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ABSTRACT In this paper, we developed a computing architecture and algorithms for supporting soft

real-time task scheduling in a cloud computing environment through the dynamic provisioning of virtual

machines. The architecture integrated three modified soft real-time task scheduling algorithms, namely,

Earliest Deadline First, Earliest Deadline until Zero-Laxity, and Unfair Semi-Greedy. A deadline look-a-

head module was incorporated into each of the algorithms to fire deadline exceptions and avoid the missing

deadlines, and tomaintain the system criticality. The results of the implementation of the proposed algorithms

are presented in this paper in terms of the average deadline exceptions, the extra resources consumed by each

algorithm in handling deadline exceptions, and the average response time. The results not only suggest the

feasibility of the soft real-time scheduling of periodic real-time tasks in cloud computing but that the process

can also be scaled up to handle the near-hard real-time task scheduling.

INDEX TERMS Real-time, cloud computing, virtual machine, deadline, laxity.

I. INTRODUCTION

With the exponential growth of big data induced by the pro-

liferation of Internet technologies, there has been an increase

in the demand for cloud computing over the last few years.

Cloud computing is a type of distributed parallel comput-

ing system consisting of a collection of inter-connected and

virtualized computers that are dynamically provisioned and

presented as one or more unified computing resources based

on service-level agreements between the service provider

and consumers [1], [2]. Cloud computing facilitates flexible

and dynamic outsourcing of applications while improving

cost-effectiveness.

The associate editor coordinating the review of this manuscript and
approving it for publication was Songwen Pei.

Cloud Computing offers three different types of

service models: Software-as-a-Service (SaaS), Platform-

as-a-Service (PaaS) and Infrastructure-as-a-Service (IaaS).

In SaaS model, the consumer is offered to use provider’s

applications hosted in a cloud infrastructure. In PaaS, the con-

sumer is provided with required software and hardware tools

to develop and deploy cloud applications that are hosted in

the provider’s cloud infrastructure. In IaaS, the consumer

is provisioned the use of virtualized computing, storage

and network resources that are delivered on demand basis.

In IaaS model, the consumer will not have control on the

cloud infrastructure, however, he can control the operation

system, the storage and deployed applications beside the

possibility of controlling limited network components such as

firewalls [1], [2].
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Cloud computing is enabling the development of the next

generation of computing services, which would be heav-

ily geared toward massively distributed on-line computing.

It also affords a new model of globally accessible on-demand

high-performance computing (HPC) services. However, such

benefits are presently not available to real-time safety-critical

applications [3]. This could be due to the inability of current

cloud infrastructures to support timing constraints. Compared

with the case of existing real-time scheduling platforms such

as multiprocessors and multicores [4], the handling of real-

time constraints on cloud platforms is more complex due to

the difficulty of predicting system performance in virtualized

and heterogeneous environments [5].

However, real-time applications are gradually progressing

unto cloud computing platforms, driven by the tremendous

possibilities afforded by such platforms. Examples of hard

and soft real-time system applications of cloud computing

are military distributed control systems for remote surveil-

lance, early warning and response systems, sensor-driven

unmanned vehicles with augmented intelligence, and cloud

gaming [5]–[7].

Cloud computing technology is not actually geared toward

hard real-time applications in closed environments, but soft

real-time applications that do not require direct exposure to

the hardware bypassing system software [6], [7]. Incidentally,

soft real-time scheduling policies can be integrated in virtual-

ization platforms, enabling the system to deliver hierarchical

real-time performance [6].

In this paper, we propose and analyze the possibility of

applying real-time task scheduling, or deadline-constrained

task scheduling, on IaaS cloud computing service model,

for the support of soft and near-hard real-time applica-

tions. Examples of such applications are cloud-based gaming,

online video streaming, and telecommunication management

[5]–[7]. Such applications could benefit significantly from

cloud computing despite the limitations associated with the

start-up time and communication of virtual machines. This

is because of the ability of cloud computing to support

dynamic workloads, thereby enabling the elastic allocation

of resources [6], [7].

The rest of the paper is organized as follows. Section 2

introduces the task model and the proposed cloud archi-

tecture, and also defines some terms used in this paper.

Section 3 briefly reviews related works. Section 4 further

describes the proposed cloud architecture and its underlying

scheduling algorithms. Section 5 presents and discusses the

results of the demonstrative implementation of the archi-

tecture. Finally, the conclusions drawn from the study are

presented in Section 6.

