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Abstract  

 

Natural materials are often organized in complex hierarchical architectures to optimize mechanical 

properties. Artificial bio-inspired materials, however, have thus far failed to successfully mimic 

how these architectures improve material characteristics, for example strength. Here, a method is 

proposed for evaluating the role of hierarchy on structural strength. To do this, we consider 

different hierarchical architectures of fiber bundles through analytical multiscale calculations based 

on a fiber bundle model at each hierarchical level. In general, we find that an increase in the number 

of hierarchy levels leads to a decrease in the strength of material. However, when a composite 

bundle with two different types of fibers is considered, an improvement in the mean strength is 

obtained for some specific hierarchical architectures, indicating that both hierarchy and material 

“mixing” are necessary ingredients to obtain improved mechanical properties. Results are promising 

for the improvement and “tuning” of the strength of bio-inspired materials.



 

 

1. Introduction 

The vast majority of biological materials is hierarchically structured, beginning at the smallest scale 

with mineral particles, nano-fibers or platelets, which are typically embedded within a protein 

matrix
1
. For example, up to 7 levels of hierarchy can be found in bone and dentin

2
, where the 

largest structural elements reach length scales of millimeters. Detailed descriptions of the 

hierarchical structures of several biological materials, such as shells, bone, teeth, sponge and 

spicules, can be found in recently published review articles
3-5

. 

Given a hierarchical organization, a variety of designs are possible, by changing the type 

and arrangement of the components at different hierarchical levels
6
. In the case of bone, for 

example, the variability at the nanometer level is in the shape and size of mineral particles, at the 

micron level in the arrangement of mineralized collagen fibers into lamellar structures and beyond 

in the inner architecture, the porosity and the shape of the bone. The mechanical properties of bone 

are well known to strongly depend on all these parameters 
7-11

. The same behavior is found in other 

natural materials, e.g. wood 
12

, nacre
13, 14

, spider silk
15

 , etc. 

Biological materials differ fundamentally from most man-made materials, in being 

inherently structurally hierarchical. For example, as shown in Fig. 1a), the structure of tendons can 

be divided into six major hierarchical levels, from collagen fibrils (groups of interconnected 

collagen strands), to collagen fibers (bundles of fibrils), to bundles of collagen fibers, to secondary 

bundles of fiber bundles, to “fascicles” of bundles, to groups of fascicles which constitute the 

tendon itself. At all hierarchical levels, bundles are bound together by sheaths of stabilizing 

endotenon and the tendon also has an exterior sheath of connective tissue called epitenon. Hierarchy 

and functional grading implies that the mechanical properties of natural materials are also different 

at different length scales, i.e. the overall mechanical properties of a structure rarely reflect the bulk 



properties of the materials constituting it, and rather they depend on the hierarchical and functional 

grading architecture
1, 16

.  

Virtually all stiff biological materials are composites with the smallest components mostly 

in the size-range of nanometers
17

. In some cases (plants or insect cuticles, for example), a polymeric 

matrix is reinforced by stiff polymer fibers, such as cellulose or keratin
12

. Even stiffer structures are 

obtained when a (fibrous) polymeric matrix is reinforced by hard particles, such as carbonated 

hydroxylapatite in the case of bone or dentin
18

. The general mechanical performance of these 

composites is quite remarkable. In particular, they combine two properties which are usually quite 

contradictory, but essential for the function of these materials, i.e. strength and toughness. Bones, 

for example, need to be stiff to prevent bending and buckling (or strong to prevent crushing), but 

they must also be tough, since they should not break catastrophically even when the load exceeds 

the normal range. This is achieved using proteins (collagen in the case of bone and dentin) are tough 

but not very stiff, whilst mineral is stiff but not very tough
8, 19

. The combination of these two 

material types in a hierarchical architecture is responsible for the exceptional properties of bone. 

