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a b s t r a c t

We investigate the stability of steady planar stagnation flows of a dilute polyethylene oxide (PEO) solution
using T-shaped microchannels. The precise flow rate control and well-defined geometries achievable with
microfluidic fabrication technologies enable us to make detailed observations of the onset of elastically
driven flow asymmetries in steady flows with strong planar elongational characteristics. We consider
two different stagnation flow geometries; corresponding to T-shaped microchannels with, and with-
out, a recirculating cavity region. In the former case, the stagnation point is located on a free streamline,
whereas in the absence of a recirculating cavity the stagnation point at the separating streamline is pinned
at the confining wall of the microchannel. The kinematic differences in these two configurations affect
the resulting polymeric stress fields and control the critical conditions and spatiotemporal dynamics of
the resulting viscoelastic flow instability. In the free stagnation point flow, a strand of highly oriented
polymeric material is formed in the region of strong planar extensional flow. This leads to a symmetry-
breaking bifurcation at moderate Weissenberg numbers followed by the onset of three-dimensional flow
at high Weissenberg numbers, which can be visualized using streak-imaging and microparticle image
velocimetry. When the stagnation point is pinned at the wall this symmetry-breaking transition is sup-
pressed and the flow transitions directly to a three-dimensional time-dependent flow at an intermediate
flow rate. The spatial characteristics of these purely elastic flow transitions are compared quantitatively
to the predictions of two-dimensional viscoelastic numerical simulations using a single-mode simplified
Phan-Thien–Tanner (SPTT) model.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The continuous miniaturization of flow geometries achievable
through microfluidic fabrication techniques has multiple pro-
cessing advantages including decreased manufacturing costs, fast
response times, minimal fluid volumes, precise control over mul-
tiphase morphology and increased separation efficiency [1,2]. In
particular, microfluidic technology is very relevant to industries
associated with genomics, construction of biosensors and lab-on-
a-chip diagnostics in addition to ink-jet printing [3–5]. Microfluidic
technology has also shown its remarkable potential in the field
of biochemical analysis and constitutes a valuable tool for sepa-
ration or mixing, automation and integration of complex chemical
and biological assays [6,7]. In these applications, many of the flu-
ids of interest are non-Newtonian in character and understanding
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their flow behavior at the microscale is important to the design and
optimization of the resulting microfluidic devices.

The wide range of deformation rates that can be attained
(through precise control of the imposed fluid flow rate and the
small characteristic length-scales of the geometry) coupled with
the ability to directly image the resulting flow field also make
microfluidic devices good platforms for constructing rheometers
and flow chambers that enable a systematic investigation of non-
Newtonian effects. An overview of several canonical flow types and
the challenges associated with quantitative microfluidic rheometry
can be found in [8]. In the present work, we focus on two different
T-shaped microchannels that are specially constructed to enable an
investigation of viscoelastic effects on the stability of planar elon-
gation flows. The channels are fabricated in such a way that the
character of the stagnation flow near the separating streamline is
modified by the presence, or absence, of a rectangular cavity. The
recirculating flow in this cavity is separated from the free stream
by a bounding streamline and this changes the local character of
the flow near the stagnation point. To illustrate this graphically, we
show in Fig. 1(a) and (b) computational predictions of the expected
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Fig. 1. Streamline predictions for Newtonian flow within a T-shaped microchannel
with and without a recirculating cavity: Q = 6 �L/h; S.P. denotes the location of the
stagnation point (Re = 2.05 × 10−3). (a) Microchannel with cavity. (b) Microchannel
without cavity.

streamlines for steady viscous flow of a Newtonian fluid within a
T-shaped microchannel with and without a recirculating cavity at
Re = 2.05 × 10−3. In the absence of the cavity, the stagnation point
is located along the symmetry line at the intersection point of the
channel sidewall and the separating streamline. As a consequence
of the no-slip boundary condition and continuity, the local velocity
vector and all velocity gradients are zero at the stagnation point. By
contrast, the presence of the cavity and the unconstrained divid-
ing streamline leads to a non-zero velocity gradient at the origin in
Fig. 1(a) and the stagnation point is free to move. If we denote the
location of the pinned stagnation point as the origin of the labo-
ratory frame (as shown in Fig. 1(b)) then the presence of a free or
“unpinned” stagnation point leads to a small vertical displacement
towards negative y-values inside the cavity.

Both of these flow geometries feature curved streamlines and
generate a (nonhomogeneous) planar extensional flow near the
stagnation point. These conditions can promote purely elastic flow
instabilities [9,10]. The T-channel geometry has also been suggested
as a suitable geometry for constructing a microfluidic rheometer if

the total pressure drop associated with steady symmetric flow of a
non-Newtonian fluid is measured [11]. The presence, or absence,
of the recirculating cavity thus allows us to focus on the global
kinematic consequences that result from fluid viscoelasticity and
from local changes in the stagnation flow region. Furthermore, the
identical upstream flow conditions in each geometry results in a
well-defined pre-shearing history which can be important if a vis-
coelastic fluid is studied in place of a simple viscous liquid. Similar
elongational flows with “pinned” and “free” stagnation points arise
in the wakes of objects such as cylinders/spheres and behind rising
bubbles [12,13]. In the case of a rising bubble, fluid elasticity leads
to the formation of a cusp and a symmetry-breaking instability that
can be observed experimentally [14] and studied computationally
[15]. The unsteady Lagrangian nature of the flow near the rising
bubble however complicates the systematic experimental study of
the wake near a free stagnation point.

Creeping flows in, and past, cavities have been studied exten-
sively at the macroscale. Pan and Acrivos [16] explored the evolution
in the vortex strengths as the cavity depth was changed and Taneda
[17] performed an extensive photographic study of the effects of
the cavity breadth to height ratio on the formation of vortices
inside a cavity using viscous Newtonian liquids such as silicone
oil and glycerine. The work of Perera et al. [18] is an example of
early numerical work on the effect of elasticity for steady 2D flow
in macroscale L-shaped and T-shaped channels. They showed that
elasticity only leads to slight deviations in the streamline patterns
at low Reynold numbers compared to the Newtonian case. The
study of Nishimura and coworkers [19] represents an early com-
bined experimental and numerical study of 2D viscoelastic flow
in T-shaped channels using streakline imaging. They studied the
effects of elasticity by comparing the flow patterns for a viscoelastic
polyacrylamide aqueous solution and a Newtonian dextrose syrup
seeded with aluminum powder. They experimentally observed a lip
vortex at the re-entrant channel corners in the flows of the polyacry-
lamide solution. Numerical simulations with the upper-convected
Maxwell model at Wi ≤ 0.2 were able to capture qualitatively the
viscoelastic distortion in the streamlines, but not the formation of a
lip vortex. Binding et al. [20] also investigated viscoelastic creeping
flow in a T-junction and past a cavity. They showed that compared
to the Newtonian symmetric behavior, the flow of a highly elas-
tic Boger fluid past a cavity clearly became asymmetric beyond a
critical flow rate. Using the same flow geometry, they created a
stagnation flow by having flow in the two opposing arms of the T-
junction. They observed the formation of lip vortices in the case of
the flow of a shear-thinning polymer solution while such vortices
were absent for the Boger fluid. In the present study, we aim to
characterize the onset of elastic instabilities in similar geometries
but at the microscale.

