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Abstract—To avoid inconvenient vehicle stops at charging
stations, the on-road wireless charging of electric vehicles (EVs)
is a promising application in the future smart grid. In this paper,
we study a critical yet open problem for this application, i.e., the
impact of wireless charging and mobility of EVs on the wholesale
electricity market based on locational marginal price (LMP),
which is mainly determined by the EV mobility patterns. To
capture the dynamics in vehicle traffic flow and state of charge
(SOC) of EV batteries, we model the EV mobility as a queueing
network based on the statistics obtained via traffic information
systems. Then, the load on each power system bus with respect to
EV wireless charging is obtained using the stationary distribution
of the queueing network. An economic dispatch problem is
formulated to incorporate the EV wireless charging demand, and
the LMP of each power system bus is obtained. Further, a pricing
mechanism based on the LMP variations of power system buses
is investigated to enhance the social welfare. The performance
of our proposed analytical model is verified by a realistic road
traffic simulator (SUMO) based on a 3-bus test system and an
IEEE 30-bus test system, respectively. Simulation results indicate
that our proposed analytical model can accurately provide an
estimation of the LMP variations due to EV wireless charging.

Index Terms—Electric vehicles, electricity markets, mobility,
queueing networks, wireless charging.

I. INTRODUCTION

With fossil fuel depletion and increasing environmental

consciousness, EVs have received significant attention due

to their high fuel economy and low pollution emissions.

Traditional plug-in electric vehicles (PEVs) usually recharge

their batteries by plugging into the power grid (e.g., at home

or on a corporate car park). With the advancement of in-

ductive wireless power transfer (also known as contactless

or plugless power transfer) technology, wireless charging

becomes a promising way for EVs’ charge replenishment to

deal with the major drawback of the limited driving range of

PEVs [1], [2]. In addition, based on the latest research results

from [3], the magnetic wireless power transfer over a distance

of 6.5 feet can deliver 10 kW of electric power with a coil

to coil stationary efficiency of 97%. The wireless charging

not only simplifies the charging process but also makes sense
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economically. The charging process of EVs using wireless

power transfer can be undertaken when vehicles are parked

(i.e., similar to the plug-in scenario) and/or when on roads [4].

For the on-road scenario, EVs can recharge their batteries

when in motion. The on-road wireless charging system can be

considered as one of the unidirectional vehicle-to-grid (V2G)

services [5]–[7]. Based on the V2G concept, EVs can charge

their batteries and at the same time provide ancillary services

(e.g., frequency regulation) for mitigating negative impacts on

the power grid.

In literature, several studies have discussed impacts of EV

charging on a distribution network of power systems [8]–[14].

The EV penetration has an impact on a residential distribution

network because the charging of EVs may consume a large

amount of energy and thus bring a high peak demand [8]–

[11], power losses [12], [13], and voltage deviation [12], [14].

Several smart or optimal charging schemes are proposed to

tackle the problems with EV penetration [10]–[12], [14]. How-

ever, the existing research assumes a consistent daily charging

load without considering EV mobility patterns. Moreover, how

to evaluate the impact of EV charging on the LMPs of a

wholesale electricity market is still an open issue.

Generally, a wholesale electricity market consists of three

kinds of participants, namely generation companies (GEN-

COs), load-serving entities (LSEs), and an independent system

operator (ISO) [15], [16]. LSEs may submit demand bids

and GENCOs may provide supply offers for purchasing and

selling energy at market clearing prices (i.e., LMPs) in the

market. The ISO is independent from all market participants

and responsible for grid operations, transmission service, and

reliability. After collecting demand bids and supply offers, to

maximize the social welfare, the ISO determines the LMP at

each bus in the power system as well as LSE cleared demands

and GENCO generation dispatch based on economic dispatch.

The GENCO gets paid based on the LMP at the location of

its generator. The LSE pays based on the LMP at the export

location. After settlement, the LSE can resale the electricity

purchased from the wholesale market to its customers at a re-

tail price. The wholesale electricity market includes two kinds

of markets: a day-ahead market and a real-time (balancing)

market [17]. The day-ahead market is a forward market which

develops a day-ahead hourly schedule and calculates hourly

LMPs for the next operating day. On the other hand, the

real-time market calculates 5-minute LMPs based on actual

operating conditions of the power system for matching the

instantaneous load with the instantaneous generation. The

LMP or the nodal price [18] is a common method to determine

energy and transmission congestion prices at specific locations.

LMPs differ by location when transmission congestions occur.

This is because the low cost generation cannot reach all
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demands and high cost generation must be dispatched. In

electricity markets, the LMP is an essential assessment for

ISOs to conduct how and where to maintain market efficiency

and system reliability. Therefore, the volatile LMP due to EV

wireless charging is a challenging issue for power systems.

The wireless charging demand can vary from location to

location due to the EV mobility. As a result, the LMP can

be highly sensitive to the mobility effect. In addition, the base

loads (e.g., residential, commercial, or industrial loads) can

be forecasted based on their historical demand profiles [19].

The EV wireless charging load cannot be accurately predicted

because of the dynamics of EV mobility. A study [20] based on

the plug-in charging scenario indicates that the load increase

caused by recharging PEVs can significantly affect the LMP. It

focuses on the daytime and nighttime charging and recharging

at home or swapping battery at the battery station, under the

assumption of consistent daily charging loads across zones.

Yet, the mobility impact of EVs on LMP dynamics under EV

wireless charging needs to be evaluated.

This paper investigates the impact of wireless charging and

mobility of the EVs on the LMP. We consider a scenario

where EVs can charge their batteries with the charging panels

mounted on the road surfaces when EVs are in motion. First,

we model the EV mobility patterns based on a queueing

network to determine the spatial traffic distribution of EVs.

