.7%) 21.8 66.5 11.7

Bus stops c
Short distance (0–100 m) 3493 (82.9%) 21.9 64.8 13.3
Medium distance (100–250 m) 634 (15.0%) 22.7 66.1 11.2
Long distance (≥250 m) 89 (2.1%) 29.2 57.3 13.5

Subway stations c
Short distance (0–250 m) 713 (16.9%) 21.5 64.2 14.3
Medium distance (250–1000 m) 1161 (27.5%) 20.3 67.7 12.0
Long distance (≥1000 m) 2342 (55.6%) 23.4 63.6 13.1

Traffic lights d
Short distance (0–10 m) 812 (19.3%) 20.7 68.1 11.2
Medium distance (10–25 m) 651 (15.4%) 21.8 65.6 12.6
Long distance (≥25 m) 2753 (65.3%) 22.7 63.7 13.6

Intersections d
Short distance (0–10 m) 2158 (51.2%) 23.1 66.1 10.8
Medium distance (10–25 m) 1256 (29.8%) 22.8 63.9 13.3
Long distance (≥25 m) 802 (19.0%) 19.0 62.8 18.2

Data source: a Chilean National Road Safety Commission (CONASET), https://mapas-conaset.opendata.arcgis.
com/ (accessed on 17 April 2018); b National Statistics Institute (INE), https://www.censo2017.cl/ (accessed on
8 June 2019); c Spatial Data Infrastructure-City Observatory (IDE-OC), https://ideocuc-ocuc.hub.arcgis.com/
datasets/ (accessed on 10 June 2019); d Center for Sustainable Urban Development (CEDEUS), http://datos.
cedeus.cl/layers/ (accessed on 10 June 2019).

The most critical time is during night-time due to the higher number of pedestrian
crashes and higher proportion of fatal crashes compared to other times of the day. Higher
proportions of less seriously and seriously injured victims are perceived during holidays,
while a higher share of fatal pedestrian crashes occur during weekends. A larger number of
pedestrian crashes arose in the winter season with a higher share of less seriously injured
victims. The imprudence of the pedestrian (e.g., pedestrian crosses road surprisingly or
carelessly, jaywalking) and the imprudence of the driver (e.g., not yielding right of way to
pedestrians, improper turns) account for 30.4% and 34.1%, respectively, of all contributing
factors, while disobeying traffic signals has the highest share of fatal injury with 26.9%,
followed by driving and pedestrians being under the influence of alcohol with 24.3% and
23.2%, respectively.

Regarding built environment factors, approximately 64.7% of the pedestrian crashes
occur in medium and medium-low SES zones of the city, but a higher proportion of fatal
crashes is observed in low SES neighborhoods (20.0%). In addition, pedestrian crashes have
a tendency of occurring in commercial (33.9%) and residential areas (32.8%), resulting in
similar distributions of injury severity across different land uses. Although most pedestrian
crashes occur where the exposed population is low (<500 inhabitants), similar proportions
are observed in the pedestrian crash injuries among locations with different levels of
population exposure. Approximately 83% and 51.2% of the pedestrian crashes occur in the
vicinity of bus stops and intersections, respectively, while more than half of the crashes
occurred away from subway stations and traffic lights.

4. Methods

As aforementioned, in this study, the spatial phenomenon is incorporated in the
statistical analysis through the use of KDE to investigate the influence of risk factors
associated with injury severity in pedestrian crashes in critical areas (dangerous locations)

https://mapas-conaset.opendata.arcgis.com/
https://mapas-conaset.opendata.arcgis.com/
https://www.censo2017.cl/
https://ideocuc-ocuc.hub.arcgis.com/datasets/
https://ideocuc-ocuc.hub.arcgis.com/datasets/
http://datos.cedeus.cl/layers/
http://datos.cedeus.cl/layers/
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of Santiago. Subsequently, these results are compared with significant factors identified for
pedestrian crashes that occurred in the whole city.

4.1. Kernel Density Estimation (KDE)

KDE is used in this study to identify risk areas with high density of pedestrian crashes
in Santiago. KDE is a non-parametric method that first yields a symmetrical surface over
each point feature, secondly assesses the distance from the point to a reference location
based on a mathematical function, and finally adds the value for all the surfaces for that
reference location [67]. In this study, Equation (1) is used to compute the estimated density
value of pedestrian crashes at location (x,y) by providing a magnitude per unit of area (e.g.,
the number of pedestrian crashes per km2).

f (x, y) =
(

1
nh2

) n

∑
i=1

K
(

di
h

)
(1)

where n is the total number of locations, h is the bandwidth or smoothing parameter, K is
the kernel function, and di is the distance between location (x,y) and location of observation
i. Given that near points to the reference points have more weight than distant points, this
study employed a normal distribution as a kernel function. Additionally, after conducting
preliminary tests, as in Ouni and Belloumi [22] and Blazquez and Celis [31], a bandwidth of
1500 m and a 100-m cell size were employed in the KDE analysis. As a result of this analysis,
clusters with high concentrations of pedestrian crash injury severities and fatalities were
obtained for the studied period.