At nanoscale, studies have been carried out on intermediate filaments in cell cytoskeletons, 

ranging from atomic to cellular ranges, showing that a multi-scale structure is crucial for their 

characteristic mechanical properties, in particular their ability to undergo large deformations
20

. 

Atomistic modeling has also recently been employed to derive hierarchy-related increased crack-

propagation resistance in silica-based composite structures
21

. 

All of these observations lead to the hypothesis that the exceptional mechanical behavior of 

biological materials is due to two essential elements: hierarchy and material heterogeneity. Thus, in 

fracture mechanics it is necessary to model these materials as hierarchical heterogeneous structures 

in order to correctly capture the observed behavior. Surprisingly, the complexity involved in these 

fracture processes can often be suitably treated by grossly simplified models. However, only few 

engineering models explicitly consider the role of complex hierarchical structures in fracture 

processes
 16-19, 22

. A very important class of models of material failure is the fiber bundle model 



(FBM) which has been extensively studied during the past years (see the review
23

 and references 

therein). This model consists of a set of parallel fibers having statistically distributed strengths. The 

sample is loaded parallel to the fiber direction, and the fibers fail if the load exceeds their threshold 

value, with the load carried by the broken fiber being redistributed among the intact ones. Among 

the several theoretical approaches, one simplification that makes the problem analytically tractable 

is the assumption of global load transfer, which means that after each fiber breaking the stress is 

equally distributed on the intact fibers, neglecting stress enhancement in the vicinity of failed 

regions (Equal Load Sharing, ELS). A wealth of analytical and numerical results are available in the 

literature to derive predictions on fibrous materials and fiber-based composites. For example, Bosia 

et al. studied the strength and toughness of nanotube-based composites, starting from the properties 

and volume fractions of the fragile and ductile constituents
24

. Also, a numerical study of damage 

evolution in hierarchical FBMs was recently carried out by Mishnaevsky
25

. The relevance of FBM 

is manifold: in spite of their simplicity, these models capture the most important aspects of material 

damage and due to the analytic solutions they provide a deeper understanding of the fracture 

process. Furthermore, they serve as a basis for more realistic damage models also having practical 

importance.  

In this paper we try to give an answer to the following question: “how does hierarchy and/or 

material heterogeneity affect the strength of a structure?”, or, in other words, “is it possible by 

varying the hierarchical structure and mixing different material components to optimize the 

mechanical behavior of a material/structure?”. More specifically, we wish to evaluate the pure role 

of hierarchy on multi-component fiber-based materials, without addressing issues like the effect of 

the staggered reinforcements, the effect of matrix shear
26

 and other geometry-related issues. To 

answer the above questions, we introduce an analytical theory for hierarchical composite FBMs 

with different fiber types in the case of ELS.  

The paper is structured as follows: in Section 2, we present the analytical procedure to 

calculate the strength of hierarchical fiber bundle architectures, both in the case of single-phase and 



composite materials; in Section 3, we present results of calculations, together with comparisons 

with numerical simulations to validate the procedure; finally, conclusions and outlook are given. 

 

2. Theory 

2.1 Hierarchical fiber bundle theory 

Many fibrous biological materials can be seen as a hierarchical ensemble of fibers, much like a 

rope. Each can be seen to correspond to a different hierarchical level, starting from single fibers 

(level 0), a bundle of fibers (level1), a bundle of bundle of fibers (level 2), and so on. This 

hierarchical arrangement suggests the use of a hierarchical procedure to determine higher-level 

properties from level 0 constituent fiber properties only. 

The strength distribution of a single element composing a fiber bundle is assumed to be 

described by means of a two-parameter Weibull distribution
27, 28

 W() as: 
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where σ is the stress applied in the longitudinal direction, and σ0 and m are the scale and shape 

parameters, respectively. Weibull statistics are widely used in deterministic linear elastic fracture 

mechanics for the strength distribution of solids, and can be applied to natural biological or artificial 

polymer fibers such as those considered in this paper. However, the mathematical treatment 

outlined below can also be extended to the nanoscale (e.g. carbon nanotubes), with appropriate 

modifications (e.g. nanoscale Weibull statistics
29

). The mean strength < σW > is given by
26

: 
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and the standard deviation is
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The shape parameter, m, represents the dispersion of the strength. A greater m value indicates a 

small strength variation and when m tends to infinity the strength becomes deterministic.  

