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Abstract. Ice thickness and bedrock topography are essen-

tial boundary conditions for numerical modelling of the evo-

lution of the Greenland ice-sheet (GrIS). The datasets cur-

rently in use by the majority of GrIS modelling studies are

over two decades old and based on data collected from the

1970s and 80s. We use a newer, high-resolution Digital El-

evation Model of the GrIS and new temperature and precip-

itation forcings to drive the Glimmer ice-sheet model offline

under steady state, present day climatic conditions. Com-

parisons are made of ice-sheet geometry between these new

datasets and older ones used in the EISMINT-3 exercise. We

find that changing to the newer bedrock and ice thickness

makes the greatest difference to Greenland ice volume and

ice surface extent. When all boundary conditions and forc-

ings are simultaneously changed to the newer datasets the

ice-sheet is 33% larger in volume compared with observa-

tion and 17% larger than that modelled by EISMINT-3.

We performed a tuning exercise to improve the modelled

present day ice-sheet. Several solutions were chosen in or-

der to represent improvement in different aspects of the GrIS

geometry: ice thickness, ice volume and ice surface extent.

We applied these new parameter sets for Glimmer to sev-

eral future climate scenarios where atmospheric CO2 con-

centration was elevated to 400, 560 and 1120 ppmv (com-

pared with 280 ppmv in the control) using a fully coupled

General Circulation Model. Collapse of the ice-sheet was

found to occur between 400 and 560 ppmv, a threshold sub-

stantially lower than previously modelled using the standard

EISMINT-3 setup. This work highlights the need to as-

sess carefully boundary conditions and forcings required by
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ice-sheet models, particularly in terms of the abstractions re-

quired for large-scale ice-sheet models, and the implications

that these can have on predictions of ice-sheet geometry un-

der past and future climate scenarios.

1 Introduction

Complete melting of the Greenland ice-sheet (GrIS) would

raise sea level by as much as 7.3 m (Bamber et al., 2001),

and could be associated with other major climatic effects

such as changes in the thermohaline circulation and oceanic

heat transport due to enhanced freshwater fluxes (Fichefet

et al., 2003). Estimates of the GrIS’s contribution to sea

level change during the period 1993 to 2003 range between

+0.14 to +0.28 mm yr−1 (IPCC, 2007), although recent es-

timates suggest as much as +0.75 mm yr−1 for 2006–2009

(van den Broeke et al., 2009; Velicogna, 2009) linked with

significant recent increases in GrIS melt, runoff and mass

loss (Hanna et al., 2008; Rignot et al., 2008). Recent model

projections suggest that the GrIS could be eliminated within

a few millennia for global warming between 1.9 to 4.6 ◦C

relative to pre-industrial temperatures (Gregory and Huy-

brechts, 2006). These projections are based on a numeri-

cal model which does not include a representation of fast-

flowing outlet glaciers. These glaciers have been observed to

undergo dynamic changes in recent years, resulting in faster

ice flow and consequent ice loss (Howat et al., 2007; Joughin

et al., 2004; Luckman et al., 2006; Rignot et al., 2008; Rignot

and Kanagaratnam, 2006), meaning that the model probably

underestimates the rate of mass-loss from the GrIS.

The majority of recent modelling studies of the GrIS use

the data assembled for the EISMINT (European Ice-sheet
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Table 1. List of default parameters and physical constants used in the model. Those highlighted in bold are varied in the tuning experiments

(for a complete set see Rutt et al., 2009).

Symbol Value Units Description

ρi 910 kg m−3 Density of ice

g 9.81 m s−2 Acceleration due to gravity

a 1.733 × 103 Pa−3 s−1 Material constant for T ∗ ≥ 263 K

a 3.613 × 10−13 Pa−3 s−1 Material constant for T ∗ < 263 K

Q 139 × 103 J mol−1 Activation energy for creep for T ∗ ≥ 263 K

Q 60 × 103 J mol−1 Activation energy for creep for T ∗ < 263 K

R 8.314 J mol−1 K−1 Universal gas constant

αi 8 mm water d−1 ◦C−1 Positive degree day factor of ice

αs 3 mm water d−1 ◦C−1 Positive degree day factor of snow

LG −6.227 ◦C km−1 Atmospheric temperature lapse rate

n 3 – Flow law exponent

f 3 – Flow enhancement factor

G −0.05 W m−2 Uniform geothermal heat flux

Modelling INiTiative) model intercomparison project as a

present day representation of the GrIS. Because the descrip-

tion of the data is included in the report from the 3rd EIS-

MINT workshop (Huybrechts, 1997), we refer to them here

as the EISMINT-3 data. The data consist of a Digital El-

evation Model (DEM) of ice thickness and bedrock eleva-

tion, and parameterised temperature and precipitation fields,

onto which climate anomalies are typically superimposed

(e.g. Driesschaert et al., 2007; Greve, 2000; Huybrechts

and de Wolde, 1999; Ridley et al., 2005; Lunt et al., 2008,

2009) . The high-resolution bedrock and ice thickness used

in EISMINT-3 are nearly two decades old and are based on

data collated during the 1970s and 1980s. More recent and

accurate datasets for the boundary conditions of bedrock to-

pography and ice thickness (Bamber et al., 2001) as well

as temperature (Hanna et al., 2005, 2008) and precipitation

(ECMWF, 2006) forcings are now available. Differences in

these datasets could have considerable impacts on the mod-

elled evolution of the GrIS and hence the resulting ice-sheet

volume and geometry, for simulations of past, modern and

future climates.

In this paper, we use the Glimmer ice-sheet model (Rutt

et al., 2009) to investigate and compare the impact on the

modelled steady-state ice-sheet of two sets of boundary con-

ditions: those used in the EISMINT-3 exercise and the more

recent and up-to-date datasets. Furthermore, we perform a

tuning exercise with respect to the most recent datasets in

order to determine the values of various ice-sheet model pa-

rameters which give the best fit between modelled and ob-

served geometry for present day conditions. Finally, we use

the results from the tuning exercise to assess the impact of

different parameter combinations on future warming scenar-

ios with atmospheric CO2 held at 400 ppmv, 560 ppmv and

1120 ppmv (compared with 280 ppmv in the control) where

the ice-sheet model is driven offline using output from a

fully-coupled General Circulation Model (GCM). Most re-

cent sensitivity studies have only used one set of ice-sheet

model parameters (e.g. ablation coefficients) for simulations

of future ice-sheet evolution (e.g. Alley et al., 2005; Driess-

chaert et al., 2007; Mikolajewicz et al., 2007; Ridley et al.,

2005). Our results highlight the need to use a range of ice

model parameter sets in order to assess their impact on fu-

ture ice-sheet climate scenarios.

2 Model description

We use the 3-D thermomechanical ice-sheet model Glimmer

version 1.0.4 (Rutt et al., 2009). Although not the most re-

cent version of the model, we use this version for consistency

with our previous work (e.g. Lunt et al., 2008, 2009). The

core of the model is based on the ice-sheet model described

by Payne (1999). All physical constants and parameters dis-

cussed in this section are given in Table 1. Here we describe

the parts of the model which pertain to the model parameters

which we tune in the subsequent sections. A full description

of the model can be found in Rutt et al. (2009).

The ice thickness (H ) evolution is driven by the mass con-

servation equation

∂H

∂t
= − ∇ · (ūH) + B − S, (1)

where u is the horizontal velocity and ū is the horizontal ve-

locity averaged over the ice thickness, B is the surface mass

balance rate and S is the basal melt rate. Equation (1) is

solved using a linearised semi-implicit method.
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The ice dynamics are represented with the widely-used

shallow-ice approximation, which assumes ice deformation

occurs as shear strain only, so that

u(z) = u(b)−2(ρig)n |∇s|n−1∇s

∫ z

b

A
(

T ∗
)(

s−z′
)n

dz′, (2)

where s is the ice-sheet surface altitude, b is the bedrock alti-

tude, g is the acceleration due to gravity, ρi is the ice density,

u(b) is the sliding velocity, x and y the horizontal coordi-

nates and z the vertical coordinate, positive upward.

Equation (2) implicitly uses the non-linear viscous flow

law (Glen’s flow law) to relate deformation rate and stress.

The two parameters are the exponent, n, and the ice flow law

parameter, A(T ∗), which is an empirical parameter where

T ∗ is the absolute temperature corrected for the dependence

of the melting point on pressure. This parameter follows the

Arrhenius relationship

A(T ∗) = f a exp

(

−
Q

RT ∗

)

, (3)

where a is a temperature-independent material constant, Q is

the activation energy and R is the universal gas constant. In

Eq. (3) f is the flow enhancement factor, a tuneable fac-

tor, which can be used to change the flow law parameter,

and, hence, change the ice flow velocity. The flow enhance-

ment factor accounts for ice impurities and development of

anisotropic ice fabrics, effects not represented by separate

parameters in the model.

