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Abstract—Recently, analysis and designing of the structures 

based on the Reliability theory have been the center of attention. 
Reason of this attention is the existence of the natural and random 
structural parameters such as the material specification, external 
loads, geometric dimensions etc. By means of the Reliability theory, 
uncertainties resulted from the statistical nature of the structural 
parameters can be changed into the mathematical equations and the 
safety and operational considerations can be considered in the 
designing process. According to this theory, it is possible to study the 
destruction probability of not only a specific element but also the 
entire system. Therefore, after being assured of safety of every 
element, their reciprocal effects on the safety of the entire system can 
be investigated.  
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I. INTRODUCTION 

REDICTION of seismic response of a new or existing 
structure is complex, due not only to the large number of 

Factors that need to be considered and the complexity of 
Seismic response, but also due to the large inherent 
uncertainty associated with making these predictions. 
Clearly the characteristics of future earthquakes can only 
be approximated leading to very large uncertainties in the 
Loads acting on the structure. Structural properties may 
differ from those intended or assumed by the designer, or 

May change substantially during the earthquake (e.g.    local 
fracture of connections).Analysis methods may not accurately 
capture the actual behavior due to simplifications in the 
analysis procedure (linear vs. nonlinear for instance) and 
modeling of the structure. Our Knowledge of the behavior of 
structures during earthquakes is not complete which 

introduces other uncertainties. Consequently, seismic 
performance prediction must consider these uncertainties [8]. 
Many of these issues are covered to a greater or lesser 
extent in current codes through the use of Load and 
resistance factors, of various design Parameters following 
major earthquakes and introduction of new analytical and 
design procedures as they are developed and verified. 
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By means of the Reliability analysis of the structural 
systems, it is possible to investigate sufficiency of the 

structures recently designed and also safety of the 
existing structures, probability-based analysis of the 
structure’s risks, maintenance strategies, safety 

evaluation of the wear and tear period etc. Reliability 
theory enables us to design the structural system through 
defining the destruction criterion. Hence, one may hope 
to: 

a) Design modern structures without procedural 

regulations, for example to design a structure made up of 
new materials 

b) Provide the committees, which make decisions 
about procedural regulations, with this theory as a 

powerful device and then apply the gained results to 
substitute and complete the existing procedural 

regulations 

c) Find the contradictions of different procedural 

regulations and try to remove their deficiencies 
    Purposes of this paper 
1) Structural reliability calculated in two ways : DM-

Based and IM-Based , comparing the results 
2) Structural reliability calculated using two distribution 

( Logistic and Log-normal ) and comparing results 
3) Structural reliability calculated using two ( non-linear 

static and non-linear dynamic) analysis and comparing results. 

 
The main goal of this paper provide fundamental and novel 

method for calculating probability of the Reliability of 
structures using statistical distribution is in addition to simply 

being more efficient, more accurate performance of structures 
likely to be able to offer us. (Being symmetric is one of the 
Important characteristics of this distribution which should be 
noted.) 

In this course, different distributions (such as beta, gamma, 
povason, Laplace, gamble etc.) were examined but not applied 
due to some specific characteristics like being unsymmetrical. 

Logistic distribution was additionally investigated and it 
was illustrated that this distribution is very much like the Log-

normal distribution from the aspect of statistic specifications. 
The presented mathematics papers are suggestive of this 
claim, too [16]. 
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II. STRUCTURAL CHARACTREISTIC 

The applied model was a reinforced concrete bending frame 

which has been designed according to the specific plasticity 
principles and by means of IDARC Non-linear Software. The 
mentioned frame possesses 8 storeys with 3.2 meters in height 
and also four 5-meter openings.  

To provide the necessary plasticity and meet the economical 
considerations, the percentage of the columns’ armatures and 
that of the posts were limited to 1 – 3 and 1.7 percents, 
respectively. The table I contain the dimensions and kinds of 
the armatures used in the frame’s different parts. 