The case of a bundle made of a very large number N of parallel elements of Weibull type 

was first tackled by Daniels. Based on his analysis, the mean bundle strength is
30

:  
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with standard deviation
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Again for m tending to infinity a deterministic strength is predicted.  

The previous relations can be exploited to derive strength distributions for hierarchical 

structures such as a tendon shown in Fig 1a. To do this, we assume that each hierarchical level can 

be represented as a bundle of Nn fibers, in which each constituent fiber can in turn be represented by 

a bundle of lower level fibers, and so on, as shown in Fig.1b. It is reasonable to assume that at each 

level n in the structure the strength of the constituent fibers is Weibull distributed, i.e. is described 

by eqs. (1)-(3) with scale and shape parameters σn and mn. We now exploit the fact that analytical 

results show a transition of the strength distribution function for a fiber bundle from a Weibull to a 

Gaussian form for large values of the number of fibers Nn. Therefore, the mean strength <σWn> and 



standard deviation Wn of the fibers at level n should coincide with those calculated using Daniels’ 

theory (eqs. (4) and (5)) applied at level (n-1). Thus, the Weibull parameters of the constituent 

fibers at each hierarchical level can be determined from those at the lower level, down to level 0 

(single fiber), where the distribution parameters are usually known or can be inferred. Accordingly, 

we impose: 
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thus linking two adjacent hierarchical levels and extending Daniels’ theory to hierarchical materials. 

The two equations lead to 
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The shape factor mn+1 for level (n+1) can be easily numerically calculated from equation (8), and 

the scale factor σ(n+1) can be obtained from equation (9). This procedure can be repeated for each 

hierarchical level, i.e. starting from the Weibull distribution at level 0, Daniels’ theory can be 

applied to derive the strength at the first hierarchical level, and so on up to level n. Notice that this 



hierarchical procedure amounts to relaxing the equal load sharing hypothesis, because load sharing 

applies only to single fiber bundles. This provides more realistic strength distribution estimations 

than “single level” estimations, because in real materials some form of “local load sharing” always 

takes place. 

In the case of small bundles, i.e. structures composed of a limited number of fibers in 

parallel, the previous equations need to be modified because the “large N” hypothesis in Daniels’ 

theory is no longer justified. Thus, correction factors fN and gN need to be introduced to account for 

the discrepancy between Daniels’ normal approximation and the real Gaussian distributions for 

relatively small bundles:  Dnnn f   and 
Dnnn g  


 where  n  and 

n


 are the 

corrected mean strength and standard deviation. As discussed in detail elsewhere
31

, we find the 

expressions given in the literature
32

 for fN and gN to be inadequate (due to the non self-consistency 

in the trivial case of N=1) for very small bundles, i.e. for typical values in hierarchical structures. 

Comparing results with a recently-introduced numerical Hierarchical Fibre Bundle Model 

(HFBM)
33

, our improved and self-consistent expressions for the correction factors are:  
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where a=0.01, b= –0.05 are numerically derived coefficients. 

 

2.2 Composite fiber bundles 



We now consider a fiber bundle composed of two types of fibers (“composite bundle”) with a well-

defined percentage of each type and apply the classical Daniels’ theory. The probability that this 

structure will fail when subjected to a stress σ is 
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where x is the mixing parameter and m01, σ01, m02 and σ02 are the shape and scale parameters of the 

fibres of first and second type. The subscript “0” is an indication of the hierarchical level (0 in this 

example) and subscripts 1 and 2 are indications of the fiber types. By applying Daniels’ theory, the 

mean bundle stress is obtained: 
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where P is the stress sustained by surviving elements. The standard deviation is: 
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where Nx is the number of fibers in the bundle, and subscript “D” indicates that Daniel’s theory has 

been used. By deriving eq. (13), it is possible to numerically determine the stress Pf that maximizes 



 and hence obtain the strength of the composite bundle as well as the standard deviation of the 

strength by substituting Pf in eqs. (13) and (14). 