4.2. Partial Proportional Odds Model (PPO)

As aforementioned, the PPO model is used for analyzing different pedestrian crash
injury severity levels since this model is an effective alternative model for ordinal response
data and has the ability to correct for the violated parallel-lines assumption [25,27,55,58].
The PPO model may be specified in terms of the probability of an injury severity level j for
a pedestrian crash i expressed by Equation (2) [68,69].

P(Yi > j) =
exp(β1X1i+β2X2i − αj)

1 + exp(β1X1i+β2X2i − αj)
j = 1, 2, . . . , M − 1 (2)

where Yi is the crash injury severity for crash i, X1i is a vector with the explanatory vari-
ables that comply with the parallel-lines assumption, X2i is a vector with the explanatory
variables that violate the parallel-lines assumption, β1 and β2 are vectors of estimated
coefficients for X1i and X2i, respectively, αi is the cut-off threshold of the jth cumulative
logit, and M is the number of injury severity levels (in this study, M = 3).

Direct pseudo-elasticities are employed to explain the marginal effect of the explana-
tory variables on the probability of a pedestrian crash severity level j for crash i. In this
study, the explanatory variables are all binaries, and, thus, the elasticity may not be calcu-
lated since it is not differentiable. Instead, pseudo-elasticities are computed as the marginal
percentage change of the pedestrian crash injury probability when a binary explanatory
variable switches from 0 to 1, or from 1 to 0 using Equation (3) [27,70].

EP(Yi>j)
Xjik

=
P(Yi > j)

[
Given Xjik = 1

]
− P(Yi > j)

[
Given Xjik = 0

]
P(Yi > j)

[
Given Xjik = 0

] (3)

where P(Yi > j) is computed with Equation (2) and Xjik is the kth binary explanatory variable
associated with the injury severity level j for pedestrian crash i. Note that the direct pseudo-
elasticity is computed for each injury severity level j of crash i. Therefore, average direct
pseudo-elasticities are obtained for each injury severity level j given known elasticities for
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all crashes [47]. All statistical analyses were performed with a user-written program in
STATA 16 [69].

5. Results
5.1. KDE Analysis Results

Figure 2 shows that a single critical zone with high-risk of crash fatality/severe injury
was identified using the KDE analysis. This zone with 659 pedestrian crashes (15.6% of
the whole dataset) that is located in the heart of the city mainly includes the municipality
of Santiago and some areas of the neighboring municipalities of Estación Central, Inde-
pendencia, Las Condes, Providencia, Ñuñoa, and Recoleta. Table 3 shows the distribution
of pedestrian crashes across different injury severity levels for each municipality within
the identified spatial clusters. The municipality of Santiago presents the highest number
of pedestrian crashes among all municipalities with 322 crashes (36.7%) during the stud-
ied period, followed by Providencia (19.3%) and Estación Central (11.1%). The highest
shares of fatal crashes are observed in Estación Central (24.7%) and Independencia (22.2%),
while the highest proportions of serious injuries are concentrated in Ñuñoa (81.1%) and
Santiago (75.8%).
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Figure 2. Critical zone with high density of pedestrian crashes during the 2012–2016 period.

Table 3. Pedestrian crashes and injury severity per municipality within the identified critical zone.

Municipality Frequency
Injury Severity (%)

Less Serious Serious Fatal

Estación
Central 97 (11.1%) 22.7 52.6 24.7

Independencia 18 (2.1%) 0.0 77.8 22.2
Las Condes 5 (0.6%) 60.0 40.0 0.0
Providencia 169 (19.3%) 26.7 68.0 5.3
Ñuñoa 53 (6.0%) 15.1 81.1 3.8
Recoleta 18 (2.1%) 16.7 66.6 16.7
Santiago 322 (36.7%) 16.1 75.8 8.1

The descriptive statistics of the analyzed variables and their pedestrian crash severity
outcomes for the identified critical zone are presented in Table 4. In this critical zone, the
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proportion of serious injuries is higher than for the whole dataset (70.7%), while it is lower
for less serious and fatal severities (19.3% and 10%, respectively). The pedestrian crashes in
the critical zone are characterized by a higher proportion of male (59.2%) and adult (56.6%)
victims than the whole dataset. Regarding the built environment characteristics, a lower
proportion of crashes along straight road sections (37.3%) and higher share of crashes at
intersections with functioning traffic lights (48.6%) are observed within the critical zone
than the whole dataset in Santiago. The distribution of pedestrian crashes among different
times of the day, days of the week, and seasons of the year is similar to the statistics for the
whole dataset. Most pedestrian crashes in the critical zone are caused by the imprudence of
the pedestrian (35.1%), followed by the imprudence of the driver (22.2%) and undetermined
causes (15.6%). Regarding the SES, the larger proportions of pedestrian crashes tend to
occur in medium and medium-high SES (36.7% and 42%, respectively) within the critical
zone, compared to the whole dataset where they are found mostly in medium-low and
medium SES areas (33% and 31.7%, respectively). While most pedestrian crashes tend to
arise in commercial and residential areas of Santiago, the proportions of these crashes in the
critical zone are similar among areas with commerce, residence, and office space. In both
the whole dataset and the critical zone, the highest share of pedestrian crashes is apparent
in areas with low population exposure (41.9% and 36.5%, respectively). While pedestrian
crashes in the city of Santiago tend to occur away from subway stations, approximately 96%
of the pedestrian crashes in the critical zone occurred within short and medium distances
from subway stations. Finally, most crashes in both the whole dataset and the identified
critical zone tend to arise more than 25 m away from traffic lights, and short distances from
bus stops and intersections.