The model is formulated on a Cartesian x − y grid, and

takes as input the surface mass balance and mean near-

surface air temperature at each time step. In the present work,

the ice dynamics time step is one year. To simulate the sur-

face mass balance, we use the Positive Degree Day (PDD)

scheme described by Reeh (1991). The basis of the PDD

method is the assumption that the melt, m, that takes place

at the surface of the ice-sheet is proportional to the time-

integrated temperature above freezing point, known as the

positive degree day

m = α

∫

year

max(T (t),0)dt, (4)

where T (t) is the near-surface air temperature and α is the

PDD factor. Two PDD factors which describe the rate of

melting are used, one each for snow (αs) and ice (αi), to take

account of the different albedo and density of these materi-

als. The integral in Eq. (4) is calculated on the assumption of

a sinusoidal annual variation in temperature, and takes as in-

put the mean annual temperature and half-range. Diurnal and

other variability is taken into account using a stochastic ap-

proach. This variability is assumed to have a normal distribu-

tion with a standard deviation of 5 ◦C. The use of PDD mass

balance models is well-established in coupled atmosphere-

ice-sheet modelling studies of both paleoclimate (e.g. De-

Conto and Pollard, 2003; Lunt et al., 2008) and future cli-

mate (e.g. Ridley et al., 2005; Mikolajewicz et al., 2007).

All precipitation is assumed to be potentially available for

accumulation within the Glimmer annual PDD scheme. The

following possibilities are taken into account when consid-

ering the total annual ablation. Melting snow is allowed to

refreeze to become superimposed ice up to a fraction, w, of

the original snow depth. When the ability of the snow to

hold meltwater is exceeded but the potential snow ablation is

less than the total amount of precipitation (amount of snow

available), run-off can occur. If the potential snow ablation is

greater than precipitation, snow will melt first, and then ice,

such that the total ablation is equivalent to the sum of snow

melt (total precipitation minus the amount of meltwater held

in refreezing) and the sum of ice melt (calculated by deduct-

ing from the total number of degree days from the number

of degree days need to melt all snow fall and converted to

ice melt). Therefore, the net annual mass balance is the dif-

ference between the total annual precipitation and the total

annual ablation.

Glimmer also includes a representation of the isostatic re-

sponse of the lithosphere, which is assumed to behave elasti-

cally, based on the model of Lambeck and Nakiboglu (1980).

The timescale for this response is 3000 years. In all model

runs described below, the isostasy model is initialised on

the assumption that the present day bedrock depression is in

equilibrium with the ice-sheet load. Although this assump-

tion may not be entirely valid, any rates of change will not

have a significant influence for present day geometry (Huy-

brechts and de Wolde, 1999).

Geothermal heat flux (G) can be supplied to the model

as a constant or a spatially varying field (both of which are

explored in Sect. 5.2), and a thermal bedrock model (Ritz,

1987) takes the thermal evolution of the uppermost bedrock

layer into account where initial conditions for the tempera-

ture field are found by applying the geothermal heat flux to

an initial surface temperature.

The forcing data (temperature and precipitation) are trans-

formed onto the ice model grid using bilinear interpolation.

In the case of the near-surface air temperature field (Ta), a

vertical lapse-rate correction is used to take account of the

difference between the high-resolution (20 km in this case)

surface topography seen within Glimmer (sG), and that rep-

resented by the forcing data (s) (in this case a latitude longi-

tude 1◦ by 1◦ grid or approximately 111 km resolution), such

that

T
′

a = Ta + LG(sG − s). (5)

Here, T
′

a is the lapse corrected surface temperature as seen

by the high-resolution ice-sheet model and LG is the verti-

cal atmospheric lapse rate. The use of a lapse-rate correc-

tion to better represent the local temperature is established in

previous work (e.g. Glover, 1999; Hanna et al., 2005, 2008;

Pollard and Thompson, 1997).
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3 The datasets

3.1 EISMINT-3 intercomparison experimental design

In order to evaluate the consistency in predictions between

different ice-sheet models, the EISMINT validation exercise

was set up (Huybrechts and Payne, 1996). EISMINT-3 (Huy-

brechts, 1997) was the final part of this exercise which in-

volved modelling changes in ice mass given a climate sce-

nario for a number of different ice-sheet models with pre-

scribed parameters and climate forcings (van der Veen and

Payne, 2004). This included the evolution of GrIS mass

changes under (a) steady-state present climate conditions,

(b) a transient climate such as the last climatic cycle based on

GRIP ice core data and (c) future greenhouse warming. By

modelling present day steady-state conditions, it is possible

to test the validity of the reconstructions that the models pro-

duce, by comparing the model predictions with observations

of the present day ice-sheet. In the EISMINT-3 standard, the

initial condition of bedrock and surface elevation was com-

piled by Letreguilly et al. (1991) on a 20 km Cartesian grid.

The precipitation forcing is from Ohmura and Reeh (1991)

and the temperature forcing is given by the following sim-

plified parameterisations (Huybrechts and de Wolde, 1999;

Ritz et al. 1997) which were themselves based on observed

surface temperature data (Ohmura, 1987)

Tann = 49.13 − La Hsurf − 0.7576 8, (6)

Ts = 30.78 − Ls Hsurf − 0.3262 8, (7)

where Hsurf is the surface elevation (m), 8 is the geograph-

ical latitude (in degrees and positive), Tann is the mean an-

nual temperature, Ts is the summer temperature (both in ◦C),

and La = −7.992, Ls = −6.277 are annual and summer atmo-

spheric lapse rates respectively (in ◦C km−1).

3.2 Recent boundary conditions/forcings

New and more accurate bedrock and surface elevation

datasets are now available with significant differences in ice

volume (∼ 4% increase) and ice thickness (factor of 10)

around the margins compared with the Letreguilly dataset

(Bamber et al., 2001). This new dataset utilises improve-

ments in the boundary conditions of surface elevation. Ice

thicknesses were derived from combining data collected in

the 1970s with new data obtained from an ice penetrating

radar system from 1993 to 1999. The bedrock topography

was subsequently derived from a DEM of the ice-sheet and

surrounding rocky outcrops. As such the DEM is produced

from a combination of satellite remote sensing and carto-

graphic datasets. In contrast, the Letreguilly dataset is based

on cartographic maps for ice-free regions and radio echoing

sounding for determination of ice thickness. No satellite-

derived products were used. The Bamber dataset has the ad-

vantage of significantly more sources of accurate data and

better coverage. The Bamber dataset is on a 5 km resolution

grid; for the purposes of the present work, it was interpo-

lated onto a 20 km resolution grid, generated by pointwise

averaging on the same projection. Henceforth, we will re-

fer to the EISMINT-3 bedrock and ice thickness dataset as

the “Letreguilly” dataset and the more recent dataset as the

“Bamber” dataset.

The precipitation data used in EISMINT-3 (Ohmura and

Reeh, 1991) is based purely on precipitation measurements

from meteorological stations (35) and pits and cores in the

interior of the ice-sheet. Not only is this based on a small

number of data locations but the accuracy of measurements is

also a matter of contention. Catch efficiency, particularly for

solid precipitation, by gauges is somewhat reduced by turbu-

lent winds along with the potential for snow to be blown out

of gauges (Yang, 1999). Measurement error may reach 100%

during the winter months, when accumulation is most impor-

tant for mass balance (Serreze et al., 2005). We make use

of precipitation data derived from ERA-40 reanalysis from

1979–2001 (ECMWF, 2006) on a regular latitude-longitude

1◦ by 1◦ resolution grid. ERA-40 reanalysis is produced us-

ing a data assimilation technique which consists of a number

of analysis steps (Uppala et al., 2005). Background informa-

tion is produced from a short-range forecast and combined

with observations for this same period of the forecast to pro-

duce an “analysis”. Statistically-based estimates of errors are

used for the synthesis of background forecast and observa-

tion. Each forecast is initialised from the most recent previ-

ous analysis step. Observations do not consist of all meteoro-

logical variables but the analysis is complete in terms of the

variables chosen. As such, variables can be produced from

analysis (e.g. temperature) while others are purely based on

forecast and are, therefore, not constrained by observations

(Uppala et al., 2005). In ERA-40, precipitation is one such

variable produced by the forecast rather than by the analysis

in the ECMWF model. However, it has been shown to be

reasonable for Greenland (Serreze et al., 2005). Validation

against Danish Meteorological Institute (DMI) coastal sta-

tions results in a 36% mean excess for ERA-40 (Hanna and

Valdes, 2001), although the inaccuracies in gauge measure-

ments mean that this should be treated with some caution.

In terms of other reanalysis products available, comparison

studies have shown ERA-40 to be superior to NCEP/NCAR

datasets in terms of smaller biases, ability to capture large-

scale patterns of precipitation and its depiction of interan-

nual variability, deeming ERA-40 a more suitable choice

(Bromwich et al., 1998; Hanna et al., 2006; Serreze et al.,

2005; Serreze and Hurst, 2000).

The near-surface air temperature forcing used in the

EISMINT-3 exercise is based on a parameterisation of sur-

face temperature compiled by Ohmura (1987), which has

a latitudinal and altitude dependency (see Eqs. 6 and 7).