Each EV has a psychological price (i.e., the maximum ac-

ceptable price) to make an independent charging decision.

The psychological price of an EV depends on its SOC. The

charging load is then analyzed based on the mobility model

and SOC of the EV. Further, we formulate an economic

dispatch problem to investigate the impact of wireless charging

and mobility of the EVs on the LMP. From the perspective of

the electricity market, a retail pricing mechanism of LSEs is

presented to reduce the LMP variations. Reducing the LMP

variations (i.e., the difference among the LMPs of the buses)

can decrease the power generation cost such that the social

welfare of electricity market can be improved. To the best of

our knowledge, this work is the first study in the literature

to evaluate the potential impact of EV mobility model with

wireless charging on the LMP. Because the LMP can be

influenced by the amount and pattern of EV wireless charging,

this study can provide some insights for the LSEs to predict

the EV charging loads in a realistic scenario and for the ISO

to evaluate the impact of EV charging loads and to ensure the

power system efficiency and reliability.

The contributions of the paper are fourfold: (1) The mobility

patterns and the psychological prices of the EVs are analyzed

and modeled based on a queueing network to compute EV

spatial traffic distributions; (2) The EV wireless charging

load is estimated based on the spatial traffic distribution and

is integrated into economic dispatch; (3) An LSE pricing

mechanism is introduced to adjust the retail price of wireless

charging to enhance the social welfare of electricity market; (4)

Realistic EV road traffic simulations are performed to evaluate

the performance of the proposed queueing network model and

LSE pricing mechanism.
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Fig. 1. A typical intersection road system and wireless charging infrastruc-
ture.

II. SYSTEM MODEL

A. EV and Road System Model

Consider a typical road system consisting of several in-

tersections and streets. Each street corresponds to a node

in the road system. Fig. 1 depicts an intersection area of

a road system (with 8 nodes) and the movement directions

of an EV when approaching the intersection. The wireless

power transfer technology is employed in the road system. The

charging panels are deployed on the surface of the streets. The

EVs can withdraw energy from the power grid while moving

above the charging panels.

Suppose there are M nodes in the road system and let

the wireless charging power for each EV at node m (m =
1, 2, · · · ,M ) be ξm. The power transfer efficiency in drawing

energy from the power grid to the EV batteries is denoted by

e. Each EV needs to pay for charging its battery via wireless

power transfer (including power transfer loss). When an EV

is moving above a charging panel, the charging decision is

made by comparing its psychological price with the retail

price. Consider a tagged EV with a psychological price p
and a charging panel with a retail price p′. The EV charges

its battery via wireless power transfer only when the retail

price is not larger than its psychological price, i.e., p′ ≤ p.

The psychological price of an EV depends on the SOC s of

its battery which is within the range [smin, smax]. Without

loss of generality, we consider a monotonically decreasing

function R(·) which maps the EV SOC s (s ∈ [smin, smax])
to a psychological price p, i.e., p = R(s). Intuitively, an

EV with a low SOC can set a high psychological price such

that its battery can be recharged more often to extend the

driving range. Each EV may change its psychological price

when entering a new node because of the energy usage in

vehicle driving and/or the wireless charging on the road. For

simplicity, we consider a homogeneous model such that all

EVs in the road system have the same battery capacity (smin

and smax) and mapping function R(·). The average energy

consumption for each EV to cover a unit distance is denoted

by ζ. An extension of the model to non-homogeneous case is

straightforward and will be discussed in the following section.

The statistics related to mobility patterns of EVs can be ob-

tained by the current traffic information systems of intelligent

transportation systems (ITS) [21]. Most of road traffic data
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collection techniques in ITS can gather the traffic volume (e.g.,

hourly), trip generation rate, intersection turning movement

count, and moving speed of the vehicles on a certain street.

Denote the length and average traffic speed of the street,

node n (n = 1, 2, · · · ,M ), as ln and vn, respectively. The

average amount of energy consumed by and recharged for an

EV at node n are, respectively, given by

Ec
n = ζln, Er

n = ξnτn = ξnln/vn (1)

where ζ denotes the average energy consumption for each EV

to cover a unit distance (e.g., meter) and τn = ln/vn is the

average sojourn time of an EV at node n. Let r∗n,m be the

routing (or turning) probability of an EV from node n to node

m. Then, we have the following traffic equation:

r∗n,0 +
M
∑

m=1

r∗n,m = 1, n = 1, 2, · · · ,M (2)

where r∗n,0 is the routing probability of an EV from node

n to a region outside the road system. An EV may leave the

network (e.g., park in the shopping mall or office building) and

no longer join the traffic during a specific time. Equation (2)

indicates that the sum of the routing probabilities of an EV

from node n to the outside and to the inside of the road system

is equal to one. Denote exogenous arrival rate as α∗
m,p which

represents the rate of EVs with psychological price p arriving

at node m from a region outside the road system. Note that

the exogenous arrival rate may need to be estimated when

EV SOC monitoring is not available in the traffic information

systems and/or at the initial state of EV penetration.