Table 4. Descriptive statistics of variables and their pedestrian crash severity outcomes for the
identified critical zone.

Variable
Frequency Injury Severity (%)

Whole Dataset Critical Zone Less Serious Serious Fatal

Pedestrian crashes 4216 (100.0%) 659 (100%) 19.3 70.7 10.0
Demographics

Age

Child (<18 years old) 666 (15.8%) 44 (6.7%) 13.6 79.5 6.8
Young adult (18–24 years old) 412 (9.8%) 74 (11.2%) 24.3 67.6 8.1
Adult (25–65 years old) 2081 (49.4%) 373 (56.6%) 19.8 72.1 8.0
Elderly (>65 years old) 1057 (25.1%) 168 (25.5%) 17.3 66.7 16.1

Gender
Female 1812 (43.0%) 269 (40.8%) 23.1 71.0 5.9
Male 2404 (57.0%) 390 (59.2%) 16.7 70.5 12.8

Crash characteristics

Relative location

Straight road section 1775 (42.1%) 246 (37.3%) 19.9 69.1 11.0
Curved road section 10 (0.2%) 2 (0.3%) 50. 50.0 0.0
Intersection without signage 142 (3.4%) 7 (1.1%) 14.3 85.7 0.0
Intersection with functioning traffic lights 1420 (33.7%) 320 (48.6%) 17.2 72.5 10.3
Intersection with yield sign 220 (5.2%) 25 (3.8%) 28.0 72.0 0.0
Intersection with stop sign 184 (4.4%) 9 (1.4%) 33.3 55.6 11.1
Sidewalk or shoulder 50 (1.2%) 15 (2.3%) 20.0 73.3 6.7
Disabled access 30 (0.7%) 6 (0.9%) 0.0 83.3 16.7
Other 385 (9.1%) 29 (4.4%) 27.6 62.1 10.3

Time

Early morning 702 (16.7%) 102 (15.5%) 17.6 73.5 8.8
Morning 998 (23.7%) 169 (25.6%) 22.5 67.5 10.1
Afternoon 1101 (26.1%) 151 (22.9%) 19.2 74.2 6.6
Night 1415 (33.6%) 237 (36.0%) 17.7 69.6 12.7

Day
Weekday 3054 (72.4%) 492 (74.7%) 18.9 72.2 8.9
Weekend 1054 (25.0%) 155 (23.5%) 21.3 65.2 13.5
Holiday 108 (2.6%) 12 (1.8%) 8.3 83.3 8.3

Season

Fall 1115 (26.4%) 178 (27.0%) 21.9 67.4 10.7
Winter 1190 (28.2%) 191 (29.0%) 16.8 72.3 11.0
Spring 1050 (24.9%) 151 (22.9%) 16.6 73.5 9.9
Summer 861 (20.4%) 139 (21.1%) 22.3 69.8 7.9
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Table 4. Cont.

Variable
Frequency Injury Severity (%)

Whole Dataset Critical Zone Less Serious Serious Fatal

Contributing
factor

Imprudence of driver 1280 (30.4%) 146 (22.2%) 25.4 71.2 3.4
Imprudence of pedestrian 1436 (34.1%) 231 (35.1%) 13.0 67.5 19.5
Driving under the influence of alcohol 74 (1.8%) 5 (0.8%) 0.0 40.0 60.0
Pedestrian under the influence of alcohol 125 (3.0%) 18 (2.7%) 11.1 77.8 11.1
Speeding 28 (0.7%) 4 (0.6%) 50.0 25.0 25.0
Loss of control of vehicle 60 (1.4%) 8 (1.2%) 25.0 75.0 0.0
Signage disobedience 249 (5.9%) 60 (9.1%) 23.3 63.4 13.3
Undetermined causes 527 (12.5%) 103 (15.6%) 22.3 77.7 0.0
Other causes 437 (10.4%) 84 (12.7%) 20.2 77.4 2.4

Built environment characteristics

Socioeconomic
status

Low 150 (3.6%) 7 (1.1%) 14.3 71.4 14.2
Medium-low 1391 (33.0%) 79 (12.0%) 17.7 63.3 19.0
Medium 1337 (31.7%) 242 (36.7%) 17.4 69.4 13.2
Medium-high 741 (17.6%) 277 (42.0%) 20.9 72.6 6.5
High 597 (14.2%) 54 (8.2%) 22.2 77.8 0.0

Land use

Commercial (m2) 3451 (33.9%) 632 (28.8%) 19.8 70.6 9.6
Industrial (m2) 1611 (15.8%) 367 (16.7%) 21.2 67.6 11.2
Office space (m2) 1766 (17.4%) 587 (27.7%) 19.1 71.5 9.4
Residential (m2) 3339 (32.8%) 607 (26.8%) 19.6 70.8 9.6