II. MODEL AND TERMS DEFINITION

This paper considers the problem of scheduling independent

periodic real-time tasks with implicit deadlines (i.e. task

deadlines are equal to task periods, i.e. di = pi) on a vir-

tualized cloud environment that offers IaaS services to cloud

subscribers.

In real-time systems, a periodic real-time task is one that

is ‘released’ periodically at constant intervals. Such periodic

real-time tasks can be found in a broad range of real-time

system applications. In fact, many of the tasks carried out by

these systems are typically periodic in nature. For-example,

monitoring certain conditions in a plant or in a flight control

system with different set of sensors sending their data period-

ically at constant rates, i.e. at every specific period. Another

example is changing the track in a radar system over spec-

ified period according to the target movement. Yet another

example is polling information from sensors periodically and

respond accordingly (e.g. driving some actuators).

A periodic real-time task Ti, i = 1, 2, . . . , n, is usually

described by three parameters, namely, its worst-case execu-

tion time ei, its deadline di, and its period pi.
1 An instance

i.e. release of a periodic task is referred to as a job and is

denoted by Tij =
(

eij, pij
)

, j = 1, 2, 3, . . . ,. eij refers to the

worst-case execution requirement of job Tij, and pij refers

to its period. The deadline of a job is the arrival time of its

successor. For example, the deadline of job Tij is the arrival

time of job Ti(j+1), namely, at time (j+1)pi. The laxity of a job

Tij at time t , denoted by lij,t , is the duration over which Tij can

remain idle before its execution is commenced, as denoted by

equation 1.

lij,t = pij − eij,t − t (1)

where eij,t denotes the remaining time in the execution of job

Tij at time t .

Another important parameter that is used to describe a task

Ti is its utilization, denoted by equation 2, and refers to the

proportion of the time required for its execution relative to the

entire duration between its release and deadline.

ui = ei/pi (2)

We use the term, Usum to denote the total utilization of a

given taskset T , andUmax to denote the maximum utilization.

A periodic real-time taskset T = {T1,T2, . . . ,Tn} is said to

be schedulable onN nodes eachwithm identical multiproces-

sors if and only if Usum (T ) <= N × m and Umax (T ) ≤ 1.

Table 1 summarizes the notations and terms used in this

paper.

In IaaS cloud service model, Virtual Machines (VMs) are

used to deliver computing, memory, and other resources to

cloud subscribers. We assume that the Master Node (MN) in

the cloud platform has access to a pool of virtual machine

nodes. Initially, the pool containsNVM virtual machine nodes,

each of which contains m symmetric shared-memory multi-

processors (SMPs). The total number of available processors

in the cloud is denoted by M = NVM × m.

Considering the target of a virtualized environment, α is

used to denote the VM instantiation time, and β the delay

introduced by the communication between the MN and local

1In the case of real-time tasks with implicit deadlines, i.e. di = pi, the term
di is usually omitted, with the term pi used to refer to both the task deadline
and period.
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TABLE 1. NotationS and terms.

VM nodes.2 Hence, if an instance of a task Ti, i.e. Tij,

is migrated and affected by the VM instantiation time, its new

worst-case execution time is given by equation 3

e′ij = eij + α + β (3)

Accordingly, the new laxity of job Tij at time t is given by

equation 4.

l ′ij (t) = pij − e′ij − t (4)

III. LITERATURE REVIEW

A real-time system is defined by Burns and Wellings [1] as

an ‘information processing system which has to respond to

externally generated input stimuli within a finite and specified

period: the correctness depends not only on the logical result

but also on the time it was delivered; the failure to respond

is as bad as the wrong response.’ This means that a real-time

system has a dual notion of correctness, namely, logical and

temporal.

Another important feature of a real-time system is that

it must be predictable. Predictability implies the possibil-

ity to show, demonstrate, or prove that the real-time con-

straints are always met based on any assumptions such as the

workloads [2]–[7].

Real-time systems can be classified into two main classes,

hard and soft, based on the cost of the failure associated with

missing or violating the timing constraints [2], [7]–[9], [12].

There have been many proposals of optimal real-time algo-

rithms for multiprocessors [8]–[13]. Such algorithms are used

in hard real-time systems to guarantee that no deadline is

missed in a schedulable taskset. However, they are inflexible

2In this paper, the delay caused by the communication between the
VM nodes and the master node is considered zero, given the relatively
low communication level, which is also supported by current high-speed
networks.

and their schedulability performance may be degraded by

overutilization of the system [14], [15]. Conversely, non-

optimal algorithms, which are known to miss some task

deadlines and thus applied to soft real-time systems, afford

greater flexibility, and some of themmay even perform better

than optimal schedulers under system overutilization.