B. Electricity Market Model

The wholesale electricity market model includes an ISO and

a set X of LSEs and a set Y of GENCOs distributed across

the buses of the power grid. The objective of the non-profit

ISO is to maximize the social welfare subject to transmission

constraints and GENCO generation capacity limits. With the

objective, the ISO operates a day-ahead market based on the

LMP mechanism. In Fig. 2, during the day before operating

day, each LSE x submits a demand bid to the ISO for the

operating day. The demand bid of the LSE contains two parts:

base load (i.e., fixed hourly demand) to be sold at a regulated

(i.e., fixed) retail price to its customers; and EV wireless

charging load (i.e., price-sensitive hourly demand) to be sold at

a dynamic pricing mechanism. During the day before operating

day, each GENCO y reports a supply offer to the ISO for

the operating day. The supply offer consists of its hourly

generation cost function and the corresponding generation

limit of its reported operating capacity interval. After gathering

demand bids from LSEs and supply offers from GENCOs

during the day before operating day, the ISO calculates and

posts the hourly LMP at each bus and the dispatch generation

and demand schedule to LSEs and GENCOs for the operating

day. The ISO then settles the day-ahead market for the

operating day by obtaining all purchase payments from LSEs

and delivering all sale payments to GENCOs based on the

LMPs for the operation day. It is assumed that there are no

LSEs

� Submit demand bids
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� Receive demand bids 

and supply offers

� Economic Dispatch

GENCOs

� Submit supply offers

Purchase payment ($)

Sales payment ($)

LMP &

dispatch
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Fig. 2. The electricity market model.

disturbances or outages in the system, which means no re-

bidding is required and the settlement for the day-ahead market

on the day before operating day are perfectly executed as

planned without additional balancing settlement in the real-

time market for the difference on the operating day [16].

Without loss of generality, we focus on a specific hour of

the day.

The power system in the market is composed of a set B of

buses. Each bus b (b ∈ B) has a set Pb of charging panels

which are indexed by the corresponding nodes. For instance,

if a charging panel is installed at node m and belongs to bus

b, we have m ∈ Pb. If LSE x owns bus b, we have b ∈ Bx,

where
∪

x∈X Bx = B and Bx ∩ Bx′ = ∅, for all x ̸= x′,

x, x′ ∈ X . The power system buses are connected via a set

L of power transmission lines. If there is a transmission line

connecting buses b1 and b2, we denote the transmission line

as (b1, b2) ∈ L. Each transmission line (b1, b2) is associated

with a line flow limit Lmax
(b1,b2)

. There is a set G of generators

in the power system. If GENCO y owns generator g, we have

g ∈ Gy, where
∪

y∈Y Gy = G and Gy∩Gy′ = ∅, for all y ̸= y′,
y, y′ ∈ Y . A second-order cost function Fg(·) is typically used

to represent the power generation cost of generator g [22],

given by

Fg(Pg) = agP
2
g + bgPg + cg, g ∈ G (3)

where Pg is the active power output of generator g, while

ag, bg, and cg are the generation cost coefficients. The power

output Pg of generator g is bounded by lower and upper

generation limits, given by Pmin
g and Pmax

g , respectively.

The system model focuses on the generation and transmis-

sion grids and does not involve a distribution network. That

is, each LSE acts as an aggregator to combine the loads of

its customers at each bus [23]. The base load (i.e., the load

without EV penetration) at bus b is denoted as Db. Let p∗b
be the fixed retail price at bus b for the base load. Moreover,

we consider a uniform and dynamic retail price p′b for EV

wireless charging where all the charging panels belong to bus

b. In this way, the EV charging load at bus b under the retail

price p′b is modeled as a price-sensitive demand function, i.e.,

∆Db, based on the EV mobility patterns.
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Fig. 3. The queueing network model of the typical road system.

III. ECONOMIC DISPATCH WITH EV WIRELESS CHARGING

In this section, we analyze the EV charging load for eco-

nomic dispatch in electricity markets. We first analyze the EV

mobility by incorporating the effect of wireless charging and

then derive the charging demand function from the mobility

model.

A. EV Wireless Charging Load

The EV mobility patterns are modeled as a BCMP open

queueing network [24]. The streets and EVs are regarded as

the nodes and customers of the queueing network, respectively.

For instance, the road system in Fig. 1 can be mapped to a

queueing network as shown in Fig. 3 based on the connectivity

among the nodes. The traffic of node 1 can be routed to nodes

2, 3, and 4 with probabilities r∗1,2, r∗1,3, and r∗1,4, respectively.

Taking account of traffic equation (2), we have

r∗1,2 + r∗1,3 + r∗1,4 = 1. (4)

Similarly, we have r∗8,2 + r∗8,3 + r∗8,5 = 1 for node 8 in Fig. 3.

For computational simplicity, we consider a finite num-

ber C of psychological price categories. The categories of

psychological prices of an EV can be, for example: very

low, low, medium, high, and very high. The price category

c (c = 1, 2, · · · , C − 1) corresponds to a SOC within the

range [sc−1, sc), where s0 = smin and sc−1 < sc for

all c = 1, 2, · · · , C − 1. For the price category C, the

corresponding SOC range is [sC−1, sC ], where sC = smax

and sC−1 < sC . Based on the SOC-price mapping function

R(·), the equivalent psychological price of category c can be

calculated by

pc =
R(sc) +R(sc−1)

2
. (5)

Accordingly, we aggregate the exogenous arrival rate for

each psychological price category. The aggregated exogenous

arrival rate of EVs with psychological price category c at node

m is given by

α′
m,c =

∑

p∈[R(sc−1),R(sc)]

α∗
m,p. (6)

It is worth mentioning that the above categorization (or

quantization) can facilitate our queueing network analysis

since the EVs with different psychological prices are catego-

rized into a finite (and potentially smaller) number of classes.

A more accurate mobility model can be obtained by choosing a

larger C at the cost of a higher computational complexity, and

vice versa. Moreover, in order to extend the mobility model to

a non-homogeneous case such that different EVs have different

energy storage and consumption characteristics, more classes

(C) can be defined by incorporating the manufacturer and/or

models of EVs. The proposed analytical model can be directly

applied by increasing the number of classes.