Utilizing microfluidic channels to explore such flows offers the
possibility of exploring new regimes of parameter space, that are
not readily accessible in macroscale experiments [21]. The rel-
evant dimensionless groups used to characterize a viscoelastic
stagnation flow are the Reynolds number (Re), the Weissenberg
number (Wi) and an elasticity number (El = Wi/Re). An appropri-
ate Reynolds number can be calculated according to Re = �V̄Dh/�0,
where Dh represents the hydraulic diameter of the flow channel
and � and �0 represent the fluid density and zero-shear rate vis-
cosity, respectively. Viscoelastic effects in the geometry can be
characterized using a Weissenberg number Wi = �̇ where ̇ = V̄/ℓ
is an appropriate estimate of the characteristic deformation rate
based on the average velocity at the channel inlet, V̄ , and the
relevant lengthscale ℓ controlling the kinematics of the stagna-
tion region. The elasticity number El = Wi/Re = ��0/�ℓDh, defined
as the ratio of the Weissenberg to Reynolds number, is a mea-
sure of the relative importance of elastic to inertial effects, and
depends only on the experimental geometry and the material



J. Soulages et al. / J. Non-Newtonian Fluid Mech. 163 (2009) 9–24 11

properties of the fluid being studied. With the small geometric
length scales characteristic of microfluidic geometries it is pos-
sible to probe strong elastic effects in the absence of inertial
effects; for example in the micro-fabricated planar contractions of
Rodd et al. [21,22], elasticity numbers as high as El = 89 could be
achieved.

Because inertial effects are small, microfluidic devices also pro-
vide good platforms to study “purely elastic instabilities” that
can arise from the combination of curved streamlines and large
tensile viscoelastic stresses [23,24]. The time-dependent three-
dimensional flow that sometimes ensues following onset of a purely
elastic flow instability can greatly enhance the mixing efficiency
of a microfluidic device at small Reynolds number [25]. There
have been few studies to date that have systematically investigated
the dynamics associated with these elastic nonlinearities on the
microscale [21,26–30]. With microfluidic computing in mind, Gro-
isman et al. were the first to exploit elastic instabilities in designing
a nonlinear fluid resistor, a bistable flip-flop memory element [28]
and a flow rectifier [29]. Reviews of efforts made to develop non-
linear fluidic logic elements using Newtonian fluids such as water
or air can be found in [31,32].

The T-channel design considered in the present work is obvi-
ously closely connected to the “cross-slot” configuration which
has been used extensively in rheological studies of steady planar
elongation flow [8,33,34]. In either geometry, the combination of
streamline curvature and large extensional deformations near the
stagnation point may be anticipated to result in large viscoelastic
effects within the flow. The loss of symmetry in a microfluidic cross-
slot flow at high flow rates is evident in the micellar experiments of
Pathak and Hudson [34]. Arratia et al. have documented the exis-
tence of a purely elastic instabilities for the case of the cross-slot
flow of a polyacrylamide dilute solution [30]. They observed two
distinct flow regimes at very small Reynolds numbers (Re ≤ 10−2):
a symmetry-breaking bistable bifurcation for Wi ≃ 4.5 followed
by broadband temporal fluctuations at Wi � 12.5. Very recently
these observations of viscoelastic symmetry-breaking have been
validated numerically by Poole et al. [35]. By using the upper-
convected Maxwell model they demonstrated the purely elastic
nature of the flow transition and reported that inertia had a sta-
bilizing effect, delaying the onset of the steady asymmetric flow to
higher Wi.

In the present work we seek to compare, quantitatively,
experimental observations and numerical computations of this vis-
coelastic symmetry-breaking transition. By selecting T-channels
with, and without, recirculating cavities we can explore the
importance of the local planar elongational flow near a “free”
and “pinned” stagnation point, respectively. The experiments
are performed with a well-characterized dilute aqueous solu-
tion of monodisperse PEO and the 2D calculations are performed
using a prototypical nonlinear constitutive model with parame-
ters selected to fit the viscometric properties of the test fluid. In
Section 2, we describe the fabrication of the test geometries, the
imaging techniques and the characterization of the test fluid rhe-
ology. In Section 3, we briefly describe the numerical method and
then investigate the magnitude of the “birefringent strand” that is
generated in the two different planar elongation flows. In Section
4, we compare streak-imaging measurements and numerical cal-
culations of the streamlines for each microfluidic geometry as the
flow rate (and corresponding Weissenberg number) is incremented.
In the presence of a recirculating cavity, a symmetry-breaking
transition is observed experimentally and predicted computa-
tionally at a critical Weissenberg number. By contrast, in the
absence of a cavity, the flow near the dividing streamline remains
stable and symmetric to substantially higher flow rates before
losing stability to three-dimensional and time-dependent pertur-
bations.

Fig. 2. Schematic diagram of the T-shaped microchannel with a cavity; (A) and (B)
are the channel inlets; (C) is the channel outlet; L1 the length of the entry channel;
L2 the entrance length of the T-channel; d the channel depth; h the channel height
and width of the square cavity; R the radius of the rounded corners, and S.P. denotes
the stagnation point.

2. Experimental

In order to perform quantitative comparisons between experi-
mental measurements and numerical computations, it is essential
to carefully determine all geometrical and rheological parameters
as well as clearly define appropriate dimensionless measures of
elasticity and inertia.

2.1. Microfluidic stagnation flows and dimensionless groups

The appropriate Reynolds number for this pressure-driven chan-
nel flow is calculated according to Re = (�QDh)/(hd�0), where Dh

represents the hydraulic diameter, Dh = 2dh/(d + h), h and d are
respectively the channel width and depth as shown in Fig. 2. The
material properties � and �0 represent the solution density and
zero-shear rate viscosity, respectively, and are given in Table 1.
We characterize the elastic effects in the stagnation flow using a
Weissenberg number defined as Wi = �CaBEṘ = �CaBERV̄/(h/2) =

(2Q�CaBER)/dh2, where �CaBER is the relaxation time determined
from CaBER measurements (cf. Section 2.3), ̇ is the shear rate based
on the average velocity at the channel inlets, V̄ = Q/dh and a repre-
sentative length scale for the local stagnation flow suggests ℓ = h/2.
The elasticity number El, defined as the ratio of the Weissenberg to
Reynolds number, is a measure of the relative importance of elastic
to inertial effects: El = Wi/Re. El depends only on the experimental
geometry and the material properties of the investigated fluid. In
our work, the elasticity number El = 8.61 × 102 is very large so that
the elastic stresses dominate compared to inertial effects. Thus, our
flow geometries allow us to probe elastically driven flow transitions
and instabilities that arise due to the presence of bending stream-
lines and large tensile viscoelastic stresses in the absence of inertia
[23,24].

Table 1

Working fluid rheological properties at 23 ◦C.

Zero-shear rate viscosity �0 (mPa s) 19.5
Solvent viscosity �S (mPa s) 9.8
Polymer viscosity �P (mPa s) 9.7
Zimm relaxation time �Zimm (ms) 2.3
CaBER relaxation time �CaBER (ms) 66
Intrinsic viscosity [�] (mL/g) 582
Density � (kg/m3) 1196
Polymer concentration c (g/mL) 8.97 × 10−4

Concentration ratio c/c⋆ 0.68
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Fig. 3. Optical micrographs of the microchannel (a) with and (b) without cavity (20 ×, 0.5 N.A.). The in- and outflow directions are indicated by the white arrows. The
anticipated location of the stagnation point (S.P.) sitting on a free streamline (a) or pinned onto the confining wall (b) is indicated in the channel. (a) Microchannel with cavity.
(b) Microchannel without cavity.

