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Abstract Travel planning is one of the important issues

in the location-based services (LBS). Traveling salesman

problem (TSP) is to find the optimal tour that traverses

points exactly once in the minimum total distance. Given

the hardness of TSP (NP-hard), TSP query for a given

set of points, Q, is not widely studied for online LBS,

and the nearest-neighbor heuristic is the only heuristic

adapted to find TSP-like tours with additional constraints

for LBS. The questions to ask are: Is the nearest-neigh-

bor the best in terms of accuracy? Which heuristics

among many should we use to process TSP queries

online for LBS? In the literature, TSPLIB benchmarks are

designed for special cases where the number of points

used is large, and the existing synthetic datasets are

based on uniform/normal distributions. Both do not

reflect the real datasets used in real applications.

Therefore, the best heuristics suggested by the TSPLIB

and the existing benchmarks need to be reconsidered for

LBS setting. In this work, we investigate 22 heuristics

and show that the best heuristics in terms of accuracy for

LBS are not the ones suggested by the existing work, and

identify several heuristics by extensive performance

studies over real datasets, TSPLIB benchmarks, the

existing synthetic datasets and our new synthetic data-

sets. Among many issues, we also show that it is pos-

sible to get high-quality TSP by precomputing/indexing,

even though it is hard to prove by theorem.
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1 Introduction

Location-based services (LBS) attract great attention from

both research and industry communities, and various

queries have been studied. In Refs. [7, 26] discover useful

information from trajectory data generated in daily life. In

Refs. [17, 24] optimize query processing on location-based

social networks. In Refs. [12, 18, 25] combine LBS with

traditional keyword search. Travel planning has also been

studied, and becomes an important issue in location-based

services (LBS), which are to find tours among points of

interest (POI), where POIs are with latitude and longitude

in a two-dimensional space or in a road network. In Refs.

[9, 26] study on how to find trajectories from an existing

trajectory set. There are works that try to construct routes

satisfying certain requirements. In [8] constructs the most

popular routes between two given points. In [35] defines

different queries as finding the earliest arrival, latest

departure and shortest duration paths on the transportation

networks. Some recent work study finding the shortest tour

connecting two POIs [34, 38] and searching the optimal

meeting point for a set of POIs, which are to minimize the

sum of distances from these POIs to the meeting point

[36, 37].

As an important issue in travel planning, traveling

salesman problem (TSP) has been extensively studied,

which finds a tour that traverses all the points exactly once

with the minimum overall distance, for a given set of

points, and is known as NP-hard problem. The hardness is

mainly due to two reasons. First, given n points, there are n!

possible routes to traverse, in order to find the one with

minimum overall distance. Second, the local optimum
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property does not hold. The state-of-the-art exact TSP

solution, Concorde, is based on linear programming (http://

www.math.uwaterloo.ca/tsp/concorde.html). By random-

ization, Arora in [1] finds ð1þ 1
c
Þ-approximate answer in

Oðnðlog nÞOðcÞÞ time, for every fixed c[ 1, which is known

as the best theoretical result, but is difficult to implement.

In the literature, numerous works have been proposed to

study TSP [19]. A large number of heuristics are proposed

to find a high-quality tour within reasonable time. In Refs.

[5, 31] and the most recent [21] summarize and test many

representative heuristics and compare them in both effec-

tiveness and efficiency.

Given the hardness of TSP, TSP query is not well

studied in database community. Recently, there are TSP-

like problems being studied for LBS, which are with con-

straints to reduce the search space [6, 23, 33], and find a

tour by adding nearest neighbors one by one in a manner of

expanding the partial result found. In other words, the work

reported [6, 23, 33] only use one heuristic, namely the

nearest neighbor, among many possible heuristics. The

questions that arise are as follows. Is the nearest neighbor

the best in terms of accuracy? What are the other methods

and which one should we use to process TSP if there are

many? This issue is important, since it opens ways for us to

explore different ways to deal TSP in LBS for real large

datasets with different properties.

There are several attempts to study different heuristics.

First, [21] studies heuristics for TSP queries that travel

more than 1000 points. However, in many real applica-

tions, the number of points can vary in a large range. For

LBS, the number of points can be much smaller than that

number. Second, the TSPLIB benchmark (http://comopt.ifi.

uni-heidelberg.de/software/TSPLIB95) studies about 150

difficult cases, which is not sufficient to understand the

heuristics in real datasets. Third, there are synthetic data-

sets [20, 21], but they do not reflect all real datasets. Fig-

ure 1 shows 4 datasets. Figure 1a shows a dataset with

3038 points in TSPLIB. Figure 1b shows a dataset con-

taining 3000 points that follow normal distribution gener-

ated [21]. Figure 1c shows 3000 randomly sampled POIs

in a real dataset in New York (NY). Figure 1d shows 3000

randomly sampled check-ins in Los Angeles (LA) from the

location-based social network, Gowalla (https://en.wikipe

dia.org/wiki/Gowalla). Fourth, there are no performance

studies to study all heuristics. In this work, we study 22

heuristics for TSP queries.

The main contributions of this work are summarized

below. First, we study 22 TSP construction heuristics. The

reason to study such heuristics is due to the efficiency

requirement in LBS, since construction heuristics [21] are

efficient to find TSP without any further refinement. Sec-

ond, we propose new synthetic datasets to understand TSP

in the real LBS setting. Third, we conduct extensive per-

formance studies over the selected real datasets, TSP

benchmarks, the existing synthetic datasets, and our new

synthetic datasets. Fourth, we conclude that both the

nearest-neighbor-based heuristics that are widely used in

LBS and the best heuristics in TSPLIB for difficult setting

are not the best to be used in LBS. We identify several that

can achieve high accuracy efficiently. Among many issues,

we also show that it is possible to get high-quality TSP by

precomputing/indexing, even though it is hard to prove by

theorem.

The rest of the paper is organized as follows. Section 2

discusses the preliminaries and gives the problem state-

ment. We introduce all the 22 construction heuristics in

Sect. 3. In Sect. 4, we discuss our new synthetic datasets

generation in detail, and we report our finding over the 22

heuristics using real datasets, the selected 20 TSPLIB

benchmarks, the existing synthetic datasets, and new syn-

thetic datasets. We conclude this work in Sect. 5.

2 Preliminaries

Consider a set of points V in a two-dimensional space,

where the distance between two points u and v in V is the

Euclidean distance, denoted as dðu; vÞ.

dðu; vÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðu:x� v:xÞ2 þ ðu:y� v:yÞ2
q

ð1Þ

We denote the two x and y coordinates of a point u as

u.x and u.y.

An edge-weighted complete undirected graph G ¼
ðV;EÞ can be constructed for the set of given points. Here,

V is the set of nodes for the same set of points, and E is a

set of edges for every pair of nodes in V where an edge

weight for an edge (u, v) is the distance between u and

v; dðu; vÞ.
Let Q be a subset of nodes of size n ¼ jQj in V. A

Hamilton path over Q is a simple path,

ðv1; v2; v3; . . .; vn�1; vnÞ, that visits every node exactly once,

where ðvi; viþ1Þ is an edge in the graph G. A Hamilton

circuit over Q is a simple cycle over all nodes in G. Both

Hamilton path and Hamilton circuit can be regarded as a

permutation of nodes (or points) in Q. Here, a permutation

p over Q is a one-to-one mapping. In other words, a node

can only appear at a specific position in a permutation.