 When considering fiber bundles with two fiber types, it is also necessary to consider the case 

in which they have different stiffnesses E1 and E2, as well as different Weibull-distributed strengths. 

In this case, one must calculate the maximal load sustained by the bundle to calculate the overall 

strength of the structure. For simplicity, a linear elastic relationship  iE  is assumed up to 

fracture and a displacement controlled experiment is considered. Equation (1) for fiber type i may 

be written in alternative form: 
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where W(ε) is the failure probability of a single fiber under a strain ε and iii
E00    is the scale 

parameter of the Weibull distribution for strain. The tensile load acting on a bundle constituted by 

two types of fibers (i=1,2) is given by 
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where A1 and A2 are the cross-sections of type 1 and type 2 fibers, and N1 and N2 their total number 

in the bundle, respectively. The maximal load Fmax sustained by the bundle can again be obtained 

by setting to zero the derivative of eq. (16), and the mean strength of the bundle can be expressed as 

 202101max ANANF  . 



 Clearly, the hierarchical Daniels’ theory outlined previously can also be applied to a 

composite bundle of mixed fibers. In this work we will consider two different fiber types, but the 

procedure can be extended to any number of components. Thus, in the general case, the n
th

 level 

will be constituted by 2 types of bundles of mixed fibers, each having characteristic shape and scale 

parameters mni and σni, which can be calculated, from level (n-1) parameters. Equations (13) and (14) 

can thus be expressed in general hierarchical form as: 
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where nf  is the value of the stress that maximizes the load sustained by the bundle at hierarchical 

level n and Nn is the corresponding total number of bundles.  

 

2.3 Chains of composite fiber bundles 

 Finally, it is possible to extend the model at any level n to a chain of Nyn statistically 

independent bundles with Nxn fibers in each bundle, as shown in Figure 2. To do this, weakest link 

theory
34

 can be adopted. The strength distribution of the chain of first-type bundles at the first 

hierarchical level will thus be given by: 
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where Ny1 is the number of bundles in the chain. For each bundle at the second hierarchical level 

Daniels’ theory can be applied to calculate the Weibull parameters of the corresponding bundles, 

and so on. 

 

3. Model application and results  

3.1 Multi scale fiber bundles with hierarchical load sharing 

The first issue we wish to address using the developed approach is the effect of hierarchy alone on 

the strength of structures. Thus, we first consider a multiscale hierarchical fiber bundle model such 

as that described in Section 2.1. In the following, we will adopt the following assumptions: 

N: total number of fibers;  

n: hierarchical level (n=1, 2 …., M);  

k=k(n): number of elements at the n-th hierarchical level (i.e., the number of lower level 

bundles in an upper level bundle, or the number of fibers in the 2nd level bundle).  

To illustrate the adopted hierarchical load sharing rule, we consider a 3-level structure as an 

example. In this case, the load is transferred from the upper-level elements of the hierarchical 

structure (corresponding to the ‘‘bundles-of-bundles-of-bundles-of-fibers in a three level structure) 

to all lower elements of the material (fibers, ultimately). The load is shared equally among all the 

sub-elements of a given higher level element (as long as they are intact) or among all remaining 

intact sub-elements after some of them fail. For example, when one fiber breaks its load will be 

redistributed to all fibers in the same bundle but not to all fibers in the whole structure. Also, when 

a bundle fails, the load will be redistributed among bundles at the same level. In other words, there 

is equal load sharing at each hierarchical level. This we define as “hierarchical load sharing”. 



We start with a very simple example. In Fig 3a, the strengths of 4 different hierarchical 

structures made up of N=8 fibers are compared, with one to three hierarchical levels. 

