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Abstract— Due to circadian rhythms, the efficacy and side 
effects of chemotherapy change throughout the day. 
Chemotherapy in turn alters circadian rhythm. This creates a 
closed-loop requiring control. While circadian rhythms can be 
monitored using blood, salivary and urine hormone tests, such 
tests are not practical at home and do not provide continuous 
real-time monitoring. Combining signal processing and 
artificial intelligence and signal processing with commercial 
sensors embedded in smartwatches or clothes that measure 
physiological and behavioural attributes offers unprecedented 
and as yet unexplored opportunities to monitor circadian 
rhythms in real time. This paper presents the initial steps 
towards the development of   a model for real-time monitoring 
of the circadian rhythms. This model will allow to revolutionize 
the administration of chemotherapy, improve patient 
responses, and reduce side effects and costs. Preliminary 
analysis shows promising results to automatically classify 
cortisol levels as high or low, based on behavioral and 
physiological signals monitored by non-invasive wearable 
sensors.  
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I. INTRODUCTION  

“Inner clock adapts our physiology to the dramatically 
different phases of the day, […] regulating critical functions 
such as behavior, hormone levels, sleep, body temperature 
and metabolism”.  This phenomenon is known as the bio-
logical clock or circadian rhythm [1]. 

Cancer therapy has significant side effects. Among other, 
it increases mental stress, altering internal clock (i.e., circa-
dian rhythm) and sleep cycles, further disrupting quality of 
life. Recent researches [2] proved that patient with major al-
terations in circadian cycles are significantly less likely to 
survive to cancer treatments.  

Currently, there are no instrumental methods to measure 
accurately how cancer therapy alters circadian cycles in in-
dividual patients over time. Consequently, it is not possible 
to optimize therapy or design new interventions to minimize 
this effect. 

In the future, cancer treatments will be dynamically per-
sonalized considering patient characteristics and their indi-
vidual response during therapeutic administration, based on 
closed-loop control. Unfortunately, we are far from this vi-
sion, due to lack of knowledge, the absence of reliable mod-
els and deficiency of cost-effective tools. 

One reason is that methods for circadian measurements 
are not suitable for continuous and simultaneous monitoring 
at home. In fact, circadian cycles are measured via labora-
tory tests (i.e., hormones measured via blood, urine or saliva 
specimens), which are expensive and not easy to be per-
formed at home. Most recently, actigraphy has been ex-
plored for circadian rhythm estimations at home [3]. None-
theless, benchmark methods are not yet available and non-
invasive behavioral (i.e., actigraphy) and physiological 
monitoring has not been combined yet, especially in oncol-
ogy.  

Therefore, there is the need to combine wearable sensors, 
biomedical signal analysis and machine learning to develop 
methods and tools to quantify alterations in internal clock, 
helping oncologists to optimize cancer therapy.  

Several cortisol indices are commonly used in the litera-
ture to determine circadian alteration such as amplitude, fre-
quency and phase [4]. In particular, peak-to-trough differ-
ence is one of the most used index to assess rhythm 
alteration in cancer patients [5].  

This paper presents a preliminary result from a pilot study 
conducted on healthy subjects to identify a model to monitor 
circadian rhythms (peaks and trough) in real-time using ar-
tificial intelligence and unobtrusive wearable behavioral and 
physiological monitors.   

II. METHODS AND MATERIALS 

A. Study Participants 

8 healthy participants (4 men and 4 women, mean age 
(SD): 26.2 (3.3) years) in whom no abnormalities were de-
tected by the medical history, were recruited in the study. 
Baseline characteristics, such as age, height, weight, general 
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health status and use of medications, were collected during 
a baseline assessment and briefing session. The participants 
did not report history of heart disease, diabetes, systemic hy-
pertension or hypotension, or sleep-disorders, or consump-
tion of any medication throughout the course of the study, 
which could alter physiological signals being acquired. They 
had healthy body mass index (BMI), i.e. between 18.5 and 
24.9.  

The Biomedical and Scientific Research Ethics 
Committee of the University of Warwick approved this 
study (ref. REGO-2018-2205), assuring anonymity and no 
side effects or possible disadvantages for the participants. 
All participants were carefully instructed, and informed 
consent was acquired prior to the experiment. Participants 
were compensated with a fixed fee. 

 
B. Protocol  

Participants were asked to wear two different wearable 
devices for three nights and two consecutive days. The first 
wearable device, the Zephyr BioPatch, recorded ECG, 
breathing rate and raw 3-axis accelerations, with a sampling 
rate of 250 Hz, 18 Hz and 100Hz respectively. The second 
one was a wireless data logger, the iButtons, which can be 
used to obtain a valid measurement of human skin tempera-
ture. One iButton was attached to each ankle, and  another 
iButton was attached on each side of the chest, one or two 
inches below the clavicle in the mid- clavicular line in order 
to measure distal and proximal body temperature respec-
tively [6]. The temperature sensors took a measurement 
every 10 minutes. 

