
Findings of the Association for Computational Linguistics: EMNLP 2020, pages 1393–1401

November 16 - 20, 2020. c©2020 Association for Computational Linguistics

1393

Investigating Transferability in Pretrained Language Models

Alex Tamkin†

Stanford University
Trisha Singh

Stanford University
Davide Giovanardi

Stanford University
Noah Goodman

Stanford University

Abstract

How does language model pretraining help

transfer learning? We consider a simple ab-

lation technique for determining the impact

of each pretrained layer on transfer task per-

formance. This method, partial reinitializa-

tion, involves replacing different layers of a

pretrained model with random weights, then

finetuning the entire model on the transfer

task and observing the change in performance.

This technique reveals that in BERT, lay-

ers with high probing performance on down-

stream GLUE tasks are neither necessary nor

sufficient for high accuracy on those tasks. Fur-

thermore, the benefit of using pretrained pa-

rameters for a layer varies dramatically with

finetuning dataset size: parameters that pro-

vide tremendous performance improvement

when data is plentiful may provide negligible

benefits in data-scarce settings. These results

reveal the complexity of the transfer learning

process, highlighting the limitations of meth-

ods that operate on frozen models or single

data samples.

1 Introduction

Despite the striking success of transfer learning

in NLP, remarkably little is understood about how

these pretrained models improve downstream task

performance. Recent work on understanding deep

NLP models has centered on probing, a methodol-

ogy that involves training classifiers for different

tasks on model representations (Alain and Bengio,

2016; Conneau et al., 2018; Hupkes et al., 2018;

Liu et al., 2019; Tenney et al., 2019a,b; Goldberg,

2019; Hewitt and Manning, 2019). While prob-

ing aims to uncover what a network has already

learned, a major goal of machine learning is trans-

fer: systems that build upon what they have learned

to expand what they can learn. Given that most

† atamkin@stanford.edu

Figure 1: The three experiments we explore. Lighter

shades indicate randomly reinitialized layers, while

darker shades indicate layers with BERT parameters.

For layer permutations, all layers hold BERT param-

eters, what changes between trials is their order. In all

three experiments, the entire model is finetuned end-to-

end on the GLUE task.

recent models are updated end-to-end during fine-

tuning (e.g. Devlin et al., 2019; Howard and Ruder,

2018; Radford et al., 2019), it is unclear how, or

even whether, the knowledge uncovered by prob-

ing contributes to these models’ transfer learning

success.

In a sense, probing can be seen as quantifying

the transferability of representations from one task

to another, as it measures how well a simple model

(e.g., a softmax classifier) can perform the second

task using only features from a model trained on

the first. However, when pretrained models are

finetuned end-to-end on a downstream task, what

is transferred is not the features from each layer

of the pretrained model, but its parameters, which

define a sequence of functions for processing rep-

resentations. Critically, these functions and their

interactions may shift considerably during training,

potentially enabling higher performance despite

not initially extracting features correlated with this

task. We refer to this phenomenon of how layer

parameters from one task can help transfer learning



1394

Figure 2: The benefit of using BERT parameters in-

stead of random parameters at a particular layer

varies dramatically depending on the size of the fine-

tuning dataset. However, as finetuning dataset size

decreases, the curves align more closely with prob-

ing performance at each layer. Solid lines show fine-

tuning results after reinitializing all layers past layer k

in BERT-Base. 12 shows the full BERT model, while 0

shows a model with all layers reinitialized. Line dark-

ness indicates subsampled dataset size. The dashed

lines show probing performance at each layer. Error

bars are 95% CIs.

on another task as transferability of parameters.

In this work, we investigate a methodology for

measuring the transferability of different layer pa-

rameters in a pretrained language model to different

transfer tasks, using BERT (Devlin et al., 2019) as

our subject of analysis. Our methods, described

more fully in Section 2 and Figure 1, involve par-

tially reinitializing BERT: replacing different lay-

ers with random weights and then observing the

change in task performance after finetuning the

entire model end-to-end. Compared to possible

alternatives like freezing parts of the network or re-

moving layers, partial reinitialization enables fairer

comparisons by keeping the network’s architec-

ture and capacity constant between trials, changing

only the parameters at initialization. Through ex-

periments across different layers, tasks, and dataset

sizes, this approach enables us to shed light on mul-

tiple dimensions of the transfer learning process:

Are the early layers of the network more important

than later ones for transfer learning? Do individ-

ual layers become more or less critical depending

on the task or amount of finetuning data? Does

the position of a particular layer within the net-

work matter, or do its parameters aid optimization

regardless of where they are in the network?