Population
exposure

Low (0–500 inhabitants) 1539 (36.5%) 276 (41.9%) 18.1 68.1 13.8
Medium (500–1000 inhabitants) 1423 (33.8%) 163 (24.7%) 22.1 70.6 7.4
High (≥1000 inhabitants) 1254 (29.7%) 220 (33.4%) 18.6 74.1 7.3

Bus stops
Short distance (0–100 m) 3493 (82.9%) 572 (86.8%)) 18.5 71.2 10.3
Medium distance (100–250 m) 634 (15.0%) 87 (13.2%) 24.1 67.8 8.1
Long distance (≥250 m) 89 (2.1%) 0 (0.0%) 0.0 0.0 0.0

Subway stations
Short distance (0–250 m) 713 (16.9%) 303 (46.0%) 19.2 67.3 13.5
Medium distance (250–1000 m) 1161 (27.5%) 329 (49.9%) 20.1 72.3 7.6
Long distance (≥1000 m) 2342 (55.6%) 27 (4.1%) 11.1 88.9 0.0

Traffic lights
Short distance (0–10 m) 812 (19.3%) 256 (38.8%) 20.7 69.9 9.4
Medium distance (10–25 m) 651 (15.4%) 121 (18.4%) 22.3 66.1 11.6
Long distance (≥25 m) 2753 (65.3%) 282 (42.8%) 16.7 73.4 9.9

Intersections
Short distance (0–10 m) 2158 (51.2%) 381 (57.8%) 17.3 74.0 8.7
Medium distance (10–25 m) 1256 (29.8%) 166 (25.2%) 24.1 63.2 12.7
Long distance (≥25 m) 802 (19.0%) 112 (17.0%) 18.8 70.5 10.7

5.2. Modeling Results

In this study, the explanatory variables were progressively incorporated following
an iterative process until the best model was obtained, as the violation of the parallel-
lines assumption was tested using Wald chi-square. The following sub-sections present
the model results for the pedestrian crashes in the entire city (whole dataset) and within
the identified critical zone, and the comparison between the modeling results. Note that
we explored the explanatory variables in the model that may be a source of unobserved
heterogeneity (i.e., some factors that affect injury severity in pedestrian crashes remain
unknown), which may result in bias and inconsistent coefficient estimates. This unobserved
heterogeneity is taken into account in random effects models. The relative variability that is
explained by the random effects in the model was evaluated with the intra-class correlation
coefficient (ICC) for the whole dataset and within the identified critical zone [19,45,59].

5.2.1. Whole Dataset

Table 5 presents the statistically significant parameter estimates for the best model
when considering the dataset as a whole. Results show that the ICC values are less than 1%
for this model, which suggests that random effects are not significant in the model. The
estimates of the PPO model thresholds between the injury severity levels are shown in
this table along with those variables that are found to violate the parallel-lines assumption.
Since the direction of the effect of the explanatory variables is not always determined by the
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sign of the coefficients, the average direct pseudo-elasticities for the statistically significant
explanatory variables of the PPO model are used to better interpret the results, as shown
in Table 6. Note that the summation of the average direct pseudo-elasticities across all
severity levels is equal to zero since any increase in the probability of a severity level must
be balanced by a decrease in another severity level [27,70,71].

Table 5. Results of the PPO model using the whole dataset.

Variable

Threshold 1: Less Serious vs.
Serious, Fatal

Threshold 2: Less Serious,
Serious vs. Fatal

Coefficients Standard Error Coefficients Standard Error

Demographics

Age base: Child (<18 years old)
Elderly (>65 years old) a 0.375 *** 0.117 0.748 *** 0.129

Gender
base: Female
Male 0.216 ** 0.068 0.216 ** 0.068

Crash characteristics

Relative location
base: Straight road section
Intersection with functioning
traffic lights 0.257 ** 0.088 0.257 ** 0.088

Time

base: Early morning
Morning a −0.273 * 0.118 0.099 0.141
Afternoon −0.281 ** 0.106 −0.281 ** 0.106
Night a −0.269 * 0.112 0.199 0.128

Day base: Weekday
Weekend 0.169 * 0.077 0.169 * 0.077

Contributing factor

base: Imprudence of driver
Imprudence of pedestrian a 0.474 *** 0.099 0.847 *** 0.124
Driving under the influence of
alcohol a −0.486 0.260 1.035 *** 0.299

Pedestrian under the influence of
alcohol a 0.319 0.246 0.936 *** 0.244

Speeding a −0.061 0.429 1.115 * 0.480
Signage disobedience a 0.189 0.171 1.331 *** 0.180
Undetermined causes a 0.086 0.122 −2.020 *** 0.395
Other causes a 0.111 0.133 −0.983 *** 0.276

Built environment characteristics

Socioeconomic
status

base: Low
Medium −0.491 ** 0.184 −0.491 ** 0.184
Medium-high −0.503 ** 0.195 −0.503 ** 0.195
High a −0.274 0.207 −0.777 *** 0.239

Intersections
base: Short distance (0–10 m)
Medium distance (10–25 m) a 0.002 0.091 0.255 * 0.116
Long distance (≥25 m) a 0.224 * 0.112 0.580 *** 0.127

Cut-off points 1.219 *** 0.270 −2.714 *** 0.288
Number of observations 4216
Log likelihood −3463.87
Pseudo R2 0.1665

a Parallel-lines assumption is violated; * p < 0.05, ** p < 0.01, *** p < 0.001.