2.2. Microchannel geometry and fabrication

The relevant variables and dimensions of the micro-fabricated
channels used in this study are given in Fig. 2 for the case of
the microchannel with a recirculating cavity. The working fluid is
injected at the inlets (A) and (B) and exits the channel through the
outlet (C). The fluid is directed to the entrances of the central T-
junction circled in the figure by means of two entry channels of
length L1 = 7 mm. It then enters each side of the T-shaped region
and travels a distance L2 = 1 mm before reaching the stagnation
point (S.P.) region.

The channel width h and depth d are both equal to 50 �m. For
the entire range of Reynolds numbers investigated in this work,
this distance L2 is more than 30 times larger than the entrance
length Le needed to reach fully developed Newtonian flow, which is
given by Le = Dh[0.6/(1 + 0.035Re) + 0.056Re] = 30 �m, where the
hydraulic diameter Dh coincides with the channel width h for our
particular geometry [36]. The square cavity has a length equal to h

and the corners of the outflow channel are rounded with a radius
R = 25 �m in order to guarantee a smooth transition between the
inflow and outflow regions. The T-shaped microchannels were fab-
ricated from polydimethylsiloxane (PDMS) using soft-lithography
techniques and SU-8 photoresist molds [37–40]. Light micrographs
of the microchannels with and without a cavity are shown in
Fig. 3(a) and (b), respectively. As discussed in Section 1, the two
channel designs differ in the location of the stagnation point: in the
presence of the cavity it sits on a “free” streamline whereas it is
pinned on the wall of the channel without the recirculating cavity.

A detailed description of the microchannel fabrication proce-
dure is given elsewhere [41]. The use of a contrast enhancement
material (CEM388SS, Shin-Etsu MicroSi) allows us to achieve well-
defined geometries as shown in Fig. 4(a) with almost perfectly
vertical channel sidewalls (the tapering angle is uniformly less than
5◦ as illustrated in Fig. 4(b)).

2.3. Test fluid rheological characterization

The test fluid used in the present experiments is a dilute
polymer solution of a high molecular weight polyethylene oxide
(0.075 wt.%) with a relatively narrow molecular weight distribu-
tion (PEO, Mw = 2 × 106 g/mol, polydispersity index Mw/Mn = 1.13
[22], Aldrich) in a glycerol/water mixture (60/40 wt.%). The rheo-
logical properties of the PEO solution were characterized in both
steady shear and transient uniaxial extension. The polymeric solu-
tion and solvent zero-shear rate viscosities were obtained from
viscometric experiments in a double gap Couette geometry using a
controlled stress rheometer (AR-G2, TA Instruments). The steady
shear data were measured at 23 ◦C for shear rates in the range
1 ≤ ̇ ≤ 10, 000 s−1and are presented in Fig. 5. The PEO solution
has a zero-shear rate viscosity �0 = 19.5 mPa s and is weakly shear
thinning for shear rates ̇ ≥ 15 s−1. This gives a coarse estimate of
a characteristic relaxation time � ≃ 1/15 s−1 = 67 ms which is in
good agreement with the relaxation time determined from CaBER
measurements in Fig. 6. The zero-shear rate viscosity of the sol-
vent is �S = 9.8 mPa s resulting in a total polymeric contribution
to the zero-shear rate viscosity of �P = 9.7 mPa s. The predictions

Fig. 4. Microchannel SEM image (a) and optical micrograph of the channel cross-section (b) showing the well-defined geometries achievable with soft lithography.
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Fig. 5. Steady shear data measured at 23 ◦C in a double gap Couette geometry
using a controlled stress rheometer (AR-G2, TA Instruments). In the case of the PEO
solution, the open symbols represent repeated experiments. The SPTT model pre-
dictions are shown by the red dashed and solid lines for ε = 0 (Oldroyd-B model)
and ε = 7.0 × 10−6 , respectively. (i) Minimum measurable shear viscosity based on
20 times the minimum torque resolvable by the rheometer (2 × 10−6N m); (ii) max-
imum measurable shear viscosity before the onset of Taylor instabilities; �CaBER:
relaxation time determined from CaBER measurements as shown in Fig. 6.

of the SPTT model are shown by the red dashed and solid lines,
respectively, for ε = 0 (Oldroyd-B model) and ε = 7.0 × 10−6.

Also represented in Fig. 5 are the lower and upper limits of the
shear data based on the rheometer torque transducer specifications
and the onset of Taylor instabilities as described in [21]. Accord-
ing to a linear stability analysis [42], the critical Taylor number at
the onset of inertial instabilities for a Newtonian fluid in the Cou-
ette geometry is given by Tacrit ≃ 2Re2 � = 3400, where Re denotes
the Reynolds number and � = d/Rin is the ratio of the gap width

Fig. 6. Time evolution of the mid-point diameter of the fluid thread in a CaBER exper-
iment at 23 ◦C (open symbols). The blue (thick) solid line represents the exponential
fit to the experimental data (Oldroyd-B model) from which the longest relaxation
time is extracted: � = 66 ± 4 ms. The horizontal black solid line indicates the min-
imum resolvable radius ratio based on the CaBER laser micrometer resolution of
2.5 �m (Omron Z4LA). Predictions of the SPTT model for different values of the exten-
sibility parameter ε are also shown in the figure (red solid lines). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of the article.)

d and the radius of the inner cylinder Rin. The Reynolds number
for circular Couette flow is defined as Re = ��inRind/�(̇), where
�in represents the angular velocity of the inner cylinder, � is the
density and �(̇) is the (shear-rate-dependent) viscosity of the PEO
solution. For Rin = 22 mm (outer radius of the rotor), d = 0.38 mm,
� = 1196 kg/m3, the criterion for the onset of Taylor instabilities can
be rewritten as �(̇) = 5.5 × 10−7 ̇ , where � is in Pa s and ̇ in s−1.
This equation is represented by the dashed line labeled (ii) in Fig. 5.

The characteristic relaxation time of the solution was deter-
mined from capillary breakup extensional rheometry (CaBER)
measurements as illustrated in Fig. 6. A thorough description of
this technique can be found in [43–45]. Following the nomen-
clature of [45], the CaBER geometrical configuration used in the
present study was such that the initial height was h0 = 2.11 mm
(�0 = h0/2R0 = 0.35) and the final aspect ratio was �f = 1.57, cor-
responding to an imposed step strain of � = ln(�f /�0) = 1.50. In
Fig. 6, the blue (thick) solid line represents the fit to the measured
evolution of the filament diameter using a single exponential decay
and based on the Oldroyd-B model [44]. The resulting relaxation
time equals �CaBER = 66 ± 4 ms.

Also shown in Fig. 6 are the results of the 1D calculations with
the SPTT model. This model (see Section 3.1 for details) contains a
single nonlinear constitutive parameter (ε) which controls the mag-
nitude of strain-hardening in the extensional viscosity of the fluid
(�E ≃ 2�P/ε for small ε [46]). As the polymer chains in the thinning
thread approach full extension, the filament radius no longer thins
exponentially; but instead decreases linearly in time [47]. This devi-
ation from exponential behavior allows us to determine a bound on
the range of values of ε characterizing the 0.075 wt.% PEO solution.
From the data and simulations shown in Fig. 6, it is clear that the
PEO molecules are highly extensible with 0 ≤ ε ≤ 7.0 × 10−6. Any
further increase in ε restricts the region of exponential decay and
reduces the predicted time to breakup to unphysically small values.