We find that when finetuning on a new task:

1. Transferability of BERT layers varies dramat-

ically depending on the amount of finetuning

data available. Thus, claims that certain lay-

ers are universally responsible or important

for learning certain linguistic tasks should be

treated with caution. (Figure 2)

2. Transferability of BERT layers is not in gen-

eral predicted by the layer’s probing perfor-

mance for that task. However, as finetuning

dataset size decreases, the two quantities ex-

hibit a greater correspondence. (Figure 2,

dashed lines)

3. Even holding dataset size constant, the most

transferable BERT layers differ by task: for

some tasks, only the early layers are impor-

tant, while for others the benefits are more

distributed across layers. (Figure 3)

4. Reordering the pretrained BERT layers be-

fore finetuning decreases downstream accu-

racy significantly, confirming that pretraining

does not simply provide better-initialized indi-

vidual layers; instead, transferability through

learned interactions across layers is crucial to

the success of finetuning. (Figure 4)

2 How many pretrained layers are

necessary for finetuning?

Our first set of experiments aims to uncover how

many pretrained layers are sufficient for accu-

rate learning of a downstream task. To do this,

we perform a series of incremental reinitializa-

tion experiments, where we reinitialize all lay-

ers after the kth layer of BERT-Base, for values

k ∈ {0, 1, . . . 12}, replacing them with random

weights. We then finetune the entire model end-to-

end on the target task. Note that k = 0 corresponds

to a BERT model with all layers reinitialized, while

k = 12 is the original BERT model. We do not

reinitialize the BERT word embeddings. As BERT

uses residual connections (He et al., 2016) around

layers, the model can simply learn to ignore any of

the reinitialized layers if they are not helpful during

finetuning.

We use the BERT-Base uncased model, imple-

mented in PyTorch (Paszke et al., 2019) via the

Transformers library (Wolf et al., 2019). We fine-

tune the network using Adam (Kingma and Ba,

2015), with a batch size of 8, a learning rate of

2e-5, and default parameters otherwise. More de-



1395

tails about reinitialization, training, statistical sig-

nificance, and other methodological choices can

be found in the Appendix. We conduct our exper-

iments on three English language tasks from the

GLUE benchmark, spanning the domains of senti-

ment, reasoning, and syntax (Wang et al., 2018):

SST-2 Stanford Sentiment Treebank involves bi-

nary classification of a single sentence from a

movie review as positive or negative (Socher et al.,

2013).

QNLI Question Natural Language Inference is a

binary classification task derived from SQuAD (Ra-

jpurkar et al., 2016; Wang et al., 2018). The task re-

quires determining whether for a given (QUESTION,

ANSWER) pair the QUESTION is answered by the

ANSWER.

CoLA The Corpus of Linguistic Acceptability

is a binary classification task that requires deter-

mining whether a single sentence is linguistically

acceptable (Warstadt et al., 2019).

Because pretraining appears to be especially

helpful in the small-data regime (Peters et al.,

2018), it is crucial to isolate task-specific effects

from data quantity effects by controlling for fine-

tuning dataset size. To do this, we perform our

incremental reinitializations on randomly-sampled

subsets of the data: 500, 5k, and 50k examples (ex-

cluding 50k for CoLA, which contains only 8.5k

examples). The 5k subset size is then used as the

default for our other experiments. To ensure that an

unrepresentative sample is not chosen by chance,

we run multiple trials with different subsamples.

Confidence intervals produced through multiple tri-

als also demonstrate that trends hold regardless of

intrinsic task variability.

While similar reinitialization schemes have been

explored by Yosinski et al. (2014); Raghu et al.

(2019) in computer vision and briefly by Radford

et al. (2019) in an NLP context, none investigate

these data quantity- and task-specific effects.

Figure 2 shows the results of our incremental

reinitialization experiments. These results show

that the transferability of a BERT layer varies

dramatically based on the finetuning dataset size.

Across all but the 500 example trials of SST-2, a

more specific trend holds: earlier layers provide

more of an improvement on finetuning performance

when the finetuning dataset is large. This trend sug-

gests that larger finetuning datasets may enable the

network to learn a substitute for the parameters in

the middle and later layers. In contrast, smaller

datasets may leave the network reliant on exist-

ing feature processing in those layers. However,

across all tasks and dataset sizes, it is clear that

the pretrained parameters by themselves do not de-

termine the impact they will have on finetuning

performance: instead, a more complex interaction

occurs between the parameters, optimizer, and the

available data.

