
Comparing Two Approaches for Adding Feature Ranking to
Sampled Ensemble Learning for Software Quality Estimation

Kehan Gao
Eastern Connecticut State University

gaok@easternct.edu

Taghi M. Khoshgoftaar & Amri Napolitano
Florida Atlantic University

khoshgof@fau.edu, amrifau@gmail.com

Abstract—High dimensionality and class imbalance are two main
problems that affect the quality of training datasets in software defect
prediction, resulting in inefficient classification models. Feature selection
and data sampling are often used to overcome these problems. Feature
selection is a process of choosing the most important attributes from the
original data set. Data sampling alters the data set to change its balance
level. Another technique, called boosting (building multiple models, with
each model tuned to work better on instances misclassified by previous
models), is found also effective for resolving the class imbalance problem.
In particular, RUSBoost, which integrates random undersampling with
AdaBoost, has been shown to improve classification performance for
imbalanced training data sets. In this study, we investigated an approach
for combining feature selection with this ensemble learning (boosting)
process. We focused on two different scenarios: feature selection per-
formed prior to the boosting process and feature selection performed
inside the boosting process. Ten base feature ranking techniques and an
ensemble ranker based on the ten were examined and compared over the
two scenarios. The experimental results demonstrate that the ensemble
feature ranking method generally had better or similar performance than
the average of the base ranking techniques, and more importantly, the
ensemble method exhibited better robustness than any other base ranking
technique. As for the two scenarios, the results show that applying feature
selection inside boosting performed better than using feature selection
prior to boosting.

Index Terms—software defect prediction, feature selection, data sam-
pling, boosting, base ranker, ensemble ranker

I. INTRODUCTION

Software defect prediction is a process of utilizing classification
models to classify program modules into quality-based classes, e.g.,
fault-prone (fp) or not-fault-prone (nfp) [1]. This kind of estimation
can help practitioners effectively allocate limited project resources,
making them focus on program modules that are of poor quality
or likely to have a high number of faults. Classification models are
usually built using software metrics such as code-level measurements
and defect data, along with data mining techniques. A considerable
amount of research has shown that prediction accuracy of a clas-
sification model is affected by the quality of the input (training)
data. We are interested in investigating two common problems, high
dimensionality and class imbalance, that exist in many software
measurement data sets.

High dimensionality occurs when a large number of variables
(features or software metrics) are available for building classification
models. Several problems may arise due to high dimensionality,
including longer learning time, a decline in prediction performance,
and difficulty of understanding and interpreting the model. The
purpose of feature selection is to choose the most important attributes
from the original data set so that prediction performance will be
improved, or at least maintained, while learning time is significantly
reduced. Recent research [2] has shown that filter-based feature
ranking techniques are simple, fast, and effective methods for dealing
with this problem. In this study, we examined ten filter-based feature
ranking techniques and an ensemble ranker based on the ten.

Class imbalance is a separate problem, wherein the class ratio is
especially skewed. In a two-class classification problem, class imbal-
ance manifests as one class (minority) having far fewer instances than
the other class (majority). The main disadvantage of such imbalanced
training data is that a traditional classification algorithm would tend
to classify minority class instances (usually a class of interest, e.g.,
fp modules) as majority class (e.g., nfp modules) in order to increase
overall prediction accuracy. In software quality engineering, this may
result in buggy software in deployment and operation, thereby causing
serious consequences and high repair cost.

Many solutions have been proposed to address the class imbalance
problem. A simple but effective method is random undersampling
(RUS), where instances from the majority class are randomly dis-
carded until a certain balance (ratio) between the majority and the
minority classes is achieved. Another technique, called boosting, is
also effective to cope with the class imbalance problem. Boosting
is a meta-learning technique designed to improve the classification
performance of weak learners by building multiple models, with each
model tuned to work better on instances misclassified by previous
models. Although boosting is not specifically developed to handle the
class imbalance problem, it has been shown to be very effective in this
regard [3]. In this study, we use an ensemble learning approach, called
RUSBoost, in which random undersampling (RUS) is integrated into
AdaBoost [4].