As observed in [21,22,47] and due to “self-concentration” effects,
the relaxation time for polymer solutions determined in CaBER
measurements is significantly greater than the relaxation time
determined according to the Zimm theory, which is expressed by
[48]:

�Zimm = F
[�]Mw�S

NAkBT
, (1)

where Mw is the polymer molecular weight, NA is Avogadro’s num-
ber, kB the Boltzmann constant, T the absolute temperature, and
[�] is the intrinsic viscosity determined from U-tube capillary
viscosimeter experiments in [22]. The prefactor F can be approx-
imated by the Riemann zeta function F = �−1(3�) = 1/�∞

i=1(1/i3�),
in which � represents the solvent quality exponent and is � ≃ 0.55
for PEO in glycerol/water so that F ≃ 0.46 [48].

All of the fluid rheological properties are summarized in Table 1.
The density was determined using calibrated 5 mL density flasks in
[22]. The overlap concentration c⋆ was calculated according to the
expression c⋆ = 0.77/[�] (see Graessley [49] for discussion) and is
equal to c⋆ ≃ 1300 ppm. On this basis, the 0.075 wt.% PEO solution
can thus be considered as dilute (c/c⋆ = 0.68). From independent
measurements of the shear rheology, we also find (�0 − �S)/�S =

9.7/9.8 ≤ 1.

2.4. Flow visualization

The microparticle image velocimetry experimental setup con-
sists of a CCD camera (mvBlueFOX-120a, Matrix Vision GmbH), an
inverted microscope (Nikon, Eclipse TE 2000-S) equipped with a
G-2A filter cube (exciter, 535–550 nm; dichroic, 565 nm; long-pass
emitter, 590 nm) and an external continuous light source (mercury
lamp, illumination wavelength: 532 nm). The solution is fed to the
channel inlets using Tygon tubing by means of two twin syringe



14 J. Soulages et al. / J. Non-Newtonian Fluid Mech. 163 (2009) 9–24

pumps (New Era Pump Systems, Inc.) and two Hamilton gastight
syringes (500 �L, diameter: 3.26 mm). The PEO solution is seeded
with 1.1 �m diameter fluorescent tracer particles (Nile Red, Molec-
ular Probes, Invitrogen; Ex/Em: 520/580 nm; cP = 0.02 wt.%), which
are illuminated by the light source and imaged through the micro-
scope objective (20×, 0.5 N.A.) onto the CCD array of the camera at
a frame rate of 3.81 fps and exposure time of about 250 ms.

Sodium dodecyl sulfate (SDS) from Sigma-Aldrich was added
to the PEO solution at a concentration of cSDS = 0.1 wt.% in order to
inhibit the fluorescent tracers from sticking onto the polydimethyl-
siloxane microchannel walls. The addition of SDS was shown to have
a negligible influence on the value of the relaxation time �CaBER

measured from CaBER experiments as well as on the values of both
�0 and �S .

All of the streakline images presented in this work were recorded
at the mid-plane of the microchannel. The physical location of the
mid-plane was determined experimentally by successively focus-
ing the image of a fluorescent tracer adhered to the top and bottom
surfaces of the channel. The depth over which the tracers contribute
to the recorded streamlines is actually given by the measurement
depth ızm [21,22,50] given by

ızm =
3n�0

(NA)2
+ 2.16

dP

tan(�)
+ dP. (2)

In Eq. (2), �0 represents the wavelength of the emitted light (�0 =

580 nm), n is the medium refractive index (water n = 1.33), NA is
the numerical aperture of the objective lens, dP is the tracer diam-
eter and � is defined as � = sin−1(NA/n). Eq. (2) is only valid for
dP > e/M, where e and M respectively denote the minimum resolv-
able feature size (or the CCD camera pixel size: 7.4 �m) and the
objective magnification. In our work, e/M = 0.37 �m, which is very
small compared to the diameter of the tracer particles (1.1 �m). The
depth of measurement can thus be determined from Eq. (2) and
is ızm = 14.5 � m, which corresponds to approximately 29% of the
total channel depth.

3. Numerical method and computational meshes

3.1. Governing equations and numerical method

In addition to the experimental measurements, we perform 2D-
calculations to simulate the isothermal flow of the viscoelastic fluid
through T-shaped microchannels with and without the recirculat-
ing cavity. We use a fully implicit finite-volume method with a
time-marching pressure-correction algorithm [51,52] to solve the
equations of conservation of mass and momentum:

∇ · u = 0, (3)

�

[

∂u

∂t
+ u · ∇u

]

= −∇p + �S∇ ·
[

∇u + (∇u)T
]

+ ∇ · �, (4)

together with an appropriate constitutive equation for the poly-
meric component of the extra-stress, �. The numerical code used
here has been applied extensively in 2D calculations [53,54] and
with axisymmetric geometries [55]. Additionally, it has also been
used for full three-dimensional (3D) simulations including those of
planar channels in which the depth of the channels is kept constant
as is typical of microfluidic fabrication [50,56].

Regarding the boundary conditions, we imposed fully developed
velocity and stress profiles at the inlets, Neumann boundary condi-
tions at the outlet, and no-slip conditions at the walls. Details of the
implementation of boundary conditions can be found in Oliveira et
al. [51]. For the discretization of the equations, we use central dif-
ferences for the diffusive terms and the CUBISTA high-resolution
scheme [57] for the convective terms.

In order to simulate a viscoelastic fluid with rheological charac-
teristics matching those of the experimental fluid, we use the linear
form of the simplified Phan-Thien–Tanner model (SPTT), for which
the polymeric component of the extra-stress tensor is given by Eq.
(5):
[

1 +
�ε

�P
tr(�)

]

� + �
∇
� = 2�PD, (5)

where � represents the extra-stress tensor and tr (�) represents the

trace of �, the symbol
∇

() denotes the upper-convected time deriva-
tive, �P is the polymer contribution to the zero-shear rate viscosity,
ε is the extensibility parameter and D is the rate-of-deformation
tensor. The SPTT model exhibits shear-thinning behavior, elastic
normal stresses and a bounded elongational viscosity, and has been
shown to be appropriate for modeling both polymeric solutions and
polymer melts [58]. In addition, we also perform a number of cal-
culations using the Oldroyd-B model, which is a limiting case of the
SPTT model that can be recovered when ε = 0.

To enhance numerical stability, we employ the log-conformation
tensor approach [59], as described in detail in Afonso et al. [60].

3.2. Computational meshes and problem definition

The geometries for the numerical calculations represent T-
channels with and without a cavity and are similar to those used
experimentally (cf. Section 2.2). The meshes used to map the two
domains are block-structured and non-uniform, with the size of
each cell relating to its neighbors by a geometric progression within
each direction. A zoomed view of the computational meshes near
the central region is shown in Fig. 7. The total number of cells (NC)
was adjusted according to the configuration used: NC = 12801 and
NC = 10251 for the T-channels with and without cavity, respec-
tively. Additionally, the smallest cell size was set �xmin = �ymin =

0.02 h for both configurations.
In the numerical calculations, the characteristics of the fluid

were fixed in accordance with the properties of the experimental
test fluid presented in Table 1. The density was fixed at 1196 kg/m3,
the solvent viscosity ratio ˇ = �S/�0 was kept constant (ˇ = 0.50)
to match the shear rheometry data; the relaxation time was taken
as �CaBER = 66 ms as measured in CaBER experiments; while the
extensibility parameter of the PTT model was varied between ε = 0
and ε = 7.0 × 10−6, according to the fits to the CaBER experimental
data shown in Fig. 6. As we demonstrate in Section 4.1 below, the
difference between the calculation with ε = 0 and ε = 7.0 × 10−6 is
negligible for the range of Weissenberg numbers explored. Thus,
the uncertainty in the exact estimation of this parameter from
CaBER experiments is not critical in the present computations.