3 Does probing predict layer

transferability?

What is the relationship between transferability of

representations, measured by probing, and trans-

ferability of parameters, measured by partial reini-

tialization? To compare, we conduct probing ex-

periments for our finetuning tasks on each layer of

the pretrained BERT model. Our probing model

averages each layer’s hidden states, then passes the

pooled representation through a linear layer and

softmax to produce probabilities for each class.

These task-specific components are identical to

those in our reinitialization experiments; however,

we keep the BERT model’s parameters frozen when

training our probes.

Our results, presented in Figure 2 (dashed lines),

show a significant difference between the layers

with the highest probing performance and reinitial-

ization curves for the data-rich settings (darkest

solid lines). For example, the probing accuracy

on all tasks is near chance for the first six layers.

Despite this, these early layer parameters exhibit

significant transferability to the finetuning tasks:

preserving them while reinitializing all other layers

enables large gains in finetuning accuracy across

tasks. Interestingly, however, we observe that the

smallest-data regime’s curves are much more simi-

lar to the probing curves across all tasks than the

larger-data regimes. Smaller finetuning datasets

enable fewer updates to the network before over-

fitting occurs; thus, it may be that finetuning inter-

polates between the extremes of probing (no data)

and fully-supervised learning (enough data to com-

pletely overwrite the pretrained parameters). We

leave a more in-depth exploration of this connec-

tion to future work.

4 Which layers are most useful for

finetuning?

While the incremental reinitializations measure

each BERT layer’s incremental effect on transfer



1396

Figure 3: Early layers provide the most QNLI gains,

but middle ones yield an added boost for CoLA and

SST-2. Finetuning results for 1) reinitializing a con-

secutive three-layer block (“block reinitialized”) and

2) reinitializing all other layers (“block preserved”).

Dashed horizontal lines show the finetuning perfor-

mance of the full BERT model and the performance

of a model with only embedding parameters preserved.

Finetuning trials with 5k examples. Error bars are 95%

CIs.

learning, they do not assess each layer’s contribu-

tion in isolation, relative to either the full BERT

model or an entirely reinitialized model. Measur-

ing this requires eliminating the number of pre-

trained layers as a possible confounder. To do

so, we conduct a series of localized reinitializa-

tion experiments, where we take all blocks of three

consecutive layers and either 1) reinitialize those

layers or 2) preserve those layers while reinitial-

izing the others in the network.1 These localized

reinitializations help determine the extent to which

BERT’s different layers are either necessary (per-

formance decreases when they are removed) or

sufficient (performance is higher than random ini-

tialization when they are kept) for a specific level

of performance. Again, BERT’s residual connec-

tions permit the model to ignore reinitialized layers’

outputs if they harm finetuning performance.

These results, shown in Figure 3, demonstrate

that the earlier layers appear to be generally more

helpful for finetuning relative to the later layers,

even when controlling for the amount of finetun-

ing data. However, there are strong task-specific

effects: SST-2 appears to be particularly damaged

by removing middle layers, while the effects on

CoLA are distributed more uniformly. The effects

1See the Appendix for more discussion and experiments
where only one layer is reinitialized.

Figure 4: Changing the order of pretrained layers

harms finetuning performance significantly. Dashed

lines mark the performance of the original BERT model

and the randomly-initialized model (surrounded by

±2σ error bars). Circles denote finetuning perfor-

mance for different layer permutations, while the solid

line denotes the mean across runs (with 95% CIs). The

curved shaded region is a kernel density plot, which il-

lustrates the distribution of outcomes. Finetuning trials

with 5k examples.

on QNLI appear to be concentrated almost entirely

in the first four layers of BERT—suggesting op-

portunities for future work on whether sparsity of

this sort indicates the presence of easy-to-extract

features correlated with the task label. These re-

sults support the hypothesis that different kinds of

feature processing learned during BERT pretrain-

ing are helpful for different finetuning tasks, and

provide a new way to gauge similarity between

different tasks.

5 How vital is the ordering of pretrained

layers?

We also investigate whether the success of BERT

depends mostly on learned inter-layer phenomena,

such as learned feature processing pipelines (Ten-

ney et al., 2019a), or intra-layer phenomena, such

as a learned feature-agnostic initialization scheme

which aid optimization (e.g. Glorot and Bengio,

2010). To approach this question, we perform

several layer permutation experiments, where we

randomly shuffle the order of BERT’s layers before

finetuning. The degree that finetuning performance

is degraded in these runs indicates the extent to

which BERT’s finetuning success is dependent on

a learned composition of feature processors, as

opposed to providing better-initialized individual

layers which would help optimization anywhere in

the network.