Regarding the demographic characteristics, a significant difference exists between the
elderly over 65 years old and children less than 18 years old. The probability of being killed
in a pedestrian crash for the elderly increases by 7.13% when contrasted with children less
than 18 years old. Compared to female pedestrians, the probabilities of male pedestrians
incurring serious injuries or death are increased by 1.93% and 1.73%, respectively, while the
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probability of less serious injuries decreases by 3.66%. With respect to the relative location
of pedestrian crashes, there is only a significant difference between pedestrian crashes at
intersections with functioning traffic lights and straight road segments. Pedestrian crashes
at intersections with functioning traffic lights could increase the probability of serious
injuries and fatalities by 2.05% and 2.16%, respectively, compared to pedestrian crashes
that occur along straight road sections.

Table 6. Average pseudo-elasticities for the PPO model using the whole dataset.

Variable
Average Pseudo-Elasticity (%)

Less Serious Serious Fatal

Demographics

Age base: Child (<18 years old)
Elderly (>65 years old) −5.98 *** −1.15 7.13 ***

Gender
base: Female
Male −3.66 ** 1.93 ** 1.73 **

Crash characteristics

Relative location
base: Straight road section
Intersection with functioning traffic lights −4.21 ** 2.05 ** 2.16 **

Time

base: Early morning
Morning 4.79 * −5.61 ** 0.83
Afternoon 4.90 ** −2.74 * −2.16 **
Night 4.64 * −6.30 *** 1.66

Day base: Weekday
Weekend −2.78 * 1.35 * 1.42 *

Contributing factor

base: Imprudence of driver
Imprudence of pedestrian −7.63 *** −0.15 7.78 ***
Driving under the influence of alcohol 9.25 −21.79 *** 12.54 *
Pedestrian under the influence of alcohol −4.91 −5.94 10.85 **
Signage disobedience −3.03 −14.19 *** 17.22 ***
Undetermined causes −1.42 10.97 *** −9.55 ***
Other causes −1.82 7.71 *** −5.88 ***

Built environment characteristics

Socioeconomic status

base: Low
Medium 8.67 * −4.95 * −3.72 **
Medium-high 9.24 * −5.65 * −3.59 **
High 4.86 0.21 −5.07 ***

Intersections
base: Short distance (0–10 m)
Medium distance (10–25 m) −0.04 −2.13 2.17 **
Long distance (≥25 m) −3.62 * −1.87 5.48 ***

* p < 0.05, ** p < 0.01, *** p < 0.001.

Model findings reveal that time is significantly associated with injury severities. Pedes-
trian crashes in the morning, afternoon, and night have comparable increases in less serious
injury outcome probabilities with 4.79%, 4.90%, and 4.64%, respectively, while pedestrian
crashes during these same time periods seem to be more likely to reduce serious injuries
compared to the early morning. The day of the week was found as another significant
parameter affecting injury severity of pedestrians. The probability of occurrence of serious
and fatal severity increases by 1.35% and 1.42%, respectively, and the probability of less
serious injuries decreases by 2.78% during the weekend, compared to a weekday. The
model results did not find any significant difference in the probabilities of the three injury
levels when discerning between weekdays and holidays, and also among the different
seasons of the year.
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Among all the significant variables of the model, the contributing factors of pedestrian
crashes present the highest increases in the probability of fatality risk. Disobeying traffic
signage, driving under the influence of alcohol, pedestrians being under the influence of
alcohol, and imprudence of the pedestrian increase the probability of fatal outcome by
17.22%, 12.54%, 10.85%, and 7.78%, respectively, when compared to the imprudence of
the driver, while undetermined causes and other causes are linked to decreases in fatality
probabilities (−9.55% and −5.88%, respectively). No significant differences were observed
between the pedestrian being under the influence of alcohol, speeding, and loss of control
of the vehicle, and the base variable for the contributing factor imprudence of the driver.

Regarding the effect of built environment factors, the model results revealed that there
is no significant difference between medium-low SES and low SES. However, pedestrian
crashes that occur in medium and medium-high SES are associated with decreases in
serious injury probabilities (−4.95% and −5.65%, respectively) and comparable decreases
in fatality probabilities (−3.72% and −3.59%, respectively). Finally, the probability of
occurrence of fatalities increases by 2.17% and 5.48% for medium and long distances
from intersections, respectively, when compared to pedestrian crashes that occur near to
intersections. Note that the findings did not uncover any significant differences in the injury
or fatality probabilities between different distances from bus stops, subway stations, and
traffic lights to pedestrian crash locations. In addition, all types of land use and different
population exposure levels did not have significantly different effects.