Below, we use pi to indicate a specific node v in Q at the ith

position. We indicate a permutation over Q as

T ¼ ðp1; p2; . . .; pnÞ. Given a permutation T over Q, the
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distance of a Hamilton path by T is defined as

dðTÞ ¼P

1� i\n dðpi; piþ1Þ, and the distance of a Hamilton

circuit by T is defined as dðTÞ ¼
P

1� i\n dðpi; piþ1Þ
þdðpn;p1Þ. Let T be the set of all possible paths (circuits)

for Q. The size of T is jT j ¼ n! for Hamilton paths, and the

size is jT j ¼ ðn�1Þ!
2

for Hamilton circuits.

In this paper, we focus on Hamilton circuit, and may use

‘‘circuit,’’ ‘‘tour’’ and ‘‘route’’ interchangeably, since they

are all used in reported studies. Among all possible per-

mutations in T , the optimal Hamilton circuit over Q is the

shortest Hamilton circuit, denoted as T�, such that

dðT�Þ ¼ minT2T dðTÞ. The problem of finding the optimal

Hamilton circuit is known as traveling salesman problem

(TSP), which is known to be NP-hard. The error-ratio for

an approximate T is defined below.

eratioðTÞ ¼ dðTÞ � dðT�Þ
dðT�Þ ð2Þ

It is worth mentioning that the TSP problem we study in

this paper is the symmetric and metric TSP. Here, by

symmetric it implies dðu; vÞ ¼ dðv; uÞ, and by metric it

implies 8u; v;w 2 V ; dðu;wÞ þ dðw; vÞ� dðu; vÞ.
The Problem In this paper, we study TSP query to find

the shortest Hamilton circuit T� for a given TSP query, Q,

which is a set of points, and explore the similarities and

differences among 22 heuristics proposed for TSP using

real datasets and new synthetic datasets in addition to the

existing benchmarks and uniform/normal synthetic

datasets.

3 The Heuristics

The TSP heuristics have been studied. In this work, we

focus on tour construction heuristics [21]. By tour con-

struction, it computes a tour (or a circuit) following some

rules, and takes the resulting tour by the rules as the final

result without further refinement. In [21], construction

heuristics are divided into 3 categories: heuristics designed

for speed, tour construction by pure augmentation and

more complex tour construction. In this work, we cover

more heuristics, and divide 22 construction heuristics into 3

new categories, namely (1) space-partitioning-based

heuristics, (2) node-based heuristics and (3) edge-based

heuristics. Table 2 lists all the 22 heuristics studied, where

some are with guarantee of the approximate ratio. Below,

we discuss 2 space-partitioning-based heuristics in

Sect. 3.1, 4 edge-based heuristics in Sect. 3.3 and 16 node-

based heuristics in Sect. 3.2.

(a) (b)

(c) (d)

Fig. 1 Different datasets.

a TSPLIB (pcb3038). b Normal.

c New York (POI). d Los

Angeles (check-ins)
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3.1 Space-Partitioning-Based Heuristics

The space-partitioning-based methods compute TSP for a

given set of points Q in three main steps: (1) partition

nodes in Q into smaller subsets based on their pairwise

Euclidean distances, (2) connect the nodes in the same

subset into a Hamilton path and (3) determine the Hamilton

circuit for Q by linking all Hamilton paths obtained for all

subsets. We discuss two heuristics, namely Strip and

Hilbert.

First, Strip computes the minimum bounding rectangle

(MBR) in two-dimensional space that encloses all the query

nodes Q of size n ¼ jQj, and partitions the MBR into
ffiffi

n
3

p

equal-width vertical strips. For each vertical strip, Strip

sequences all the inside nodes according to y-coordinate by

alternately top to bottom and bottom to top. The final cir-

cuit is determined by connecting all the sequences com-

puted for all strips. Strip only involves sorting by x-

coordinate and y-coordinate.

Algorithm 1: Greedy (Q)

Input: Q: a TSP query of a set of points
Output: T : the TSP for Q

1 begin

2 T ← ∅; H ← ∅;
3 for every u, v ∈ Q s.t. u �= v do

4 insert (u, v) with d(u, v) into the min-heap H;

5 while |T | < |Q| do

6 let (u, v) be the edge with min cost deleted from H;
7 if u and v are not in the same subtree then

8 if deg(u) ≤ 2 and deg(v) ≤ 2 then

9 insert (u, v) into T ;

10 connect the two nodes in T with degree 1;
11 return T ;

Second, the space filling curve is a widely used tech-

nique to map multidimensional data into one-dimensional

data. The main idea behind the space filling curve is that it

keeps the locality information of the original data after

mapping such that two near nodes may still be close to each

other after mapping. Therefore, visiting query nodes in Q

in the order of their appearance along the space filling

curve reduces the total length [29]. By space filling curve,

it can recursively partition the whole plane into small units,

where a unit is labeled with a string of binary digits based

on where it is in the hierarchy. For instance, if the entire

plane is divided into two units, one is labeled with ‘‘0,’’ and

the other is labeled with ‘‘1.’’ Then it can get 4 units by

further dividing each of the unit into another 2 smaller units

in the similar manner. Such partitioning stops until there is

at most one node at each unit. In this paper, we focus on the

Hilbert curve (or Hilbert space filling curve) since it has

better locality-preserving behavior.

Both Strip and Hilbert are easy to implement and are

efficient. However, they only utilize pairwise distances to

reduce the total route length, and neglect the overall

distribution of all query nodes, which sacrifices accuracy.

To improve the accuracy, in every step, there are several

strategies that can be adopted to make the final circuit as

short as possible. The state-of-the-art approximate algo-

rithm [1] is based on partition. However, it utilizes

dynamic programming to connect inner and inter nodes,

which is beyond the scope of this work on simple con-

struction heuristics.

3.2 Edge-Based Heuristics

The edge-based heuristics are based on the minimum

spanning tree (MST). We discuss the greedy (Greedy)

which is known as multiple fragment heuristic, double-

MST (DMST), the Christofides algorithm (Chris) and the

savings algorithm (SV).

First, Greedy is designed based on the Kruskal’s algo-

rithm [22] to find the minimum spanning tree for a undi-

rected graph. As shown in Algorithm 1, it inserts every pair

of u and v in Q as an edge into a min-heap H with dðu; vÞ.
In the while loop, it picks up the edge (u, v) from H, which
is with the minimum distance, and checks if such an edge

(u, v) can connect two different subtrees as a larger subtree

without a cycle. In addition, it further checks if the tree

formed can end up a TSP by ensuring that the degree of u/v

(degðuÞ/degðvÞ) is less than or equal to 2. At the end, it

connects the two nodes in T with degree 1 to form a circuit.

Second, DMST is an algorithm which traverses the

minimum spanning tree T constructed for the edge-

weighted undirected graph representation for Q. To obtain

the circuit, it keeps the traversal order and skips the nodes

which are traversed before.