Two lapse rate values are used: the mean annual lapse rate

and a summer lapse rate. Currently, lapse rate in Glim-

mer is not temporally or regionally varying so the summer
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Table 2. Summary of sensitivity experiments performed by chang-

ing each boundary condition/forcing individually from that used in

the EISMINT-3 exercise to the more recent datasets. Also included

is an experiment where all boundary conditions/forcings are up-

dated together. For details on the EISMINT-3 datasets see Sect. 3.1.

Bedrock and ice thickness Precipitation Temperature

Bamber et al. (2001) EISMINT-3 EISMINT-3

EISMINT-3 ERA-40 EISMINT-3

EISMINT-3 EISMINT-3 Hanna et al. (2005)

Bamber et al. (2001) ERA-40 Hanna et al. (2005)

lapse rate is used since this is when the ablation process is

strongest. The parameterisations were constructed to fit data

from 49 meteorological stations. Instead, we use, to be con-

sistent with precipitation, near-surface air temperature data

derived from ERA-40 “corrected” 2-m near-surface air tem-

peratures (Hanna et al., 2005). The temperatures were cor-

rected based on their derived surface lapse rates and differ-

ences between the ECMWF orography and a DEM derived

from the Ekholm (1996) Greenland grid (Hanna et al., 2005).

Reasonable agreement exists between these model-derived

temperatures and observations at the DMI station locations

and GC-Net stations (Hanna et al., 2005). We use bilinear

interpolation to transform the high-resolution dataset from

its Cartesian 5 km resolution grid onto a 1◦ by 1◦ latitude

longitude grid. Since the dataset only covers the regions

where there is ice, the temperature parameterisation used in

EISMINT-3 temperature is used in the ice-free regions of

Greenland in conjunction with the Ekholm orography. This

means that the sensitivity to temperature is specifically a sen-

sitivity to the near-surface air temperature of the ice-sheet

and not the ice–free regions.

4 Sensitivity to boundary conditions and forcings

In order to test the sensitivity of the ice-sheet model to

the various forcing inputs and boundary conditions, we per-

formed a set of steady-state experiments shown in Table 2,

initialised from the present day geometry of the ice-sheet.

The model is run for 50 000 years in order to reach equilib-

rium. The configuration of the ice-sheet model is kept at that

of EISMINT-3 with standard parameter values as shown in

Table 1. For each simulation in the set, one forcing/boundary

condition is changed to the most recent dataset, keeping all

others at that used in EISMINT-3. An additional experiment

is performed where all the forcings and boundary conditions

are changed to the most recent. Figure 1 shows the evolution

of ice volume and ice surface extent with time for EISMINT-

3 and the four sensitivity experiments.

Fig. 1. Evolution of the modelled ice-sheet (a) volume and (b) sur-

face extent for each of the different boundary conditions and forc-

ings changed one at a time relative to EISMINT-3, when they are

all varied together and when they are linearly combined. The

EISMINT-3 experiment and observations derived from Bamber et

al. (2001) and Letreguilly et al. (1991) are also shown for compari-

son.

4.1 Bedrock and ice thickness

The quality of the bedrock topography is important in ice-

sheet models since it largely determines the ice thickness at

regional scales. This is because topography influences where

the build up of snow and ice can occur and, therefore, is a ma-

jor control on the threshold of ice-sheet initiation. Further-

more, topography influences the convergence and divergence

www.the-cryosphere.net/4/397/2010/ The Cryosphere, 4, 397–417, 2010



402 E. J. Stone et al.: Greenland ice-sheet and its future response to climate change

Fig. 2. (a) The ratio of the difference between ice thickness of the Bamber dataset and ice thickness of the Letreguilly dataset
((

zbamber −zletreguilly

)

/zletreguilly

)

expressed as a percentage. The regions of largest relative difference occur around the margins with

good agreement between the datasets in the ice-sheet interior. (b) The ratio of the difference in initial bedrock topography of the Bamber

dataset and the topography of Letreguilly expressed as a percentage. Again the largest differences occur around the margins of Greenland

and also in the central region where the bedrock is below sea level. (c) The ratio of the difference in relaxed bedrock topography after the

removal of ice and isostatic equilibrium has been reached expressed as a percentage. The resultant orography shows the relative difference

around the margins of up to 500%, with the Bamber orography significantly higher.

of ice flow such that flow into lowland basins and valleys

from surrounding higher relief regions will result in faster

build up of ice compared with flow from an isolated upland

region into a lower basin (Payne and Sugden, 1990). As a re-

sult, the topography influences the stress, velocity and ther-

mal regimes of the ice-sheet (van der Veen and Payne, 2004).

At the outset there are differences in ice thickness and

bedrock topography between the two bedrock and ice-

thickness datasets (see Fig. 2a and b). The bedrock topog-

raphy around the margins is consistently higher for the Bam-

ber dataset compared with the Letreguilly dataset, with the

ice thickness difference up to a factor of 10 to 20 thicker.

When simulated to steady-state, the Bamber bedrock and ice

thickness datasets results in significantly (13.7%) greater ice

volume and 11.5% larger ice surface extent compared with

the Letreguilly dataset. Ice extends further to the north-

ern and western margins of Greenland with a higher central

dome. The initial higher elevation of the ice-free bedrock

of the Bamber dataset provides favourable conditions for ice

growth where temperatures are low enough for mass balance

to become positive. In these regions ice velocities are low

compared with other marginal regions, allowing the ice-sheet

to build-up with minimal ice loss. The basal temperatures are

also lower than when the Letreguilly dataset is used, result-

ing in marginally lower velocities for ice flow. This arises

because the ice in the Bamber dataset is thicker at the be-

ginning of the simulation. The increase in ice volume and

surface extent, however, can be attributed predominately to a

stronger temperature-elevation feedback mechanism for the

Bamber dataset.

4.2 Precipitation

Changing the precipitation forcing, from that of Ohmura and

Reeh (as in EISMINT-3) to ERA-40, results in an increase

in equilibrium ice-sheet surface extent of 2.1%. However,

there is almost no effect on the ice-sheet volume. This can

be explained by the fact that all precipitation that falls is as-

sumed to fall as snow in the annual PDD scheme. Since the

temperature forcing has no effect on the amount of snow,

it is the quantity and distribution of precipitation that re-

sults in the difference in ice surface extent. Figure 3 shows

that the annual precipitation is up to two times greater on

the eastern and western margins of Greenland for ERA-40

compared with Ohmura and Reeh (1991). The accumula-

tion rate is greatest in south-east Greenland for both pre-

cipitation datasets but with the high values extending fur-

ther north along the eastern margin for ERA-40. The ex-

tra precipitation falling over the western and eastern margins

coupled with a positive temperature-elevation feedback re-

sults in growth and extension of the ice-sheet into previously

ice-free regions. However, the precipitation falling over cen-

tral and north Greenland is three times less for ERA-40, re-

sulting in less accumulation in the interior and lower maxi-

mum altitude of the ice sheet. These opposing effects result

in similar ice-sheet volumes. However, Hanna et al. (2006)

show that ERA-40 is ∼50% too “dry” in the central northern

parts of Greenland, as validated using ice-core data. Fur-

thermore, it seems increasingly likely that both the Ohmura

and Reeh (1991) and ERA-40 precipitation datasets underes-

timate precipitation and accumulation in south-east Green-

land, where recent regional climate model results suggest

much higher than previously observed precipitation rates (Et-

tema et al., 2009; Burgess et al., 2010).
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Fig. 3. Change in precipitation over Greenland between EISMINT-

3 (Ohmura and Reeh, 1991) and ERA-40 re-analysis (Uppala et

al., 2005) expressed as a ratio of EISMINT-3:ERA-40. Annual

near-surface temperature (in ◦C) contours are also shown (Ohmura,

1987).

4.3 Temperature

Changing the temperature forcing to the modified Hanna

dataset results in a similar ice volume (1.6% larger) com-

pared with EISMINT-3 and an almost identical ice-sheet ex-

tent. Figures 4 and 5 show the temperature distribution and

the surface mass balance respectively at the beginning and

end of the experiments for EISMINT-3 temperature and the

Hanna modified temperature datasets. As expected, at the be-

ginning of the simulation temperatures around the margins of

the GrIS are similar (same datasets) but the Hanna ERA-40

corrected temperatures over the ice-sheet are several degrees

lower (Fig. 4a,b) . By the end of the simulations, tempera-

tures over much of Greenland have become lower as a result

of the positive temperature-elevation feedback (Fig. 4c,d) re-

sulting in an increase in positive net mass balance in southern

Greenland (see Fig. 5c,d). However, the regions around the

margins remain ice-free as a result of continued ablation with

a net negative mass balance. The model is particularly sen-

sitive to the temperature forcing around the margins of the

ice-sheet, where temperatures are at zero or above and so

close to ablation as opposed to those in the interior where the

primary mass balance change is from accumulation (Hanna

et al. 2005). It is, therefore, important that marginal temper-

atures close to where the net mass balance becomes negative

are resolved accurately in order to model the ablation process

and the resulting geometry of the GrIS.

 

Fig. 4. Sensitivity to different temperature forcings for the GrIS.