The load of EV wireless charging is measured by the spatial

EV traffic distribution within the charging areas. Based on

the mobility model, we consider each node at the queue-

ing network as an M/G/∞ node with C customer classes

corresponding to the EV’s psychological price categories.

With the BCMP network, the arrival rate (αm,c) of class-c
(c = 1, 2, · · · , C) customers at node m (m = 1, 2, · · · ,M ) in

the queueing network satisfies the following equation:

αm,c = α′
m,c +

M
∑

n=1

C
∑

k=1

αn,krnk,mc (7)

where rnk,mc is the routing probability of a customer from

class-k at node n to class-c at node m. Suppose node n
belongs to bus b, i.e., n ∈ Pb. Taking account of the routing

probability without psychological price (r∗n,m) and energy

consuming/recharging process, the value of rnk,mc can be

calculated. If k ̸= c, we have

rnk,mc =































r∗n,m ·
Er

n−Ec
n

sk−sk−1
, if c = k − 1 and pk ≥ p′b

and Er
n > Ec

n

r∗n,m ·
Ec

n−Er
n

sk−sk−1
, if c = k + 1 and pk ≥ p′b

and Ec
n > Er

n

r∗n,m ·
Ec

n

sk−sk−1
, if c = k + 1 and pk < p′b

(8)

where the first case corresponds to the recharging of a class-k
EV at node n. If the recharged energy (Er

n) is larger than the

consumed energy (Ec
n), the probability for the EV to decrease

its psychological price by one level can be approximated as
Er

n−Ec
n

sk−sk−1
. Similarly, the second case in (8) corresponds to the

recharging of a class-k EV at node n, given the recharged

energy is less than the consumed energy. The third case in (8)

denotes the routing probability without EV recharging. For all

other cases with k ̸= c and not mentioned in (8), we have

rnk,mc = 0. If k = c, the value of rnk,mc can be calculated

based on a complementary of (8) with respect to the routing

probability without psychological price (r∗n,m), given by

rnk,mc = r∗n,m −

C
∑

i=1

C
∑

j=1

j ̸=i

rni,mj . (9)

Using queueing network analysis, we can obtain the sta-

tionary distribution for different numbers of EVs of different

price categories in different streets as follows:

π(n) =
M
∏

m=1

πm(nm) (10)

where n = (n1, · · · , nM ), nm = (nm,1, · · · , nm,C), and nm,c

(nm,c = 0, 1, 2, · · · , nmax) is the number of class-c customers

at node m. Here, nmax is the maximum possible number of
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EVs of one class at a specific node. Further, we have

πm(nm) = e−ρm

C
∏

c=1

ρ
nm,c
m,c

nm,c!
(11)

where ρm =
∑C

c=1 ρm,c, ρm,c =
αm,c

µm
, and µm is the average

service rate of customers at node m which is the reciprocal

of the average sojourn time, i.e., µm = 1
τm

.

Given the stationary distribution, the load increment caused

by EV wireless charging at bus b (i.e., the price-sensitive

demand function) can be calculated as

∆Db =
∑

m∈Pb

ξm
e

[

∑

nm

(

C
∑

c=1

nm,cI(pc ≥ p′b))πm(nm)

]

(12)

where ξm
e

represents the wireless power transfer for each EV

at node m taking account of power transfer efficiency,
∑

nm
=

∑nmax

nm,1=0

∑nmax

nm,2=0 · · ·
∑nmax

nm,C=0 represents a summation over

all possible values of nm, and I(A) is an indication function

which equals 1 if event A is true and 0 otherwise. In (12),

only the EVs with psychological prices not less than the retail

price (i.e., pc ≥ p′b) can recharge their batteries and, thus,

are included in the EV wireless charging load calculation. As

shown in Fig. 4, the price-sensitive demand function ∆Db

with the retail price p′b is fed by the traffic statistics and

the psychological price p of the EVs. After computation, the

wireless charging demand is included in the demand bid and

then submitted to the ISO.

B. Economic Dispatch

A direct current (DC) lossless load flow model is used to

formulate the economic dispatch problem with the objective of

social welfare maximization such that the impact of wireless

charging and mobility of EVs on LMPs can be investigated.

Consider a specific hour of the operating day. The social

welfare (SW ) function is derived in [15], given by

SW =
∑

x∈X

Rx −
∑

y∈Y

Cy

=
∑

x∈X

∑

b∈Bx

(p∗b ·Db + p′b ·∆Db)−
∑

y∈Y

∑

g∈Gy

Fg(Pg)

=
∑

b∈B

(p∗b ·Db + p′b ·∆Db)−
∑

g∈G

Fg(Pg) (13)

where Rx denotes the revenues of LSE x from the resale of

power to its retail customers of the base load and the wireless

charging, and Cy denotes the generation cost for GENCO y.

To maximize the social welfare, the economic dispatch

problem is given by

(P1) max
Pg(g∈G)

SW (14)

subject to
∑

g∈G

Pg =
∑

b∈B

(Db +∆Db) (15)

Pmin
g ≤ Pg ≤ Pmax

g , g ∈ G (16)

− Lmax
(k,m) ≤ L(k,m) ≤ Lmax

(k,m), (k,m) ∈ L

(17)

where L(k,m) denotes the active power flow from bus k to bus

m, given by

L(k,m) =
∑

b∈B

Ab
(k,m)(PGb − PDb) (18)

with As
(k,m) representing the sensitivity coefficient which de-

pends on the impedances of power transmission lines [22]. The

objective of the economic dispatch problem is to maximize

the social welfare which is the difference between the revenue

of the LSEs and the power generation cost of the GENCOs

as shown in (14). Constraint (15) states that the total power

generation should be equal to the total demand including

wireless charging load. Constraint (16) is the generator limits

constraint. Constraint (17) indicates that the transmission

capacity limit is applied to each power transmission line in

both directions.