5.2.2. Pedestrian Crashes within the Identified Critical Zone

Results for the analysis of the risk factors that affect crash injury severity in the
identified critical zone using the PPO model are shown in Table 7. Note that the best model
found has statistically significant parameter estimates only for certain variables related to
crash and built environment characteristics, and null associations are observed with the
remaining variables. The ICC value is less than 1% for this PPO model, indicating that
random effects are not significant. Table 8 presents the average pseudo-elasticities for the
three injury severity levels within the high-risk area with pedestrian crash injury severity.
When compared to the imprudence of the driver, this table indicates that drunk driving
is a relevant contributing factor among the crash characteristics since it is associated with
a major increase in the fatality probability (70.75%), followed by signage disobedience
(19.52%), and imprudence of the pedestrian (17.88%). The model results also provided
evidence of the effect of built characteristics. Pedestrian crashes that occurred at a distance
from traffic lights present an increase in the serious injury probability (4.35%) and a non-
significant increase in the fatality probability (2.56%), compared to crashes at a short
distance from traffic lights. Finally, a decrease is perceived in the fatality probability
(−2.39%) for pedestrian crashes that occur within medium distances from intersections,
when compared to short distances from intersections.

Table 7. Results of the PPO model using the pedestrian crashes in the identified critical zone.

Variable

Threshold 1: Less Serious vs.
Serious, Fatal

Threshold 2: Less Serious,
Serious vs. Fatal

Coefficients Standard
Error Coefficients Standard

Error

Crash characteristics

Contributing factor

base: Imprudence of driver
Imprudence of pedestrian a 0.685 * 0.296 2.359 *** 0.436
Driving under the influence of
alcohol 4.077 *** 1.081 4.077 *** 1.081

Speeding a −1.153 1.076 3.205 * 1.261
Signage disobedience a −0.011 0.395 1.923 *** 0.566
Other causes a 0.298 0.337 −0.543 * 0.261

Built environment characteristics
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Table 7. Cont.

Variable

Threshold 1: Less Serious vs.
Serious, Fatal

Threshold 2: Less Serious,
Serious vs. Fatal

Coefficients Standard
Error Coefficients Standard

Error

Traffic lights base: Short distance (0–10 m)
Long distance (≥25 m) 0.500 * 0.249 0.500 * 0.249

Intersections
base: Short distance (0–10 m)
Medium distance (10–25 m) −0.543 * 0.261 −0.543 * 0.261

Cut-off points 1.199 * 1.068 −4.469 *** 1.128
Number of observations 659
Log likelihood −462.40
Pseudo R2 0.1150

a Parallel-lines assumption is violated; * p < 0.05, *** p < 0.001.

Table 8. Average pseudo-elasticities for the PPO model using pedestrian crashes in the identified
critical zone.

Variable
Average Pseudo-Elasticity (%)

Less Serious Serious Fatal

Crash characteristics

Contributing factor

base: Imprudence of driver
Imprudence of pedestrian −9.07 * −8.81 * 17.88 ***
Driving under the influence of alcohol −17.12 −53.63 ** 70.75 ***
Speeding 22.32 −74.19 ** 51.87
Signage disobedience 0.15 −19.68 * 19.52 *
Other causes −3.91 2.29 1.62

Built environment characteristics

Traffic lights base: Short distance (0–10 m)
Long distance (≥25 m) −6.91 * 4.35 * 2.56

Intersections
base: Short distance (0–10 m)
Medium distance (10–25 m) 8.37 −5.99 −2.39 *

* p < 0.05, ** p < 0.01, *** p < 0.001.

5.2.3. Comparison of the Modeling Results

When comparing the modeling results for the whole dataset and the identified critical
zone, differences and similarities are observed between the explanatory variables in the
models. This finding confirms the need to conduct a spatial analysis with the KDE method
to determine the variables that may have a significant impact on pedestrian injury severity
within high-risk areas.

Higher increases in the fatality probability are perceived within the critical zone for
statistically significant contributing factors, suggesting that pedestrians are at a higher risk
of being killed in this zone than in other areas of the city due to drunk driving, signage
disobedience, and imprudence of the pedestrian. When compared to the imprudence of
the driver, speeding is a contributing factor that substantially reduces the probability in
serious injury outcomes in the identified critical zone (−74.19%) but has a non-significant
effect for the dataset as a whole. For the built environment factors, there is a statistically
significant rise in serious injuries for pedestrian crashes at a long distance from traffic lights
within the critical zone and a non-significant variation in this probability for the whole
dataset. Lastly, intersections are built environment characteristics that became relevant
in both model results, but with contrary effects. Pedestrian crashes that occur within the
spatial cluster decrease the probability of fatal severity by 2.39% for medium distances from
intersections, while this probability increases by 2.17% when considering the whole dataset.
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6. Discussion
6.1. Demographics

The model results for the whole dataset reveal that pedestrians over the age of 65 years
old have a higher risk of being involved in a crash than child pedestrians, similar to
the recent work conducted in Chile by Bravo Rojas et al. [72]. These results also concur
with several studies that have reported the effect of older pedestrians on suffering more
severe injuries or death than other age groups [15,16,23,30,32,54]. Elderly individuals have
restricted cognitive abilities, less mobility, and lower walking speed than pedestrians from
other age groups, which increases the chances of being involved in a crash resulting in
some type of injury. Different studies have concluded that most fatal pedestrian victims are
predominantly males [34,43,50,54]. Male pedestrians take more risks and are less cautious
than female pedestrians, and, thus, they are more likely to be involved in a crash.