To deal with both high dimensionality and class imbalance, we
studied an approach which combines feature selection with an en-
semble learning method (RUSBoost). We investigated two different
scenarios: feature selection performed right before RUSBoost and
feature selection performed inside RUSBoost. In this study, we are
interested in learning the impact of feature selection on the final
classification results. More specifically, we would like to investigate
ten base feature ranking techniques and the ensemble ranker based
on the ten, and compare their behaviors, including prediction per-
formance and stability with respect to different learners and data
sets. The experiment was conducted over the two different scenarios
discussed. We used two groups of data sets from a real-world software
system, all of which exhibit significant class imbalance between
the two classes (fp and nfp). Five different learners were used to
build classification models. The experimental results demonstrate
that the ensemble ranker resulted in better or similar prediction
performance than the average of the ten base rankers. In addition,
the ensemble method displayed more stable behavior than most base
rankers including the best base ranking technique. As to the two
different scenarios of the approach, the result shows that feature
selection performed inside RUSBoost provided better classification
performance than when it was applied prior to RUSBoost.

The rest of the paper is organized as follows. Section II dis-
cusses related work. Section III provides methodology, including
more detailed information about the feature selection, ensemble-

280

based boosting technique, learners, and performance metric applied
in this study. The data sets used in the experiments are described in
Section IV. Section V presents the experimental results. Finally, the
conclusion and future work are summarized in Section VI.

II. RELATED WORK

Significant research has been dedicated towards feature selec-
tion [5], and applied to a range of fields. Van Hulse et al. [2]
proposed 11 new threshold-based feature selection techniques and
applied them to 17 different bioinformatics datasets. Yu et al. applied
feature selection to gene expression microarray data and studied the
stability of feature selection via sample weighting [6].

In addition to excess number of features, many datasets are plagued
with the class imbalance problem. Two techniques that have been
discussed for addressing this problem are data sampling and boosting.
The simplest form of sampling is random sampling. In addition, a
few more intelligent algorithms for sampling data have been proposed
[7]. The most commonly used boosting algorithm is AdaBoost [4].
Several variations have been proposed to improve AdaBoost’s perfor-
mance on imbalanced data. One promising technique is RUSBoost
[3], which is a highly effective hybrid approach to learning from
imbalanced data.

While a great deal of effort has been dedicated toward feature
selection and data sampling separately for many years, research
working on both together is starting to receive more attention [8].
Yang et al. [9] proposed an ensemble-based wrapper approach for
feature selection from data with highly imbalanced class distribution.
In this work, we create an approach that combines feature selection
with RUSBoost and study two different combination scenarios. We
also compare different base feature ranking techniques and the
ensemble ranker over the two scenarios.

III. METHODOLOGY

A. Filter-Based Feature Ranking Techniques

The goal of feature ranking is to score each feature according to a
particular method, allowing the selection of the best features. In this
study, we investigated ten individual feature ranking techniques from
three different categories: three standard methods, six threshold-based
feature selection techniques, and the signal to noise ratio approach.
In addition, we studied the use of an ensemble of feature ranking
techniques.

1) Standard Techniques: The three standard filter-based feature
ranking techniques used in this work include: chi-squared, informa-
tion gain, and ReliefF. All three use the implementation found in
the WEKA tool1 [10] with default parameters. The chi-squared (CS)
test evaluates the worth of a feature by computing the value of the
chi-squared statistic with respect to the class. The null hypothesis is
the assumption that the two features are unrelated, and it is tested by
the chi-squared (χ2) formula: χ2 =

∑r
i=1

∑c
j=1

(Oij−Eij)
2

Eij
, where

Oij is the observed frequency and Eij is the expected (theoretical)
frequency, asserted by the null hypothesis. The greater the value of
χ2, the greater the evidence against the null hypothesis. Information
gain (IG) is a measure based on the concept of entropy from
information theory. IG is the information provided about the target
class attribute Y , given the value of another attribute X . IG measures
the decrease of the weighted average impurity of the partitions,

1Waikato Environment for Knowledge Analysis (WEKA) is a popular suite
of machine learning software written in Java, developed at the University of
Waikato. WEKA is free software available under the GNU General Public
License.

