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Abstract:  A computer model (expectation maximization of a mixture 
of Gaussians) is used to learn the positions of vowel categories from 
two sets of recorded words. The number of vowels is known 
beforehand. The results show that vowel positions learned on the 
basis of infant-directed (ID) speech correspond better to those in the 
input than those learned on the basis of adult-directed (AD) speech. 
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1. Introduction 

Caretakers address infants in a particular way [Snow and Ferguson 1977]. In this 
infant-directed (ID) speech register, intonation, tempo and articulation are modified 
with respect to adult-directed (AD) speech.  

Mm. 1. Recording of ID speech (333K)  

Mm. 2. Recording of AD speech (289K)  

This phenomenon occurs in many different cultures [i.e., Ferguson, 1964]. It has been 
found that vowels in ID speech are acoustically exaggerated, increasing the distance 
between vowels on average,  and that there is increased variance within a vowel 
category when compared to AD speech [Kuhl et al., 1997; Liu et al., 2000].  It has also 
been shown that, when given a choice, infants pay more attention to ID speech than 
to AD speech [Fernald, 1985; Fernald and Kuhl, 1987].  

The universality of ID speech, the attention infants pay to it, and its 
exaggerated articulation indicate that ID speech fulfills a useful function in learning 
the sounds of a language. Perhaps the special features of ID speech can explain why 
children learn the speech sounds of their language so fast. It has been shown that by 
6 months of age, infants exhibit better perception of phonetic categories contained in 
their language than of foreign-language categories [Kuhl et al., 1992]. However, 
exaggerated articulation in itself does not necessarily imply that learning on the basis 
of ID speech is easier. It could be that the average articulations of the vowels are 
further apart, but that their exact positions are harder to learn, because the spread 
around the average and the overlap between vowel categories are also larger. Recent 
data show that the degree to which individual mothers' vowels are exaggerated 
correlates strongly with her infant’s speech perception performance; the larger the 
vowel space she uses, the better her infant’s performance [Liu, Kuhl, and Tsao, 2003]. 
Correlational evidence does not prove causation, however.  

Fortunately, there is a way to compare the ease with which speech categories 
can be learned (which we will refer to as learnability) from two different data sets. 
One can use a computer model to test the hypothesis that ID speech results in better 
learning of vowel categories. This paper describes an experiment that uses a 
computer model to compare the learnability of an ID data set and an AD data set. 
The computer model is presented with words from either ID speech or AD speech. It 
then has to learn the values of the first two formants (resonance frequencies) of the 
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three target vowels /i/, /a/, and /u/ in the data sets. After learning is complete, the 
learned formant values are compared with standard formant values of the target 
vowels, and thus give an estimate of the quality of the learned vowel system. 

We do not claim that the computer model is a direct model of the way infants 
learn vowels, or that the signal processing algorithms that are used are as 
sophisticated as the signal processing abilities of infants. However, the aim of the 
study is to compare the learnability of the ID and AD data sets. Because the computer 
model is the same for both data sets, the comparison is fair.  

2. Data set 

The data set was based on recordings of mothers talking to their infants and of the 
same mothers talking to an adult [Gustafson, 1993; Kuhl et al., 1997]. The mothers 
were engaged in conversation by the experimenter about a number of objects and 
were asked to play with and talk to their infants using the same objects. The objects 
(i.e., bead, pot, boot, sheep, sock, shoe) were selected to contain the American English 
vowels /i/, /a/, and /u/. Words for the objects were isolated from the recordings.  

For this study, three words were used: sheep, sock, and shoe. Sheep, sock, 
and shoe were selected from all target words, because the voiceless fricatives were 
easiest to distinguish from the vowels. Although shoe and sheep contained a fair 
amount of co-articulation, (due to the palatal fricative) this turned out not to confuse 
the computer model, even though an implicit assumption was that vowels are static. 
However, in these words, /i/ and /u/ tended to be centralized, and thus slightly 
closer together than in other contexts. Data from ten mothers were used. The number 
of tokens for each word and each register for each mother is given in table 1. 

The words were digitally sampled from cassette tape at 16 kHz with 16-bit 
accuracy. Signal-to-noise ratio was estimated to be about 40–45 dB. 