The economic dispatch problem belongs to a class of

convex optimization problem since the objective function is

concave (with respect to maximization) while all constraints

are linear [25]. Therefore, it can be efficiently solved by

an interior point method [22]. By solving the optimization

problem, the LMP variation due to wireless charging and

mobility of EVs can be measured. The LMP of each bus in the

system is determined by the optimal solution of the economic

dispatch problem and the associated Lagrangian multiplier of

the solution [18].

C. LSE Pricing Mechanism

Suppose the retail price of the LSEs for the base load (p∗b )

is a constant. An LSE pricing mechanism which adjusts the

retail price for EV wireless charging (p′b), is presented to

reduce the LMP variations and further maximize the social

welfare of the electricity market (see Fig. 4). Generally, the

psychological prices of the EV owners can be obtained based
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on a market survey. Without loss of generality, assume that

p′b ∈ [p1, pC ] where p1 and pC denote the minimum and the

maximum psychological price of the EV owners, respectively,

as mentioned in Section II. An EV does not charge its battery

when the retail price is higher than its psychological price. The

EV may choose the other locations for charging while traveling

on the road. As the retail price p′b increases, the wireless

charging load and thus the LMP of bus b decrease. However,

the social welfare may reduce if the wireless charging load

is reduced extensively, which results in much less electricity

transactions.

The economic dispatch problem with the proposed pricing

mechanism can be formulated as

(P2) max
p′
b
∈[p1,pC ],Pg(g∈G)

SW (19)

subject to (15), (16), (17).

Then, the following proposition holds.

Proposition 1: Given retail price pj + δ at bus b, where

b ∈ B, j = 1, 2, · · · , C − 1, and δ ∈ (0, pj+1 − pj ]. The load

increment caused by EV wireless charging at bus b under the

retail price pj + δ is equal to that under the retail price pj+1,

i.e., ∆D
pj+δ

b = ∆D
pj+1

b , where ∆D
pj+δ

b and ∆D
pj+1

b are

calculated based on (12) by replacing p′b with pj+δ and pj+1,

respectively.

Proof: As presented in Subsection III-A, the stationary

distribution for different numbers of EVs of different price

categories in different streets is required for computing the

loads of EV wireless charging. In the proposed analytical

model, the routing probability of a customer from class-k at

node n (n ∈ Pb) to class-c at node m (rnk,mc) is dependent

on the retail price p′b as shown in (8).

First, we need to prove that rnk,mc under the retail price

pj+δ is equal to that under the retail price pj+1. For the retail

price pj + δ and k ̸= c, we have

r
pj+δ

nk,mc =































r∗n,m ·
Er

n−Ec
n

sk−sk−1
, if c = k − 1 and pk ≥ pj + δ

and Er
n > Ec

n

r∗n,m ·
Ec

n−Er
n

sk−sk−1
, if c = k + 1 and pk ≥ pj + δ

and Ec
n > Er

n

r∗n,m ·
Ec

n

sk−sk−1
, if c = k + 1 and pk < pj + δ.

(20)

For the retail price pj+1 and k ̸= c, let

r
pj+1

nk,mc =































r∗n,m ·
Er

n−Ec
n

sk−sk−1
, if c = k − 1 and pk ≥ pj+1

and Er
n > Ec

n

r∗n,m ·
Ec

n−Er
n

sk−sk−1
, if c = k + 1 and pk ≥ pj+1

and Ec
n > Er

n

r∗n,m ·
Ec

n

sk−sk−1
, if c = k + 1 and pk < pj+1.

(21)

It can be observed that, when k ≥ j+1, conditions pk ≥ pj+δ
and pk ≥ pj+1 are satisfied in (20) and (21), respectively. On

the other hand, when k < j + 1, conditions pk < pj + δ and

pk < pj+1 are satisfied in (20) and (21), respectively. Hence,

the routing probability of a customer from class-k at node n
to class-c at node m under the market price pj + δ is equal

to that under the market price pj+1, i.e., r
pj+δ

nk,mc = r
pj+1

nk,mc.

Therefore, the stationary distribution for different numbers of

EVs of different price categories in different streets of the

proposed model under two different prices (pj + δ and pj+1)

is identical.

In the following, we prove that the load increments caused

by EV wireless charging calculated based on the given station-

ary distribution under the two retail prices are equal. In (12),

I(pi ≥ p′b) is an indication function to determine the charging

decisions made by the EV owners and is sensitive to the retail

price in our LSE pricing mechanism. Two cases, i ≥ j + 1
and i < j + 1 where i, j = 1, 2, · · · , C − 1 are considered in

the following discussion. In the first case (i ≥ j + 1), since

δ ∈ (0, pj+1−pj ], the relation between the indication functions

given the two market prices is given by

I(pi ≥ pj + δ) = I(pi ≥ pj+1) = 1. (22)

In the second case (i < j + 1), we have

I(pi ≥ pj + δ) = I(pi ≥ pj+1) = 0. (23)

In other words, the load increment caused by EV wireless

charging at bus b under the market price pj + δ is equal to

that under the market price pj+1, i.e.,

∆D
pj+δ

b =
∑

m∈Pb

ξm

[

∑

nm

(
C
∑

c=1

nm,cI(pc ≥ p′b))πm(nm)

]

=
∑

m∈Pb

ξm

[

∑

nm

(

C
∑

c=1

nm,cI(pc ≥ pj+1))πm(nm)