In the current research, in order to do the Time history 
analysis, a series of Record were needed. So, 30 reformed 
Record were selected. To make sure of being reformed, the 
entire records were controlled by Seismo Signal software. All 
the selected records belonged to California, United States and 
some controlling parameters, such as distance from the fault 
and largeness, were taken into account while selecting records.  

                                            TABLE I 
         RANGE OF EACH PARAMETER USED TO SELECT RECORDS  

 

Symbol    Quantity  characteristic  SI 

 

S       Soil   B, C, D usgs Classification ------- 

M      Magnitude     6---7.3   ------- 

d     distance       15.1---28.8      1Km          1000 m 

PGA      Peak Ground Motion   0.074 ---0.549      1g             9.8 m/s² 

P      Number of Point       1800 --- 5961   ------- 

DT      Duration Time       0.005, 0.01, 0.02 sec                  Sec 

D       Duration        21.9‐‐‐40 Sec                       
Sec 

III. INCREMENTAL DYNAMIC ANALYSIS 

Incremental Dynamic Analysis (IDA) is an emerging 
analysis method that offers thorough seismic Demand and 
capacity    prediction capability by using a series of nonlinear 
dynamic analyses under a multiply scaled suite of ground 
motion records. Realization of its opportunities requires 
several innovations, such as choosing suitable ground motion 
Intensity Measures (IMs) and representative Damage 
Measures (DMs). 

An important issue in Performance-Based Earthquake 
Engineering is the estimation of structural Performance under 
seismic loads, in particular the estimation of the mean annual 
rate of exceeding a specified level of structural demand (e.g., 

maximum Peak interstorey drift ratio θmax) or certain  
 

 

Needs is Incremental Dynamic Analysis (IDA), which 
involves Performing   nonlinear dynamic analyses of the 
structural model under a suite of ground Motion records , 

Each scaled to several intensity levels designed to force the 
structure all the Way from elasticity to final global dynamic 
instability [14].      

Thus, we can generate IDA curves of the structural 
response, as measured by a Damage Measure (DM, e.g., peak 
roof drift or maximum peak interstorey drift θmax), versus the 
ground Motion Intensity level, measured by an Intensity 
Measure (IM, e.g., peak ground acceleration or the 5%-
damped first-mode spectral acceleration Sa (T1; 5%)). 

In turn these can be processed and summarized to get the 
distribution of demand (DM) given intensity IM. Additionally, 
limit-states (e.g.  Immediate Occupancy or Collapse 
Prevention [7]) can be Defined on each IDA curve and 

summarized to produce the Probability of exceeding a 
specified Limit-state given the IM level. 

The Final results are in a suitable format to be conveniently 
integrated with a conventional hazard Curve In order to 
calculate Annual rates of exceeding a Certain Limit-state 

Capacity, or a certain demand. 
 

 

 

Fig. 1 IDA curves of peak interstorey drifts for each floor of a T1= 
1:8, sec 5-storey steel braced frame. 

 

IV. MODAL PUSHOVER ANALYSIS (MPA) 
 

a) Introduction 
 
The basics of this method were proposed by [1], [2]. 

Applying the concept of one-degree-free structure as well as 
the desired seismogram allows the equivalent displacement of 
one-degree-free structure to be achieved, by means of which 
the displacement of the main structure can be calculated.   

   
b) Implication Equivalent One-Degree-Freedom 

Structure 

The dominant concept in the entire non-linear static analysis 

methods is the equivalent one-degree-free structure [13]. 
Indeed, the acceleration displacement response spectrum 



International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:4, No:12, 2010

407

(ADRS) in the considered mode is gained through the main 
structure’s capacity curve divided by the modal participation 
multiplied by the structure’s modal amount at roof point 

( )n nϕΓ  and the normal axis of the main structure’s capacity 

curve divided by the effective modal mass *( )nM  as well.   