Table 1. Number of tokens (and original formant pairs, see § 3.1) per word, register, and mother 

 Adult- directed Infant-directed 
mother sheep sock shoe sheep sock Shoe 
AG 4    (9412) 2    (9304) 5 (20 539) 6 (30 716) 4 (22 593) 3 (18 866) 
AH 6 (14 029) 5 (15 643) 9 (37 117) 6 (24 967) 9 (35 723) 7 (22 543) 
AL 8 (18 806) 3    (6921) 9 (32 997) 9 (38 126) 7 (40 196) 8 (27 384) 
AO 4    (7941) 3 (12 414) 3    (6441) 9 (27 756) 6 (19 736) 3 (25 905) 
AP 8 (29 513) 6 (22 767) 4 (10 110) 7 (30 869) 9 (41 406) 6 (40 018) 
AS 7 (19 916) 8 (28 359) 7 (21 633) 7 (31 137) 7 (21 619) 6 (35 546) 
AT 3    (9420) 3 (10 477) 3    (8499) 5 (12 121) 7 (54 130) 4 (27 386) 
AW 8 (16 443) 4 (12 109) 4 (10 754) 8 (33 268) 6 (35 561) 5 (27 124) 
AX 4 (15 838) 7 (34 152) 7 (20 083) 8 (41 969) 7 (29 949) 5 (17 057) 
AZ 4 (11 965) 6 (22 971) 9 (20 450) 4 (16 890) 7 (35 663) 6 (34 239) 

3. Computer model 

The aim of the study is to compare the learnability of two data sets, rather than to 
make an accurate model of the human brain. A standard technique from statistical 
pattern recognition for learning to classify data sets, expectation maximization (EM) 
of a mixture of Gaussians [Bilmes, 1998; Dempster et al., 1977] was therefore adopted. 
This technique is fast and easy to re-implement. Its operation is more transparent 
than that of biologically inspired neural networks but it has parallels with these 
techniques [e.g., Specht, 1990]. One could raise the objection that a more cognitively 
accurate technique should have been used, if one wants to say something about 
learnability for humans. However it is unclear what technique to use. A neural 
network for unsupervised classification could do the task, but these models are not 
generally based on an accurate model of the human brain, either. They would 
introduce an unknown learning bias, and their operation would not be transparent. 
Also, the performance of various computational learning techniques on the relatively 
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simple task of classifying a data set into a known number of clusters does not differ 
much, so it was decided to use the simplest and most transparent learning algorithm. 
EM in our experiment faces an important part of the learning task that infants face, 
but it is less powerful than human learning, and it is therefore safe to assume that a 
data set that results in better learning by EM, results in better learning by humans.  

The model has to learn the qualities of the vowels that occur in the speech 
signal that it receives as input. This means that it has to determine the shape of the 
distribution of each of the vowel categories in acoustic space. In solving this task it is 
assumed that the number of categories is known.  We do not hypothesize that infants 
"know" the number of vowels in their language beforehand. We make the 
assumption because unsupervised classification of a data set is much easier when the 
number of categories is known beforehand. Very few stable algorithms exist for 
unsupervised classification with an unknown number of clusters. The assumption 
that the number of categories is known beforehand is therefore a temporary solution 
adopted for comparing the two data sets. Learning the number of categories remains 
a task for later research. Studies of infant perception demonstrate that infants initially 
discriminate between the phonetic units of all languages, and this essentially 
partitions the acoustic space into crude phonetic categories [see Kuhl, 2000; Kuhl et 
al., 2001 for discussion]. It is possible that infants use this ability to make an initial 
estimate of the number of categories of speech sounds.  

3.1. Signal-processing 

The signal-processing procedures were meant to automatically extract formants from 
the voiced parts of the target words. The procedures are standard signal-processing 
procedures, whose parameters were optimized for the task at hand. This means that 
some of the parameter settings might not be optimal for general formant extraction. 

The words contained only one syllable, so vowels were detected because they 
were voiced. Voicing was determined by the zero-crossing rate. To calculate this, the 
signal was center-clipped. All samples with an absolute value of less than 50 were set 
to zero; other samples kept their original value. If the center-clipped signal had fewer 
than 40 zero-crossings (in both directions) per window of 256 samples (16 ms), the 
signal was considered voiced, unless the maximum absolute value of all samples was 
less than 100, in which case it was considered as silence. 