Algorithm 1: Threshold-Based Feature Selection

input :
1. Dataset S = {(xi, yi)|i = 1, . . . , n and yi ∈ {P,N}} with
features F j , j = 1, . . . ,m, where P = fp and N = nfp;
2. The value of attribute F j for instance xi is denoted F j(xi);
3. Metric ω ∈ {CS, IG, RF, MI, KS, Dev, GM, ROC, PRC, S2N}.
output: Ranking R = {r1, . . . , rm} where rj represents the rank for

attribute F j , i.e., the rj -th most significant attribute as
determined by metric ω.

for F j , j = 1, . . . ,m do
Normalize F j 7→ F̂ j =

F j−min(F j)

max(F j)−min(F j)
;

Calculate metric ω using attribute F̂ j and class attribute
{yi| yi ∈ {P,N}, i = 1, . . . , n}, ω(F̂ j) ; (The detailed formula
of each metric ω is provided in Section III-A2.)

Create attribute ranking R using ω(F̂ j) ∀j

compared with the impurity of the complete set of data. Relief is
an instance-based feature ranking technique. ReliefF is an extension
of the relief algorithm that can handle noise and multiclass data sets.

2) Threshold-Based Feature Selection: The threshold-based fea-
ture selection (TBFS) technique was proposed by our research team
and implemented within WEKA [2]. The procedure is shown in
Algorithm 1. Each independent attribute works individually with
the class attribute, and this two-attribute data set is evaluated using
different classification performance metrics. More specifically, the
TBFS procedure includes two steps: (1) normalizing the attribute
values so that they fall between 0 and 1; and (2) treating those values
as the posterior probabilities from which to calculate performance
metrics. The feature rankers we propose utilize four rates2. The value
is computed in both directions: first treating instances above the
threshold (t) as positive and below as negative, then treating instances
above the threshold as negative and below as positive. The better
result is used. In this manner, the attributes can be ranked from most
to least predictive based on each metric. Six metrics used in this
study are presented as follows:

a. Mutual Information (MI). Let c(x) ∈ {P,N} denote the actual
class of instance x, and let ĉt(x) denote the predicted class
based on the value of the attribute F j and a given threshold
t. MI computes the mutual information criterion with respect
to the number of times a feature value and a class co-occur,
the feature value occurs without the class, and the class occurs
without the feature value. The MI metric is defined as:

MI = max
t∈[0,1]

∑
ĉt∈{P,N}

∑
c∈{P,N}

p(ĉt, c) log
p(ĉt, c)

p(ĉt)p(c)

where

p(ĉt = α, c = β) =
| {x | (ĉt(x) = α) ∩ (c(x) = β)} |

| P | + | N | ,

p(ĉt = α) =
| {x | ĉt(x) = α} |

| P | + | N | ,

p(c = α) =
| {x | c(x) = α} |

| P | + | N | ,

α, β ∈ {P,N}.

2Analogous to the procedure for calculating rates in a classification setting
with a posterior probability, the true positive rate, TPR(t), true negative rate,
TNR(t), and false positive rate, FPR(t) can be calculated at each threshold
t ∈ [0, 1] relative to the normalized attribute F̂ j . Precision, PRE(t) is defined
as the fraction of the predicted-positive examples which are actually positive.

281

b. Kolmogorov-Smirnov statistic (KS). KS is a measurement of
separability. The goal of KS is to measure the maximum
difference between the distributions of the members of each
class. The formula for the KS statistic is:

KS = max
t∈[0,1]

|TPR(t)− FPR(t)|

c. Deviance (Dev). Dev, like GI, is a metric in which it is the
minimum value over all the thresholds that is the chosen value
for the attribute. Deviance measures the sum of the squared
errors from the mean class based on a threshold t.

d. Geometric Mean (GM). GM is a quick and useful metric for
feature selection. The equation for the geometric mean is

GM = max
t∈[0,1]

√
TPR(t)× TNR(t)

A geometric mean of 1 would mean that the attribute is perfectly
correlated. The maximum geometric mean across the thresholds
is the score of the attribute.

e. Area Under the ROC Curve (ROC). Receiver Operating Char-
acteristic, or ROC, curves graph true positive rate on the y-
axis versus the false positive rate on the x-axis. The resulting
curve illustrates the trade-off between true positive rate and
false positive rate. In this study, ROC curves are generated by
varying the decision threshold t used to transform the normalized
attribute values into a predicted class. The area under the ROC
ranges from 0 to 1, and an attribute with more predictive power
results in an area under the ROC closer to 1.

f. Area Under the Precision-Recall Curve (PRC). PRC is a single-
value measure that originated from the area of information
retrieval. A precision-recall curve is generated by varying the
decision threshold t from 0 to 1 and plotting the recall (equiv-
alent to true positive rate) on the y-axis and precision on the
x-axis at each point in a similar manner to the ROC curve. The
area under the PRC ranges from 0 to 1, and an attribute with
more predictive power results in an area under the PRC closer
to 1.