4. Results and discussion

We first examine the influence of the extensibility parameter ε
on the streamlines predicted by the SPTT model and subsequently
analyze the stress field obtained from 2D numerical simulations.
We then compare the flow patterns obtained in the T-shaped
microchannels with and without a recirculating cavity for both the
viscoelastic PEO solution and its glycerol/water solvent Newtonian
counterpart. Finally, we characterize the nature of the symmetry-
breaking bifurcation observed after a critical Weissenberg number
in the T-shaped microchannel containing a recirculating cavity.

4.1. Extensibility parameter ε

The effect of the extensibility parameter ε in Eq. (5) on the
predictions of the SPTT model was investigated for two different
volumetric flow rates as shown in Fig. 8(a) and (b). For ε = 0, the
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Oldroyd-B model is recovered and the resulting streamlines appear
as the black dashed lines in Fig. 8(a) and (b). Also plotted as red solid
lines in the figures are the streamlines corresponding to the value
ε = 7.0 × 10−6 that best captures the time evolution of the mid-
point diameter of the PEO solution thread in CaBER experiments
as illustrated in Fig. 6. As shown in both figures, the extensibility
parameter ε has little effect on the SPTT model predictions and the
streamline patterns corresponding to the two different choices of ε
superpose for both geometries.

From the CaBER experiments presented in Fig. 6, we could deter-
mine the range of the extensibility parameters for which a good
agreement between the experimental measurements of capillary
thinning and the predictions of a single mode constitutive model
could be obtained. As the model predictions are not significantly
affected by the choice of ε in that particular range, we use the
maximum value of ε = 7.0 × 10−6 for all numerical simulations pre-
sented in this work. Indeed, this value is shown to cover the entire
range of experimental data from CaBER measurements in Fig. 6.

Fig. 7. Zoomed view of the computational meshes near the central region for the
T-shaped microchannels (a) with, or (b) without recirculating cavity. (a) Mesh with
recirculating cavity. (b) Mesh without recirculating cavity.

Fig. 8. Effect of the SPTT model extensibility parameter ε on the streamline patterns
for the T-shaped microchannel with (a) and without (b) recirculating cavity. The
thin red streamlines were obtained with ε = 7.0 × 10−6 and the thick dashed black
streamlines correspond to ε = 0 (Oldroyd-B model); Re = 8.53 × 10−4 , Wi = 0.73. (a)
Q = 2.5 �L/h (cavity). (b) Q = 2.5 �L/h (no cavity). (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of the
article.)

4.2. Stress field

The contour plots of the normalized first normal stress dif-
ference for the T-shaped microchannel with and without a
recirculating cavity are shown in Fig. 9(a) and (b), respectively.
Although not shown in the figures, the exit channel length used
in the simulations is 550 �m in order to guarantee that the stress
field is fully developed in the outlet arm. The normal stress differ-
ence is scaled with the characteristic viscous stress �0V̄/(h/2) and
is plotted at a fixed Weissenberg number Wi = 0.73.

At this Weissenberg number, the numerical solution is symmet-
ric for both geometries, which is in agreement with the symmetry
of the streamline images captured under these flow conditions (see
Sections 4.3.1 and 4.4.1). A local inhomogeneous planar extensional
flow develops where the two streams meet (x = 0), which results
in a localized birefringent strand of highly stretched material [61].
This strand of oriented material leads to the large normal stress dif-
ference observed along the channel centerline. The presence of a
recirculating flow in the cavity strongly affects the local kinematics
near the stagnation point and leads to a significantly lower tensile
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stress difference along the centerline compared to the pinned stag-
nation point flow as shown in Fig. 10. When the stagnation point is
pinned at the no-slip wall, the dimensionless normal stress differ-
ence is h(�yy − �xx)/(2�0V̄) ≥ 70 whereas it remains under 20 for
the case with a recirculating cavity. As shown in the figure, the
extensibility parameter ε has little effect on the numerical pre-
dictions of the first normal stress difference for this Weissenberg
number. This is because of the limited residence time and moder-
ate total Hencky strains experienced by most material elements;
the polymer molecules thus do not approach the finite extensi-
bility limit. In the pinned stagnation point flow, the large stress
gradients observed along the channel centerline are very similar
to those encountered in the downstream wake of the flow past a
confined cylinder in a channel [62–64]. As will be discussed in the
following section, these stresses control the onset of the viscoelas-

Fig. 9. Contour plots of the normalized first normal stress difference (h(�yy −

�xx)/(2�0V̄)) for the T-shaped microchannel without (a), and with (b), recirculat-
ing cavity (SPTT model; ˇ = 0.50, ε = 7.0 × 10−6 , Re = 8.53 × 10−4 , Wi = 0.73). (a)
Q = 2.5 �L/h (cavity). (b) Q = 2.5 �L/h (no cavity).

Fig. 10. Line plots of normalized first normal stress difference along the symme-
try line x = 0 from Fig. 9(a) and (b). The solid lines correspond to the SPTT model
with ε = 7.0 × 10−6 and the open and filled symbols obtained for ε = 0 (Oldroyd-B
model) correspond to the microchannel with and without cavity, respectively (for
both models: ˇ = 0.50, Re = 8.53 × 10−4 , Wi = 0.73).

tic flow transitions observed experimentally in the two different
geometries.

4.3. Pinned stagnation point flow

4.3.1. Viscoelastic and Newtonian flow comparison

In Fig. 11, we show a comparison of the streamline images
obtained at different volumetric flow rates (or equivalently, differ-
ent Weissenberg numbers in case of the viscoelastic PEO solution)
for the aqueous solution of PEO/glycerol/water and for the corre-
sponding Newtonian solvent. The flow patterns for the Newtonian
fluid and the viscoelastic fluid response at a constant elasticity
number El = Wi/Re = 861 are shown in Fig. 11(f)–(j) and (a)–(e),
respectively. The aim of this comparison is to demonstrate the effect
of elasticity on the stagnation flow where the stagnation point is
pinned onto the microchannel confining wall.

As can be seen in Fig. 11(a)–(e), we observe a transition from
a symmetric Newtonian-like behavior to an unsteady 3D flow for
the viscoelastic PEO solution after a critical Weissenberg number
Wicrit ≃ 3.2. This unstable 3D flow is characterized by overlap-
ping streaklines within the measurement depth ızm = 14.5 �m as
shown in Fig. 11(c)–(e). At higher flow rates (Fig. 11(e)), the flow
eventually becomes chaotic and is suitable for mixing purposes
[65].

The Newtonian flow counterpart remains symmetric and stable
for the entire range of volumetric flow rates tested in this work
(Re ≤ 6.5 × 10−2). The stability of the symmetric flow is further
visually confirmed by the presence of a non-moving fluorescent
tracer particle at the location of the stagnation point in Fig. 11(f)–(j),
which is not flushed by the inflow over the course of the experiment,
contrary to the other tracer potentially stuck to the wall on the left
hand-side of the stagnation point that is only visible in Fig. 11(f)–(h).
In the outflow channel, some fluorescent particles stuck onto the
surface of the PDMS channel are clearly visible. Even if they do not
perturb the symmetry of the flow profile at the channel mid-plane,
they further motivate the use of SDS which helps to limit their accu-
mulation at the channel edges and in the recirculating cavity during
the streakline imaging experiments.