After determining the voiced parts of the signal, formants were calculated for 
windows of 256 samples. These windows were shifted by 1-sample increments over 
the duration of the vowel, so, effectively for every sample in the vowel, a formant 
pair was calculated. For each vowel, this procedure results in a formant track, rather 
than a single formant pair, thus representing it more accurately.  

The signal was pre-emphasized by taking the difference between subsequent 
samples: si’ = si–si–1. This emphasizes high frequencies, which is useful for formant 
extraction. To reduce edge effects, each sample si (1≤ i <256) in the window was 
multiplied by (i–1)⋅(256–i) (a parabola that is zero at the edges with a maximum in the 
middle). This makes formant peaks sharper (see, e.g., Press et al., 1992, fig. 13.4.2). 

After this preliminary processing, 18 LPC-coefficients were calculated using 
the recursive Burg algorithm (as described in Press et al., 1992, ch. 13.6). On the basis 
of these LPC-coefficients, the polynomial that describes the frequency response of the 
vocal tract was determined and its roots were approximated numerically. The 17 
roots (z1..z17) represent the resonance frequencies (formants) of the vocal tract and 
their bandwidths. The relation is as follows: formant frequency  = angle(zi)Fsample/2π and 
bandwidth = FSample(1–|zi|)/π, where FSample is the sampling frequency, and angle(zi) is 
the angle of complex value zi. These formulas were taken from (Allen et al., 1987). 
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Formants were rejected if their frequency was lower than 100 Hz or if their 
bandwidth was higher than 500 Hz. This rejected spurious peaks in the formant 
pattern. Also, the first formant frequency had to be lower than 1500 Hz, and the 
second formant frequency had to be lower than 3000 Hz. This rejected parts of the 
signal in which the first or second formant could not be found. 

The number of formant pairs calculated for different vowels per mother 
differed considerably (Table 1) because there was variation in the number of tokens 
per vowel and their lengths. Longer vowels tend to be articulated better than shorter 
ones. It can indeed be observed in the results that the shortest vowel /a/ is the most 
dispersed. However, this effect is present in both ID and AD speech, so it does not 
matter for the comparison. To not bias learning towards vowels with large numbers 
of formant pairs, it was decided to randomly select an equal number of 1000 formant 
pairs per vowel, mother and register. These formant pairs were selected with 
replacement. Thus, for each mother and speech register, the training data consisted of 
3000 formant pairs, 1000 each per vowel. Other formant pairs were ignored, but due 
to high correlation between successive formant pairs, little information about the 
vowels’ average positions was lost. 

3.2. Fitting a mixture of Gaussians 

To determine the learnability of a data set, a mixture of three Gaussians was fitted, 
and it was checked how close the means (centers) of the Gaussians were to estimated 
standard formant values (see Fig. 1) of the vowels /i/, /a/, and /u/. 

A probability distribution that consists of a mixture of Gaussians is the 
weighted sum of a fixed number of ordinary (possibly multidimensional) Gaussian 
distributions. Each individual Gaussian distribution is characterized by its mean and 
its covariance matrix. The weights of the Gaussians have to sum to one. The weights, 
the means, and the covariance matrices are the parameters of the Gaussian 
distribution. They have to be estimated on the basis of the data. A well-known 
algorithm for this is the expectation maximization (EM) algorithm [Bilmes, 1998; 
Dempster et al., 1977]. On the basis of an initial guess of the parameter values and the 
observed data, a new, better estimate of the parameter values can be calculated. 
These steps are iterated until no more improvement is achieved. Because this is 
difficult to measure in practice, the system was iterated 70 times, after which 
parameter values stabilised. The system does not necessarily converge towards the 
best solution. Often it converges to a local optimum, which is less good than the 
global optimum. The solution found depends strongly on the exact distribution of the 
data points. Two data sets with similar means and variances can therefore show quite 
different learnability, as the learning process is influenced by outliers or overlap 
between vowel categories, among other factors. 

The mixture used here consisted of three two-dimensional Gaussians. The 
parameters were initialized as follows: the weights were set equal, whereas the 
covariance matrices were set to the unity matrix times 1000. The starting averages 
were set to the points (400, 2500), (800, 1500) and (400, 800). These roughly 
correspond to the corners of the acoustic vowel space of a female speaker. This was 
done to give the system as large a likelihood as possible to generate a mixture in 
which each Gaussian corresponds to a vowel.  