Third, the Christofides algorithm (Chris) finds the cir-

cuit as follows. (1) Given the edge-weighted undirected

graph representation G ¼ ðV ;EÞ for Q, it finds the mini-

mum spanning tree T ¼ ðVT ;ETÞ. (2) It identifies a subset

of VT , denoted as VO, which includes all those nodes in VT

that have an odd degree. (3) It then constructs an induced

subgraph GOðVO;EOÞ from G. (4) It finds a minimum

weighted perfect matching M from GO, where a perfect

matching M is a set of edges that do not have any common

nodes. (5) It constructs a multigraph GH ¼ T [M. (6) It

then finds an Eulerian circuit in GH , because every node in

GH has an even degree. (7) Finally, it obtains the Hamilton

circuit by removing the repeated nodes from the Eulerian

circuit.

Fourth, the savings algorithm (SV) takes a different

approach, and does not build a circuit using a minimum

spanning tree. SV starts from a randomly selected node as

the central node vc and then builds a pseudo tour, TP, from

the central node vc to all other nodes in Q. In order to make

the tour short, SV looks for shortcuts in the pseudo tour TP
constructed. In every iteration, SV selects a pair of nodes u
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and v that connect with vc in TP based on Eq. (3), deletes

the edge ðu; vcÞ; ðv; vcÞ, and inserts a new edge (u, v) as

shortcut. In order to find the shortcut with maximum ben-

efit, it defines a new cost function as:

ðu; vÞ ¼ argmin
u;v2TP^u 6¼v 6¼vc

fc0ðu; vÞg ð3Þ

where the cost function c0 is given in Eq. (4).

c0ðu; vÞ ¼ dðu; vÞ � dðu; vcÞ � dðv; vcÞ ð4Þ

All the edge-based heuristics aim at finding the edge with

the smallest distance directly into the circuit. DMST and

Chris have a better approximate ratio than most heuristics

studied in this work because a TSP circuit becomes a tree if

any edge is removed from it, whose total length should be

smaller than that of MST.

3.3 Node-Based Heuristics

The node-based heuristics construct a circuit by expanding

the nodes in Q one by one until all of them are visited.

There are three main issues in the heuristics, which are

(a) how to initialize an initial node(s) and (b) in every

iteration, how to select the next node to expand and where

it is for the next node to be inserted. Among the node-based

heuristics, we discuss the nearest-neighbor heuristics, the

insertion heuristics, the convex hull-based insertion

heuristics, the addition heuristics, and the augmented

addition heuristics. Algorithm 2 shows the framework of

node-based heuristics.

Algorithm 2: TSP-N(Q)

Input: Q: a TSP query of a set of points
Output: T : the TSP for Q

1 begin

2 T ← init(Q);
3 while T does not contain all nodes in Q do

4 v ← select(Q, T );
5 insert(v, T );

6 return T ;

The Nearest-Neighbor Heuristics [3] The nearest-

neighbor heuristics do not spend time on finding an initial

TSP by init(Q), and randomly picks one node from Q. In

other words, T by init(Q) contains only one node randomly

selected. Then, in every iteration in the while loop, it picks

up a point from the nodes that have not been selected

before, namely from Q n T , and inserts it into the end of the
current partial path computed in the previous iteration.

Assume Ti ¼ ðp1; p2; . . .; piÞ is the partial path computed at

the ith iteration. There are two ends in Ti, namely p1 and pi.

Consider the (i?1)th iteration to expand the path by adding

one more node. The nearest-neighbor heuristic (NN)

selects the nearest-neighbor node to the node at the position

pi from QnTi, and inserts the node selected at piþ1. On the

other hand, the double-ended nearest-neighbor heuristic

(DENN) considers the nearest-neighbor node to either of

the two end points: p1 and pi. Assume the node selected is

near to the node at p1, DENN will insert the newly selected

node at p1 in Tiþ1 and place the node at the jth position (pj)

in Ti at (j?1)th position pjþ1 in Tiþ1. Otherwise, if the node
selected is near to the node pi, DENN behaves like NN.

Both NN and DENN expand a path. After the while loop,

both obtain the TSP by adding one edge from the last node

to the first node in T. We omit such post-processing from

Algorithm 2. In brief, comparing with NN, DENN con-

siders both ends of the current partial path when expanding

and selects the one with shorter length. Consequently,

DENN consumes longer time than NN to improve the

accuracy.

The Insertion Heuristics [31] Like the nearest-neighbor

heuristics, the insertion heuristics randomly pick one node

from Q by init(Q). Unlike the nearest-neighbor heuristics

which expand the current partial path in every iteration, the

insertion heuristics enlarge the current partial circuit in

every iteration. Let Ti be the partial circuit over nodes of

size i such that Ti ¼ ðp1; p2; . . .; pi; p1Þ. In the (i?1)th

iteration, the insertion heuristics attempt to add one node

into the current circuit by minimizing the increment of the

total distance of the circuit. There are two things. One is

how to select a node, w, from Q n Ti. The other is how to

insert w into Ti to obtain Tiþ1. We first discuss how to

insert a new node into Ti, assuming the node to be inserted

next is selected from Q n Ti. We will discuss the node

selection next (Table 1).

Consider an insertion of a node w ð62 TiÞ between u and

v in Ti. Here, for simplicity, we say to insert a node w into

an edge (u, v) in Ti, where an edge (u, v) implies that v is

next to u in the permutation. In the new circuit to be, Tiþ1,
the edge (u, v) in Ti will be replaced by two edges

(u, w) and (w, v). Among all edges in Ti, the edge, (u, v),

selected for a given node w is to minimize the incremental

cost by Eq. (5).

ðu; vÞ ¼ argmin
ðu;vÞ2Ti

fcðu; v;wÞg ð5Þ

where cðu; v;wÞ is a cost function to measure the incre-

mental cost of inserting a node between two nodes (an

edge) as given in Eq. (6).

cðu; v;wÞ ¼ dðw; uÞ þ dðw; vÞ � dðu; vÞ ð6Þ

Next consider how to select the next node. There are 4

ways to select the next node w to be inserted into Ti,

namely the random insertion (RI), the nearest insertion

(NI), the cheapest insertion (CI) and the furthest insertion

(FI) [28]. Here, RI randomly picks one as the next node
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w. NI selects the next node w from Q n Ti that has the

smallest distance to a node in Ti (Eq. 7)

w ¼ argmin
w 62Ti

fdðw; vÞ; 8v 2 Tig ð7Þ

Note that NI inserts the nearest node to the current circuit,

instead of the end node as done by the nearest-neighbor

heuristics (NN or DENN). CI selects the next node based

on the cost function.

w ¼ argmin
w 62Ti

fcðu; v;wÞ; 8ðu; vÞ 2 Tig ð8Þ

We discuss the similarity between NI and CI in certain

cases. Suppose the next node to be inserted is w. Assume v0

is the node in Ti under which w is selected by Eq. (7), and

assume (u, v) is the edge under which the next node w is

selected by CI based on Eq. (8) As proved in [5],

(u, v) should satisfy at least one of the 3 conditions: (1)

u ¼ v0 or v ¼ v0, which means one endpoint of this edge in

Ti is the nearest neighbor to w; (2) given a circle C centered

at w with the radius 1:5� dðw; v0Þ, then either u 2 C or

v 2 C, which means one endpoint of this edge is inside a

circle centered at w; and (3) for every pair of ðvi; vjÞ in Ti,

given a circle Ci centered at vi with radius 1:5� dðvi; vjÞ,
then either w 2 Ci or w 2 Cj, which means w is inside the

corresponding circle of u or v. Here, if the condition 1 is

satisfied, CI selects the same node as NI does.