The near surface air-temperature (in ◦C) over Greenland for (a) af-

ter 1 year of model time forced with EISMINT-3 temperatures,

(b) after 1 year of model time forced with Hanna modified temper-

atures, (c) after 50 000 years of model time forced with EISMINT-3

temperatures and (d) after 50 000 years of model time forced with

Hanna modified temperatures.

4.4 Summary

Table 3 summarises the results of changing bedrock and ice

thickness, precipitation and temperature independently from

EISMINT-3 to the newer datasets. Bedrock and ice thick-

ness result in the largest ice volume and ice surface extent

change while changing precipitation and temperature have a

significantly smaller effect on the ice volume.

Updating all the boundary conditions and forcings to-

gether results in a modelled GrIS ice volume 33% larger

than observed (Bamber et al., 2001) and 17% larger than

EISMINT-3. The system is effectively linear since adding

together the difference between the EISMINT-3 case and the

individual response of the ice-sheet to each forcing/boundary

condition results in a modelled GrIS very similar to when all

forcings/boundary condition are varied together (see Fig. 1).

This is the case for ice volume (1.7% smaller) and ice surface

extent (0.1% smaller).

These results show that when using alternative boundary

conditions and forcings Glimmer gives a poorer representa-

tion of the modern ice-sheet compared with observations. It

is likely that some of the internal ice-sheet model parame-

ters were tuned to work with the boundary conditions used
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Table 3. Summary of the relative difference between updated boundary condition/forcing and the EISMINT-3 datasets. Positive values

correspond to an increase and negative values a decrease in ice volume/ice surface extent. Note when all boundary conditions/forcings are

updated the relative change almost equals the sum of the individual changes.

Update bedrock Update precip. Update temp. Update all

and ice thk.

Ice volume (%) +13.65 −0.04 +1.64 +16.92

Ice surface extent (%) +11.49 +2.07 +0.43 +14.08

 

Fig. 5. Sensitivity to different temperature forcings for the GrIS.

The net surface mass balance (in m/yr) over Greenland for (a) after

1 year of model time forced with EISMINT-3 temperatures (b) af-

ter 1 year of model time forced with Hanna modified temperatures,

(c) after 50 000 years of model time forced with EISMINT-3 tem-

peratures and (d) after 50 000 years of model time forced with

Hanna modified temperatures. Note the non-linearity of the scale.

in EISMINT-3. In order to produce a reasonable best fit be-

tween modelled and observed geometry we tune a number of

ice model parameters to work with the new datasets.

5 Tuning

5.1 Tuning methodology

Several parameters in large-scale ice-sheet modelling are still

poorly constrained, resulting in highly variable ice-sheet vol-

ume and extent depending on the values prescribed in the

model (Ritz et al., 1997). This necessitates tuning of the ice-

sheet model with the recent datasets in order to determine

the optimal ice-sheet for steady-state conditions (i.e. closest

geometry to reality). Previous work (e.g. Ritz et al., 1997)

has looked at the sensitivity of ice-sheet volume and extent

to a number of parameters, including flow enhancement fac-

tor (f ) in the flow law (see Eq. 3), the sliding coefficient, the

geothermal heat flux (G) and the coefficients (PDD factors)

of the ablation parameterisation for ice (αi) and snow (αs)

(see Eq. 4). In addition, Hebeler et al. (2008a) also looked

at the effect on ice volume and extent of the Fennoscandian

ice-sheet during the Last Glacial Maximum from uncertainty

in model parameters (e.g. lapse rate in addition to those men-

tioned above) and climate forcing by performing a paramet-

ric uncertainty analysis using Glimmer, and found a variation

of 65% in equilibrium ice sheet extent due to uncertainty in

the parameters used in the ice sheet model and up to 6.6%

due to uncertainty in topographic input.

The most common methodology in glaciological mod-

elling sensitivity studies is to vary one parameter at a time

within a prescribed range while holding all others constant

(e.g. van de Wal and Oerlemans, 1994; Essery and Etchevers,

2004; Fabre et al., 1995; Huybrechts and de Wolde, 1999;

Pattyn, 2003; Ritz et al., 1997). We build on the methodol-

ogy used in this previous work by using the statistical method

of Latin-Hypercube Sampling (LHS) (an efficient variant of

the Monte Carlo approach) which generates a distribution

of plausible parameter sets within a prescribed set of ranges

(McKay et al., 1979). It uses a stratified-random procedure

where values are sampled from the prescribed distribution of

each variable. The cumulative distribution of each variable

is divided into N equiprobable intervals and a value selected

randomly from each interval. The N values obtained for each

variable are paired randomly with the other variables. The

method assumes that the variables are independent of one an-

other (which is the case here) and ensures a full coverage of

the range of each variable. LHS has been used in a number

of applied scientific disciplines including analysing uncer-

tainty in vegetation dynamics (Wramneby et al., 2008), rain-

fall models for climate assessment (Murphy et al., 2006) and

climate/ocean models (Edwards and Marsh, 2005; Schnei-

der von Deimling et al., 2006). However, it has yet to be

used in large-scale ice-sheet modelling. The advantage of
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this methodology is that it is an efficient method to test the

response of the ice-sheet to many different combinations of

parameters by ensuring sufficient coverage of the parameter

space without having to test all possible model combinations

(which would be extremely computationally expensive). In

this way, by varying more than one parameter at a time (as

for any multivariate sampling method) it also allows the in-

fluence of each parameter on the outcome of the model sim-

ulations to be assessed while taking interactions with other

parameters into account.

We investigate not only the result of uncertainty in the fol-

lowing parameters, but also which combination gives the op-

timal fit to the present day GrIS. The geometry of the GrIS

is controlled by the flow of ice from the ice divide in the

interior towards the coastal regions due to internal deforma-

tion where at relatively low altitudes, typically < ∼ 2000 m,

ice mass is lost by melting according to the PDD scheme.

Ice mass can also be lost by basal melt and/or the process

of basal sliding which can increase the flow of ice to regions

of ablation at the edge of the ice-sheet. Since basal sliding

is not included in these simulations, this process will not be

considered but the likely impact of this missing process is

highlighted in the discussion section. We choose the fol-

lowing parameters to tune since they fundamentally affect

the processes described in Sect. 2. Firstly, the flow rate of

ice can be tuned with the flow enhancement factor, f (see

Eq. 3), to simulate ice flow reasonably accurately. Secondly,

the surface mass balance can be tuned using the PDD fac-

tors and vertical lapse rate. The melting of ice at low alti-

tudes is determined by ablation, which in this study is calcu-

lated according to the annual PDD scheme. Since this uses

an empirical relationship, we choose to vary the PDD fac-

tors for ice (αi) and snow (αs) within the ranges obtained

through measurement studies (see below), and, therefore, in-

fluence the amount of melting that can occur in the ablation

zones. These parameters will not, however, alter the position

of these zones. This instead can be achieved by varying the

vertical atmospheric lapse rate (LG), which can influence the

regions where ablation has the potential to occur. Thirdly, ice

loss by basal melt without sliding can be achieved by vary-

ing the geothermal heat flux (G), which can raise the basal

ice layer temperature to its pressure melting point.

LHS requires a maximum and minimum bound for each

tuneable parameter to be defined. Here we discuss the

bounds we have selected for each value, shown in Table 4.

The range for the flow enhancement factor for this study

is between 1 and 5. According to Dahl-Jensen and Gun-

destrup (1987), borehole measurements from the Dye-3 ice

core give a mean enhancement factor of around 3 with a max-

imum value of 4.5 and a minimum value of around 1 for ice

deposited during the Wisconsin. This is the range used by

Ritz et al. (1997) and Hebeler et al. (2008a) for their sensi-

tivity studies. Values within this range have also been used in

other work (e.g. Fabre et al., 1995; Greve and Hutter, 1995;

Huybrechts et al., 1991; Letreguilly et al., 1991).

Table 4. List of five parameters varied according to the ranges de-

termined from the literature. The parameters αi , αs , G and f are

similar to those used in Ritz et al. (1997).

Parameter Minimum value Maximum value

Positive degree day factor for snow, 3 5

αs (mm d−1 ◦C−1)

Positive degree day factor for ice, 8 20

αi (mm d−1 ◦C−1)

Enhancement flow factor, f 1 5

Geothermal heat flux, G (mW m−2) −61 −38

Near surface lapse rate, LG (◦C km−1) −8.2 −4.0

The global average geothermal heat flux (oceans and con-

tinents) is estimated at 87 mW m−2 (Banks, 2008). Since

it is difficult to measure geothermal heat flux beneath the

ice directly, many studies (e.g. Calov and Hutter, 1996;

Huybrechts and de Wolde, 1999; Ritz et al., 1997) assume

that the average value for Pre-Cambrian Shields (Greenland

bedrock) is ∼ 42 mW m−2 (Lee, 1970) although a value of

50 mW m−2 is used in EISMINT-3, and values as high as

65 mW m−2 have also been used (Greve, 2000). In terms of

more recent measurements inferred from ice cores, the low-

est recorded heat flux over Greenland is 38.7 mW m−2 from

Dye-3 (Dahl-Jensen and Johnsen, 1986). The average value

for continents is 61 mW m−2 (Lee, 1970). Although val-

ues as high as 140 mW m−2 have been measured at NGRIP

(Buchardt and Dahl-Jensen, 2007; NGRIP, 2004) and val-

ues as low as 20 mW m−2 modelled (Greve, 2005), we use

the range between 38 and 61 mW m−2 for the geothermal

heat flux over the whole of Greenland. This is similar to the

ranges used by previous sensitivity studies (Greve and Hut-

ter, 1995; Ritz et al., 1997). We also investigate the effect

of a spatially varying geothermal heat flux over Greenland

(Shapiro and Ritzwoller, 2004) with all other parameters set

at the default EISMINT-3 values. We compare this with the

standard setup where the geothermal heat flux is 50 mW m−2

over Greenland.