3) Signal to Noise Ratio: Signal to noise ratio (S2N) [11] is a
simple univariate ranking technique which defines how well a feature
discriminates between two classes in a two class problem. S2N, for
a given feature, separates the means of the two classes relative to
the sum of their standard deviation. The formula to calculate S2N
is S2N = (µP−µN)

σP+σN
, where µP and µN are the mean values of a

particular attribute for the samples from class P and class N , and
σP and σN are the corresponding standard deviations. The larger the
S2N value, the more relevant the feature is to the class attribute.

4) Ensemble Filter Technique: This approach combines different
ranking techniques to yield more stable and robust results. The
procedure of the ensemble technique includes two essential steps.
First, a set of different ranking lists is created using corresponding
filter-based rankers and input to the next combining step; second,
these ranking lists are integrated using an aggregation technique.
Diversity can be achieved by using various rankers [12]. In this
study, we use the ten filters discussed above to form the ensemble
filter. The aggregation method used is arithmetic mean, where each
feature’s score is determined by the average of the ranking scores of
the feature in each ranking list. Finally, the highest ranked attributes
are selected to be used.

B. The RUSBoost Technique

RUSBoost combines random undersampling (RUS) and boosting
for improving classification performance. Boosting is a meta-learning

technique designed to improve the classification performance of weak
learners by iteratively creating an ensemble of weak hypotheses
which are combined to predict the class of unlabeled examples. This
study uses AdaBoost [4], a well-known boosting algorithm shown to
improve the classification performance of weak classifiers. Initially,
all examples in the training data set are assigned equal weights.
During each iteration of AdaBoost, a weak hypothesis is formed by
the base learner. The error associated with the hypothesis is calculated
and the weight of each example is adjusted such that misclassified
examples have their weights increased while correctly classified ex-
amples have their weights decreased. Therefore, subsequent iterations
of boosting will generate hypotheses that are more likely to correctly
classify the previously mislabeled examples. After all iterations are
completed a weighted vote of all hypotheses are used to assign a
class to unlabeled examples. In this study, the boosting algorithm is
performed using 10 iterations. RUSBoost applies the same steps as
the regular boosting, but prior to constructing the weak hypothesis
during each round of boosting, random undersampling is applied to
the training data to achieve a more balanced class distribution. The
base learners used in this work are NB, MLP, KNN, SVM, and LR,
and these will be discussed in the next section. The procedure of
RUSBoost is described in part of Figure 1. More details about the
algorithm can be found in [3].

C. Learners

The software defect prediction models in this study are built
using five different classification algorithms, including Naı̈ve Bayes
(NB) [10], MultiLayer Perceptron (MLP) [13], K Nearest Neighbors
(KNN) [10], Support Vector Machine (SVM) [14], and Logistic
Regression (LR) [10]. Due to space limitations, we refer interested
readers to these references to understand how these commonly-used
learners function. The WEKA tool is used to instantiate the different
classifiers. Generally, the default parameter settings for the different
learners are used (for NB and LR), except for the below-mentioned
changes. A preliminary investigation in the context of this study
indicated that the modified parameter settings are appropriate.

In the case of MLP, the hiddenLayers parameter was changed
to ‘3’ to define a network with one hidden layer containing three
nodes, and the validationSetSize parameter was changed to
‘10’ to cause the classifier to leave 10% of the training data aside
for use as a validation set to determine when to stop the iterative
training process. For the KNN learner, the distanceWeighting
parameter was set to ‘Weight by 1/distance’, the kNN parameter
was set to ‘5’, and the crossValidate parameter was turned
on (set to ‘true’). In the case of SVM, two changes were made:
the complexity constant c was set to ‘5.0’, and build
Logistic Models was set to ‘true’. A linear kernel was used
by default.