These results, plotted in Figure 4, show that

scrambling BERT’s layers reduces their finetuning



1397

ability to not much above a randomly-initialized

network, on average. This decrease suggests that

BERT’s transfer abilities are highly dependent on

the intra-layer interactions learned during pretrain-

ing.

We also test for correlation of performance be-

tween tasks. We do this by comparing task-pairs for

each permutation, as we use the same permutation

for the nth run of each task. The high correlation

coefficients for most pairs shown in Table 1 suggest

that BERT finetuning relies on similar inter-layer

structures across tasks.

Tasks compared Spearman Pearson

SST-2, QNLI 0.72 (0.02) 0.46 (0.18)

SST-2, CoLA 0.74 (0.02) 0.77 (0.01)

QNLI, CoLA 0.83 (0.00) 0.68 (0.03)

Table 1: Specific permutations of layers have simi-

lar impacts on finetuning across tasks. Paired cor-

relation coefficients between task performances for the

same permutations. Two-sided p-value in parentheses

(N=10).

6 Conclusion

We present a set of experiments to better under-

stand how the different pretrained layers in BERT

influence its transfer learning ability. Our results

reveal the unique importance of transferability of

parameters to successful transfer learning, distinct

from the transferability of fixed representations as-

sessed by probing. We also disentangle important

factors affecting the role of layers in transfer learn-

ing: task vs. quantity of finetuning data, number

vs. location of pretrained layers, and presence vs.

order of layers.

While probing continues to advance our under-

standing of linguistic structures in pretrained mod-

els, these results indicate that new techniques are

needed to connect these findings to their potential

impacts on finetuning. The insights and methods

presented here are one contribution toward this

goal, and we hope they enable more work on un-

derstanding why and how these models work.

Acknowledgements

We would like to thank Dan Jurafsky, Pranav Ra-

jpurkar, Shyamal Buch, Isabel Papadimitriou, John

Hewitt, Peng Qi, Kawin Ethayarajh, Nelson Liu,

and Jesse Michel for useful discussions and com-

ments on drafts. This work was supported in part

by DARPA under agreement FA8650-19-C-7923.

References

Guillaume Alain and Yoshua Bengio. 2016. Under-
standing intermediate layers using linear classifier
probes.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Alexis Conneau, German Kruszewski, Guillaume Lam-
ple, Loı̈c Barrault, and Marco Baroni. 2018. What
you can cram into a single $&!#* vector: Probing
sentence embeddings for linguistic properties. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2126–2136, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth interna-
tional conference on artificial intelligence and statis-
tics, pages 249–256.

Yoav Goldberg. 2019. Assessing BERT’s syntactic
abilities. arXiv preprint arXiv:1901.05287.

Kaiming He, Ross Girshick, and Piotr Dollár. 2019.
Rethinking imagenet pre-training. In Proceedings
of the IEEE International Conference on Computer
Vision, pages 4918–4927.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

John Hewitt and Christopher D Manning. 2019. A
structural probe for finding syntax in word represen-
tations. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4129–4138.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:

https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031


1398

Long Papers), pages 328–339, Melbourne, Australia.
Association for Computational Linguistics.

Dieuwke Hupkes, Sara Veldhoen, and Willem Zuidema.
2018. Visualisation and’diagnostic classifiers’ re-
veal how recurrent and recursive neural networks
process hierarchical structure. Journal of Artificial
Intelligence Research, 61:907–926.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Nelson F. Liu, Matt Gardner, Yonatan Belinkov,
Matthew E. Peters, and Noah A. Smith. 2019. Lin-
guistic knowledge and transferability of contextual
representations. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 1073–1094, Minneapolis, Minnesota.
Association for Computational Linguistics.