6.2. Crash Characteristics

With respect to the relative location of crashes, the model results suggest that inter-
sections with functioning traffic lights increase the chances of being killed and seriously
injured, which conforms to the large number of pedestrian crashes that occurred during
the studied period at signalized intersections in Santiago. In terms of the time of day,
the findings concur with the studies by Kim et al. [16] and Chen and Fan [49], indicating
that pedestrian crashes in the afternoon tend to decrease the chances of fatal outcomes
since there are still some daylight conditions and more traffic congestion with overall low
vehicle speeds, whereas pedestrian crashes at night tend to increase fatality probability, as
found in various previous studies by Martínez-Ruiz et al. [20], Song et al. [44], and Chen
and Fan [49], denoting a dangerous time period for pedestrians due to poor visibility or
fatigue. The model results for the whole dataset indicate that pedestrian crashes during the
weekend increase the likelihood of serious injuries and fatal crashes, similar to the results
of Chen and Fan [49]. The traffic volume is reduced during weekends, and as a result,
vehicles travel at higher speeds increasing the odds of fatal pedestrian crashes.

Overall, this study suggests multiple contributing factors for pedestrian safety im-
provements. Among all significant contributing factors, signage disobedience leads to
the highest rise in fatality probability of pedestrian crashes in Santiago. This risky illegal
behavior is immersed in the Chilean culture that has been adopted by the population over
the years from a young age, perhaps due the lack of enforcement of traffic regulations that
creates a general perception that the traffic regulations do not apply to pedestrians [73].
In accordance with Li and Fan [17] and Downey et al. [36], our results reveal that the
imprudence of the pedestrian presents important increments of fatal risk. Crossing the road
without adequate attention to traffic conditions or standing or walking on the roadway
instead of sidewalks are common and recurrent behaviors among Chilean pedestrians [74].
Thus, protective measures should consider reduction of vehicle speed limits, traffic calming,
and local area traffic management especially in zones with large flow of pedestrians [75].
Consistent with studies by Kim et al. [16] and Li and Fan [19], our results also reveal that
driving under the influence of alcohol presents a significant increase in the probability of
being killed in a pedestrian crash when analyzing such crashes using the whole dataset.
Additionally, studies have found that pedestrians being under the influence of alcohol is a
crucial concern [26,33,34]. The work by Sun et al. [26] found that pedestrians with alcohol
involvement are 180% more likely to be killed or severely injured. In this study, crashes that
involve pedestrians under the influence of the alcohol represent only 3% of all pedestrian
crashes, however there is a significant increase in the probability of crash fatal severity
for this contributing cause when focusing on the whole dataset. This result is particularly
interesting since previous studies have identified that legislation enacted in Chile during
the analyzed period for increasing penalties for drivers under the influence of alcohol and
decreasing the maximum blood alcohol limit from 0.05 to 0.03 g/dL was associated with
considerable reduction in alcohol-related traffic fatalities and injuries [76,77]. However,
these studies only focus on overall traffic crashes rather than on pedestrian crashes, which
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suggests that these laws may have been particularly relevant in targeting a specific group
of drivers rather than protecting pedestrians.

6.3. Built Environment Characteristics

The city of Santiago has undergone major investments in road infrastructure during the
last decades including improvements in traffic signage, roundabouts, pedestrian crossings,
and exclusive corridors for public transportation [10]. Apparently, these improvements
offer safer mobility and visibility of vulnerable road users, such as pedestrians, in more
advantaged neighborhoods than in deprived neighborhoods [41]. These results assist road
safety professionals in implementing adequate safety measures and improving pedestrian
infrastructure in low SES zones of the city to reduce pedestrian crashes.

Distances between pedestrian crash locations and intersections greater than 10 m
tend to increase the odds of fatality outcomes, meaning that risk propensity for fatal
injuries is increased away from intersections, coinciding with the works by Mukherjee
and Mitra [5] and Pour et al. [32]. Pedestrians may start jaywalking as they get closer to
intersections, and, thus, the introduction of pedestrian crossings at mid-blocks may help
improve pedestrian safety.

6.4. Model Comparison

The KDE analysis results indicate that a single critical zone with high concentrations
of pedestrian crashes was identified comprising 7 out of 34 municipalities of the city. This
critical zone is situated the heart of the city, particularly in the municipality of Santiago, in
which the abundance of economic, cultural, and political activities attracts a daily floating
population of one third of the total population of Santiago [78]. Consequently, pedestrians
are more prone to be exposed to injury severity crashes in this municipality. In addition,
a high density of pedestrian crash fatalities is observed in the municipalities of Estación
Central and Providencia, which have experienced a rapid redevelopment of high-rise
properties and an attraction of a large number of pedestrians to various shopping malls
and other commercial spaces.