In this study, cortisol was used as a marker of circadian 
rhythm. Participants were instructed on how to take and 
store saliva samples, so as they could be sent to a specialized 
laboratory and analyzed for levels of salivary cortisol. Par-
ticipants were instructed to take a sample immediately upon 
waking, and then to take further samples every two hours for 
the rest of the day until they went to bed. Saliva samples 
were acquired for two consecutive days via Salimetrics® 
Cortisol Enzyme Immunoassay Kit, which is an immunoas-
say specifically designed and validated for the quantitative 
measurement of salivary cortisol. The saliva was collected 
by the passive drool technique.   

For each subject, behavioral and physiological signals 
were acquired for three nights and two days by wearable de-
vices, and two days’ worth of salivary samples were taken. 

Participants were also asked to report physical activity 
and food intake [7]. Participants were also asked to complete 
the Pittsburgh Sleep Quality Index (PSQI) instrument [8] 
and a consensus sleep diary [9]. The PSQI and sleep diary 
results were used to compare reported sleep disturbances 
with alteration in circadian cycles.   

All of the participants were asked to maintained ordinary 
daily schedules during the experiments. 

C. Data Analysis  

The maximum and minimum cortisol levels were ob-
tained for each subject for the two days, and these were la-
belled respectively as "peak" and "trough". In the cases 
where the minimum or maximum cortisol level for a period 
appeared in more than one measurement, then each meas-
urement was also labelled.  

Since physical exercise can greatly affect cortisol levels 
[10], only periods of time during which there were similar 
levels of activity were considered. For each peak and trough, 
a window of two hours around the time of the saliva meas-
urement was taken. Within each window of time, activity 
level and posture were evaluated. The activity as reported 
from the Zephyr BioPatch represents a measure of second- 
to-second activity and is sensitive to small movements. In 
order to reduce this sensitivity, the signal was smoothed us-
ing a moving average, with a sample window of 60. This 
smoothed activity, in essence, represents minute-to-minute 
activity.  

In order to control for activity and posture in the two 
hours window around each peak or trough, only times when 
activity was less than 0.2 (which corresponds to a level of 
activity less intense than walking) and the posture was be-
tween −20◦ and 20◦ (which corresponds to times when the 
chest was roughly upright) were considered.  

For each selected window of time, distal and proximal 
body temperature were also considered. Distal body temper-
ature was calculated as the mean of all measurements from 
ankle temperature sensors during the selected window of 
time. Proximal body temperature was calculated in the same 
way as distal body temperature.  

For each selected window of time, the RR interval time-
series was extracted from ECG records using an automatic 
QRS detector, WQRS, available in the PhysioNet’s toolkit 
[11]. QRS review and correction was performed using 
PhysioNet’s WAVE. The fraction of total RR intervals la-
belled as normal-to-normal (NN) intervals was computed as 
NN/RR ratio. NN/RR ratio was then used to measure the re-
liability of the data. Records with NN/RR ratio less than 
90% threshold were excluded from the analysis. HRV anal-
ysis was performed on 5 min excerpts using Kubios (version 
premium) [12]. Time and frequency-domain features were 
analyzed according to international guidelines [13], while 
non-linear measures were analyzed as described in [14].  
Frequency domain features were extracted from power spec-
trum estimated with autoregressive (AR) model methods 
[12]. Finally, 20 HRV features were examined.  

D. Statistical Analysis and Classification 

Given that HRV features were found non-normally 
distributed, Median (MD), Median Absolute Deviation 
(MAD) and interquartile range (IQR) (i.e., non-parametric 
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descriptors) were computed for each repetition. The non-
parametric Wilcoxon Signed-Rank Test was used to appraise 
statistical differences of HRV features and temperature 
variation between the “peak” and “trough” of cortisol 
measures.  

In order to optimize the performance of the machine 
learning models, the number of features should be limited 
by the number of instances of the event to detect (in this in-
stance, a peak or trough in cortisol levels). Furthermore, a 
reduction in the number of features greatly simplifies the 
medical interpretation of any results achieved. Therefore, 
the features selection was performed using relevance and re-
dundancy analysis as described in [15]. Training of the ma-
chine-learning models (including the algorithm parameter 
tuning) was performed using a leave-one-outcross-valida-
tion approach on 6 participants. Binary classification perfor-
mance measures were adopted according to the standards re-
ported in [14]. Five different machine-learning methods 
were used to train, validate and test the classifiers (SVM, 
MLP, IBK, RF and LDA); the model was chosen as the clas-
sifier achieving the highest Area under the Curve (AUC), 
which is a reliable estimator of both sensitivity and specific-
ity rates. The model was then tested on the remaining 2 par-
ticipants.  

III. RESULTS AND CONCLUSION 

Preliminary analysis shows promising results to automat-
ically detect cortisol levels as high or low (peaks or troughs), 
based on HRV data extracted during periods where activity 
and posture are controlled for. Some moderately successful 
classifiers were produced. Random Forest outperformed the 
other classifiers achieving 78% AUC and 73% overall accu-
racy. These results provide encouragement that such a pro-
tocol may be successful with further refinement, and weara-
ble devices (through the measurement of HRV) may indeed 
be useful in the real-time monitoring of circadian rhythm. 
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