Unlike the 3 heuristics to select the next node discussed

above, FI picks up the next node which is far away from Ti
with a higher priority. It chooses the next node following

Eq. (9).

w ¼ argmax
w 62Ti

fdðw;TiÞg ð9Þ

where dðw;TiÞ is the smallest distance from a node w 62 Ti

to a node in the current Ti such that

dðw;TiÞ ¼ minv2Tp dðv;wÞ.

Convex Hull-Based Insertion Heuristics The insertion

heuristics pick the start node randomly, which may affect

the quality of the result. As pointed out in [27], it is an

effective approach to construct an initial circuit for the

points Q and then insert the remaining nodes into the initial

circuit. It is proved that for the optimal circuit, the nodes

lying on the boundary of the convex hull will be visited in

their cyclic order [14]. This suggests that the convex hull

can serve as a sketch to guide future insertions. The convex

hull-based insertions are proposed to find the convex hull

of all nodes in Q first using T  initðQÞ and then compute

the circuit using one of the insertion heuristics for the

remaining nodes in Q n T . Here, we investigate 4 heuris-

tics: convex hull cheapest insertion (CHCI), convex hull

nearest insertion (CHNI), convex hull random insertion

(CHRI) and convex hull furthest insertion (CHFI). Note

that [21] only shows the testing results for CHCI.

The Addition Heuristics [5] The insertion heuristics

determine an edge for a node to be inserted among all the

edges in Ti. To further reduce the computational cost, for a

node w selected from Q n Ti, the addition heuristics pick a

node v at pj on the current circuit Ti and only consider the

insertion of w either between two nodes at ðpj�1; pjÞ or
between two nodes at ðpj; pjþ1Þ. The edge can be selected

Table 1 Expansion order of the node-based heuristics

Node-Based 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

NN v1 v20 v2 v3 v4 v18 v17 v16 v15 v14 v13 v12 v11 v10 v9 v8 v7 v6 v5 v19

DENN v1 v20 v2 v3 v4 v18 v17 v16 v15 v14 v13 v12 v11 v10 v9 v8 v19 v7 v6 v5

NI v1 v20 v2 v3 v4 v18 v7 v6 v17 v16 v15 v14 v13 v12 v11 v10 v9 v8 v19 v5

CI v1 v20 v2 v3 v18 v4 v7 v6 v17 v16 v15 v13 v14 v12 v11 v10 v9 v8 v5 v19

RI v3 v6 v17 v8 v2 v9 v12 v19 v16 v11 v20 v15 v7 v5 v10 v18 v14 v4 v1 v13

FI v1 v8 v5 v19 v7 v4 v17 v18 v10 v3 v20 v9 v16 v15 v12 v6 v11 v2 v14 v13

CHNI v8 v10 v19 v5 v11 v12 v13 v14 v15 v16 v9 v17 v7 v6 v4 v3 v2 v1 v20 v18

CHCI v8 v10 v19 v5 v20 v12 v9 v13 v14 v11 v6 v7 v1 v2 v3 v4 v18 v16 v17 v15

CHRI v8 v10 v19 v5 v1 v2 v3 v4 v6 v7 v9 v11 v12 v13 v14 v15 v16 v17 v18 v20

CHFI v8 v10 v19 v5 v2 v7 v20 v17 v18 v4 v1 v9 v16 v15 v12 v6 v11 v3 v14 v13

NA v1 v20 v2 v3 v4 v18 v7 v6 v17 v16 v15 v14 v13 v12 v11 v10 v9 v8 v19 v5

RA v3 v6 v17 v8 v2 v9 v12 v19 v16 v11 v20 v15 v7 v5 v10 v18 v14 v4 v1 v13

FA v1 v8 v5 v19 v7 v4 v17 v18 v10 v3 v20 v9 v16 v15 v12 v6 v11 v2 v14 v13

NAþ v1 v20 v2 v3 v4 v18 v7 v6 v17 v16 v15 v14 v13 v12 v11 v10 v9 v8 v19 v5

RAþ v3 v6 v17 v8 v2 v9 v12 v19 v16 v11 v20 v15 v7 v5 v10 v18 v14 v4 v1 v13

FAþ v1 v8 v5 v19 v7 v4 v17 v18 v10 v3 v20 v9 v16 v15 v12 v6 v11 v2 v14 v13

Bold values in each row represent the initial node(s) for the corresponding heuristic
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with the smallest cost by Eq. (6). We study 3 ways to select

the next node w, namely random addition (RA), nearest

addition (NA) and furthest addition (FA). We do not study

cheapest addition, since the insert position by the cheapest

heuristic is decided once the next node is determined. Here,

RA selects the next node w from Q n Ti randomly, and

identifies v 2 Ti based on Eq. (10).

v ¼ argmin
v2Ti

fdðw; vÞg ð10Þ

NA selects a pair of nodes, w and v such that w 62 Ti and

v 2 Ti in a similar way like the nearest insertion, based on

Eq. (11).

ðv;wÞ ¼ argmin
v2Ti;w 62Ti

fdðv;wÞg ð11Þ

Here, w is the next node to be selected, and v is the node at

pj position in the current Ti. FA selects the next node

w based on Eq. (9), and identifies the insertion position pj

by Eq. (10), and inserts w either between pj�1 and pj or

between pj and pjþ1 following the minimal incremental

cost (Eq. 6).

Augmented Addition Heuristics Consider the insertion

heuristics and the addition heuristics. On the one hand, the

insertion heuristics explore all edges in Ti to insert a node

w between a pair of nodes, u and v, as an edge (u, v). On

the other hand, the addition heuristics only consider 2

edges incident to the node v at pj, when inserting w. Dif-

ferent from insertion/addition heuristics, the augmented

additions attempt to explore more than 2 edges up to some

extent. Here, like the addition heuristics, they select the

node w ð62 TiÞ and the insertion position v at pj in Ti using

either RA, NA, and FA. Then, the augmented addition

heuristics select an edge with the minimum cost from all

edges in a circle centered at w with the radius of a � r,
where a� 1 and r ¼ dðw; vÞ in the two-dimensional space.

Here, an edge (u, v) is in the circle if u or v appears in the

circle. We denote such augmented addition heuristics as

random augmented addition (RAþ), nearest augmented

addition (NAþ) and furthest augmented addition (FAþ).