Although many scheduling algorithms have been proposed

for virtualized cloud environments, most of them are tar-

geted at resource management [16]–[19], performance, cost-

effectiveness [20], [21], and energy conservation [22], [23].

A few studies have been conducted on deadline-based

scheduling in cloud computing [24], [25]; however, they

prioritized other scheduling metrics such as energy consump-

tion, resource management, and cost-effectiveness, with task

deadlines considered as a secondary scheduling factor. This

could be due to the inability to predict the missing of a

deadline to assess the system performance, owing to the delay

introduced by the virtualization layer in a virtualized cloud-

based system.

Utilizing current cloud computing resources, the con-

strained deadline of a real-time task was considered as the

only scheduling metric in the present study. Modifications

of three real-time scheduling algorithms, namely, EDF [26],

EDZL [27], [28] and USG [29], were developed and inte-

grated with a deadline look-a-head module to improve the

performance with respect to the response time and the ability

to intercept and handle deadline misses.

IV. METHODOLOGY

The following subsections discuss in detail the proposed

cloud computing architecture and its underlying algorithms

for real-time job scheduling on a cloud platform.

FIGURE 1. Proposed real-time cloud computing architecture.

A. PROPOSED ARCHITECTURE

The proposed cloud computing architecture, shown in Fig. 1,

is composed of two main parts: the MN and the VM nodes.

As mentioned previously, it was assumed that the MN had

access to the VM pool. Hence, when submitted real-time jobs

arrive at the MN, the master scheduler selects a VM resource

from the pool and assigns tasks to it until equation 5 is

violated, i.e. until the VM is fully utilized.
∑ ei

pi
≤ mVM (5)
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FIGURE 2. Pseudocode of the MN scheduler.

Once the minimum required number of VM resources is

calculated, the MN scheduler starts by assigning real-time

tasks to the VM node and start it immediately. Figure 2 shows

the pseudo-code of the master node MN scheduler.

Conversely, once a VM node scheduler is started, it runs its

assigned real-time tasks using one of the real-time schedul-

ing algorithms EDF [26], EDZL [27], [28], and USG [29].

In addition, each VM node scheduler is equipped with a

deadline look-a-head module that fires a deadline exception

whenever a deadline miss is expected. The real-time task that

is expected to cause the deadline miss event is then removed

from the scheduling queue and inserted into an urgent queue

shared by the VMs and theMN. TheMN scheduler then seeks

for a VMnodewith an empty processor and assigns the urgent

tasks to any such node that is found. Otherwise, the MN

scheduler would create a new VM node and assign the urgent

task to it. Figure 3 shows the pseudocode of the VM node

scheduler.

FIGURE 3. Pseudo code of VM node scheduler.

B. IMPLEMENTATION OF VM NODE SCHEDULERS

The VM node schedulers are implemented using USG [29],

EDZL [27], [28], and EDF [26]. Each of these algorithms

was modified to incorporate a deadline look-a-head module

to intercept any possible deadline miss. The following lemma

shows exactly when a running task i.e. job is expected to miss

its deadline.

Lemma 1: A job Tij scheduled for execution on a virtual

node VMNi is expected to fire a deadline exception at time

t = tx when its laxity reaches α + β (i.e. lij (t) = α + β)

and the nearest running job to completion still has remaining

execution units greater than α + β (i.e eij (t) > α + β).

Proof: Suppose that job Tij is being selected for execu-

tion at time t = tx . Suppose also that, while task Ti is running

it misses its deadline at time t = tz, where tz > tx . This means

that at time t = tz, Tij reached its deadline while still having

some remaining units to execute. However, we know that

when a task is being executed, its remaining units decrease

while its laxity remains constant. Nevertheless, job Tij misses

its deadline during its execution. This could only happen if,

when job Tij is being selected for execution at time t = tx ,

its remaining time to deadline (i.e. laxity) is less than its

remaining execution units, i.e. pi (t = x) < e′i (t = x) =>

pi (t = x) − e′i (t = x) < 0. This means that l ′i (t = x) < 0.

Hence, the last means of avoiding a deadline miss for job Tij
is when l ′i (t) = 0.