Ice and snow ablation is related to near-surface air tem-

perature by the PDD factor, which represents a simplifica-

tion of processes that describe the energy balance of the

glacier and overlying boundary layer. The implausibility of

using one universal factor being valid for all of Greenland

presents a challenge. The standard value used for ice by

many modellers is 8 mm d−1 ◦C−1 (e.g. Huybrechts and de

Wolde, 1999, Ritz et al. 1997). However, Braithwaite (1995)

concluded that PDD factors for ice are generally larger than

the standard value and could be as high as 20 mm d−1 ◦C−1.

The PDD factor for snow has also been estimated to range be-

tween 3 and 5 mm d−1 ◦C−1 with a standard value of 3 used

by most modelling studies (Braithwaite, 1995). Modelling

of PDD factors using a regional climate model in southern

Greenland found ranges for the ice PDD factor between 8 and

www.the-cryosphere.net/4/397/2010/ The Cryosphere, 4, 397–417, 2010



406 E. J. Stone et al.: Greenland ice-sheet and its future response to climate change

40 mm d−1 ◦C−1 and the snow PDD factor between 3 and

15 mm d−1 ◦C−1 (Lefebre et al., 2002). Other GrIS mod-

elling studies have used higher PDD factors than the stan-

dard (e.g. Greve, 2000; Vizcaı́no et al., 2008). We use a

range for the ice PDD factor between 8 mm d−1 ◦C−1 and

20 mm d−1 ◦C−1 and a range for the snow PDD factor be-

tween 3 mm d−1 ◦C−1 and 5 mm d−1 ◦C−1.

The near-surface atmospheric lapse rate varies both spa-

tially and temporally over Greenland. Lapse rate is known to

vary significantly throughout the year due in part to changes

in moisture content of the atmosphere. Observations from

automatic weather stations indicate a mean annual lapse

rate along the surface slope of −7.1 ◦C km−1 with season-

ally varying lapse rates varying between −4.0 ◦C km−1 (in

summer) and −10.0 ◦C km−1 (in winter) (Steffen and Box,

2001). Relationships derived from ERA-40 reanalysis data

also yield less negative summer lapse rates of −4.3 ◦C km−1

at the margins and a more negative annual lapse rate of

−8.2 ◦C km−1 for the bulk of the GrIS (Hanna et al., 2005).

Since Glimmer only uses one value for lapse rate we vary

it between −4 and −8.2 ◦C km−1 which corresponds to the

seasonal variation in lapse rate. This also encompasses the

range used in the EISMINT-3 standard experiment for an-

nual and summer lapse rate given in Eqs. (6) and (7).

5.2 Sensitivity to tuning parameters

We generate 250 plausible parameter sets using LHS and

run the ice-sheet model for 50 000 years under a steady-state

present day climate. Figure 6 shows the distribution of the

250 experiments with each experiment represented by a cir-

cle for three of the five tuneable parameters and the other two

represented by size and colour of the circle.

In order to analyse the 250 experiments’ ice-sheet geome-

tries, four diagnostics are chosen and analysed using two skill

scores. Three of these diagnostics are ice surface extent, to-

tal ice volume and maximum ice thickness. Their ability to

replicate observation is described by the absolute error skill

score, where zero is a perfect match. In addition, the Nor-

malised Root Mean Square Error (NRMSE) skill score for

ice thickness is used to measure the spatial fit of ice thickness

over the model domain. Again, zero would describe a perfect

match between modelled ice thicknesses and observed. We

calculate the diagnostics with respect to the DEM derived by

Bamber et al. (2001), interpolated to 20 km resolution. Fig-

ure 7 summarises the sensitivity of maximum ice thickness

error, ice surface extent error and ice volume error to the five

tuneable parameters.

Maximum ice thickness and ice volume are dependent on

the flow law enhancement factor since faster flow will result

in a thinner (and hence smaller) ice-sheet as a result of low-

ering the ice viscosity. An error of approximately +10% to

−10% for maximum ice thickness occurs between enhance-

ment factors 1 and 5 respectively with an optimum maximum

ice thickness occurring between enhancement factors 2.5

ααFig. 6. Distribution of 250 experiments produced by Latin-

Hypercube Sampling. In three dimensions geothermal heat

flux (G), PDD factor for snow (αs ) and atmospheric vertical lapse

rate (LG) are shown. In addition, for each experiment the PDD

factor for ice (αi ) is shown in terms of the colour-scale and the en-

hancement flow factor (f ) in terms of the size of circle.

and 3. In contrast, the optimum enhancement factor is not

reached for ice volume within the limits of the range (1 to 5)

investigated. However, the enhancement flow factor has little

effect on the ice surface extent due to opposing feedbacks.

Faster flow will result in an increase in the flux of ice to-

wards the ice-sheet margins. However, as the surface lowers

as a result of this faster flow the ablation zone will increase

at the margins leading to loss of ice. This result is similar to

that found by Ritz et al. (1997) and Hebeler et al. (2008a),

in terms of ice volume and maximum ice thickness. How-

ever, Hebeler et al. (2008a) found no increase in ice surface

extent of their modelled region, comparable to results shown

here. In contrast, Ritz et al. (1997) found an initial slight in-

crease in ice surface extent. It is possible that this arises due

to the different topography and climate configurations used

as hypothesised by Hebeler et al. (2008a).

There is low sensitivity of all three diagnostics to variation

in the geothermal heat flux. Since this influences basal tem-

peratures of the ice-sheet it affects the fluidity of the ice and

the flow, as well as any basal melt. Ice velocity also depends

on the geothermal heat flux via the basal melt rates and in

turn determines the rate of sliding of the ice-sheet. This basal

sliding is predicted to occur only when the basal temperature

is equal to the pressure melting point of ice. However, the

original EISMINT-3 experiment did not include basal slid-

ing and in order for a clean comparison basal sliding has also

been switched off in this suite of experiments. At the ice-

sheet margins, the basal temperature is already at the melting

point and, therefore, the geothermal heat flux is not expected

to influence greatly the ice volume or ice surface extent. It is,

therefore, more important in the central parts of the ice-sheet

The Cryosphere, 4, 397–417, 2010 www.the-cryosphere.net/4/397/2010/



E. J. Stone et al.: Greenland ice-sheet and its future response to climate change 407

α αFig. 7. Sensitivity of three diagnostics describing the response of ice-sheet geometry (ice volume, ice surface extent and maximum ice

thickness) to different values of the enhancement flow factor (f ), the atmospheric lapse rate (LG), the geothermal heat flux (G) and the

ice (αi ) and snow (αs ) PDD factors for the calculation of ablation. All values correspond to the end of the simulation at 50 000 years where

equilibrium is reached and are relative to observations derived from the Bamber dataset.

where it could influence the flow of ice and affect the ice vol-

ume and maximum ice thickness via basal melt. Although

basal temperatures in the interior are close to this threshold

for all cases, even those with the highest geothermal heat

flux, are not significant enough to cause basal melting in cen-

tral parts of Greenland. As a result the geothermal heat flux

parameter is unlikely to have become more important if basal

sliding had been included in this suite of simulations. This

is because the implication of sliding concerns the outer parts

of the ice-sheet where the ice base is at melting point for all

geothermal heat flux values investigated. A similar result was

found by Hebeler et al. (2008a) for the Fennoscandian ice-

sheet where very low mean annual atmospheric temperatures

resulted in very low ice temperatures. As a consequence, the

influence of geothermal heat flux on the thermal regime of

the ice-sheet was minimal.

We also performed an experiment where the geothermal

heat flux was spatially varying over Greenland (Shapiro and

Ritzwoller, 2004) with all other parameters set at the default

values. This was compared with the standard setup where the

geothermal heat flux was uniform over Greenland. The dif-

ferences are minimal with ice volume reduced by 0.3%, the

ice surface extent increased by 0.4% and the maximum ice

thickness reduced by 0.1%. Since basal sliding is switched

off, the only effect this could have is on the basal melt and

temperature of the ice at the base affecting the flow by chang-

ing the viscosity of ice.

Several parameters influence the near-surface air temper-

ature in the EISMINT-3 experiment, including latitudinal

dependency, seasonal variation and atmospheric lapse rate.