3.4 An Example

Figure 2 shows the optimal TSP, T, for a TSP query Q with

20 points, vi, for 1� i� 20 sampled from NY. The posi-

tions of the 20 points are also given in Fig. 2, which forms

3 clusters, one with 10 points, fvig, for 8� i� 17, one with

2 points, fv7; v8g and one with 5 points, fv1; v2; v3; v4; v20g.
There are some points which are at a distance from any of

the clusters, such as v5; v18 and v19. Table 2 shows the 22

heuristics in the three categories: space-partitioning-based,

edge-based, and node-based. For each heuristic, the

approximate ratio is given, if any, which is for a TSP, Q,

with n points. Also, in Table 2, the 5th column shows the

eratio, for the TSP of 20 points shown in Fig. 2. Here, as

default, we select v1 as the first node to start except for the

4 convex hull-based insertion heuristics, which identify a

convex hull with nodes, v8; v10; v19, and v4, to start. In

particular, we also show how the node-based heuristics

select the next node in every iteration in Table 1. In terms

of the accuracy, among the 22 heuristics, there are 3

heuristics that get the optimal TSP.

4 Performance Studies

We study all 22 heuristics covering a large range of data-

sets: 4 real datasets, 20 datasets from TSPLIB benchmark

[30], 2 existing synthetic datasets [21] and new synthetic

datasets.

Datasets: The 4 real datasets used to test are shown in

Table 3. Here, NY (New York) and BJ (Beijing) are real

POIs of the two cities. LA (Los Angeles) and HK (Hong

Kong) are real check-in data we crawled from the location-

based social network in the two cities from Twitter (https://

twitter.com/) and Gowalla, respectively.

The 20 datasets selected from the TSPLIB benchmark

[30] cover 3 major types of TSPLIB data: ATT, EUD_2D,

and GEO, and are summarized in Table 4, where the 1st

and 4th columns are the short names, the 2nd and 5th

columns are the names used in the benchmark, and the 3rd

and 6th columns are the size of points used in the dataset.

There are 10 datasets where n ¼ jQj is selected between

100 and 1000, denoted as TB_H, and there are 10 datasets

where n ¼ jQj is selected between 1000 and 10000,

denoted as TB_T.

We discuss our new synthetic datasets generation in this

work. Note that the 2 existing synthetic datasets by uni-

form distribution and normal distribution [21] are not the

v19

v20

v1

v2

v3

v4

v5v6

v7

v8

v9

v10

v11
v12

v13
v14

v15
v16

v17

v18

v11: (40.680, 73.839)

v12: (40.726, 73.986)

v13: (40.765, 73.982)

v14: (40.764, 73.971)

v15: (40.889, 73.843)

v16: (41.126, 74.053)

v17: (41.481, 74.221)

v18: (41.116, 75.941)

v19: (42.440, 79.333)

v20: (43.089, 77.511)

v1: (42.954, 76.921)

v2: (43.048, 76.134)

v3: (43.011, 76.075)

v4: (43.105, 75.229)

v5: (44.701, 73.453)

v6: (42.770, 73.702)

v7: (42.715, 73.804)

v8: (40.898, 73.036)

v9: (40.822, 73.521)

v10: (40.580, 73.837)

Fig. 2 A TSP Example
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best for LBS, since there is a gap between uniform/normal

and the real datasets. In this work, we simulate that people

visit n POIs in a real dataset of N POIs, where a small

number of hot POIs are visited by many people. In brief,

we synthesize large datasets of size N followed by ran-

domly selecting n ¼ jQj from the large synthetic datasets.

A synthetic dataset is generated with N ¼ 100; 000 points

using 3 parameters, namely the number of clusters (K), the

inter-cluster distance (l) and the distribution of points in

Table 2 Twenty-two heuristics

(default start node: v1)
Category Heuristics App. ratio eratio for Fig. 2

Space-partitioning-based Hilbert [2] Xð ffiffiffi

n
p Þ 1.639

Strip [29] Oð ffiffiffi

n
p Þ 0.129

Edge-based Greedy [21] Oð ffiffiffi

n
p Þ 0.132

DMST [21] 2 0.116

Chris [11] 1.5 0.145

SV [21] – 0.028

Node-based Nearest neighbor NN [31] Oðlg nÞ 0.158

DENN [5] – 0.096

Insertion NI [31] 2 0.073

CI [31] 2 0.049

RI [31] Oðlg nÞ 0.011

FI [28] 1.5 0

Convex hull-based insertion CHRI [21] – 0.004

CHCI [21] – 0.001

CHNI [21] – 0.006

CHFI [21] – 0

Addition NA [21] 2 0.085

RA [21] – 0.160

FA [21] – 0.243

Augmented addition NAþ [5] – 0.073

RAþ [5] – 0.083

FAþ [5] Oð ffiffiffi

n
p Þ 0

Table 3 Four real datasets

Dataset Size Type Dataset Size Type

NY 653,008 POI LA 411,596 check-in

BJ 115,719 POI HK 20,103 check-in

Table 4 Twenty Selected TSPLIB Benchmarks

Abbrv. Name n Abbrv. Name n

h1 eil101.tsp 101 t1 u1060.tsp 1060

h2 u159.tsp 159 t2 pcb1173.tsp 1173

h3 rat195.tsp 195 t3 rl1304.tsp 1304

h4 ts225.tsp 225 t4 rl1889.tsp 1889

h5 pr299.tsp 299 t5 u2152.tsp 2152

h6 pcb442.tsp 442 t6 pcb3038.tsp 3038

h7 att532.tsp 532 t7 fnl4461.tsp 4461

h8 u574.tsp 574 t8 rl5915.tsp 5915

h9 gr666.tsp 666 t9 rl5934.tsp 5934

h10 rat783.tsp 783 t10 pla7397.tsp 7397

Table 5 Parameters of new synthetic datasets

Parameter Values

The size of points (N) 100,000

The number of clusters (K) 1, 4, 16, 64, 256, 1,024, 4,096

Inter-cluster distance (l) 1, 5, 10, 50, 100

Cluster distribution (a) 0.7, 0.8, 0.9, 1, 2, 3, 4

TSP Query size (n) 20, 40, 60, 80, 100, 200, 400, 600, 800

Bold represent default values for the parameters during the

experiment

Table 6 Average inter-cluster distance (normalized)

l K a

1 1 0.8 9.84 4 9.25

5 4.97 0.9 9.45 16 9.48

10 10.46 1 10.03 64 10.07

50 52.88 2 9.91 256 10.23

100 107.17 3 10.61 1024 10.4
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clusters (a). First, the total number of points N ¼ 100; 000

is used because it is similar to the sizes of the real datasets

we use (Table 3). Second, we randomly generate K points,

as centers of the clusters, following uniform distribution in

a square with size l� l. Let Ci and ki be the ith cluster and

the center of Ci, for 1� i�K. Third, we randomly generate

Ni ¼ 100;000
K

points for each of the K clusters, Ci. The points

in a cluster follow Gaussian distribution, which is widely

used to model spatial data/events [13, 32] and user mobility

[10]. Let ri be the variance for Ci with Ni points centered at

ki. The covariance matrix of the Gaussian distribution will

be in the form of ½½r2i ; 0�; ½0; r
2
i ��. All ri for all clusters Ci

(1� i�K) follow Pareto distribution (a). The Pareto dis-

tribution is used because it is proved in [15] that human

mobility patterns follow a power law distribution, which

means a small number of places are visited by most people.