However, since we are assuming a virtualized cloud envi-

ronment, job Tij should fire a deadline exception before its

laxity reached 0 to avoid missing its deadline. This is because

we are considering the delay of VM instantiation time which

is assumed to be α.

Hence job Tij should fire the deadline exception at time

t = tcur − (α + β) considering into account that the nearest

running job to completion still has remaining execution units

greater than α + β (i.e. eij (t) > α + β).

C. DEADLINE LOOK-A-HEAD SCHEDULERS

With the above lemma in mind, we modified the above-

mentioned algorithms, namely, USG, EDZL, and EDF,

by adding a deadline look-a-head module to each. This was

achieved by maintaining a queue of waiting jobs in order of

increasing laxity. The deadline look-a-head scheduling mod-

ule constituted an additional queue in EDF because the jobs

in its original waiting jobs queue are in order of increasing

deadline, and not laxity.3 Conversely, both USG and EDZL

already maintain a queue of waiting jobs in order of increas-

ing laxity. All the algorithms were thus appropriately updated

with a deadline look-a-head handler to handle any deadline

exception raised by the algorithm.

FIGURE 4. Deadline exception handler.

Figure 4 shows the proposed deadline exception handler,

which is called upon whenever a deadline exception is fired.

3More information on EDF, EDZL and USG is available on refer-
ences [26]–[29] consecutively.
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V. RESULTS AND DISCUSSION

To test the performance of the modified algorithms in the pro-

posed cloud computing architecture, we used a standard pro-

cedure to generate the real-time tasksets [8], [9], [30]–[35].

The task periods pi were generated using the Uniform Inte-

ger Distribution, which produces random integers within the

range [a, b], with all the possible values having the same

likelihood of being produced. To generate the task worst-case

execution times ei, Uniform Real Distribution was first used

to uniformly generate a random real number x within the

range (0, 1]. The worst-case execution time of the tasks was

then calculated using equation 6:

ei = ⌊x × pi⌋ (6)

The task periods and the worst-case execution require-

ments were subsequently uniformly chosen within the

period [1, 1000].

With regard to the VM instantiation time, it was assumed

that the worst-case delay caused by the VM startup time

was 100 s. This was based on the performance evaluation of

the VM startup time for cloud computing in [39]. In this pre-

vious work, it was shown that the average VM startup times

for Linux and Rackspace machines were 96.9 and 44.2 s,

respectively. The delay was divided by the number of real-

time tasks to be scheduled, n, and the result was added

to the worst-case execution time of each task. To ease the

simulation, the delay caused by the communication between

the VM nodes and the master node was neglected, given the

relatively low communication level, which is also supported

by current high-speed networks.

It was further assumed that the number of real-time tasks to

be executed was twice the total number of processors on the

targeted cloud computing platform. Table 2 enumerates the

details of the simulation test bed with regard to the generated

tasksets and their corresponding cloud computing architec-

ture. For example, 10000 samples of real-time tasks of size

16, i.e. 16 tasks per sample, were generated for execution on

a cloud platform containing four nodes, each of which was

equipped with two processors, and another two nodes, each

equipped with four processors. This configuration enabled

the tracing and investigation of the relevant factors, namely,

the numbers of nodes and processors that more significantly

impacted the response time and deadline exceptions reported

by each algorithm.

The results were presented in terms of the average number

of deadline exceptions, the average number of additional

resources required to handle the fired deadline exceptions,

and the average response time. The following subsections

discuss the results.

The simulation has been developed using Java SE 8 devel-

opment kit installed on an Oracle Solaris 10 operating sys-

tem running on a Core I7 machine equipped with 8 GB

of RAM.

TABLE 2. Details of the simulation test bed.

FIGURE 5. Average deadline exceptions of 16 task.

A. DEADLINE EXCEPTIONS

Figures 5-9 show the average deadline exceptions fired by

each algorithm. It can be clearly seen that the USG fired

the least number of deadline exceptions, followed by EDZL,

and then EDF. This agrees with the findings of previous

studies [14], [29], which showed that the performance of

Least Laxity First (LLF)-based algorithms surpassed that of

EDF-based algorithms. For example, as indicated in Fig. 5,

when 16 tasks are scheduled on four nodes with two proces-

sors each, USG fires one deadline exception, EDZL fires two

deadline exceptions, and EDF fires three deadline exceptions.

However, when 16 tasks are scheduled on two nodes with

four processors each, both USG and EDZL fire no deadline

exception, while EDF fires two deadline exceptions. The

superior performance of USG and EDZL could be attributed

to the integrated Zero Laxity (ZL) policy [14], [28], [29].
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FIGURE 6. Average deadline exceptions of 32 task.