Objective of this process in the Capacity Spectrum Method 
is the simultaneous drawing of demand and capacity 
parameters in one coordinate system as well as determining 
their crossing point as the structure’s performance point, 
although in fact obtained curve indicates behavior of the 
equivalent one-degree-free structure. In this bilinear curve, 
gradient of the first part reveals behavior of the equivalent 
one-degree-free structure and gradient of the second part, 
represented usually as a multiple of the first part’s gradient, is 
indicative of hardening after yield. Having this curve in hand, 
it is possible to determine un-linear behavior of the one-
degree-free structure. Coordinate axes of structure curve are 
achieved by an un-linear incremental static analysis. First 
being changed into ADRS, they are transformed into the un-
linear behavior of equivalent one-degree-free structure of the 
unit mass.       

It is essential to formulate the movement equation to 
calculate the structure’s response and then solve it. According 
to the curves shown in Fig. 2, the movement equation of the 
equivalent one-degree-free structure is presented as “(1),” 
formula: 
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Where, nD  is the displacement response of the equivalent 

one-degree-free structure,  nD
•

 and  nD
••

show the first and 

second derivatives of the selected nD , respectively, nω is 

the structure’s frequency at the thn mode as well as time 

history of the seismic acceleration.
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Can be obtained 

through the division of normal axis of capacity curve (base 
shear of the main structure) by the effective modal mass 

*( )nM and gu
••

 is the ground motion.  

 
It is concluded form Fig .2 that stiffness of the structure is a 

function of displacement’s amount and direction. Through 
numerically solving the “(1) ,” or direct modeling of one-
degree-free structure with the selected un-linear behavior, 
maximum displacement of the equivalent one-degree-free 

structure nD  can be calculated. Thereafter, by means of “(2),” 

maximum displacement of the main structure’s end is 
obtained:   

nnrnnr Du ,, φΓ=
                                 (2)

 

Where, nr ,φ is the deformation of the structure’s end at the 

considered mode and nD  is maximum displacement of the 

equivalent one-degree-free structure. Indeed, if authors 
suppose Capacity Spectrum Method (CSM) as a method based 
on spectrum analysis, MPA method can be considered as a 
method based on time history analysis. It is notable that for 
both mentioned methods, by application of one of the modal 
combination methods, the results obtained can be generalized 
to other modes.  
 

 
 

Fig. 2 Properties of the nth-‘mode’ inelastic SDF system from the 
pushover curve. 

 
In MPA method, the seismic response of each mode, from 

the push of building to the target displacement of that mode, is 
determined by uniform distribution of modal lateral force 

nn mS φ=∗   .Since the maximum response of building is 

obtained through the combination of each mode’s seismic 
response with the appropriate modal combination law, the 
effects of higher modes would be examined. This method is 
directly applied to estimate the deformation demand (such as 
the roof displacement and the relative displacement); however, 
additional considerations are needed in order to calculate the 
rotational plastic hinge and elements force. The principal 
assumptions of this method are un-coupling and super position 
of the modal responses in the building possessing non-rubber 
system, i.e. the principal assumptions of non-linear static 
method. 

MPA method allows the seismic demand evaluation to be 
achieved in two stages [5]: 

a) Execution of several one-modal pushover analyses 
for different modes so as to determine the matching modal 
response in the final displacement level.  

b) Then, evaluation of the structure’s final response 
through combining responses of several modes conforming to 
appropriate modal combination law    

 

V. EARTHQUAKE HAZARD CURVE 

Earthquake Hazard curve is indicative of the annual 
probability of earthquake occurrence according to the intensity 

level of the probable quake which is different dependent on 
the site location. In fact, a curve presents number of the annual 
crossing over special spectrum acceleration for certain T 

andξ  [4]-[12]. 
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Since achieving the risk curve is beyond the scope of this 
paper, the data needed to calculate the earthquake risk have 
been extracted from www.usgs.gov .  

In the present investigation, the risk curve of Santa Barbara 
region, California Province has been applied.  