The corresponding Gaussian distribution will be compact

for a small r, i.e., the small region has high visiting fre-

quency. Table 5 shows the parameters with the default

values.

With our synthetic datasets, we can study different set-

tings including uniform and normal. For the normal dis-

tribution, it is by setting K ¼ 1. where there is only one

cluster. For the uniform distribution, it is by setting K as a

large value, e.g., K ¼ N. We discuss l and a. Recall that l is

a parameter to decide the size of plane. When l is large, the

average inter-cluster distance will be large, and the overlap

between clusters will be small, as shown in Table 6. We

show the average inter-cluster distances by varying three

parameters. It is nearly in proportionate to l, and the

varying of K and a will have no influence on it. For Pareto

distribution, the parameter a decides the skewness. As

shown Fig. 3, the larger a is, the more skew the distribution

will be.Fig. 3 Pareto distribution

(a) (b)

(c) (d)

Fig. 4 Data distribution with

different parameters.

a K ¼ 64; l ¼ 10; a ¼ 1.

b K ¼ 1; l ¼ 10; a ¼ 1.

c K ¼ 64; l ¼ 50; a ¼ 1.

d K ¼ 64; l ¼ 10; a ¼ 4
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Figure 4 shows the data distributions with different

parameters. Each figure contains 3000 points similar to

Fig. 1. Figure 4a shows the distribution with default set-

tings, which simulates LA (Fig. 1d). Figure 4b shows the

distribution when K ¼ 1. It is a normal distribution, similar

to the benchmark shown in Fig. 1b. Comparing Fig. 4a, d

shows the case when there are more clusters with a smaller

variance (larger a). Consequently, it is more skewed. Fig-

ure 4d shows how to simulate NY (Fig. 1c). Figure 4c has

a larger l.

TSP Queries For real datasets, the TSP query size is

n ¼ jQj, where the default is 60. For TSPLIB datasets, we

test it using the same number of points as given in the

benchmark. For the 2 existing synthetic datasets, uniform

and normal, used in [21], we generate a set of n points for a

given size to test. For both real datasets and our synthetic

datasets generated using the parameters with N ¼ 100; 000

points, we conduct testing 100 times for a TSP query with

n points randomly selected, and report the average.

The heuristics We study the 22 heuristics listed in

Table 2, which are implemented in C?? following [5, 21],

where KD tree [4] is used for efficient search. The convex

hull for a TSP query is implemented by Graham scan [16].

The implementation details can be found in [5]. We have

conducted extensive experiments on a PC with two Intel

Xeon X5550@2.67GHz CPU and 48GB main memory.

The Measures We measure the heuristics by accuracy

and efficiency. The accuracy is based on the error-ratio

eratio (Eq. 2), and the efficiency is based on CPU time. We

focus on the accuracy, since all the heuristics are fast as

reported in [5].
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Fig. 6 Accuracy of 22 Heuristics under 26 Datasets (n ¼ 20; 40; 60; 80; 100). a BJ. b NY. c LA. d HK. e Uniform. f Normal. g TB_H. h TB_T
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Below, we give an overview for the 22 heuristics using

real datasets and the existing synthetic datasets in Sect. 4.1.

We give details in terms of accuracy in Sect. 4.2, and

discuss the issue whether we can find a TSP using indexing

in Sect. 4.3. Finally, we discuss the heuristics using our

new synthetic datasets in Sect. 4.4.

4.1 Accuracy Versus Efficiency

Figure 5 shows CPU time and error-ratio for TSP queries of

size n ¼ 60, for the 4 real datasets. The results shown in Fig. 5

for real datasets highlight the difference from the results

conducted in [21] for 9 heuristics with n ¼ 10;000 using

uniform distributed datasets. On the one hand, as shown in

[21], SV has the highest accuracy followed by FI,Greedy is

better thanCHCI, andNN is better thanNI. On the other hand,

for these 4 real datasets, as shown in Fig. 5, the convex hull-

based insertion heuristics achieve near-optimal accuracy,

especially forNY, LA, andHK, sinceBJ is close to the normal

distribution due to its urban planning. In other words, the

results of BJ share the similarity with those reported in [21].

CPU Time The results of using real datasets are similar

to the finding given in [21]. Both Strip and Hilbert are the

fastest, as they only need to sort n values. NN and DENN

are fast, because the nearest neighbors can be found effi-

ciently using KD tree. The convex hull-based insertion

heuristics spend time to select the initial convex hull as a

sketch in Oðn lg nÞ time, which is cost-effective since it

reduces the number of nodes for insertion. Therefore, the
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Fig. 7 Nearest-neighbor-based heuristics. a NY. b LA. c Normal. d TB_H
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convex hull-based insertion heuristics can run even faster

than the other insertion heuristics which randomly select an

initial node to start. For the node-based heuristics, the main

CPU cost is to select a node in iterations, and there are 4

expanding orders of nodes in iterations: the random order,

the nearest order, the cheapest and the furthest. The random

is the fastest, as it picks the next node for insertion ran-

domly. The CPU cost for the nearest and the furthest has

only marginal difference, since both can be done using KD

tree. The cheapest takes the longest time, since it needs to

calculate the possible insertion cost for every node and

every edge in iterations. For the edge-based heuristics,

Greedy is the fastest. Its CPU time is comparable to that

by the insertion heuristics. DMST and Chris build an

minimum spanning tree before generating the route, and

consume more time.

The Error-Ratio In addition to the efficiency (x axis)

and the accuracy (y axis) shown in Fig. 5, we further

conduct testing for all 22 heuristics over 26 datasets: 4 real

datasets (BJ, NY, LA, and HK), 2 synthetic datasets (uni-

form and normal) and 20 TSPLIB benchmarks (10 TB_H

and 10 TB_T) for n ¼ jQj to be selected over 20, 40, 60,

80, and 100. Figure 6 shows the results using candlesticks

for the TSP queries tested. The differences among the 22

heuristics in terms of accuracy are more obvious than the

differences in terms of efficiency, for the datasets tested.

Note that the accuracy is related to the distribution,

whereas the efficiency is related to the heuristics. As shown

in Fig. 6, in terms of accuracy, the range of eratio is

between 0.0001 and 10 (y axis). In a short summary, in

general, the error-ratio of the 22 heuristics over the real

datasets (BJ, NY, LA, HK) is lower than that of the
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synthetic datasets by uniform and normal as well as TB,

especially for the best cases. Among the 4 real datasets, BJ

follows the normal distribution, the error-ratio for the

heuristics over BJ is relatively higher. Over NY, LA and

HK, most heuristics can generate results with an error-ratio

below 0.1 (below 10%). As a comparison, for normal and

TB, the error-ratio is larger than 0.1 (10%). Among the 22

heuristics, the convex hull-based insertion heuristics are the

best for most cases, whereas the space-partitioning-based

heuristics are the worst. The insertion heuristics are better

than the augmented addition heuristics which are better

than the addition heuristics. For the edge-based heuristics,

SV and Chris can be used to obtain accurate answers in

some circumstances.