Although learning a mixture of Gaussians can in a sense be considered curve 
fitting, the approach is more informative than a straightforward statistical analysis of 
the clusters. The quality of what is learned depends the exact structure of a data set 
and on the way the learned representation changes over time. The performance of a 
learning mechanism therefore gives a better measure of the learnability of a data set 
than a statistical analysis in terms of averages alone (such as was used by Kuhl et al., 
1997) or even one using covariance matrices and other higher order moments.  
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4. Results 

The means of the Gaussians that have been fitted to infant-directed data correspond 
better to the original vowels in the input than for adult-directed data. This 
phenomenon is illustrated in Fig. 1. This figure shows all 3000 data points (3 words 
times 1000 data points) for both infant-directed and adult-directed registers for 
mothers AG and AS. Other mothers are similar and can be found in the larger 
picture. 

Mm. 3. Picture of all 10 learned systems  

It is clear that, like prototypical vowels, the infant-directed tokens are spread out 
more through the acoustic space (conforming to the findings of [Kuhl et al., 1997]). 
However, the area per vowel in the acoustic space are larger, so overlap may be 
greater and it is not directly clear from which of the two data sets the best vowel 
representations can be learned. But the results show that the means of the Gaussians 
that make up the mixture (indicated with black squares in the figures) correspond 
better to the original three vowels (/i/, /a/, /u/) in the infant-directed cases than in 
the adult-directed cases. The adult-directed cases either have an unrealistic outlier 
(F1≈1000 Hz, F2≈2500 Hz) or show only two distinct peaks (two of the three Gaussians 
mostly overlap). In the cases in which both have three peaks in approximately the 
right places, the infant-directed data will invariably have vowels that are closer to the 
standard vowels. There is no exception to this pattern for the ten mothers tested, 
indicating that this is a statistically significant finding (assuming equal learnability, 
this finding would occur by chance with p < 0.01). 

The learning system very quickly converges to a solution. This is illustrated 
in the following movies, which show learning based on both AD speech and ID 
speech for mothers AG and AS. It can be seen that the systems that are learned on the 
basis of ID speech show the clearest peaks that correspond best to the target vowels. 
Note that initially only one peak appears, as they all overlap. Also in some of the 
movies, only two peaks appear to emerge, as the third peak is very low. 

Mm. 4. Movie of learning AG’s ID speech. (839K)  

Mm. 5. Movie of learning AG’s AD speech. (742K)  

Mm. 6. Movie of learning AS’s ID speech. (866K)  

Mm. 7. Movie of learning AS’s AD speech. (730K)  

The general conclusion is that ID speech contains better structure for learning 
a classification. This supports the hypothesis that ID speech may help learning. 

5. Conclusion and discussion 

The results have shown that, given the number of vowels in the vowel system to be 
learned, their positions can be learned more accurately on the basis of ID speech 
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Fig. 1. Comparison of AD speech (yellow dots) and ID speech (green dots) learnability. The 
black points indicate the centers of the learned categories. Data of mothers AS (blue, left) 
and AG (red, right) are shown. Note that the ID-based category centers correspond better 
with actual /i/, /a/, and /u/ (approximate position shown in right graph). 
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recordings than on the basis of AD speech recordings. This indicates that vowel 
quality is more learnable on the basis of ID speech than on the basis of AD speech. 
This supports the hypothesis that the modifications that are made to ID speech 
potentially serve an adaptive purpose. Although the learning algorithm, expectation 
maximization of a mixture of Gaussians, does not directly model the way the human 
brain works, it does allow for a comparison of the different data sets, because the 
learning algorithm and the signal processing routines are the same for both cases, 
and they are not biased. Future research will focus on the properties that make a data 
set learnable when the number of categories is unknown. An unsupervised clustering 
algorithm (such as the one described in Fukunaga, 1990) needs to be used in this case. 

This research is the beginning of the investigation of infant acquisition of 
speech and language using computer models. The result so far has been modest: it 
has shown that if the number of vowel categories is known, vowels are more 
learnable from infant-directed speech than from adult-directed speech. An important 
contribution is also that computer models can be used successfully to investigate 
developmental and cognitive questions. 
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