Brian W Matthews. 1975. Comparison of the pre-
dicted and observed secondary structure of t4 phage
lysozyme. Biochimica et Biophysica Acta (BBA)-
Protein Structure, 405(2):442–451.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. PyTorch: An imperative style,
high-performance deep learning library. In Ad-
vances in Neural Information Processing Systems,
pages 8024–8035.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Maithra Raghu, Chiyuan Zhang, Jon Kleinberg, and
Samy Bengio. 2019. Transfusion: Understanding
transfer learning for medical imaging. In Advances
in neural information processing systems, pages
3347–3357.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on
empirical methods in natural language processing,
pages 1631–1642.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019a.
BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4593–
4601, Florence, Italy. Association for Computational
Linguistics.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang,
Adam Poliak, R Thomas McCoy, Najoung Kim,
Benjamin Van Durme, Sam Bowman, Dipanjan Das,
and Ellie Pavlick. 2019b. What do you learn from
context? probing for sentence structure in contextu-
alized word representations. In International Con-
ference on Learning Representations.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353–355, Brussels, Belgium.
Association for Computational Linguistics.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Fun-
towicz, et al. 2019. Transformers: State-of-the-
art natural language processing. arXiv preprint
arXiv:1910.03771.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod
Lipson. 2014. How transferable are features in deep
neural networks? In Advances in neural information
processing systems, pages 3320–3328.

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/P19-1452
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446


1399

A Code

Our code is available at https://github.com/

dgiova/bert-lm-transferability.

B Reinitialization

We reinitialize all parameters in each layer, ex-

cept those for layer normalization (Ba et al., 2016),

by sampling from a truncated normal distribu-

tion with µ = 0, σ = 0.02 and truncation range

(−0.04, 0.04). For the layer norm parameters, we

set β = 0, γ = 1. This matches how BERT was ini-

tialized (see the original BERT code on GitHub and

the corresponding TensorFlow documentation).

C Subsampling, number of trials, and

error bars

The particular datapoints subsampled can have a

large impact on downstream performance, espe-

cially when data is scarce. To capture the full range

of outcomes due to subsampling, we randomly sam-

ple a different dataset for each trial index. Due to

this larger variation when data is scarce, we per-

form 50 trials for the experiments with 500 exam-

ples, while we perform three trials for the other

incremental reinitialization experiments. A scatter-

plot of the 500-example trials is shown in Figure 5.

For the localized reinitialization experiments, we

perform ten trials each.

Error bars shown on all graphs in the main text

are 95% confidence intervals calculated with a t-

distribution.

Figure 5: Finetuning results after reinitializing all lay-

ers past layer k in BERT-Base. 12 shows the full BERT

model, while 0 shows a model with all layers reinitial-

ized. Scatterplot of 50 trials per layer shown for sub-

sampled dataset size 500. Dotted line shows the mean.

D Localized reinitializations of single

layers

We also experiment with performing our localized

reinitialization experiments at the level of a single

layer. To do so, we perform three trials of reinitial-

izing each layer k ∈ {1 . . . 12} and then finetuning

on each of the three GLUE tasks. Our results are

plotted in Figure 6. Interestingly, we observe little

effect on finetuning performance from reinitializing

each layer (except for reinitializing the first layer on

CoLA performance). This lack of effect suggests

either redundant information between layers or that

the “interface” exposed by the two neighboring lay-

ers somehow beneficially constrains optimization.

Figure 6: Performance on finetuning tasks after reini-

tializing an individual layer of BERT. Error bars are

±2 standard deviations.

E Number of finetuning epochs

He et al. (2019) found that much or all of the perfor-

mance gap between an ImageNet-pretrained model

and a model trained from random initialization

could be closed when the latter model was trained

for longer. To evaluate this, we track validation

losses up to ten epochs in our incremental experi-

ments, for k ∈ {0, 6, 12} across all tasks and for

500 and 5k examples. We find minimal effects

of training longer than three epochs for the sub-

samples of 5k, but find improvements of several

percentage points for training for five epochs for

the trials with 500 examples. Thus, for the trials

of 500 in Figure 2, we train for five epochs, while

training for three epochs for all other trials. We

train our probing experiments (8 trials per layer)

with early stopping for a maximum of 40 epochs

on the full dataset.

https://github.com/dgiova/bert-lm-transferability
https://github.com/dgiova/bert-lm-transferability
https://github.com/google-research/bert/blob/master/modeling.py#L377
https://www.tensorflow.org/api_docs/python/tf/random/truncated_normal


1400

F Higher learning rate for reinitialized

layers

In their reinitialization experiments on a convolu-

tional neural network for medical images, Raghu

et al. (2019) found that a 5x larger rate on the

reinitialized layers enabled their model to achieve

higher finetuning accuracy. To evaluate this possi-

bility in our setting, we increase the learning rate

by a factor of five for the reinitialized layers. The

results for our incremental reinitializations are plot-

ted in Figure 7. A higher learning rate appears

to increase the variance of the evaluation metrics

while not improving performance. Thus, we keep

the learning rate the same across layers.