 

VI. STRUCTURES ’ SAFETY 

Engineers sometimes face failure problems. These failures 

take place often due to the impact of over-loads, Being 
Smaller of elements’ capacity than the values determined by 
the design resistance formulas, or the effect caused by their 
combination. Dictionaries often have defined the term 

“failure” as shortcoming in accomplishing a task or meeting 
an expectation. Therefore, definition of the term “failure” will 
always depend on designing engineer’s vision and attitude.     

 

VII. FAILURE PROBABILITY 

If stress is considered as the structure’s response and 
symbolized with random variable of  S  and in the case that we 
present random variable of R for materials’ yield stress (as 
symbols of demand and capacity, respectively), and the term 
“failure” is interpreted as stress excess derived from load of 
materials’ yield stress, then failure will occur when [6] :    

S R≥
                                           (3)

 

In the case that the probability density distribution functions 
of S and R are normal and independent from each other, so it 
can be written that: 
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Fig.3 Failure Probability Density Function  

 
 

Considering Fig.3, the failure probability equals to a 
probability that F < 0, and therefore its value can be obtained 
from the following “(5),” : 

0

( 0) ( )F rP P F P F dF
−∞

= < = ∫
                      (5) 

Distance between the coordinate origin i.e. F=0 and mean of 

failure function (¯F) reveals structure’s reliability margin and 

it is usually defined as a coefficient which is exerted on 

standard deviation of F. it means that: 

2 2

F

F R S

F
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+
                            (6)

 

Where β is called Coefficient Index Reliability or Safety 

Index. So, by means of above equations, the statistical 

parameters of S and R (standard deviation and mean) now 

explicit and clear, as well as their probability density function, 

the failure value can be calculated [9]. If density function of 

load, stress or resistance is logistic, the failure value will be 

obtained with using the software s-plus and the variable 

variation “(7),” 

F

F F
U

σ
−

=
                                       (7) 

Since the failure probability should be calculated for values 

of F < 0, the value matching F = 0 is calculated as described 

“(8),” 

0
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                         (8) 

If reliability index is applied according to the above 

formula, we will have: 

F
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So, failure probability value is calculated through the 

following relation: 
0

( 0) ( ) ( ) ( )r rP F P U P F dF P d

β

β μ μ
−

−∞ −∞

≤ = ≤ − = =∫ ∫
    (10)

 
VIII. RELIABILITY STRUCTURES THEORY 

Reliability Theory, as a branch of Probability Theory, 
provides us with a firm and logical framework to take account 

of uncertainty items while calculating capacity and demand. 
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In general, reliability theory is a scale with the help of 
which it is possible to assess ability of each part or the whole 
of an artificial device or system for operating without any 
failure under any condition considered for it. One of the best 
definitions of reliability theory presented by NASA is: 
“reliability means the sufficient (efficient) performance of a 
system under a predetermined work condition for a certain 
period of time.”The definition shows that reliability is always 
indicative of a kind of probability which establishes a 
connection between performance of the system and whatever 
expected from it in practice. 

On the whole, the following stages should first be taken to 
gain reliability: 

a) Clear demarcation between failure and 
intactness criteria of the item considered, in other 
words, offering a precise definition of failure 

b) Selection of a definite model which relates 
main variables to the failure or intactness criteria. 

c) Detection of uncertainties in main variables 
d) Obtaining probability distribution functions 

and statistical moments of main variables 
 

When the above mentioned stages are accomplished, it is 
time to do the analyses needed for achieving reliability.   
 

IX. BASIC PROBABILITY THEORY AND STOCHASTIC 

VARIABLES 

 

a) Events and basis probability rules 
 
An event E is defined as a subset of the sample space (all 

possible outcomes of a random quantity)Ω . The failure 

event E of e.g. a structural element can be modeled by 

{ }E R S= ≤ where R is the strength and S is the load. The 

probability of failure is the probability ( ) ( )fP P E P R S= = ≤ . 

If a system is modeled by a number of failure events, failure of 
the system can be defined by a union or an intersection of the 
single failure events [11]. 