FIGURE 7. Average deadline exceptions of 64 task.

FIGURE 8. Average deadline exceptions of 128 tasks.

B. EXTRA REQUIRED RESOURCES

Based on the fired deadline exceptions, the MN scheduler

allocates new VMs and assigns the urgent tasks to them in

the absence of a VM node(s) with idle processors. Hence,

the number of additional required resources is directly pro-

portional to the number of fired exceptions. Figures 10-14

show the additional resources that the different algorithms

require to handle the deadline exceptions. It can be clearly

FIGURE 9. Average deadline exceptions of 256 tasks.

FIGURE 10. Extra resources of 16 task.

FIGURE 11. Extra resources of 32 task.

seen from the figures that USG requires the least amount

of additional resources, which is because it fires the least

number of deadline exceptions. It is followed by EDZL, and

then EDF. For example, in Fig. 10, for 16 tasks scheduled

on four nodes with two processors each, USG is provisioned

with one extra resource, and each of EDZL and EDF with

two extra resources. Conversely, for the same number of

tasks scheduled on two nodes with four processors each, both

29538 VOLUME 7, 2019
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FIGURE 12. Extra resources of 64 task.

FIGURE 13. Extra resources of 128 tasks.

FIGURE 14. Extra resources of 256 tasks.

USG and EDZL require no additional resource, while EDF is

provisioned with an extra resource.

C. RESPONSE TIME ANALYSIS

With regard to the response time, EDF produced the

shortest among the three algorithms in the proposed

FIGURE 15. Average Response Time Analysis of 16 Tasks.

FIGURE 16. Average Response Time Analysis of 16 Tasks.

FIGURE 17. Average Response Time Analysis of 16 Tasks.

cloud architecture. This was, however, mainly because of the

extra resources that the algorithm was provisioned with to

handle the deadline exceptions. For example, as indicated

in Figs. 15, when 16 tasks are scheduled on four nodes with

two processors each, EDF produces an average response time

of 46.1 s compared with the 52.8 s of USG and 53 s of

EDZL. This is mainly because, for example, for the given

architecture and number of tasks in Fig. 10, EDF is provi-

sioned with two extra resources, which is twice that of each of
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FIGURE 18. Average Response Time Analysis of 16 Tasks.

FIGURE 19. Average Response Time Analysis of 16 Tasks.

USG and EDZL. However, the important observation is that

all the algorithms produced average response times within the

corresponding average deadlines in all the simulations. This

implies that all the deadline exceptions were successfully

handled by each algorithm and all the tasks could be com-

pleted before their deadlines. Further, for the same number

of provisioned extra resources, USG outperformed EDZL

with respect to the response time. Nevertheless, EDZL often

requested for more resources owing to its earliest deadline

policy.

VI. CONCLUSION

In this study, we developed a cloud computing architecture

and algorithms for soft and near-hard real-time scheduling.

The idea was to utilize the features of cloud computing in

the dynamic allocation and release of computing resources in

response to workload needs. For this purpose, deadline look-

a-head schedulers were developed for the firing of deadline

exceptions before their occurrence.When such exceptions are

detected, the VM node sends the tasks causing them to the

MN. The MN then attempts to assign the tasks to an empty

processor. In the absence of such a processor, a new VM node

is dynamically created and assigned the task. The results of

the demonstrative implementation of the proposed architec-

ture and algorithms in the present study were expressed in

terms of the number of deadline exceptions fired by each

algorithm, the number of extra resources provisioned to each

algorithm to handle the deadline exceptions, and the average

response time of the tasks. The USG algorithm was found

to fire the lowest number of deadline exceptions, and require

the lowest number of extra resources, followed by the EDZL

and EDF algorithms, respectively. In terms of the response

time, EDF produced the shortest response time, although

it also recorded the highest number of deadline exceptions.

USG outperformed EDZL in terms of the response time for

the same provisioned number of resources. These results

suggest the applicability of the scheduling of periodic real-

time tasks to cloud computing. This assumes that the start-

up time and communication limitations of virtual machines

would be overcome in the near future through advancements

in virtual machine technologies [41].

The non-consideration of some other important scheduling

parameters such as cost and energy consumption constitutes a

limitation of the present study. Further experimental study is

planned to consider such parameters as secondary priorities

in addition to meeting the constrained deadlines of real-time

tasks.
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