Comparing the streamline patterns corresponding to the PEO
solution and the viscous Newtonian counterpart at low Reynolds
numbers, it can be concluded that the transition from a stable
2D flow to an unsteady 3D flow is elastically driven and is due
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Fig. 11. Viscoelastic ((a)–(e)) and Newtonian ((f)–(j)) flow streamline patterns as a function of the volumetric flow rate Q.

to large stress gradients that develop downstream of the stag-
nation point as shown in Fig. 9(b). As discussed by Becherer et
al. [66], the local planar extensional flow in this region is sim-
ilar to the wake behind a cylinder confined in a channel for
which a number of studies (e.g. [62–64]) report the onset of
unsteady flow at Wi ≃ 1. In the present experiments, we find
that when the Weissenberg number exceeds Wicrit ≃ 3.2, the flow
becomes clearly time-dependent. Movies of this unstable flow
regime were also recorded using the mvBlueFOX-120a CCD cam-
era (640 × 480 pixels) at a frame rate of 3.81 fps with an exposure
time of 250 ms and are available as supporting information at:
http://web.mit.edu/soulages/www/MIT/Elastic Instabilities.html.

4.3.2. Comparison with results of numerical simulation

A comparison between the SPTT model numerical predictions
and the experimental streakline images is shown at different
Weissenberg numbers in Fig. 12. The central difficulty that arises
in quantitative comparisons of experimental measurements and
single-mode numerical simulations of dilute polymer solutions is
the modal distribution of the elastic contribution to the total vis-
coelastic stress. In a multimode computation with an N bead-spring
chain model, each mode i = 1, 2, . . . , N (each with progressively
shorter relaxation time �1 > �2 > �3 > · · · > �N) makes a contri-
bution Gi = nkBT to the total elastic modulus, and a contribution
�i = nkBT�i to the total viscosity. Any suitable measure of the mean
relaxation time, for example �̄ = �i(�i�i)/�(�i), is thus less than
the longest relaxation time �1. The breadth of this distribution in
the relaxation times is captured in “universal measures” such as
the ratio U�� = �i(�i)/�1 for the Rouse and Zimm models [67].
For a bead-spring chain in a theta solvent, the Zimm model with
dominant hydrodynamic interactions gives U�� ≃ 2.39 [67,68]. By
contrast, for any single mode dumbbell model the universal ratio is
U�� = 1 by definition, and all of the fluid elasticity is collapsed into
the single viscoelastic relaxation mode.

This difference between single and multimode models is impor-
tant if one seeks to compare the predictions of a single mode model
with experimental data on a quantitative basis. If the relaxation
time �1 is measured independently, then a computation with a
single mode model over-estimates the total effects of viscoelas-
ticity in a complex flow at moderate Wi (because in reality some

of the shorter relaxation modes are “relaxed out” and should not
contribute to the elastic stress). The longest relaxation time �1

in a dilute solution can be measured in CaBER experiments [69]
whereas shear flow measurements of the steady shear viscosity and
the first normal stress coefficient �1 (if measurable) can be used
to evaluate a mean relaxation time �̄ = �1/2�P [70,71]. For highly
viscous Boger fluids, it is possible to measure independently both
�1 and �1 in a CaBER experiment and thus evaluate the breadth
of the relaxation time spectrum directly; however, for low viscos-
ity aqueous polymer solutions, the first normal stress difference is
immeasurably small. When comparing experimental observations
with computations, the choice must then be made as to whether to
perform the calculation at the same value of Weissenberg number
based on �1 or the mean relaxation time �̄. For a simple Zimm-
like bead-spring model with dominant hydrodynamic interactions,
we have �i ≃ �1/i3/2 and �i(�i) ≃ �1�i(1/i3/2) = �1�(3�), where �
is the Riemann zeta function and � is the solvent quality (� = 0.5
for a theta solvent). The universal ratio for this model is U�� ≃

�(3�) (≃ 2.16, considering a solvent quality exponent of � ≃ 0.55
for PEO in glycerol/water). The mean relaxation time determined
from viscometric properties would then be �̄ = �i(�i�i)/�(�i) ≃

�1�(6�)/�(3�) = �1/1.88. Quantitative agreement with single mode

computations should thus only be anticipated to within a factor of
�(3�)/�(6�) ≈ 2. In the following computations we use the value
�1 because it is directly and independently measured through cap-
illary thinning experiments (i.e. �1 ≡ �CaBER); however we show
that closer agreement between the critical conditions appears to
be obtained if we compare experimental observations with a com-
putation performed at Winum = �1�(6�)̇/�(3�) ≃ �CaBEṘ/2.

The results in Fig. 12 are presented for both flow regimes: the
symmetric Newtonian-like behavior (Fig. 12(a)) and the 3D time-
dependent flow (Fig. 12(c)). The SPTT model qualitatively captures
the main differences between these two flows. The experimen-
tal streaklines and computed streamlines in Fig. 12(a) and (b) are
symmetric, smooth and monotonically curved near the stagna-
tion point. After incrementing the flow rate (or the Weissenberg
number), the streamlines flatten in the stagnation region and the
experimental flow becomes time-dependent and 3D beyond a crit-
ical Weissenberg number Wicrit ≃ 3.2 as shown in Fig. 12(c). The
single mode numerical computations predict a loss of flow sta-

http://web.mit.edu/soulages/www/MIT/Elastic_Instabilities.html
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Fig. 12. SPTT model predictions and experimental streamlines as a function of the Weissenberg number. (a) Wiexp = 2.35, (b) Winum = 1.17, (c) Wiexp = 4.69 and (d) Winum =

2.35

bility beyond a critical Weissenberg number of Winum ≃ 1.5 and
the streamlines shown in Fig. 12(d) are representative streamlines
corresponding to an unsteady flow at one instance in time. This
agreement is good, recognizing the difference and the limitations
of a single mode simulation. In Fig. 12(c), the 3D character of the
flow at high Weissenberg number is revealed by the crossing of
fluid streaklines over the depth of measurement (ızm = 14.5 �m,
representing about one third of the total channel depth). Although
it is possible to compute microfluidic flows that capture such three-
dimensional features for Newtonian fluids [56], it is not yet viable to
compute accurately three-dimensional time-dependent viscoelas-
tic flows in reasonable CPU times.

In order to quantitatively assess the performance of the SPTT
model, we superpose the numerically computed streamlines and
experimental streaklines for symmetric flow conditions as shown
in Fig. 13, once again using the conversion �̄ = �CaBER�(6�)/�(3�) so
that Winum = Wiexp/2. The agreement between the model and the
experimental data is quite satisfactory. It clearly indicates the ability
of the model to accurately describe the global spatial characteristics
of the viscoelastic flow in the T-shaped microchannel in the absence
of a recirculating cavity.