]

= ∆D
pj+1

b . (24)

According to proposition 1 and pj+1 ≥ pj + δ, we have the

following inequality for the objective function of problem P2:
∑

b∈B

(p∗b ·Db + pj+1 ·∆D
pj+1

b )−
∑

g∈G

Fg(Pg)

=
∑

b∈B

(p∗b ·Db + pj+1 ·∆D
pj+δ

b )−
∑

g∈G

Fg(Pg)

≥
∑

b∈B

(p∗b ·Db + (pj + δ) ·∆D
pj+δ

b )−
∑

g∈G

Fg(Pg). (25)

Based on the inequality (25), the LSE making the retail price

as an integer pj+1 instead of the values of pj+δ can achieve a

higher social welfare, while the constraints in problem P2 are

still feasible. Problem P2 is thus transformed into the following

problem:

(P3) max
p′
b
∈{pj |j=2,3,··· ,C},Pg(g∈G)

SW (26)

subject to (15), (16), (17).

Problem P3 is a mixed integer non-linear programming

(MINLP) problem, which is NP-hard [26]. In general, there is

no efficient method to solve the problem. However, when the

scale of the road system is small, an exhaust search method

can be used to solve the problem. More efficient methods to

solve the MINLP problem need further investigation.
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D. Discussion on the Scale of Road System

Our proposed analytical model can provide an efficient

method for LSE pricing mechanism without requiring time-

consuming real world experiments. However, when mapping

the power system infrastructure (i.e., power system buses and

transmission lines) to the road map, a large-scale road system

(which includes a huge number of charging panels per system

bus) may be used in the proposed analytical model. To reduce

the computational complexity, we can divide the large-scale

road system into several small-scale road regions. The inter-

region traffic flow is reflected by the exogenous arrival rate

(α∗
m,p) and routing probability to an adjacent region (r∗n,0).

After calculating the charging demand of each region, the total

load due to EV wireless charging can be obtained.

IV. CASE STUDY - 3-BUS TEST SYSTEM

To study the impact of EV wireless charging on LMPs, we

consider a 3-bus test system similar to the ones used in [22],

[23]. Simulations of realistic EV mobility are performed based

on the road traffic simulator (SUMO) [27]. SUMO is an open-

source traffic simulator and is capable of accurately modeling

the behavior of individual drivers by considering vehicle-to-

vehicle and vehicle-to-road signalization interactions and has

been validated by the transportation research community. The

battery and energy consumption statistics of an off-the-shelf

plug-in hybrid electric vehicle Chevrolet Volt [28] are used

in the case study. The proposed BCMP network model is

implemented in Matlab, and the economic dispatch problem is

implemented using a well-known Matlab-based power system

simulation package, MATPOWER [29]. Specifically, MAT-

POWER is an open-source simulation package and can be

customized by adding user-defined variables, costs, and con-

straints. In this case study, a MATPOWER M-file [29] which

specifies the system configuration of a 3-bus test system [30]

is created for performance evaluation. The traffic statistics of

the BCMP network model are fed using the SUMO simulation

results according to Fig. 4.

A. System Topology and Configuration

A 3-bus test system is considered in the case study. Three

LSEs and three GENCOs involve in the electricity market.

Each bus has one LSE and one GENCO for load serving and

power supply respectively [16]. The topology of the 3-bus test

system is shown in Fig. 5. The parameters of the generators,

base loads, and transmission lines are given in [30]. In our

simulations, the topology of the 3-bus test system is mapped

to a typical Manhattan-style road system in a high traffic and

populated area (see Fig. 5). The road system is a 4×4 km2

region and is composed of 9 intersections and 24 streets (two-

way). Each street has a length of 2 km with two lanes and

the vehicular movements in the intersections are controlled by

traffic signals. The charging panels of red region (8 streets),

green region (6 streets), and blue region (10 streets) belong to

bus 1, bus 2, and bus 3, respectively. This setting implies that

region 3 has the highest potential traffic volume and thus the

highest EV wireless charging load.

2 km

2 km

2 km2 km

Bus1

D
1

G1

1

Bus 3

G3

D
3

D
3

Bus 2

G2

D
2

D
2

LSE 1 LSE 2

LSE 3

GENCO 1 GENCO 2

GENCO 3

Fig. 5. The topology of 3-bus test system with mapped road system.

B. Traffic Generation

We assume that the EVs arrive at the road system from

each street according to a Poisson process. The exogenous

arrival rate at each street is selected such that the average traffic

volume is consistent with real road systems. Specifically, we

consider the average annual daily traffic (AADT) of the roads

to be between 50,000 and 100,000 based on Washington State

2011 peak hour report [31]. The result shows that the average

hourly traffic volume is about 71, 540/24 = 2980.83 vehicle

per street. Different exogenous arrival rates are evaluated to

match the average hourly traffic volume. According to SUMO

simulation results, an exogenous arrival rate 0.2 vehicle/s can

generate an average traffic volume 3,360 in the proposed

road map and is used in the following case study. Each EV

randomly selects a street in the road system as its destination.

According to the Electric Power Research Institute, the EV

penetration level can reach 35%, 51%, and 62% by 2020, 2030,

and 2050, respectively [32]. Therefore, we considered a series

of market penetration levels of EVs from 10% to 60% of the

total traffic volume.