4.2 The Accuracy

In this section, we focus on the accuracy over 2 real

datasets, NY and LA, a synthetic dataset by normal, and

TB_H benchmarks. The main purpose is to show that the

heuristics behave differently in real datasets comparing to

normal and TB_H benchmarks. We focus on the node-

based and edge-based heuristics, and do not discuss the

space-partitioning heuristics since they do not show their

advantages in terms of accuracy for LBS.

The Nearest-Neighbor Heuristics Figure 7 shows how

the accuracy of NN/DENN changes while increasing query

size n. For the real datasets, the error-ratios increase
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monotonically. However, it does not hold for non-real

datasets, especially for the 10 datasets in TB_H. In TB_H,

the first with 101 points has the largest error. This suggests

that the accuracy is related to data distribution. In terms of

accuracy, DENN is a little better than NN. When n is

small, for n ¼ 20, the error-ratios for the two over NY and

LA are less than 10%, whereas the error-ratio is around

20% for normal, and is even higher than 30% for TB_H.

When n becomes larger, the error-ratio for NY and LA

increases noticeably, as shown in Fig. 7a, b, which is dif-

ferent from the error-ratios observed from normal.

The Insertion Heuristics Figure 8 shows the error-ratio

for the insertion heuristics. Like Fig. 7, the error-ratio

increases with query size for the real datasets (NY and LA).

The error-ratios for real datasets are much better than that

of non-real datasets. The error-ratios range from 0 to 10%

for NY and LA, from 0 to 25% for normal, and can be up to

35% for TB_H. Among the 4 insertion heuristics, CI and

NI perform in a similar way. It is surprised to notice that RI

can perform better than CI and NI in terms of error-ratio. FI

performs the best. Both RI and FI have an error-ratio less

than 5% for NY, is even less than 3% for LA for all queries

tested on average.

The Convex Hull-Based Insertion Heuristics They are

the optimal choices for most cases, as shown in Fig. 6.

Different from the insertion-based heuristics (RI, NI, CI,

and FI) which randomly pick up a node to start, the convex
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hull-based heuristics find the convex hull as a sketch for a

TSP query first, and expands the remaining nodes under the

guide of the sketch in a similar way as the insertion-based

(RI, NI, CI and FI). There are CHRI, CHNI, CHCI, and

CHFI. First, comparing Fig. 9 with Fig. 8, the convex hull-

based heuristics outperform the corresponding insertion-

based heuristics. The error-ratios are noticeably reduced.

Second, the reduction on error-ratio by the convex hull

changes the order of the heuristics in terms of the accuracy.

Consider Figs. 8a and 9a for NY. Without the convex hull,

as shown in Fig. 8a, CI performs the worst. Both RI and FI

perform in a similar way, and when n ¼ 100, RI even

outperforms FI. On the other hand, with the convex hull, as

shown in Fig. 9a, CHNI (or convex hull plus NI) performs

the worst, and CHFI (or convex hull plus FI) outperforms

others.

The Addition Heuristics The addition heuristics pick

the next node to insert in the same way as the corre-

sponding insertion heuristics. As shown in Table 1 for the

TSP example in Fig. 2, both FI and FA, and both NI and

NA have the same expanding order to select the next node

in iterations, respectively. On the other hand, the addition

heuristics do not consider all the insertion positions in the

current circuit, instead consider only between the two

edges that are incident to a node v in the current circuit,

where v is the nearest neighbor to the next node selected to

insert. As expected, the addition heuristics cannot outper-

form the corresponding insertion-based heuristics. This is

also observed by comparing Fig. 10 with Fig. 8. The

advantage of the addition heuristics is the efficiency, since

they check much less number of insertion positions on the

current circuit in iterations.
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It is worth noticing that there are two main things in

iterations. One is to select the next node to insert, and the

other is to find an insertion position to insert. The following

heuristics, RI, CHRI and RA are to select the next node

randomly in iterations. As shown in Figs. 8 and 9, RI and

CHRI perform well. However, Fig. 10 shows that RA does

not perform well, and performs the worst for NY. This

suggests that such random heuristics need to explore a

certain number of insertion positions on the current circuit,

in order to achieve a better accuracy. The same occurs to

the furthest heuristics. Both FI and CHFI perform well, but

FA does not perform well on the other hand due to the

limited number of exploring insertion positions.

The Augmented Addition Heuristics Such heuristics

are positioned between the insertion heuristics and the

addition heuristics, due to the ways of exploring insertion

positions on the current circuit. Figure 11 shows the results

for NAþ, RAþ and FAþ. Comparing Fig. 10 and Figs. 8,

11 shows that, by the limited additional number of inser-

tion positions, RAþ and FAþ outperform NAþ, in a

similar way as the corresponding RI and FI outperform NI

and the corresponding CHRI and CHFI outperform CHNI.

The Edge-Based Heuristics The performance studies

done in [21] using n ¼ 10;000 points under the uniform

distribution conclude that SV is the best among all 9 the

heuristics tested. FI outperforms Greedy which in turn

outperforms CHCI. Different from the results reported in

[21] using n ¼ 10; 000 points under the uniform distribu-

tion, as shown in Fig. 6, with many different datasets, SV

is not the best, even though SV like other edge-based
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heuristics can get better accuracy. Figure 12 shows the

details for the edge-based heuristics. SV performs the best.

For LA, the error-ratio for SV ranges from 0.2 to 2.3%,

which is marginally higher than the error-ratio for CHFI

that ranges from 0.1 to 1.2%. Both Chris and DMST are

based on MST, and Chris outperforms DMST. Note that

the approximate ratio is 1.5 for Chris, and is 2 for DMST.

As shown in Fig. 5, Chris takes longer CPU time since it

needs to find a perfect matching and Euler circuit after

generating the minimum spanning tree. Greedy performs

well as reported in [21]. However, in our testing settings,

Greedy is inferior of Chris in the two synthetic datasets

NY and LA, generates similar results with DMST in NY,

and is the worst for LA.

The Effectiveness of Start Nodes All heuristics except

for the convex hull-based need to select a start node to start

expanding randomly, which may have a great impact on

the resulting circuit. We study the selection of start nodes

using the real dataset NY by varying the number of points

n ¼ 20; 40; 60; 80; 100. For each n value, for example,

n ¼ 60, we randomly select 100 sets of points of size n

from NY. Assume Q is one of the 100 sets for a given n.

We test a certain heuristics by selecting every node in Q as

a start node. Given a query size n, we record the difference

between the shortest and longest routes for every start node

in every of the 100 randomly selected sets, and show the

average difference in Fig. 13. It shows how the choice of

start node affects the quality. As observed, the error-ratios

increase monotonically while the query size increases. This

suggests that the random selection of the first node to start

is more sensitive when there are more node. As shown in

Fig. 13, among the 2 nearest-neighbor heuristics, DENN is

more stable than NN, given that DENN is only difference

from NN by looking at the two ends of the current path in

iterations, instead of only one end. For the insertion

heuristics, CI, NI, and FI perform in a similar way, whereas

RI is more sensitive to the first node selected to start
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(Fig. 13b). The sensitive of the random is also shown in

Fig. 13c where RA is the worst, and NA and FA outper-

form RA significantly. For the edge-based heuristics,

Fig. 13d shows that it is less sensitive for the edge-based

heuristics to select the start node. Chris is the best among

all heuristics, in terms of random selection of the start

node.