D. Performance Metric

One of the most popular methods for evaluating the performance of
learners built using imbalanced data is receiver operating character-
istic, or ROC, curves. The ROC curve illustrates the performance of
a classifier across the complete range of possible decision thresholds,
and accordingly does not assume any particular misclassification costs
or class prior probabilities. The area under the ROC curve (AUC)
is used to provide a single numerical metric for comparing model
performances. The AUC value ranges from 0 to 1.

IV. DATASETS

In our experiments, we used publicly available data, namely the
Eclipse defect counts and complexity metrics data set obtained from

282

TABLE I
DATA CHARACTERISTICS

Dataset Rel. thd #Attr. #Inst. #fp %fp #nfp %nfp
2.0 10 209 377 23 6.1 354 93.9

Eclipse 1 2.1 5 209 434 34 7.8 400 92.2
3.0 10 209 661 41 6.2 620 93.8
2.0 5 209 377 52 13.8 325 86.2

Eclipse 2 2.1 4 209 434 50 11.5 384 88.5
3.0 5 209 661 98 14.8 563 85.2

the PROMISE data repository (http://promisedata.org). In particular,
we used the metrics and defects data at the software packages level.
The original data for the Eclipse packages consists of three releases
denoted 2.0, 2.1, and 3.0, each release reported by Zimmerman et
al. [15]. Membership in each class is determined by a post-release
defects threshold thd, which separates fp from nfp packages by
classifying packages with thd or more post-release defects as fp and
the remaining as nfp. In our study, we used thd = {10, 5} for releases
2.0 and 3.0 and thd = {5, 4} for release 2.1. This resulted in two
groups. Each group contains three data sets, one for each release.
The reason why a different set of thresholds was chosen for release
2.1 is that we would like to keep similar class distributions for the
data sets in the same group. All data sets contain 209 attributes (208
independent attributes and 1 dependent attribute). Table I shows the
characteristics of the data sets after transformation for each group.

V. EXPERIMENTS

A. Design

The main objective of this study is to evaluate the individual
filters and the ensemble filter. More specifically, we would like to
investigate the ten individual filters (as discussed in Section III-A)
with the ensemble filter based on those ten. This comparison was
carried out in two different scenarios of feature selection combined
with the ensemble learning (boosting) approach. The process of
the ensemble learning approach is presented in Figure 1. The two
different scenarios are highlighted at top.

• Scenario 1: External Feature Selection (EFS), i.e., feature
selection performed prior to the ensemble learning process.

• Scenario 2: Internal Feature Selection (IFS), i.e., feature selec-
tion performed inside the ensemble learning process.

In the experiment, 11 feature selection methods, including ten base
rankers (CS, IG, RF, MI, KS, Dev, GM, ROC, PRC and S2N) and
an ensemble ranker based on the ten, were applied. The sampling
technique used was the random undersampling (RUS) approach. The
post-sampling class ratio (between fp and nfp modules) was set to
50:50 throughout the experiment. In addition, five base learners (NB,
MLP, KNN, SVM, and LR) were used in the boosting process.
The number of features selected in the feature subsets was set to
⌈log2 n⌉ = 8, where n is the number of independent attributes in the
original data set (n = 208 in this experiment). For all experiments,
we employed ten runs of five-fold cross-validation. That is, for each
run the data was randomly divided into five folds, one of which was
used as the test data while the other four folds were used as training
data. All the preprocessing steps (feature selection and data sampling)
were done on the training data set. The processed training data was
then used to build the classification model and the resulting model
was applied to the test fold. This cross-validation was repeated five
times (the folds), with each fold used exactly once as the test data.
The five results from the five folds then was averaged to produce a
single estimation.

TABLE II
CLASSIFICATION PERFORMANCE FOR EXTERNAL FEATURE SELECTION

(a) Eclipse 1
Ranker NB MLP KNN SVM LR
Ensemble 0.83994 0.89083 0.88465 0.90456 0.87296

CS 0.800011 0.88478 0.87688 0.89808 0.859811

IG 0.84093 0.88737 0.88913 0.90774 0.88503

RF 0.820410 0.863611 0.810011 0.872511 0.87237

MI 0.82467 0.89005 0.88217 0.90457 0.88532

KS 0.82945 0.87459 0.86749 0.89539 0.861310

Dev 0.82229 0.88816 0.88396 0.90545 0.87108

GM 0.82476 0.872110 0.867310 0.892710 0.86559

ROC 0.85321 0.89832 0.89851 0.91061 0.87594

PRC 0.82398 0.89084 0.89222 0.90853 0.87325

S2N 0.84492 0.90051 0.88874 0.90892 0.89551

(b) Eclipse 2
Ranker NB MLP KNN SVM LR
Ensemble 0.83647 0.90845 0.89626 0.91837 0.91082