If failure of one element gives failure of the system, then a 
union (series system) is used to model the system failure, E: 

1

1

....
m

m i

i

E E E E
=

= ∪ ∪ =U
                  (11)

 

Where Ei is the event modeling failure of element i and m is 
the number of events. If failures of all elements are needed to 

obtain failure of the system, then an intersection (parallel 
system) is 

Used to model the system failure, E: 

1

1

....
m

m i

i

E E E E
=

= ∩ ∩ =I
                (12)

 

Disjoint / mutually exclusive events are defined by 

1 2E E φ∩ =
                                (13)

 

Where Ø is the impossible event. 

A complementary event E is denoted defined by 

E E φ∩ =  and  E E∪ = Ω                                           (14) 

The so-called De Morgan’s laws related to complementary 
events are 

1 2 1 2

1 2 1 2

E E E E

E E E E

∩ = ∪

∪ = ∩
                       (15)

 

Probabilities of events have to fulfill the following 

fundamental axioms: 
Axiom 1: for any event E : 

( )0 1P E≤ ≤
                          (16)

 

Axiom 2: for the sample space Ω 

( ) 1P Ω =
                             (17)

 

Axiom 3: for mutually exclusive events E1, E2,...,Em : 

( )
1

1

m
m

i i
i

P E P E
=

=

⎛ ⎞
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⎝ ⎠
∑U

                         (18)

 

The conditional probability of an event 1E given another 

event 2E is defined by: 

( ) 1 2
1 2

2

( )
/

( )

P E E
P E E

P E

∩
=

                    (19)

 

Event 1E is statistically independent of event 2 E if 

( )1 2 1/ ( )P E E P E=
                       (20)

 

From “(19),” we have 

( ) ( )1 2 1 2 2 1 2 1( ) / ( ) / ( )P E E P E E P E P E E P E∩ = =
(21) 

Therefore if 1E and 2E are statistically independent: 

1 2 1 2( ) ( ) ( )P E E P E P E∩ =
                    (22)

 

Using the multiplication rule in “(21),” and considering 

mutually exclusive events E1, E2,...,Em the total probability 
theorem follows: 
 

1 1 2 2

1 2

( ) ( / ) ( ) ( / ) ( ) ... ( / ) ( )

( ) ( ) ..... ( )

m m

m

P A P A E P E P A E P E P A E P E

P A E P A E P A E

= + + +

= ∩ + ∩ + + ∩
(23) 

 
Where A is an event. 
From the multiplication rule in “(21),” it follows 

 

( ) ( / ) ( ) ( / ) ( )i i i iP A E P A E P E P E A P A∩ = =
       (24)

 

Using also the total probability theorem in “(23),” the so-
called Bayes theorem follows from: 

( ) ( ) ( )
( )

1

/ / ( )
( / )

( ) / ( )

i i i i

i m

j jj

P A E P E P A E P E
P E A

P A P A E P E
=

= =
∑

(25) 

 

b) Continuous stochastic variables 
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Consider a continuous stochastic variable X. The 

distribution function of X is denoted F (x) X and gives the 

probability ( ) ( )XF X P X x= ≤  . a distribution function is 

illustrated in Fig.4. The density function f (x) X is illustrated in 
Fig.4 and is defined by 

( ) ( )X X

d
f X F X

dx
=

                          (26) 

 

 
Fig. 4 Distribution function F (x) X . 

 
 

 

 
Fig. 5 Density function f (x) X . 

 
The expected value is defined by 

( )Xxf x dxμ
+∞

−∞

= ∫
                                (27)

 

The variance
2σ  is defined by 

2 2( ) ( )Xx f x dxσ μ= −∫                     (28)
 

Where σ is the standard deviation. 
The coefficient of variation COV =V is 

V
σ
μ

=
                                       (29)

 

The thn order central moment is 

( ) ( )n

n Xm x f x dxμ= −∫                     (30)
 

The skewness is defined by 
2

3
1 3

2

m

m
β =

                                     (31)

 

And the kurtosis is 

4
2 2

2

m

m
β =

                                   (32) 
 

X.PROBABILITY OF FAILURE FUNDAMENTAL CASE 
 

 

Fig. 6 Density functions for fundamental case. 