Due to the PDD formulation of mass balance, these factors

also directly affect ablation and ice-sheet evolution. Equi-

librium ice surface extent increases with an increase in neg-

ative lapse rate (Fig. 7). A similar relationship holds for

ice volume but is less pronounced. This is because a less

negative lapse rate results in relatively higher near-surface

air temperatures at high altitude, thereby expanding the area

available for ablation. The least negative lapse rates result in

the least error but are not typical of the annual lapse rate of

−6.5 to −8 ◦C km−1 used in several studies (e.g. Ridley et

al., 2005; Huybrechts and de Wolde, 1999; Vizcaı́no et al.,

2008). However, those that use −8 ◦C km−1 also include a

summer lapse rate. Since Glimmer only utilises one lapse

rate and since the majority of melting is assumed to occur

during the spring/summer months a summer lapse rate is jus-

tified as the input lapse rate correction in the model. Max-

imum ice thickness is completely insensitive to lapse rate.

This arises because at the ice divide, where the ice thickness
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is highest, temperatures are already significantly below zero.

Any lapse rate correction will not influence the surface mass

balance greatly.

Maximum ice thickness is also insensitive to the PDD fac-

tors for ice and snow. This is because no ablation occurs in

the central part of the GrIS. However, the ice surface extent

is strongly affected, decreasing with increasing PDD factors.

Ice volume is also sensitive to the PDD factors but less pro-

nounced than ice surface extent. Although varying these pa-

rameters has an effect on melting rates it does not alter the

position of the ablation zones. Similar results were found by

both Ritz et al. (1997) and Hebeler et al. (2008a).

The results of these sensitivity experiments show which

parameters control different aspects of the geometry of the

GrIS. Ice surface extent is fundamentally dependent on those

parameters which control ablation (PDD factors and lapse

rate) while maximum ice thickness and ice volume is con-

trolled by parameters affecting ice flow (flow enhancement

factor). All three diagnostics are insensitive to variation in

the geothermal heat flux. From this suite of experiments it

is possible to select one or more parameter sets which repro-

duce the present day GrIS with a good fit.

5.3 Selecting the optimal parameter sets

In order to select an optimal set of parameters which produce

the best fit for present day ice-sheet geometry, the 250 sensi-

tivity experiments were ranked according to each of the four

diagnostics. Figure 8 shows ranking for the three absolute

error skill scores on the left-hand axis and the ranking for

NRMSE for ice thickness on the right-hand axis. First note

that the percentage error is consistently smaller for maximum

ice thickness compared with ice volume and ice surface ex-

tent.

We independently select a subset from the best-performing

experiments for each diagnostic in order to assess the effect

that different parameters sets could have on GrIS modelling

experiments for past and future ice-sheet evolution experi-

ments. By having parameter sets which represent different

aspects of the geometry of the ice-sheet, some idea of the un-

certainty in ice-sheet evolution can be obtained: for example,

future warming events. One possible way to select a subset

is to arbitrarily choose an ensemble size, and then choose an

equal number from each diagnostics’ skill score. Here we

use an alternative methodology which selects the best per-

forming experiments by identifying a step change in gradient

in the best ranked experiments, as demonstrated in the insets

of Fig. 8. This removes any need for an arbitrary choice and

also excludes any experiments which are significantly worse

but selected because an equal number from each diagnostic

is required. Two experiments have been chosen according

to ice volume error, two according to ice surface extent er-

ror and two according to maximum ice thickness error. The

three experiments according to NRMSE for ice thickness are

the same as two selected for ice volume and one selected

Fig. 8. Ranking of LHS experiments for ice volume, ice surface

extent and maximum ice thickness according to absolute error (left

axis) and NRMSE for ice thickness (right axis). The experiments

rank from least agreement (1) to the closest agreement with observa-

tion (251). Observations are taken from Bamber et al. (2001) on the

20 km resolution grid. The larger symbols represent the rank posi-

tion of the standard EISMINT-3 experiment. The inset graphs show

the optimal experiments zoomed in for ranking from 230 to 251 for

(i) maximum ice thickness, (ii) ice volume, (iii) NRMSE for ice

thickness and (iv) ice surface extent. The y-scale for each inset is

independent for each diagnostic in order to see the change in gra-

dient more clearly. Filled circles/diamonds represent the optimal

parameter sets for reproducing the modern day GrIS.

according to ice surface extent. This provides six possible

parameter sets which could be used to model the GrIS more

accurately in terms of different aspects of its geometry. Fig-

ure 9 and Table 5 shows the six experiments selected and

their corresponding parameter values.

Figure 10 shows how well the six chosen parameter sets

compare for the different diagnostic skill scores. A full

unit circle would represent the experiment that out-performs

all other experiments for all diagnostic skill scores. Like-

wise, an empty segment shows the experiment which per-

formed worst of all experiments for that diagnostic. By com-

paring this measure of skill score between all 250 experi-

ments (see Fig. 10a) one out of the six chosen parameter

sets performs better than average for all diagnostics (exper-

iment 165). Those selected according to ice volume and

NRMSE for ice thickness perform significantly better than

average for all diagnostics apart from maximum ice thick-

ness (experiments 10 and 233), while those selected accord-

ing to maximum ice thickness (experiments 67 and 240) per-

form slightly below or about average for the other diagnos-

tics. Finally the experiment selected according to ice surface

extent (experiment 99) performs better than average for all
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Table 5. Tuned parameter values for the six optimal experiments chosen according to diagnostic skill score identified by their experiment

number.

Diagnostic f LG G αs αi

(◦C km−1) (mW m−2) (mm d−1 ◦C−1) (mm d−1 ◦C−1)

Ice vol. and NRMSE ice thk.

10 4.5838 −4.2047 −52.630 3.7243 19.878

233 4.8585 −4.0754 −46.667 4.2425 16.344

Ice surf. extent

99 1.2838 −4.5334 −41.758 4.7844 18.710

Ice surf. extent and NRMSE ice thk.

165 3.1036 −4.2456 −47.709 4.5763 19.455

Max. ice thk.

67 2.6165 −8.1157 −53.421 3.9951 13.502

240 2.5551 −6.0820 −59.070 3.6258 10.221

 

Fig. 9. The distribution of each parameter for the six experiments selected according to ranking of the different diagnostics: ice volume, ice

surface extent, maximum ice thickness and NRMSE of ice thickness. Experiment ID number is shown on the y-axis (from 1–250) with its

corresponding parameter values on the x-axis. The small black dots represent all 250 experiments to show the parameter space covered.

diagnostics excluding maximum ice thickness. Figure 10b

shows how well each chosen experiment compares with the

other selected experiments. One will perform the worst and

one the best for each diagnostic. The experiments chosen

according to maximum ice thickness perform poorly for all

other diagnostics, while those chosen according to ice vol-

ume and NRMSE for ice thickness perform worst for maxi-

mum ice thickness. The experiment chosen according to ice

surface extent only, performs poorly for all other diagnos-

tics while the one chosen according to ice surface extent and

NRMSE ice thickness performs better than average for all

diagnostics compared with the other five experiments.

Finally, the geometry of the GrIS is shown in Fig. 11 for

all six tuned parameter sets and is compared with the Bamber

observation (Fig. 11a). Four adequately represent the limited

extent of the ice-sheet in the north and west (Fig. 11b,d,e,f)

but the shape of the ice-sheet in the interior is somewhat

different. However, the experiments chosen according to

maximum ice thickness (Fig. 11c,g) overestimate the extent

of the ice-sheet in the west and the north but represent the

maximum ice thickness in the interior adequately.

6 Sensitivity of the Greenland ice-sheet to tuned

parameter sets under future warming scenarios

In order to assess how the results from tuning affect a per-

turbed GrIS climate from pre-industrial, we investigate the

evolution of the GrIS under differing warming scenarios.

This work builds on the future warming experiments de-

scribed in Lunt et al. (2009). In that study, under other-

wise pre-industrial boundary conditions, CO2 concentrations

were perturbed from pre-industrial (280 ppmv) to 400 ppmv

and 560 ppmv using the GCM, HadCM3 (Gordon et al.,
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Fig. 10. Normalised star plots showing the relative measure of skill for each diagnostic. The best skill score corresponds to a radius of 100%

as shown by the unit circle. Relative measure of skill for (a) the six selected experiments compared with all 250 LHS experiments and (b) the

final six chosen experiments compared with each other. The numbers below each experiment correspond to the experiment identification

number relating to the original 250 LHS experiments.

Fig. 11. Ice-sheet configurations for (a) observed present day GrIS (from Bamber et al., 2001) and (b) to (g) configurations for the six

selected experiments shown in Table 5 and Fig. 10 (experiment numbers 10, 67, 99, 165, 233 and 240 respectively).