 The single level structure is made of eight parallel fibers (indicated as “8”).  

 Two different double-level structures are considered: two bundles of four fibers (indicated 

as “4,2”), and four bundles of two fibers (indicated as “2,4).  

 The third level structure is composed by two bundles made of two bundles of two fibers 

(indicated as “2,2,2”).  

 

These structures are schematically shown in Fig. 3a. The level 0 fibers are assigned random 

Weibull distributed strengths, using carbon nanotube (CNT) properties: σ0 = 34 GPa and m = 2.74
35

. 

Results in Fig 3a show that the lowest hierarchy level structure has the highest strength. Also, the 

strongest of the two double-level structures is that with the highest number of fibers in parallel 

(highest lower-level k). The latter would therefore seem to be the required condition for optimizing 

strength, i.e. the highest possible number of lower level elements set in parallel. This is confirmed 

by results in Fig. 3b relative to various 128-fiber arrangements, ranging from single-level (128 

fibers in parallel) to 4-level structures. Again the highest strength is achieved by 128 fibers in 

parallel, then with two 64-fiber bundles, and so on. It is important to stress how the use of 

correction factors (eqs.10 and 11) are essential in these calculations whenever a structure with a 

small number of parallel fibers or bundles is considered. Neglecting these corrections would lead to 

significant differences in the ordering according to strength of the considered structures. 

The influence of the number of hierarchical levels on the mean strength is next evaluated 

again for structures with the same total number of fibers N. In Fig. 4, structures having the same 

number of elements (fibers) at the lowest level are compared, i.e. k(1)=8, with N=160, as well as 

with the corresponding level 1 structure (k(1)=160) for reference. Once again a strength decrease is 

found from 1
st
 level to 4

th
 level structures, indicating that increasing hierarchy leads to decreasing 

strength.  



The same tendency is found when keeping constant the number of elements at the highest 

hierarchical level, as shown in Fig. 5, for N=320. In Fig. 5a the comparison is between four 

different structures with k(M)=4, whilst in Fig. 5b the mean strength is plotted vs. number of 

hierarchical levels for three different values of k(M). 

The observation that the increase in the number of hierarchical levels leads to a lower 

material strength is consistent with other results in the literature
25, 36

. However, it is in contrast with 

the observations that many natural materials, built as hierarchical fibrous composites, have 

extraordinarily high strength. This leads to the conclusion that hierarchy alone is insufficient to 

justify the strength of natural biomaterials. 

 

3.2 Composite fiber bundle  

Next, we wish to apply the theory outlined in Section 2.2 and evaluate the influence on the mean 

strength of composite fiber bundles of the chosen Weibull parameters for the two types of fibers 

involved.  

In the first example, shown in Fig. 6a, the mean composite bundle strength is calculated for 

varying σ01, m01 and m02 values, setting σ02 =0.01 GPa, and a linear dependence is highlighted. As 

expected, the variation of m1 has an effect on the results in a manner which is proportional to the 

mixture ratio x, i.e. its effect increases with x, and increasing m1 values yield an increase in mean 

strength. A linear behavior is also found between mean strength and mixture ratio as shown in Fig. 

6b.  

Another issue of interest is the comparison between the results obtained with the present 

model (application of Daniels’ theory to a composite bundle) and those obtained using a rule of 

mixtures approach. In the latter, the mean composite bundle strength RM  is calculated by using 

Daniels’ theory to separately obtain the strengths 
D,1  and 

D,2  relative to bundles composed 



of 100% of first and second types of fibres, respectively, and then combining the two values using 

the relation
34

: 

 

  DDRM xx ,2,1 1       (20) 

 

where x is the volume fraction of the first bundle. Figure 7a illustrates the discrepancy 

RMD    between the mean bundle strengths calculated using the two approaches for 

02=0.1 GPa, m01=4, m02=2 and various values of 01. Clearly,  is zero for x=0 and x=1, but the 

discrepancy is not negligible for intermediate x values. This is due to the fact that when adopting a 

classical rule of mixture approach an unrealistic load redistribution is assumed among the different 

types of fibers as damage progresses in the composite bundle. This justifies the adoption of the 

approach outlined in Section 2.2. 