 
Consider a structural element with load bearing capacity R 

which is loaded by the load S. R and S are modeled by 

independent stochastic variables with density functions Rf and 

Sf  and distribution functions RF and SF , see Fig .6 The 

Probability of failure becomes  

( ) ( ) ( ) ( )

( ) ( )

F

R s

P P failure P R S P R x P x S x dx dX

F x f x dx

+∞

−∞

+∞

−∞

= = ≤ = ≤ ≤ ≤ +

=

∫

∫

             (33) 

Alternatively the probability of failure can be evaluated by 

( ) ( ) ( ) ( )

( )(1 ( )) 1 ( ) ( )

F

R s R S

P P failure P R S P x R x dx P S x dx

f x F x dx f x F x dx
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= = ≤ = ≤ ≤ + ≥

= − = −

∫

∫ ∫

         (34) 

For Example: Logistic distribution 
The distribution function for a stochastic variable with 

expected value μ and standard deviation S is denoted ( , )N sμ , 

and is defined by  

2
( ) ( )

1

t

x s

X
t

s

x e
F x L dt

s
s e
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−
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⎝ ⎠

∫                 (35) 

Where ( )L u is the standardized distribution function for a 

Normal distributed stochastic variable with expected value = 0 

and standard deviation = 1 : (0,1)N  

The Logistic distribution has: 
 

Skewness:                    1 0β =  
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Kurtosis:                      2

6

5
β =  

 
 

XI. SEISMIC STRUCTURAL RELIABILITY CALCULATION 

a) DM – BASED 
 

The new procedure can be used for new design, evaluation 
of existing buildings and evaluation of damaged buildings 

after an earthquake. It is a performance based procedure 
with two limit states considered, Collapse Prevention and 
Immediate Occupancy. 

This paper will deal only with Collapse Prevention. The 
design object is to have 90% confidence that the chance of not 

Satisfying limit state is less than 2% in 50 (2/50) years. 
The seismic hazard level for the performance limit is also 

chosen to be 2/50. The acceptance criterion is based on a 
confidence factor,λ, that is used to determine the confidence 
level. 

This factor is the ratio of the factored demand over factored 

capacity. In equation form, this is expressed as: 

 

. .

.
a D

C

γ γλ
φ

=
                                  (36)

 

Where 
D = estimate of median drift demand 
C = estimate of median drift 
Capacity 

φ =  Resistance factor 

γ =  Demand factor 

aγ =  Analysis demand factor 

The factors, φ, γ and γa in “(36),” are based on the 

reliability work developed by [10] for the SAC project. 

A more detailed derivation of these equations is given by 

[3]. 
“Equation (36) is essentially the ratio of factored demand 

divided by factored capacity.” The demand, D, is the 
expected median drift resulting from a series of 
accelerograms sampled from the chosen hazard level. 

Details on how to calculate all of the variables for this 

procedure is given in [15]. 

The resistance factor, φ, accounts for the fact that the 

estimate of C is affected by randomness and uncertainty in 
the estimation process. The capacity of the building against 

global collapse is a function of the earthquake 
accelerograms used in the IDA analyses [14]. These 

accelerograms are part of a random process. The capacity is 

also affected by the uncertainty in the load-deformation 
behavior of the system determined from tests. The local 

collapse value is also affected by uncertainties in the 

response of the components due to variable material 
properties and fabrication. 

The “(37),” for calculating the resistance factor, 

φ is given by [3] : 

.RC UCφ φ φ=
                                   (37)

 

 
2

2
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b
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β

φ
−

=
                                 (38)

 

 
 

2
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b
UC e

β

φ
−

=
                              (39)

 

 
Where 

φRC = Contribution to φ from 

randomness of the earthquake accelerograms 

φUC = Contribution to φ from 

uncertainties in measured component capacity 

The demand factor, γ , is calculated as: 

2

2

2

2.