2000). These simulations were run for a time integration

of 400 model years. In addition, a future warming experi-

ment where pre-industrial CO2 is quadrupled to 1120 ppmv

was performed. However, in order to reach equilibrium a

longer time integration (665 model years) was required using

a version of the GCM, HadCM3L, with a lower-resolution

(2.5◦ × 3.75◦ compared with 1.25◦ × 1.25◦ for HadCM3)

ocean. The ice-sheet model set-up in Lunt et al. (2009) used

EISMINT-3 but with ERA-40 reanalysis reference climatol-

ogy for precipitation. Anomaly coupling is used to force

the ice-sheet model offline. The tuneable parameters are

the same as the defaults in Table 1 but with a lapse rate at

−7 ◦C km−1. We also use ERA-40 precipitation for the ref-

erence climatology but where this work differs is the use of

new near-surface air temperature (modified Hanna temper-

ature) and bedrock/ice thickness (Bamber dataset) datasets,

and of course the tuned parameter sets. Figure 12 shows the

resultant configurations of the ice-sheet for the three warm-

ing scenarios. Figure 12a shows the results from Lunt et

al. (2009) for comparison with the results using the optimal

tuned parameter sets.

The original methodology with a 400 ppmv climate results

in a similar ice-sheet to modern (reduced less than 2% of the

modern ice-sheet). In contrast, our results using the six op-

timal tuned parameter sets with the more recent boundary

conditions and forcings (Fig. 12b–g) give a range of differ-

ent ice-sheet configurations under a 400 ppmv climate. Al-

though not completely collapsed, the 400 ppmv ice-sheets

for Fig. 12b, d–f are somewhat reduced in the north of the

island, with a reduction in ice volume compared with the

modern day ice-sheet volume ranging between 20 to 23%.

However, the scenario in Fig. 12c shows almost complete

collapse at 400 ppmv with a reduction in ice volume of 82%

while the scenario in Fig. 12g shows only a 5% reduction

in ice volume. The main difference in parameter values be-

tween Fig. 12c and the other five experiments is the atmo-

spheric lapse rate which is at least 2◦ C km−1 more nega-

tive than any of the other lapse rates chosen. During ice-

sheet retreat a more negative lapse rate will act to warm

the region further and cause more surface melt than a less

negative lapse rate via the temperature-elevation feedback

mechanism. A warmer climate compared with pre-industrial

results in increased melting during summer months. In all
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Fig. 12. Ice-sheet geometry for future warming scenarios (400 ppmv, 560 ppmv and 1120 ppmv CO2) for (a) standard EISMINT-3 setup

as shown in Lunt et al. (2009) and (b) to (g) the selected parameter sets from tuning (experiment numbers 10, 67, 99, 165, 233 and 240

respectively). See Table 5 for the tuned parameter sets corresponding to these particular experiments.

cases a “tipping point” is reached whereby the temperature-

elevation feedback results in ablation increasing relative to

accumulation as the ice-sheet lowers and the temperature in-

creases. This however in the case of Fig. 12c, is re-enforced

by having a more negative lapse rate value resulting in rapid

loss of the ice-sheet with only the highest eastern regions

of the island occupied by ice. However, the other experi-

ment selected according to maximum ice thickness (Fig. 12g)

shows almost no loss of mass under a 400 ppmv climate. Al-

though the flow enhancement factors are similar the lower

PDD factors and less negative lapse rate result in less melt

and no collapse of the ice-sheet.

Under a 560 ppmv climate, the GrIS is markedly reduced

compared with modern with a reduction in ice-sheet volume

ranging from 52 to 86%. This is not the case for the set-up

used in Lunt et al. (2009) where only 7% of ice mass was lost

compared with modern.

The further warming associated with quadrupling CO2

concentrations results in almost complete elimination of the

GrIS in all cases (loss of ice volume ranging from 85 to 92%).

This result agrees with Lunt et al. (2009), where the ice-sheet

is also shown to almost completely disappear apart from ice

in the southern tip of the island and the high altitude eastern

regions.

For the standard EISMINT-3 setup, results indicate a

critical threshold for GrIS collapse somewhere between

560 ppmv and 1120 ppmv. However, the new parameter sets

indicate a critical threshold for the GrIS becoming unstable

somewhere between 400 and 560 ppmv in the majority of

the simulations. There is also another possible threshold be-

tween pre-industrial (280 ppmv) and 400 ppmv where ice is

lost in the north for four out of the six simulations and almost

complete collapse of the ice-sheet for one of the remaining

two experiments.

Comparisons can also be made with similar studies using

different GCMs and/or ice-sheet models. For instance, Ri-

dley et al. (2005) showed the ice-sheet collapsed to 7% of

its original volume under a quadrupled CO2 climate. The

extra ice mass in our simulations (1 to 8% extra) can partly

be accounted for by the ice present in southern Greenland

which is absent in Ridley et al. (2005). This is likely due

to the absence of the ice-albedo feedback between climate

and ice-sheet, which is included in their simulations by in-

teractive coupling of the GCM to the ice-sheet model. Inter-

estingly the study of Mikolajewicz et al. (2007) shows that

under a 560 ppmv climate using a fully coupled climate ice-

sheet model the GrIS could result in significant melting in the

long-term (simulation only carried out for 600 years). Fur-

thermore, Alley et al. (2005) showed that under a doubled

CO2 climate the GrIS would eventually almost completely

disappear.
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7 Discussion and conclusions

In this section we discuss the sources of uncertainty and the

missing processes in the experimental design and the influ-

ence this has on the conclusions drawn.

Firstly, several other potential temperature datasets over

Greenland exist to force the Glimmer ice-sheet model. A

new parameterisation based on more up-to-date automatic

weather station data, for instance, is now available with a

similar form to Eqs. (6) and (7) (Fausto et al., 2009). How-

ever, for this work we chose the ERA-40 derived temperature

product for consistency with the new precipitation dataset.

Furthermore, datasets also exist in terms of satellite products.

For satellite datasets, temperature data are available from

the Advanced Very High Resolution Radiometer (AVHRR)

Polar Pathfinder (APP) from 1982–2004 which is collated

twice a day at the local solar times of 14:00 and 04:00. Al-

though the data is initially on a 5 km resolution it is sub-

sampled at 25 km pixels. The APP-x product includes all-

sky surface temperature with the cloudy-sky surface tem-

peratures calculated using an empirical relationship between

clear-sky surface temperature, wind speed, and solar zenith

angle (daytime). However, this only applies to surface tem-

peratures over sea-ice and not land. Therefore, temperatures

over Greenland are based only on data from clear-sky re-

trieval with temperatures in cloudy regions interpolated from

clear-sky areas. Although useful for comparing with present

day surface temperatures from climate models, this dataset is

not suitable to directly force an ice-sheet model over Green-

land because (a) the largest uncertainties are likely to be over

Greenland (J. R. Key, personal communication, 2010), (b) no

associated orography exists which is used to downscale from

the resolution of the forcing data onto the high-resolution of

the ice-sheet model and (c) sensitivity studies using Glim-

mer indicate that the APP-x temperatures were significantly

too low, in observed ice-free regions such as western Green-

land, (by up to 12 ◦C in western Greenland compared with

EISMINT-3 temperatures which have at least been derived

from surface observation) to reproduce a reasonable mod-

ern day ice-sheet without tuning ice-sheet model parameters

beyond uncertainty ranges. This could, in part, be due to

the satellite recording ice surface temperatures rather than

air temperature. Furthermore, clear-sky retrievals errors are

predominantly due to uncertainties in cloud detection (Key

et al., 1997) particularly during the night. The low temper-

atures, bright surface and high elevation make remote sens-

ing over Greenland particularly difficult in terms of accurate

cloud detection.

Secondly, in contrast with many studies, we spin up the

model from present day initial conditions without taking the

climate history into account. Since the GrIS is still affected

by past climatic change this assumption must be justified.

The main method used to spin up the ice-sheet model over

several climatic cycles has caveats of its own. It uses a tem-

perature forcing derived from a smoothed ice core record

and has been used in several studies (e.g. Huybrechts and

de Wolde, 1999; Ridley et al., 2005; Vizcaı́no et al., 2008).

However, uncertainty exists in the functions used to derive

a reliable temperature record and subsequent accumulation

record from an oxygen isotopic record although new and

more sophisticated methods are being developed (Cuffey and

Marshall, 2000; Lhomme et al., 2005). The effect of ice flow

processes on deeper parts of ice cores also makes them some-

what unreliable and extending beyond the last interglacial is

somewhat unrealistic (Grootes et al., 1993; Johnsen et al.,

1997). For these reasons we only initiate the ice-sheet model

from the present day initial conditions, which we can be cer-

tain are relatively accurate.

Thirdly, the process of basal sliding was not included

in the experimental design, which has implications for the

amount of ice mass lost dynamically. An increase in the ice

velocity, by incorporating the sliding velocity (see Eq. 2),

would result in more ice transferred from the accumulation

zone to the ablation zone and, therefore, reduce the volume

of the ice-sheet. Inclusion of this missing process could re-

sult in lower PDD factors than those obtained in the tuning

exercise presented here. Indeed, the study by Parizek and Al-

ley (2004) showed an increase in GrIS sensitivity to various

warming scenarios due to surface meltwater lubrication of

flow. Recent modelling developments have also investigated

the potential positive feedbacks from including basal slid-

ing on the inland migration of fast-flowing glaciers increas-

ing the drawdown of the ice-sheet interior (e.g. Price et al.,

2008). Currently, Glimmer has a simplified representation of

basal sliding and the basal hydrology. Furthermore, there is

no representation of the sediment deformation. The presence

of unconsolidated sediments alters the hydrological system

by incorporating melt water until saturation is reached. This

reduces the yield stress of the material substantially and de-

formation of the basal till by the overlying ice load inducing

glacier motion. However studies have mainly focussed on

the local scale of ice streams rather than the continental scale

of ice-sheets (Tulaczyk et al., 2000; Sayag and Tziperman,

2008).