Figure 7: Finetuning the reinitialized layers with a

larger learning rate does not improve finetuning perfor-

mance. Error bars are ±2 standard deviations.

G Layer norm

Because the residual connections around each sub-

layer in BERT are of the form LayerNorm(x +
Sublayer(x)), reinitializing a particular layer neu-

tralizes the effect of the last layer norm application

from the previous layer in a way that cannot be cir-

cumvented through the residual connections. How-

ever, for brevity we simply refer to “reinitializing a

layer” in this paper.

We also assessed whether preserving the layer

norm parameters in each layer might aid optimiza-

tion. To do so, we preserved these parameters in

our incremental trials with 5k examples. These

trials are plotted in Figure 8, and demonstrate that

preserving layer norm does not aid (and may even

harm) finetuning of reinitialized layers.

H Dataset descriptions and statistics

We display more information about the finetuning

datasets, including the full size of the datasets, in

Figure 8: Preserving the layer norm parameters when

reinitializing each layer does not improve finetuning

performance. Error bars are ±2 standard deviations.

Table 2.

I Additional experimental information

I.1 Link to data

Scripts to download the GLUE data can be found

at https://github.com/nyu-mll/jiant/blob/

master/scripts/download_glue_data.py.

I.2 Computing infrastructure

All experiments were run on single Titan XP GPUs.

I.3 Model

We use the BERT-Base uncased model (110 mil-

lion parameters) from https://huggingface.co/

transformers/pretrained_models.html.

I.4 Average runtime

Average runtime for each approach:

1. 500 incremental: 0.3 min / epoch * 5 epochs

/ trial * 50 trials / layer * 12 layers / task * 3

tasks ≈ 45 GPU-hrs

2. 5k incremental: 3 min / epoch * 3 epochs /

trial * 3 trials / layer * 12 layers / task * 3

tasks ≈ 16 GPU-hrs.

3. 50k incremental: 30 min / epoch * 3 epochs

/ trial * 3 trials / layer * 12 layers / task * 3

tasks ≈ 7 GPU-days.

4. 5k localized (block size 3): 3 min / epoch *

3 epochs / trial * 3 trials / layer * 10 layers /

task * 3 tasks ≈ 14 GPU-hrs

5. Probing: 2.8 min / epoch * 40 epochs / trial

* 8 trials / layer * 12 layers / task * 3 tasks

https://github.com/nyu-mll/jiant/blob/master/scripts/download_glue_data.py
https://github.com/nyu-mll/jiant/blob/master/scripts/download_glue_data.py
https://huggingface.co/transformers/pretrained_models.html
https://huggingface.co/transformers/pretrained_models.html


1401

Table 2: Task description and statistics. SST-2 and CoLA are single sentence classification tasks, while QNLI is

a sentence-pair classification task.

Task # Train # Val Input, labels Eval metric

SST-2 67k 872k sentence, {positive, negative} Accuracy

QNLI 105k 5.4k (question, paragraph), {answer, non-answer} Accuracy

CoLA 8.5k 1k sentence, {acceptable, not acceptable} MCC

≈ 22 GPU-days. Note: 2.8 min / epoch is

an average across layers and tasks. Earlier

layers take less time than later ones because

layers after the target layer do not need to be

computed.

I.5 Evaluation method

To evaluate the performance of our method, we

compute accuracy for SST-2 and QNLI and

Matthews Correlation Coefficient (Matthews, 1975)

for CoLA. We compute these metrics always on

the official validation sets, which are never seen by

the model during training.

Accuracy measures the ratio of correctly pre-

dicted labels over the size of the test set. Formally:

accuracy = TP+TN

TP+TN+FP+FN

Since CoLA presents class imbalances, MCC

is used, which is better suited for unbalanced bi-

nary classifiers (Warstadt et al., 2019). It mea-

sures the correlation of two Boolean distributions,

giving a value between -1 and 1. A value of

0 means that the two distributions are uncorre-

lated, regardless of any class imbalance. MCC =
(TP ·TN)−(FP ·FN))√

(TP+FP )(TP+FN)(FP+TN)(TN+FN)

I.6 Hyperparameters

We performed one experiment with a 5x learning

rate and implemented early stopping to choose the

number of epochs for the probing experiments.

For batch size and learning rate, we kept the

default parameters for all tasks:

• Learning rate: 2e-5

• Batch size: 8