C. Battery Model and Wireless Charging

The battery model is based on the parameters reported

by Chevrolet Volt which uses a lithium-ion battery (Li-ion)

battery pack [28]. The battery pack provides 16 kWh energy

storage capacity, while a vehicle only uses about 10 kWh

of this capacity to extend the battery’s lifetime based on

an energy management system. The energy consumption for

driving is 0.2 kWh/km. The initial EV SOC is randomly

selected between 1 kWh and 9 kWh (or equivalently, 10%

and 90% of the available capacity). The wireless charging

power for each charging panel is 10 kW [3]. According to [4],

the average power transfer efficiency from the power grid to

the EVs battery under varying mobility conditions is 80%. To

obtain a positive social welfare, the retail price of the LSEs for

the base load is set at 4 cent/kWh based on the generation cost

of the GENCOs, as shown in (13). In general, the retail price
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Fig. 6. EV wireless charging load versus EV penetration level.

for wireless charging should be more expensive than that for

the base load. Thus, the retail prices for wireless charging (i.e.,

from 4.5 to 6.5 cent/kWh) are set exceeding the retail price for

the base load (i.e., 4 cent/kWh). The psychological price of an

EV consists of 5 levels (i.e., 4.5, 5, 5.5, 6, and 6.5 cent/kWh)

corresponding to the 5 levels of SOC (i.e., [8,10], [6,8), [4,6),

[2,4), and [0,2) kWh).

The retail price for wireless charging of a road is available

for the EV owners based on ITS. When an EV owner is

driving on a road, he/she compares his/her psychological price

with the retail price of the road. If the retail price is higher

than the psychological price, the EV owner does not charge

his/her battery. With the price information, the EV owner

charges his/her battery when moving on road segments with

less expensive prices (from his/her own point of view). Each

EV owner thus can be satisfied with charging service from

LSEs.

D. Impact of EV Penetration Level

Fig. 6 illustrates the variation of the EV wireless charging

load with the EV penetration level in the simulated road

system. The retail price of the LSEs for wireless charging is

4.5 cent/kWh. It is observed that in both analytical and simu-

lation results, the wireless charging loads of all buses increase

gradually as the penetration level increases from 10% to 60%.

As expected, the load on the bus 3 is more than those of the

other two buses. This is because bus 3 contains more charging

panels, as described in Subsection IV-A. The charging loads

calculated based on the proposed BCMP network model are

very close to those based on simulations. In other words,

the proposed BCMP network model can accurately estimate

the load due to EV wireless charging given the EV mobility

statistics collected from traffic information systems.

Fig. 7 shows that the LMP variations for both BCMP

network analysis and simulation increase as the penetration

level increases from 10% to 60%. The analytical result of the

proposed model matches well with that of realistic simulation

using SUMO simulator. Obviously, the LMPs of three buses

remain at a uniform LMP as the penetration level is lower

than 20%. However, when the penetration level achieves 20%,

an LMP separation appears because line (1, 3) is congested

(see Fig. 5). Compared with the LMPs without EV wireless

charging, the LMPs of bus 1, bus 2, and bus 3 are raised by

4%, 60%, and 173%, respectively. It is evident that the LMP
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Fig. 7. LMP versus EV penetration level.
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of a bus can be increased due to the EV wireless charging

demand. In other words, the power generator with the higher

generation cost needs to be dispatched to serve the EV wireless

charging demand.

As shown in Fig. 8, the social welfare of electricity market

obtained from the analysis and the simulation increase from

$882.35 per hour to $1,365.65 per hour and $1,379.99 per

hour, respectively, as the penetration level increases from

10% to 60%. With a higher wireless charging demand, the

increase of the revenue of the LSEs is still higher than the

power generation cost of the GENCOs, as shown in (13). To

improve the social welfare, LSEs may raise retail prices for

wireless charging. However, the social welfare may decrease

accordingly because the demand of EV wireless charging

is suppressed by high retail prices, to be discussed in the

following subsection.

E. Impact of LSE Pricing Mechanism

The LSE pricing mechanism enables the LSEs to change

their retail prices for wireless charging to enhance the social

welfare. In this subsection, we assume that all the LSEs set

the same retail price on each bus. In the following evaluation,

the EV penetration level is set to be 60% of the total traffic

volume. Fig. 9 compares the wireless charging load on each

bus under different pricing schemes (i.e., 4.5, 5, 5.5, 6, and

6.5 cent/kWh). The analytical results based on the proposed

BCMP network model are also close to the simulation results.

The proposed model successfully predicts the charging load of

different pricing mechanisms. It is observed that the wireless

charging loads dramatically decrease as the retail price for

wireless charging raises. The main reason is that wireless
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charging on the road is not carried out for most EVs as the

retail price is higher than their psychological prices, and thus

the wireless charging demand is restrained by higher retail

prices.

Fig. 10 depicts the LMP variations on each bus under

different pricing mechanisms. It is obvious that raising the

LSE retail price indeed suppresses the growth of LMPs. Both

analytical and simulation results indicate that the LMPs of bus

1 and bus 2 can be reduced to the values closer to those with

only the base load. The LMP variation of bus 3 is reduced from

173% to 28% as the retail price is increased to 6.5 cent/kWh.

However, the LMP separation remains because the congestion

of line (1, 3) is not released.

Fig. 11 illustrates the social welfare for various pricing

mechanisms in the price range from 4.5 to 6.5 cent/kWh. It is

observed that the social welfare calculated from both analysis

and simulation do not always increase with the retail price.

As shown in Fig. 11, a retail price of 5 cent/kWh achieves

the highest social welfare. If a higher retail price is chosen by

the LSE, the wireless charging demand decreases accordingly

(see Fig. 9). In other words, the reduction in the revenues

of the LSEs may surpass the reduction in power generation

cost of the GENCOs as the number of EV charging on the

road decreases. In the following, we vary the retail price for

each LSE to investigate impact of the pricing mechanism on

different buses.