CS 0.823611 0.90766 0.89427 0.91838 0.90479

IG 0.827510 0.90904 0.89713 0.92102 0.90617

RF 0.83199 0.858711 0.805611 0.875211 0.874711

MI 0.84243 0.90588 0.89635 0.92101 0.90904

KS 0.83468 0.90409 0.89259 0.91856 0.90696

Dev 0.83955 0.91012 0.89862 0.91935 0.90895

GM 0.84144 0.901510 0.890510 0.91699 0.904410

ROC 0.84272 0.91251 0.89711 0.92093 0.91201

PRC 0.83906 0.90913 0.89704 0.91944 0.90608

S2N 0.85331 0.90667 0.89278 0.913610 0.90983

B. Results and Analysis

The results of the two scenarios (EFS and IFS) averaged over
the respective group of data sets (in terms of AUC) are reported in
Tables II and III, each containing the results for all five learners.
The tables show the classification performance of the ten individual
filters as well as the ensemble filter based on the ten. Each value
has a superscript that represents the rank of the filter among the 11
techniques. For instance, the ensemble filter ranks #4 among all the
11 ranking techniques when NB was employed on Eclipse 1 for the
EFS scenario. From the results, we can see that the performance of
the rankers were related to learners, training data set, and working
scenarios. There was no method that always performed the best in
all circumstances. For example, ROC performed relatively better than
other rankers for the EFS scenario, while it performed averagely for
the IFS scenario. IG performed best for Eclipse 1 in IFS when the
MLP and SVM learners were employed, however showed the worst
prediction among the 11 rankers when NB was used. The ensemble
filter generally performed better than average of the individual base
rankers and also displayed more stable performance than most base
rankers (as the rank deviation of the ensemble filter is the second
smallest among 11, GM had the smallest rank deviation, however,
GM performed below the average). Figure 2 provides the comparison
between the ensemble filter and the average of the ten base rankers
for a given scenario and a data set across all five learners. The charts
intuitively demonstrate that the ensemble method performed better
than or similarly to the average.

We further carried out a three-way analysis of variance (ANOVA)
F-test on the classification performance to examine if the perfor-
mance difference (better/worse) is statistically significant or not. The
three factors include: A representing two different scenarios of the
approach, B representing the five learners, and C representing the ten
base rankers and the ensemble method. The null hypothesis for the
ANOVA test is that all the group population means are the same,

283

Weights

Repeat

N times

Data

Smpl Data Model

Weight

Parameters

External feature

selection (individual

or ensemble filter)

Weights

Final

Model

Sample Data with

RUS using Weights

Build model using

smpl data and Weights

Calculate Weight Parameter

(weighted error of model)

Update and normalize

Weights based on

misclassifications and

Weight Parameter

After N iterations,

combine all Models

weighted with their

Weight Parameters

Initialize Weights

(vector of instance

weights) with each value

starting as 1/(# instances)

Internal feature

selection (individual

or ensemble filter)

Fig. 1. Two scenarios of feature selection combined with the ensemble learning approach

TABLE III
CLASSIFICATION PERFORMANCE FOR INTERNAL FEATURE SELECTION

(a) Eclipse 1
Ranker NB MLP KNN SVM LR
Ensemble 0.85613 0.89855 0.90332 0.91052 0.88035

CS 0.839810 0.89319 0.893510 0.90963 0.874611

IG 0.838511 0.90421 0.90313 0.91591 0.88402

RF 0.85632 0.887411 0.891911 0.897511 0.87848

MI 0.84698 0.89358 0.89539 0.90786 0.88343

KS 0.85087 0.89667 0.89667 0.90875 0.88026

Dev 0.85514 0.89884 0.89886 0.90944 0.87987

GM 0.85116 0.892210 0.89568 0.90548 0.875510

ROC 0.85435 0.90063 0.89985 0.90767 0.87629

PRC 0.86691 0.89676 0.90351 0.90449 0.88561

S2N 0.84529 0.90182 0.90124 0.904410 0.88034

(b) Eclipse 2
Ranker NB MLP KNN SVM LR
Ensemble 0.85652 0.90558 0.90654 0.91478 0.91181