RD

UD

k

b

k

b
a B

e

C e

β

β

γ

γ

=

=
                           (40) 

Where 

BC : Precision parameter analysis of nonlinear dynamic 

analysis of mode value is 1.0 and the nonlinear static analysis 
mode, its value is 0.997. 

2

RD iβ β= ∑ Where 
2

iβ is the 

Variance of the natural log of the drifts for each element 

of uncertainty. 

The confidence factor, λ depends on the slope of the 

hazard curve, k and the uncertainty, but not randomness, 
associated with the natural log of the drifts. The “(38),” 

for λ is [10] 

 

( /(2 ))UT x UTk k be β βλ − −=                     (41) 

 

Where 

2 2

UT iβ σ=∑ Where iσ  is for 



International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:4, No:12, 2010

412

Uncertainties in the demand and capacity but not 

randomness 
k = slope of the hazard curve 
Kx = standard Gaussian variate associated with probability 
x of not being exceeded 
 

2ln( ) .
2

UT

UT

k

bu

λ β

β

+
=

                            (42)

 

U = Logistic Parameter 

Calculate the probability of reliability of seismic 
structures using probability distribution Logistic 

2

2 2
1 ( ) 1

(1 )

u

u

e
RE L u

e

−

−
= − = −

−
                   (43) 

RE = Reliability 

L (u) = Logistic distribution 

 

b) IM – BASED 

 

This Method 

.

.
B IM

IM

C D

C
λ

φ
=

                                (44) 

In Which 

2
,0.5 . . IM Ck

e
βφ −=

                     (45) 

Also 

2ln( ) .
2

UT

UT

k

u

λ β

β

+
=

                         (46) 

 
Other steps of the process of calculating the reliability 

of similar structural seismic is DM – Based 

Final notices: 

 
Overall reliability of structural systems can increase 

capacity in extreme cases or reducing uncertainty in capacity, 
improved. The average capacity can be increased using stable 
configuration, the system increases, stronger and harder to 
components such as fittings Reload against excessive fatigue 
failures caused by having low cycle, can be provided. This 

increase causes less response at every level and thus reduce 
the likelihood of extreme state is. 

 
 

XII. CONCLUSION 
 

According to curves presented in Appendix section can be 
concluded 

a) The reliability structure curves Fig.7 and Fig.8 can be 
concluded that the structural reliability calculation method 
based on the DM using the log normal probability distribution 

in the low intensity higher Sa shows high intensity, but this 
revealed Logistic probability distribution is likely to show 
more confidence. This point can be concluded that values 
derived from logistic probability distribution values more 

reliable because the high intensity, structural stability will be 
further considered. 

b) “Fig.” 9 and Fig.10 show the method is based on DM 
structure reliable than methods based on the IM shows can be 

reliability method-based IM calculation made, and an estimate 
conservative reliability of structural seismic acquired . 

c) According to Fig. 11 and Fig.12 is clear that the 
structural reliability calculation method based on analysis of 
DM using IDA more likely than the MPA analysis will result. 

Notice: 
According to the authors of many studies on the distribution 

Logistic did the conclusion that the Logistic distribution 
expressed a higher probability of occurrence of the actual 

distribution is log normal [16]. 
 

APPENDIX 

 
Fig.7 Reliability Plot Compare between Logistic and Log-normal 

Distribution 
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Fig.8 Reliability Plot Compare between Logistic and Log-normal  
Distribution 

 

 
Fig.9 Reliability Plot Compare between DM-Based and IM-Based 

 

 
 

Fig.10 Reliability Plot Compare between DM-Based and IM-Based 

 
 

 
Fig.11 Reliability Plot Compare between IDA and MPA analysis by 

Logistic distribution 

 
Fig.12 Reliability Plot Compare between IDA and MPA analysis by 

Logistic distribution 
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