 

3.4 Comparison with numerical results 

To check the validity of the proposed approach, we now compare some analytical calculations with 

numerical results obtained with the Hierarchical Fiber Bundle Model (HFBM)
33

. First, we wish to 

analyze the mean strength of various bundles composed of different types of fibers. As an example, 

we consider a mean strength calculation for a varying mixture ratio x and Weibull parameter σ01, for 

σ02=10 GPa, m1=2, m2=2. The mean strength of all composite bundles is calculated analytically 

using the procedure described in Section 2.2 and compared to values obtained through numerical 

simulations. Results are shown in Fig. 7b and display considerable agreement between analytical 

and numerical calculations. 

The comparison between analytical and numerical results is extended to various different 

cases of composite bundles composed by fibers with different Weibull parameters and for various 

mixture ratios. Results in Table 1 are relative to bundles composed of fibers with the same elastic 



modulus, whilst those in Table 2 are composed by fibers with different elastic moduli. Again good 

agreement is found in all cases, thus proving the validity of the approach.  

 

3.5 Hierarchical composite bundle 

To illustrate the possible variations in the mechanical behavior of a hierarchical composite bundle, 

we consider some specific examples. First, let us analyze the case of a bundle with two types of 

fibers and a mixture ratio of x=0.5, with σ01=10 GPa, σ02=0.01 GPa , m01=2, m02=3 and N=480. In 

the non-hierarchical case, i.e. in the case of a level 1 bundle with all 480 fibers in parallel, the 

expected mean strength, according to the calculation procedure in section 2.2, is <σ>=2.14 GPa. 

One possibility for creating hierarchical architectures with this set of fibers is to form single-

fiber bundles at level 1 and mixed bundle types at level 2. For example, we can build two types of 

level 1 bundles, the first one consisting of two fibers of the first type (σ01=10 GPa and m01=2), the 

second of 5 fibers of the second type (σ02=0.01 GPa and m02=3), and create a level 2 structure 

composed of the resulting 120 bundles of the first type and 48 of the second type. The chosen 

nomenclature for this type of structure is [(2,5);(120,48)]. From the application of our hierarchical 

fiber bundle model we get: σ11=8 MPa, σ12=0.007 MPa, m01=2.4, m02=5.2, and a mean strength for 

the 2
nd

 level bundle of 2.56 GPa, which is larger than the above non-hierarchical level 1 bundle.  

This strength increase is obtained through various other configurations, as documented in 

Fig. 8. All of these are 2
nd

 level structures, where the total number of the two types of fibers 

remaining constants, and only their hierarchical configuration in bundles changing in the various 

considered cases. The general tendency is that the greatest strength increase is obtained by grouping 

strong fibers in small bundles and weak fibers in large bundles at level 1. Clearly, the load 

redistribution during specimen failure in this type of configuration favours an enhancement of the 

resistance to damage progression. Clearly, this is only a first example of how mechanical properties 

of composite structures can be tailored by an appropriate choice of the components and their 

hierarchical arrangement. Further future work requires extensive parametric studies to highlight in 



greater detail the necessary strategies to obtain the desired structures with superior mechanical 

behavior. 

 

 

4. Conclusions 

We have presented an altogether general and self-consistent analytical procedure to calculate the 

strength of hierarchical fiber bundles constituted by two (or more) types of fibers. We have 

demonstrated how hierarchy alone is insufficient to yield strength enhancement, and how this 

increase in strength can be obtained through a suitable choice of fiber distributions at different 

hierarchical levels. In other words, the key to an improvement in the strength and mechanical 

performance in general of multiscale materials would seem to lie in hierarchical structuring of 

multi-components. These results can be of great interest, first as a means to interpret and further 

investigate the exceptional mechanical performance of biomaterials, and secondly as a strategy to 

design and fabricate new bio-inspired materials with desired tailor-made properties. In future, a 

possible continuation of this work could be to extend its application to the molecular level by 

integrating results from molecular dynamics simulations (e.g. on spider silk
37

) into the described 

procedure, which at present relies on experimentally determined level 0 Weibull parameters. 