Among all combinations of the retail price from 4.5 to

6.5 cent/kWh for the three buses, the maximum social welfare

is achieved in both the analytical and simulation results when

the retail price of bus 3 is set to 5.5 cent/kWh and the

retail price of other two buses is set to 5 cent/kWh. If the

retail price of bus 3 increases, the wireless charging load on
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Fig. 11. Social welfare versus pricing mechanism.

the bus decreases accordingly. This result implies that power

generation cost can be further reduced because the LMP of

bus 3 is much higher than those of the other two buses (see

Fig. 10). That is, the social welfare can be improved by

increasing the retail price of the bus with a higher LMP.

V. CASE STUDY - IEEE 30-BUS TEST SYSTEM

In this section, we present the performance evaluation of

the proposed analytical model on an IEEE 30-bus test system.

Based on the similar system and traffic configurations and

EV battery and wireless charging model in Section IV, the

IEEE 30-bus test system similar to the one used in [33] is

considered for studying the impact of EV wireless charging

on the LMP. The system configuration of the IEEE 30-bus

test system [35] is specified in an M-file in MATPOWER for

executing simulations.

A. System Topology and Configuration

In the IEEE 30-bus test system, 30 LSEs and 9 GENCOs

participate in the electricity market. Each LSE provides load

serving on a bus and each GENCO owns a power generator

on a bus for power supply [16]. The topology of the IEEE

30-bus test system [34] is shown in Fig. 12, where the

IDs of the generators are in accordance with [33] and are

marked beside the corresponding buses. The parameters of the

generators, base loads, and transmission lines are given in [35].

The topology of the 30-bus test system is also mapped to a

20×20 km2 Manhattan-style road system composed of 121

intersections and 440 streets. Each street has two lanes and its

length is 2 km. For simplicity, we divide the topology with

the road system into three areas, i.e., area 1 (199 streets, 16

buses), area 2 (128 streets, 7 buses), and area 3 (113 streets, 7

buses), as shown in Fig. 12. The charging panels of the buses

within each area have a uniform retail price. Based on SUMO

simulation results, an exogenous arrival rate 0.11 vehicle/s can

generate an average hourly traffic volume 3,354 in the road

system and is selected in the case study. The destination (i.e., a

street) of each EV is randomly chosen from the road system.

We consider 60% of the total traffic volume as the market

penetration level of EVs.

B. Results

Without the EV penetration, the average LMP among

the buses is 22.87 dollar/MWh and the social welfare is
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Fig. 12. The topology of IEEE 30-bus test system [34].

$55,135.74 per hour in the 30-bus test system. Similar to the

results of the 3-bus test system, the average LMP and the

social welfare increase to 40.6 dollar/MWh and $63,464.73

per hour, respectively, estimated by the proposed analytical

model at the 60% of the EV penetration level. This is because

more transmission congestions appear (e.g., line (15, 18)) and

more expensive generators (e.g., G3 and G4) are thus required

to serve the load increment. It can be concluded that the EV

wireless charging indeed affects the LMP.

The LSE pricing mechanism is investigated to further

improve the social welfare of the electricity market. First,

we assume that all the LSEs in different areas assign the

same retail price on each bus. The average LMP of area 1,

area 2, and area 3 dramatically drop from 39.6 to 24.33,

from 38.26 to 24.28, and from 42.05 to 23.76, respectively,

when the retail price raises from 4.5 to 6.5 cent/kWh. This is

because more EV owners do not charge their batteries under

the higher retail price. Thus, the transmission congestion of

line (15, 18) is relieved and the power output of generator G3
and G4 is largely reduced. However, the social welfare does

not increase as a result of the increment of the retail price.

Reducing the wireless charging load may decrease the LSE

revenue more significantly than the reduction in the GENCO

generation cost. When the retail prices of all the areas are set as

5.5 cent/kWh, the highest social welfare ($65,827.89 per hour)

is achieved. Then, we consider all combinations of the retail

price from 4.5 to 6.5 cent/kWh for the three areas. Among all

the combinations, the maximum social welfare ($66,028.59 per

hour) is obtained by choosing the pricing mechanism with,

5.5 cent/kWh for the area 1, 5.5 cent/kWh for the area 2,

6 cent/kWh for the area 3. It matches the result presented

in Subsection IV-E. The social welfare can be enhanced by

raising the retail price of the area with the higher LMP (i.e.,

the area 3 in the case study).

VI. CONCLUSION AND FUTURE WORK

In this paper we have proposed a BCMP network model

to predict EV wireless charging demand for investigating the

impact of EV wireless charging and mobility on the LMP.

Based on the traffic statistics and power system configurations,

the proposed model can capture the dynamics of EV mobility

and then compute the wireless charging load. The LMP and the

social welfare are thus calculated based on economic dispatch.

The LSE pricing mechanism is investigated to reduce the

LMP variations and maximize the social welfare. The validity

of the proposed BCMP network model has been confirmed

by computer simulations using the SUMO realistic traffic

simulator. The results have shown that the proposed BCMP

network model accurately predicts the wireless charging load

and the wireless charging load increases the LMP variations

of each bus in the power system. Moreover, the proper

pricing mechanism not only suppresses volatility of LMP on

certain buses but also increases the social welfare. For further

research, we intend to carry out more theoretical investigation

on related topics (e.g., investigating the impact of EV wireless

charging on microgrids [36] and developing techniques for EV

optimal battery management [37], [38]). In addition, the design

and incorporation of charging stations in the proposed system

is another interesting research topic [39]. The experimental

or field evaluation of on-road wireless charging system will

be conducted when the implementation of wireless charging

system becomes mature.
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