Under identical experimental conditions (i.e. the same volumet-
ric flow rates and same Re and Wi numbers), we show the same
comparison for the microchannel with a recirculating cavity in
Fig. 14. The presence of the cavity leads to major differences in the
kinematics and a loss in symmetry in the flow beyond a critical

Fig. 13. Comparison of experimental streamline and SPTT model predictions (blue
solid lines) for the microchannel without cavity: Q = 10 �L/h (Wiexp = 2.93; Re =

3.41 × 10−3). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of the article.)
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Fig. 14. Experimental streamline and SPTT model predictions (blue solid lines) for
the microchannel with cavity using the same experimental conditions as in Fig. 13:
Q = 10 �L/h (Wiexp = 2.93; Re = 3.41 × 10−3). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of the article.)

flow rate. The stagnation point is not pinned on the microchannel
walls anymore but is free to move. As a result, the dividing stream-
line (x = 0) is also unconstrained. The development of large tensile
stresses in the region of planar extension illustrated in Fig. 9(a)
together with curved streamlines leads to a symmetry-breaking
bifurcation as shown in Fig. 14. Both experiments and calculations
at lower Wi are symmetric (as detailed below). The flow transition
is numerically observed for Wi = 2Winum ≃ 2.5, which is in good
agreement with the value measured experimentally (Wi ≃ 2.4). The
single mode SPTT model gives a very good quantitative descrip-
tion of the spatial characteristics of the steady fluid streamlines.
In particular, the extent of the recirculating flow in the cavity is
well captured by the model. Also, the local radius of curvature of
the streamlines in the neighborhood of the cavity is accurately pre-
dicted by the numerical simulations.

In the following section, we analyze in more detail the differ-
ent elastically driven flow transitions observed in the T-shaped
microchannel with a recirculating cavity and compare them with
the predictions of the single-mode SPTT model.

4.4. Free stagnation point flow

4.4.1. Viscoelastic and Newtonian flow comparison

A comparison of the streak-images obtained at different volu-
metric flow rates (i.e. different Wi numbers) for the viscoelastic
dilute PEO solution and for the viscous glycerol/water solvent is
shown in Fig. 15. The elasticity number for the viscoelastic solu-
tion is El = Wi/Re = 861. In Fig. 15(a)–(e), the Reynolds number is
less than Re ≤ 3.4 × 10−2, so that we can neglect inertia and focus
on the effect of elasticity on the stagnation flow. As we noted in
Figs. 9 and 10, the presence of a recirculating flow in the cavity
affects both the velocity and stress fields in the region of strong
planar extension, which leads to noticeable differences in the fluid
streamline patterns beyond a critical flow rate. The stagnation point
is located on a free streamline, resulting in a non-zero velocity
gradient at the origin of the laboratory frame.

By contrast to the flow in the channel without a cavity,
we observe two distinct elastically driven flow transitions in
Fig. 15(a)–(e). The flow first transitions from a steady symmet-
ric Newtonian-like behavior (Fig. 15(a)) via a symmetry-breaking
bifurcation to a steady asymmetric flow at a critical flow rate of
Qc ≃ 8.0 �L/h (Fig. 15(b)). At higher flow rates, a second instabil-
ity leads to a time-dependent 3D flow (Fig. 15(c)–(e)). These two
transitions occur at a critical Weissenberg number Wicrit1 ≃ 2.4
and Wicrit2 ≃ 5.3, respectively. The second transition from steady
2D asymmetric flow to unsteady 3D flow occurs at a substantially
higher critical Weissenberg number, namely Wicrit2 ≃ 5.3 com-
pared to Wicrit ≃ 3.2 for the microchannel with pinned stagnation
point due to the large stress gradients observed in this geometry
(cf. Fig. 10).

As in the earlier studies of planar elongational flow in a cross-slot
[30], it appears that the strand of highly oriented polymeric mate-
rial in the region of planar extension leads to a symmetry-breaking
bifurcation at Wicrit1 ≃ 2.4. The steady character of this first elastic
instability was captured using digital video by imaging over several
minutes at a frame rate of 3.81 fps and an exposure time of 250 ms.
The corresponding movies can be found as supporting material at:
http://web.mit.edu/soulages/www/MIT/Elastic Instabilities.html. This
flow asymmetry is very similar to that observed by Arratia et al.
who investigated the cross-slot flow of a polyacrylamide viscoelas-
tic solution [30]. In their study, the free stagnation point coupled to
large tensile stresses led to a steady symmetry-breaking flow asym-
metry for Wi ≃ 4.5 and Re ≤ 10−2. The asymmetric flow shown in
Fig. 15(b) is also bistable [30,28] and the mirror image of the recir-
culating flow patterns can also be shown experimentally. Small
random perturbations in the flow rate when approaching the crit-
ical Weissenberg number Wicrit1 control the final direction of the
flow in the cavity.

At higher flow rates corresponding to Wicrit2 ≃ 5.3, the flow
transitions from a steady asymmetric bifurcation to a 3D time-
dependent flow as shown in Fig. 15(c)–(e). The 3D nature of the
flow instability is again revealed by the crossing of the streaklines.
As observed in the geometry without a cavity, the flow eventually
becomes chaotic at high Weissenberg number, which is desirable
for mixing purposes [65].

The corresponding Newtonian case shown in Fig. 15(f)–(j) is
symmetric and stable for all the volumetric flow rates tested in this
study (Re ≤ 6.5 × 10−2). For the highest flow rate Q = 100 �L/h, a
slight asymmetry is visible in the streamline pattern as shown in
Fig. 15(j). This is due to small imbalances in the volumetric flow
rates at the two channel inlets. Because of the large pressure gra-
dients existing at high flow rates, some leakage between the Tygon
tubing and the PDMS channel can occasionally be seen, which is
responsible for the very small observed asymmetry at high flow
rates. Numerical simulations confirm the negligible effect of iner-
tia, and the predicted streamlines are symmetric and qualitatively
similar to those predicted at lower flow rates.

In the next section, predictions of the single-mode SPTT model
will be compared to experimental streak-images before and after
the onset of the first (steady) flow transition observed in the free
stagnation point flow (Wicrit1 ≃ 2.4).

4.4.2. Symmetric flow numerical simulation results

The numerical predictions of the SPTT model and the experi-
mental streak-images are shown in Fig. 16 for the symmetric case
(Wi < Wicrit1 ≃ 2.4) at two different Weissenberg numbers. As in
Section 4.3.2, the comparison is performed such that Winum =

�1�(6�)̇/U�� ≃ Wiexp/2. For both flow rates shown, the fluid
streamlines are symmetric and the general evolution in the flow
is well-captured by the SPTT model. When the Weissenberg num-
ber is increased, the magnitude of the first normal stress difference
becomes larger in the region of strong planar extension. This

http://web.mit.edu/soulages/www/MIT/Elastic_Instabilities.html
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Fig. 15. Viscoelastic ((a)–(e)) and Newtonian ((f)–(j)) flow streamline patterns as a function of the volumetric flow rate Q.

Fig. 16. SPTT model predictions ((b) and (d)) for the viscoelastic evolution in the steady streamlines and experimental streaklines ((a) and (c)) for symmetric flow as the flow
rate is increased. (a) Wiexp = 1.17, (b) Winum = 0.59, (c) Wiexp = 2.05 and (d) Winum = 1.17.
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increase in N1 is responsible for the differences observed in the
structure of the recirculating flow in the cavity observed in Fig. 16.
It is important to note that the symmetric recirculating vortices in
the cavity predicted in Fig. 16(b) and (d) are too weak to observe
with the exposure time of 250 ms used for streakline imaging.
Numerically, the recirculating flow in each recirculation only rep-
resents 9.5 × 10−2 and 1.5 × 10−2% of the total volumetric flow
rate entering the T-channel through one arm for Fig. 16(b) and (d),
respectively. The particles are displaced only slightly in this time
and thus the corresponding streaklines could not be experimen-
tally captured. However, the size of the secondary core-vortex flows
(represented by dark regions with no streamlines in Fig. 16(a) and
(c)) decreases with increasing Weissenberg numbers. As the level of
elasticity increases, the tensile stresses in the flow lead to increas-
ing penetration of the dividing streamline into the cavity. This is in
good general agreement with numerical predictions as shown in
Fig. 16(b) and (d).