4.3 More on Accuracy

We further analyze the error-ratios for the insertion, the

convex hull-based insertion, the addition, and the aug-

mented addition heuristics, and we focus on three issues:

(a) the error-ratios in iterations, (b) the error correlation

between the intermediate error-ratios and the final error-

ratio and (c) the possibility of reoptimization to obtain the

(i?1)th expansion by heuristics given the optimal TSP for

the first i nodes selected. We conduct testing over the real

dataset NY, for n ¼ 60. We randomly select 100 sets of

points of size n ¼ 60 from NY, and report the average. Let

Ti be a circuit with i nodes, and let T
�
i be the optimal circuit

over the same set of nodes.

The Error-Ratio in the i th Iteration The error-ratio

eratioðTiÞ is computed by Eq. (2) for Ti in the ith iteration.

Figure 14 shows the results. Several observations are

made. First, for the random methods (RI, CHRI, RA and

RAþ), the error-ratios increase in the ith iteration when i

becomes larger. The error-ratio in the ith iteration becomes

comparatively smaller, if it tries to find an insertion posi-

tion among more choices, i.e., RI is better than RAþ,
which is better than RA. Among all the random-based

methods, CHRI is best given the convex hull computed.

Second, the error-ratios for the addition heuristics are high

due to the limited insertion positions in iterations. Third,

for the nearest-neighbor methods (NI, CHNI, CHCI), the

error-ratio increases in the first iterations and then drop in

the late iterations. The reason is that in the first iterations, it

takes near-to-far approach, whereas in the late iterations it

may insert the next node between two nodes to refine the

circuit. For CHCI, given the convex hull computed, it

increases, and terminates before it finds the position to

drop. Fourth, for the furthest methods (FI, CHFI, FAþ, and
FA), the error-ratios are small and grow slowly. Among all

heuristics, CHFI performs the best.
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The Reoptimization For reoptimization, the rationale

behind is whether there is any possibility to answer a TSP

query based on an indexing to maintain certain length

optimal circuit, even though it is known that the local

optimal property does not hold. For a given heuristic

method to obtain Tiþ1 by expanding a new node from Ti,

we consider expanding the new node into the optimal T�i
over the same set of nodes in Ti generated by the same

method. We denote such a circuit obtained as T0iþ1, and the

error-ratio by eratioðT0Þ is the error-ratio introduced in the

last iteration only. Figure 15 shows the introduced error-

ratio for different heuristics. The introduced errors are very

small, which indicates that the reoptimization can generate

high-quality solutions in most cases. For the addition

heuristics, the error-ratio is higher than the others

(Fig. 15c). For the insertion heuristics, FI outperforms the

others, and RI also performs well. It is worth noting that

when Ti becomes longer, the error-ratios become smaller.

When i[ 30, the error-ratio is below 0.001, and when

i[ 40, the error-ratio is close to zero. In general, the

convex hull-based insertion better than the insertion.

4.4 The New Synthetic Datasets

In order to better understand the heuristics in real appli-

cations for LBS, we study the 22 heuristics in terms of

accuracy using the new synthetic datasets proposed in this

work.

Figure 16 gives an overview by candlesticks, where

each figure is presented by varying the parameter in con-

cern while fixing the other parameters by their default

value. In this study, we use n ¼ 100 as the default query

size. Figure 16a shows that most node-based heuristics are

sensitive to the query size, especially of CHCI. The edge-

based heuristics are stable with the change of n. The dif-

ference between the best case and worst case of Chris is
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just 1.5%. On the other hand, the edge base heuristics are

sensitive to the cluster number.

We focus on 6 heuristics in Fig. 17, namely CHFI,

CHRI, SV, CHCI, Greedy and DENN, which are selected

for the following reasons. CHFI, CHCI and CHRI are the

better choices for real datasets tested, SV, CHCI, and

Greedy are the better choices as concluded in [21], and

DENN is selected as the nearest-neighbor heuristics which

is used in LBS. Note that DENN outperforms NN in terms

of accuracy.

Query Size (n): The error-ratios for all heuristics

increase while increasing n. As shown in Fig. 16a, it has

higher influence on node-based heuristics (CHCI, CHRI

and CHFI). When n is small, CHCI, CHRI and CHFI

outperform SV. However, as SV increases slower, SV

becomes the best when n� 400. For Greedy, it looks

constant when n� 80, and will perform well when n is very

large. This explains that Greedy outperforms CHCI in

[21].

Cluster Number (K): As shown in Fig. 17b, the cluster

number has little influence on the heuristics. The dataset

follows a normal distribution when K ¼ 1 and gradually

changes to uniform distribution when K becomes large.

The same can be observed in Fig. 6e and f.

Inter-Cluster Distance (l) The inter-cluster distance

controls the distance between clusters. Note that the

overlap between clusters becomes small when l is large.

The error-ratios for CHFI and SV increase slightly while

increasing l. For DENN, CHRI, CHCI, and Greedy, the

error-ratio increases first and then decrease. SV increases

faster than CHFI. When l ¼ 1, SV outperforms CHFI.

However, CHFI outperforms SV when l� 10 when the

boundaries between clusters are more clear.
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Cluster Distribution (a) It is to control the variances in

clusters. When a is small, the data distribution is highly

skewed, and most clusters have a small variance. On the

other hand, when a is large, more clusters have a large

variance and the distribution over all clusters in terms of

variance is more uniform. As shown in Fig. 17d, the error-

ratio for CHFI increases while increasing a at the begin-

ning and then decreases. The error-ratio for SV increases

monotonously. CHFI is more suitable for the skewed case

than SV.

As a summary, we conclude the following. First, CHFI

works well for real LBS applications, in particular, when

the query size is relatively small and the query is highly

skewed. Second, SV is a better choice when the query size

is large and query distribution is uniform as also observed

in the existing work. Third, the nearest-neighbor heuristics

is currently used in LBS for the efficiency, and is not the

best for accuracy. Fourth, CHRI can generate the near-

optimal answers in many cases by randomly selecting next

nodes to insert, and shows that the random heuristics is

deserved to be investigated.

5 Conclusion

In this work, we investigate 22 construction heuristics for

TSP in LBS by extensive performance studies over 4 real

datasets, 20 datasets from TSPLIB benchmark, and 2

existing synthetic datasets. In addition, in order to under-

stand real LBS setting, we also conduct extensive testing

over the new synthetic datasets proposed in this work to

simulate that a small number of hot POIs are visited by
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many people. Different from the existing work, we find that

CHFI works well for real LBS applications, whereas CHCI

get a good answer when the query size is small. Also,

CHRI can generate the near-optimal answers in many cases

by randomly selecting next points to insert. In addition, for

the issue of precomputing/indexing, we find that the quality

of the circuit Tiþ1 by expanding a new point by heuristics

from the optimal T�i is high, which shows that it is deserved
to study precomputing/indexing to support TSP queries.
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