Fourthly, current large-scale ice-sheet models lack higher-

order physics, and although able to simulate slow moving ice

dynamics adequately, they are not yet able to represent the

dynamics of fast-moving ice streams. Recent work has in-

dicated that current net mass loss from the GrIS is roughly

equally partitioned between surface mass balance changes

and changes in dynamics (van den Broeke et al., 2009). De-

velopment of ice-sheet models in these areas is currently be-

ing researched with improvements to ice dynamics (e.g. Pat-

tyn, 2003; Soucek and Martinec, 2008), and inclusion of

an accurate representation of the fast ice streams and ice

shelves (Pattyn et al., 2006; Schoof, 2006, 2007). Recent ob-

servations of glaciers in Greenland have documented rapid

changes in marginal regions of the ice-sheet with increased

flow velocities observed on Jakobshavn Glacier (Joughin et

al., 2004) and on other glaciers (e.g. Howat et al., 2007;
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Rignot and Kanagaratnam, 2006). The inclusion of these

fast flowing ice streams in ice-sheet models could lead to

larger dynamical changes in the ice-sheet than currently pre-

dicted by models at least on relatively short timescales of

hundreds of years. Incorporation of these fast flow features

in the ice-sheet model could also result in lower PDD fac-

tors from tuning. Furthermore, if these dynamical changes

are marine-driven then for long-term future ice-sheet predic-

tions, once the ice-streams are no longer marine terminating,

the dynamical changes will cease.

It has also been shown that processes at the ice margin

have a strong influence on the surface extent of the ice-sheet

but are poorly accounted for with a coarse grid of 20 km

resolution. The use of energy-balance/snow pack models

(EBSM) to predict surface mass balance (e.g. Bougamont et

al., 2007) as opposed to the PDD approach has been shown to

give contrasting results under a four times CO2 climate with

the PDD scheme significantly more sensitive to a warming

climate generating runoff rates almost twice as large com-

pared with an EBSM. However, some aspects of these re-

sults are not undisputed (P. Huybrechts, personal communi-

cation, 2009). The ablation zone on Greenland varies from

only 1 km wide along the southeast coast and up to 150 km

wide along the southwest coastline and, therefore, requires a

very high horizontal resolution if ablation is not to be over

or underestimated in the model (van den Broeke, 2008). Fu-

ture development of the EBSM approach using a finer grid

of 5 km resolution could result in a marked improvement for

modelling ablation processes. It would also be highly ben-

eficial to downscale to a 1 × 1 km resolution using a PDD

approach (e.g. Janssens and Huybrechts, 2000) and the high-

resolution Greenland DEMs now available (e.g. Bamber et

al. 2001).

Fifthly, the grid on which the ice-sheet dynamics are

solved could influence the model outcome. An alternative

to the finite difference modelling approach used here could

be to instead implement the finite element modelling method.

This has the advantage that the element size can be reduced in

areas of high gradient and increased in areas of low gradient.

Furthermore, the model can conform to irregular boundaries

that are awkward to model with rectangular elements used

in the finite differences technique. Currently this methodol-

ogy is used over smaller domains such as individual glaciers

(e.g. Zwinger et al., 2007) or within flow line models of ice-

sheets (e.g. Parizek, 2005).

Finally, overcoming the abstraction required for large-

scale ice-sheet models, in order to keep computing de-

mands to a minimum while ensuring spatial variability at

the sub-scale level is captured, presents a challenge. How-

ever, subgrid parameterisation for the calculation of abla-

tion/accumulation has been shown to be effective in compen-

sating for dependencies on scale while incurring only a small

additional computational cost (Hebeler and Purves, 2008b;

Marshall and Clark, 1999).

We evaluate the sensitivity to boundary conditions and cli-

mate forcings in the context of modelling the evolution of

the GrIS under present day, steady-state conditions and show

the geometry and size of the ice-sheet is highly sensitive to

the initial condition of bedrock and ice thickness. An ice-

sheet volume 13.7% larger than that produced with the Le-

treguilly dataset results with the new and improved Bamber

dataset. Overall, our study indicates that using the more re-

cent datasets for forcings and boundary conditions with the

standard set of model parameters (Table 1) give a poorer rep-

resentation of the modern ice-sheet, with an ice-sheet volume

33% larger than observation. The results further show that

topography and its inherent uncertainty has a significant ef-

fect on ice-sheet geometry obtained from large-scale models

of considerable abstraction such as Glimmer. Therefore, the

use of more realistic topography and climate data on an orig-

inal resolution significantly higher than that used in Glimmer

may not be entirely suitable for current large-scale ice-sheet

modelling.

Several parameters are not well-constrained in large-scale

ice-sheet modelling and can influence ice-sheet volume and

extent. We performed a sensitivity/tuning study in order to

assess the importance of certain parameters on the geometry

and size of the GrIS. The method of LHS was used in order

to efficiently vary more than one parameter at a time to ob-

tain a best fit between modelled and observed geometry. The

maximum ice thickness and ice volume were shown to de-

pend on the factors affecting ice flow. In this case increasing

the flow enhancement factor makes the ice flow faster which

lowers the height of the ice dome. The ice surface extent

is predominantly dependent on the PDD factors and the at-

mospheric lapse rate. Although geothermal flux can affect

ice flow since it acts to melt the ice, which is a prerequisite

for basal sliding, this had little effect on the simulations pre-

sented here because basal sliding was switched off.

By selecting “best fit” experiments according to different

skill score diagnostics a range of parameter sets can be used

for assessing the uncertainty in ice-sheet modelling exper-

iments by analysing the resultant geometries. The sets of

parameters that give the best fit to the present measured ice-

sheet are somewhat different from the standard set most com-

monly used by ice-sheet modelling studies. Higher PDD fac-

tors than the standard (10.2 to 19.9 mm d−1 ◦C−1 for αi and

3.6 to 4.8 mm d−1 ◦C−1 for αs) are required in all cases in or-

der to account for both ablation and calving processes at the

margin. The lack of basal sliding in these simulations means

that these higher PDD factors are likely partially compen-

sating for this missing process. Furthermore, less negative

atmospheric lapse rates (five out of the six tuned parameter

sets ranged between −4.1 and −6.0 ◦C km−1) are generally

needed to produce a good fit in terms of volume by reducing

the growth of the ice-sheet.

The parameters varied using LHS are strictly independent

in a mathematical sense. However, it is possible that the

values chosen could have similar and opposite effects on
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accurately predicting the present day GrIS geometry. For ex-

ample, high PDD factors in combination with low lapse rates

could simulate a good representation of the GrIS. In our con-

clusions we do not attempt to make a probabilistic interpre-

tation of the results such that certain combinations are more

likely than others in producing an accurate representation of

the ice-sheet.

The optimal parameter sets chosen to best represent the

modern day GrIS were used to assess their effect on the evo-

lution of the ice-sheet under future warming scenarios. We

obtained a different threshold for ice-sheet collapse, occur-

ring somewhere between 400 ppmv and 560 ppmv compared

with previous work which suggested a threshold between

560 and 1120 ppmv (Lunt et al., 2009) when using the same

models. Differences in ice-sheet geometry and volume also

occur between the optimal parameter sets. Although all ice-

sheets modelled for present day showed complete glaciation

of Greenland, one particular parameter set (Table 5, experi-

ment 67) showed complete collapse at 400 ppmv. We show

under perturbed climates from present day the evolution of

the GrIS behaves differently for the parameter sets tuned in

the model. This work suggests that, if possible, tuning exer-

cises should be applied to the GrIS under several different cli-

matologies. Since observations are required for comparison

this is somewhat restrictive. However, examples of alterna-

tive climates to the present day could be the last deglaciation

or the Last Glacial Maximum, for which there exist some

data on ice-sheet extent.

We have shown that future predictions of the GrIS are

highly sensitive to a number of factors relating to the physi-

cal basis of the ice-sheet model. Most current models neither

have a robust representation of the fast flowing processes,

nor are the parameters which influence the ice physics tightly

constrained. As a result future development of the ice-sheet

model to improve the representation of these processes may

lead to different behaviour under warm climate conditions.

The lack of higher-order physics, low resolution, absence of

basal sliding and subglacial hydrology and highly parame-

terised surface mass balance, inevitably means that the tun-

ing presented here compensates for these absent processes in

order to replicate as closely as possible the present day GrIS.

As a result, future predictions of the GrIS should be evalu-

ated with some caution in the context of these sensitivities

and deficiencies of the ice-sheet model.
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