4.4.3. Symmetry-breaking bifurcation

In Fig. 17, we compare the SPTT model predictions to the exper-
imental streakline patterns observed after the onset of the first
symmetry-breaking instability, namely for Weissenberg numbers
between Wicrit1 ≃ 2.4 and Wicrit2 ≃ 5.3. The SPTT model accurately
captures the experimental streak-images and the asymmetric pen-

etration of the primary flow into the cavity. At high Weissenberg
numbers, the large tensile stresses in the region of strong planar
extension tend to “pull” the dividing streamline progressively out-
side of the cavity as observed both experimentally and numerically
in Fig. 17. The small corner vortices predicted by the model in the
quiescent (upper) corners of the cavity cannot be resolved experi-
mentally due to the local small velocities with the current imaging
system.

The absence of flow asymmetries for the Newtonian case in
Fig. 15(g) together with the very low Reynolds numbers attained in
this microfluidic geometry (Re ≤ 3.4 × 10−2) clearly indicates that
this flow transition is driven by fluid elasticity. The large normal
stress gradients in the region of strong planar extension shown
in Fig. 9(a) together with curved streamlines are thus responsi-
ble for the observed symmetry-breaking bifurcation. To further
illustrate the purely elastic character of this flow instability, cor-
responding creeping flow numerical simulations have also been
done at nominally zero Reynolds number as shown in Fig. 18 by
setting the inertial terms on the left hand side of Eq. (4) to zero.
There is immeasurable difference between the two streamline pat-
terns demonstrating that inertial effects are not responsible for the
observed flow transition.

In order to document the characteristics of this symmetry-
breaking bifurcation, we have measured the magnitude of the

Fig. 17. SPTT model predictions ((b) and (d)) for the viscoelastic evolution in the steady streamlines and experimental streaklines ((a) and (c)) for steady asymmetric flow as
the flow rate is increased. (a) Wiexp = 2.64, (b) Winum = 1.32, (c) Wiexp = 3.52 and (d) Winum = 1.76.
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deviations from symmetric flow in the channel outlet, 90 �m away
from the origin as indicated by the horizontal dashed blue line in
Fig. 19(a). For illustrative purposes, the dividing streamline has also
been colored in black in the figure. Because of mass conservation,
for each incoming stream entering the microchannel at a volumetric
flow rate Q, the volumetric flow rate at the channel outlet is

Q = V̄1h1d = V̄2h2d, (6)

where d represents the (constant) microchannel depth, V̄i is the
average velocity for stream i (i = 1 or 2) and hi is the distance
between the dividing streamline and the microchannel sidewalls
measured along the x-axis as shown in Fig. 19(a) (h = h1 + h2, where
h is the total width of the outflow channel). The squared normal-
ized velocity deviations from symmetric flow (�V/V)2 can thus be
written as

(

�V

V

)2

=

(

V̄2 − V̄1

V̄1

)2

=

(

h1

h2
− 1

)2

. (7)

According to Eq. (7), (�V/V)2
= 0 for a symmetric flow and

(�V/V)2
→ 1 for a fully asymmetric flow. Fig. 19(b) shows the

squared normalized velocity deviations from symmetric flow as a
function of the Weissenberg number together with numerical pre-
dictions at a distance of 50, 75 and 90 �m away from the origin
of the laboratory frame. The comparison is performed again such
that Winum = �1�(6�)̇/�(3�) ≃ Wiexp/2. The results are shown for
Wi ≤ Wicrit2 and the maximum Weissenberg number for which
convergent numerical results could be obtained is Wimax = 4.4.

For Wi < Wicrit1, the flow remains symmetric and (�V/V)2
≈

0 (within experimental fluctuations). After the onset of the
symmetry-breaking bifurcation, the magnitude of the asymmetry
(�V/V)2 varies approximately linearly with Wi, a typical behavior
of supercritical bifurcations [72]. The 2D computations underes-
timate the magnitude of the deviations when the location of the
transverse line is taken as y = 90 �m or y = 75 �m. Much better
agreement is found at a distance of 50 �m from the origin of the
laboratory frame.

Fig. 18. Effect of inertia on the streamline patterns for the T-shaped microchannel
with recirculating cavity (ε = 7.0 × 10−6). The solid red and dashed black streamlines
correspond to finite inertia (Re = 2.05 × 10−3) and creeping (Re = 0) flow, respec-
tively (Wi = 1.76). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of the article.)

Fig. 19. (a) Geometrical details and (b) normalized velocity deviations from sym-
metric flow (filled symbols) in the microchannel outlet (90 �m away from S.P.)
together with numerical predictions (open symbols) at a distance of 50, 75 and
90 �m away from the S.P. The critical Weissenberg number at the onset of steady
asymmetric flow is also indicated by a vertical dashed solid line in the figure
(Wicrit1 = 2.4). The results are shown for Wi ≤ Wicrit2 and the maximum Weissenberg
number for which numerical results are plotted is Wimax = 4.4.

This discrepancy in the strength of the flow asymmetry at a
given value of Wi = Wicrit1 > 0 may be a consequence of the finite
depth of the T-channel geometry (d = 50 �m) which gives rise to
three-dimensionality in the local experimental flow that cannot be
captured by the 2D simulations.

The observations and calculations strongly suggest that the
observed bifurcation is a supercritical steady viscoelastic flow tran-
sition with strong similarities to the cross-slot observations of
Arratia et al. [30] that were duplicated numerically by Poole and
coworkers [35].

5. Conclusion and outlook

In this study, we have investigated the structure and stability
of steady planar stagnation flows of a dilute viscoelastic PEO solu-
tion using two different T-shaped microchannels, with and without,
a recirculating cavity region, respectively. We have shown that
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the kinematic differences near the stagnation point in these two
geometries control the magnitude of the large tensile normal stress
differences in the vicinity of the stagnation point as well as the
critical conditions and spatiotemporal dynamics of the resulting
elastically driven flow asymmetries. For the free stagnation point
flow, a strand of highly oriented polymeric material is formed in the
region of strong planar extensional flow, which results in an addi-
tional symmetry-breaking transition at intermediate Weissenberg
numbers. For each stagnation flow, we also observed a flow transi-
tion from a steady to a three-dimensional time-dependent flow at
a critical Weissenberg number. The critical conditions are substan-
tially lower for the pinned stagnation point flow.

The spatial characteristics of these purely elastic flow instabil-
ities were compared with two-dimensional numerical predictions
using a single-mode simplified Phan-Thien–Tanner (SPTT) model.
The calculations were shown to quantitatively capture the evolution
in the streamline patterns with increasing Weissenberg number as
well as predict the onset of a steady 2D asymmetric flow beyond a
critical flow rate. Idealized creeping flow calculations with no fluid
inertia demonstrate the purely elastic nature of the different flow
transitions.

Future work will involve a detailed analysis of the local veloc-
ity field in the vicinity of the stagnation point using microparticle
image velocimetry to further document the nature of the bifurca-
tion. We also hope to make use of other viscoelastic fluids such as
wormlike micellar solutions to investigate the role of the magnitude
of strain-hardening in the extensional viscosity on the local stresses
near the stagnation point and the corresponding flow stability.
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