CS 0.820411 0.90854 0.90527 0.91751 0.91102

IG 0.827410 0.91031 0.90546 0.91692 0.90996

RF 0.85851 0.892311 0.893611 0.903211 0.901411

MI 0.84915 0.90597 0.90653 0.91643 0.91025

KS 0.84866 0.90952 0.90555 0.91624 0.90959

Dev 0.84208 0.90735 0.90439 0.91615 0.91054

GM 0.85194 0.90686 0.90478 0.91536 0.90977

ROC 0.84837 0.90903 0.90762 0.91399 0.90958

PRC 0.85433 0.90439 0.90791 0.91517 0.91083

S2N 0.83859 0.903010 0.904010 0.910310 0.906110

TABLE IV
ANOVA FOR THE ECLIPSE DATA SETS

Source Sum Sq. d.f. Mean Sq. F p-value
Scenario 0.1591 1 0.1591 133.27 0.000
Learner 3.6895 4 0.9224 772.49 0.000
Ranker 0.2963 10 0.0296 24.82 0.000
Error 7.8616 6584 0.0012
Total 12.0065 6599

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

NB MLP KNN SVM LR

ECLIPSE 1 (EFS)

Ensemble Average

(a) Eclipse 1 (EFS)

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

NB MLP KNN SVM LR

ECLIPSE 2 (EFS)

Ensemble Average

(b) Eclipse 2 (EFS)

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

NB MLP KNN SVM LR

ECLIPSE 1 (IFS)

Ensemble Average

(c) Eclipse 1 (IFS)

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

NB MLP KNN SVM LR

ECLIPSE 2 (IFS)

Ensemble Average

(d) Eclipse 2 (IFS)

Fig. 2. Comparison between the ensemble and average of the ten individual
filters in EFS and IFS scenarios

284

0.88 0.885 0.89 0.895

IFS

EFS

(a) Factor A: Scenario
0.82 0.84 0.86 0.88 0.9 0.92

LR

SVM

KNN

MLP

NB

(b) Factor B: Learner

0.86 0.865 0.87 0.875 0.88 0.885 0.89 0.895 0.9 0.905

S2N

PRC

ROC

GM

Dev

KS

MI

RF

IG

CS

Ensemble

(c) Factor C: Ranker

Fig. 3. Multiple comparison for Eclipse 1 and 2 data sets

while the alternate hypothesis is that at least one pair of means
is different. Note that the two groups of data sets were analyzed
together. Table IV shows the ANOVA results. The p-value is less
than the cutoff 0.05 for all factors, meaning that for each main factor
the alternate hypothesis is accepted, namely, at least two group means
are significantly different from each other.

We further conducted a multiple comparison test on each main
factor with Tukey’s honestly significant difference (HSD) criterion.
Note that for all the ANOVA and multiple comparison tests, the
significance level was set to 0.05. Figure 3 shows the multiple
comparisons for Factors A, B, and C. The figures display graphs with
each group mean represented by a symbol (◦) and 95% confidence
interval as a line around the symbol. Two means are significantly
different if their intervals are disjoint, and are not significantly
different if their intervals overlap. The assumptions for constructing
ANOVA and Tukey’s HSD models were validated. From these figures
we can see the following points:

• Feature selection performed inside RUSBoost (IFS) resulted in
better classification performance than when it is applied prior to
RUSBoost (EFS).

• For the five learners, SVM presented the best performance,
followed by MLP, then KNN and LR; NB performed the worst.

• Among the 11 feature ranking techniques, the ensemble method
demonstrated competitive performance, ranking right behind the
best performer, ROC, and had the same performance as PRC and
S2N; IG, MI, and Dev were in the following group, then KS
and GM, although the ensemble ranker did not show statistical
difference between itself and those methods; CS and RF had the
worst performance.