The model results show that common risk factors are statistically significant in pedes-
trian crash models for both the whole crash dataset in the city and within the identified
critical zone. The contributing factors related to the imprudence of the pedestrian, driving
under the influence of alcohol, and signage disobedience present considerably higher
probabilities of pedestrian crash fatalities in the critical zone than in the entire city. The high
concentration of alcohol outlets in the critical area may contribute to the pedestrian crash
occurrence while the driver is under the influence of alcohol [14], and the high pedestrian
volume in this critical area may produce more jaywalking, careless actions of pedestrians,
and violation of traffic signage than in the rest of the city.

When focusing on the whole dataset, the probability of fatal pedestrian crashes in-
creases for medium and long distances from intersections whereas there is a reduction
in the probability of suffering severe injuries for medium distances from intersections in
critical zones with high density of crash injury severity clusters. These contrasting results
between the two models should be further investigated since the crash database has no
specific information on the presence/absence of traffic lights, pedestrian crossings, or other
signage at these intersections.

7. Conclusions

This research aimed to investigate the risk factors that significantly impact pedestrian
crash injury severity by performing spatial and statistical analyses. Based on pedestrian
crash data collected between 2012 and 2016 in Santiago, Chile, a KDE analysis was first
performed to identify spatial clusters with high density of pedestrian crashes, and, subse-
quently, PPO models were built to understand different risk factors related to the pedestrian,
crash, and built environment characteristics that significantly affect injury severity levels of
pedestrian crashes within the identified spatial cluster and also for the whole city. Results
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for the whole dataset confirm previous identified risk factors that play relevant roles in
increasing the probability of serious injury and fatality outcomes in pedestrian crashes. For
example, the following significantly increase the odds of resulting in a fatal crash: being
male and older, being the morning, night, or a weekend, being at a distance from intersec-
tions with functioning traffic lights, the presence of alcohol in the driver or the pedestrian,
imprudence of the pedestrian, and signage disobedience. Safe mobility for the elderly
should be ensured by providing traffic regulations related to pedestrians’ right-of-way and
crossing times [41]. Additionally, education programs targeted particularly at men are
necessary to help their awareness on safe road crossing practices. With respect to crashes
during the night, pedestrians need crossing signs equipped with flashing lights to alert
drivers of the presence of pedestrians.

Common risk factors for the whole dataset and the identified critical area were identi-
fied to increase the probability of pedestrian crash injury severity. However, significantly
higher increases are perceived in the probability of fatality risk for certain contributing
factors in pedestrian crashes that occur within the critical zone. This result proves the
need to perform a spatial clustering analysis with the KDE technique to identify those risk
factors that require effective pedestrian safety improvements and interventions to increase
pedestrian safety in high-risk zones.

In light of our results, we provide the following set of countermeasures as practical
recommendations that may be introduced in Santiago for improving pedestrian safety:
improving traffic regulations to secure right-of-way of pedestrians; introducing devices
that favor the significant increasing of crossing times; crossing signs equipped with flashing
lights at night to alert drivers to the presence of pedestrians; implementing speed cameras
in critical zones; and designing and implementing road safety education programs to teach
both new drivers and pedestrians to respect traffic regulations. In this study, the low ICC
values obtained for each model reveal the insignificance of the random effects in the models.
Therefore, the studied variables were not found to have random effects on the probability
of pedestrian crash injury severities. However, future research should compare our results
with other approaches such as the mixed effect PPO model to better explore the unobserved
heterogeneity in the crash data. Further research should also consider other risk factors
such as weather, road characteristics, and vehicle conditions that may have significant
impacts on pedestrian crash injury severity, similar to the works by Munira et al. [21],
Pour-Rouholamin and Zhou [24], and Park and Bae [79]. The model may improve the
explanation of the data if other additional explanatory variables or proxy variables are
available. As aforementioned, this study has the limitation of using surrogate data for
population exposure since actual pedestrian counts are not available. In future research,
data collection methods should be studied to obtain pedestrian counts throughout the city
to be employed as a risk factor in pedestrian crash injury severity modeling. The analysis
of pedestrian crashes using actual pedestrian volume counts would provide more accurate
modeling results.

This study has the limitation of using pedestrian crash data between 2012 and 2016
due to main three reasons. First, recent crash data were not included in the study since
we considered that the social riots that took place in Chile in 2019 and the pandemic
that started in March 2020 may have influenced our results, given this atypical situation.
Second, the pedestrian crash data were available for this period when this study was
started. Third, Iglesias et al. [10] indicated that during the 2010–2016 period a total of USD
3.8 million was invested in transportation infrastructure projects in Santiago. In addition,
Martínez et al. [41] studied the improvements in Santiago that offer safer mobility and
visibility of pedestrians over a 12-year period (2002–2013). Thus, this study analyzes a
five-year period of pedestrian crashes when these improvements were being carried out.
We assume that such crashes reflect the situation with safety improvements. Future research
will also determine whether certain risk factors that affect pedestrian crashes persist through
time by analyzing the models per year, and, thus, adequate countermeasures may be
implemented to directly target those factors.
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