Therefore, the role of hierarchy and material mixing could truly be evaluated from nano- to 

macroscale, ideally with no free model parameters. Future HFBM numerical simulations could also 

include shear effects into a 2-D formulation, thus improving the evaluation of the mechanical 

performance of hierarchical composite materials. In any case, the theory and analytical procedures 

outlined in this work can provide a useful tool to help in understanding the underlying mechanisms 

in the mechanical behavior of natural materials and in designing bio-inspired materials with tailor 

made properties. 
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List of Figure captions 

 

Fig. 1: a) Hierarchical tendon structure (from
38

); b) Corresponding schematic representation of the 

present hierarchical fiber bundle model. The Weibull strength distribution at hierarchical level n is 

determined from Daniels’ theory applied to the fiber bundle at level (n-1). 

Fig. 2: Schematic representation of the composite fiber bundle model at the 1st level of the 

hierarchical chain of bundles structure. 

Fig. 3: Strength versus hierarchical structure for (a) N=8, (b) N=128. 

Fig. 4: Mean strength plotted versus different hierarchical structures for a) k(1)=8; b) k(M) =4. 

Fig. 5: a) Mean strength of different hierarchical structures for k(M)=4; b) Mean strength vs. 

number of hierarchical levels for structures having the same number of elements at the highest 

hierarchical level k(M). 

Fig. 6: Mean bundle strength versus a) scale parameter of the first type of fibers. b) mixture ratio x 

of first type of fibers with m1=2.  

Fig. 7: a) Discrepancy between mean strength values for composite bundle calculated using 

Daniels’ theory and rule of mixtures (02=0.1 GPa, m01=4, m02=2); b) Comparison between mean 

strength predictions for a mixed fiber bundle: values are calculated using theory (“Theo”), and 

HFBM numerical simulations (“HFBM”) for σ02=10 GPa, m1=2, m2=2. 

Fig. 8: Mean bundle strength versus hierarchical structure for composite hierarchical 2nd level 

bundles. The staggered line indicates the strength of the corresponding non-hierarchical level 1 

bundle. 

 

 



 

Tables 

 

Table. 1: Comparison between theory and HFBM code for different cases of composite bundles 

composed by fibers with the same elastic modulus. 

Case 

σ01 

(GPa) 

σ02 

(GPa) 

m1 m2 x Mean strength (GPa, 

Theory) 

Mean strength (GPa, 

HFBM code) 

1 50 10 2 4 1 21.440 21.672 

2 50 10 2 4 0.5 10.780 10.917 

3 50 10 2 4 0 5.506 5.533 

4 20 10 2 4 1 8.577 8.676 

5 20 10 2 4 0.5 6.070 6.133 

6 20 10 2 4 0 5.506 5.523 

7 10 0.01 2 4 1 4.300 4.329 

8 10 0.01 2 4 0.7 3.002 3.021 

9 10 0.01 2 4 0.5 2.140 2.173 

10 10 0.01 2 4 0 0.006 0.005 

 

 

Table. 2: Comparison between theory and HFBM code for bundles composed of fibers elastic with 

different elastic moduli (x=0.5). 

N1, N2 m1 m2 σ01 

(GPa) 

σ02 

(GPa) 

E1 

(GPa) 

E2 

(GPa) 

Mean strength (GPa, 

Theory) 

Mean strength 

(GPa, HFBM code) 

500 2 3 4 4 10 20 1.642 1.510 

500 3 6 50 400 300 800 125.400 122.940 

500 2 4 40 20 110 200 9.506 8.857 
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