VI. CONCLUSION

In this study, we proposed feature selection combined with an
ensemble learning (boosting) technique to overcome the high dimen-
sionality and class imbalance problems that often affect software
quality classification. Two different scenarios (IFS and EFS) of
the technique that combines feature selection with boosting were
investigated. IFS (internal feature selection) refers to when feature
selection is applied inside the boosting process, while EFS (exter-
nal feature selection) refers to when feature selection takes place

prior to the boosting process. In this research, we were interested
in investigating ten individual feature ranking techniques and the
ensemble ranker based on the ten, and comparing them for the two
scenarios. In the experiment, we applied these techniques to two
groups of data sets from a real-world software system. We built
classification models using five learners. The results demonstrate
that the ensemble technique performed better than or similarly to
the average of the ten base rankers, and more importantly, the
ensemble ranker yielded more stable and robust performance than
any other competing base rankers. In addition, the results show that
performing feature selection inside of boosting generally performed
better than using feature selection prior to boosting. Of the five
learners, support vector machine performed the best, followed by
multilayer perceptron, k nearest neighbors, and logistic regression;
naı̈ve Bayes had the worst prediction performance. Future work
will involve conducting additional empirical studies with software
measurement and defect data from other software projects.

REFERENCES

[1] Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu, “A general software
defect-proneness prediction framework,” IEEE Transactions on Software
Engineering, vol. 37, no. 3, pp. 356–370, May/June 2011.

[2] J. Van Hulse, T. M. Khoshgoftaar, A. Napolitano, and R. Wald,
“Threshold-based feature selection techniques for high-dimensional
bioinformatics data,” Network Modeling Analysis in Health Informatics
and Bioinformatics, vol. 1, no. 1-2, pp. 47–61, June 2012.

[3] C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse, and A. Napolitano,
“Rusboost: A hybrid approach to alleviating class imbalance,” IEEE
Transactions on Systems, Man and Cybernetics, Part A: Systems and
Humans, vol. 40, no. 1, pp. 185–197, Jan. 2010.

[4] Y. Freund and R. E. Schapire, “Experiments with a new boosting
algorithm,” in Proceedings of the 13th International Conference on
Machine Learning, 1996, pp. 148–156.

[5] H. Liu, H. Motoda, R. Setiono, and Z. Zhao, “Feature selection: An
ever evolving frontier in data mining,” in Proceedings of the Fourth In-
ternational Workshop on Feature Selection in Data Mining, Hyderabad,
India, 2010, pp. 4–13.

[6] L. Yu, Y. Han, and M. E. Berens, “Stable gene selection from microarray
data via sample weighting,” IEEE/ACM Transactions On Computational
Biology and Bioinformatics, vol. 9, no. 1, pp. 262–272, Jan/Feb 2012.

[7] N. V. Chawla, K. W. Bowyer, L. O. Hall, and P. W. Kegelmeyer,
“SMOTE: Synthetic minority over-sampling technique,” Journal of Ar-
tificial Intelligence Research, vol. 16, pp. 321–357, 2002.

[8] T. M. Khoshgoftaar, K. Gao, A. Napolitano, and R. Wald, “A compara-
tive study of iterative and non-iterative feature selection techniques for
software defect prediction,” Information Systems Frontiers, pp. 1–22,
April 2013.

[9] P. Yang, W. Liu, B. B. Zhou, S. Chawla, and A. Y. Zomaya, “Ensemble-
based wrapper methods for feature selection and class imbalance learn-
ing,” in Proceedings of the 17th Pacific-Asia Conference, PAKDD 2013,
Gold Coast, Australia, Part I, Lecture Notes in Computer Science 7818.
Springer-Verlag, April 14-17 2013, pp. 544–555.

[10] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques, 2nd ed. Morgan Kaufmann, 2005.

[11] L. Goh, Q. Song, and N. Kasabov, “A novel feature selection method
to improve classification of gene expression data,” in Proceedings of
the Second Conference on Asia-Pacific Bioinformatics, Dunedin, New
Zealand, 2004, pp. 161–166.

[12] J. S. Olsson and D. W. Oard, “Combining feature selectors for text
classification,” in Proceedings of the 15th ACM international conference
on Information and knowledge management, 2006, pp. 798–799.

[13] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed.
Prentice-Hall, 1998.

[14] J. Shawe-Taylor and N. Cristianini, Support Vector Machines, 2nd ed.
Cambridge University Press, 2000.

[15] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for
eclipse,” in Proceedings of the 29th International Conference on Soft-
ware Engineering Workshops. Washington, DC, USA: IEEE Computer
Society, 2007, p. 76.

285

