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Leakage current (LC) monitoring is a widely employed tool for the investigation of 

surface electrical activity and the performance of high voltage insulators.  Surface 

activity is correlated to the shape of LC waveforms. Although field monitoring is 

necessary in order to acquire an exact view of activity and insulators’ performance, 

field waveforms are not often recorded due to the required long term monitoring and 

the accumulation of data. Instead, extracted values, such as the peak value, charge and 

number of pulses exceeding predefined thresholds, are recorded, with actual waveforms 

either being recorded occasionally or not at all. However, a fully representative 

extracted value is yet to be determined. In this paper, 1540 field waveforms are 

investigated to acquire a detailed image of the waveforms’ shape in the field. Simple 

classification rules are employed to distinguish between basic groups. Discharge 

waveforms are further classified based on the duration of discharges. Twenty different 

features, from time and frequency domain, two feature extraction algorithms (student 

t1test and mRMR) and three classification algorithms (knn, 4aïve Bayes, Support 

Vector Machines) are employed for the classification. Results described in this paper 

can be used to maximize the efficiency of field LC monitoring. 
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��� ����� � Leakage current, insulators, insulator contamination, feature 

extraction,  feature selection, pattern classification. 
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 LEAKAGE Current (LC) monitoring is a widely applied 

technique for monitoring the electrical phenomena 

experienced on outdoor insulators and evaluate insulators’ 

performance. On ceramic insulators activity mainly consists of 

dry band arcs that, under favorable conditions, may lead to 

flashover [1:3]. In case of non ceramic insulators, hydrophobic 

surface retains water in the form of droplets, but 

hydrophobicity loss periods are also experienced and therefore 

activity may consist of corona discharges as well as dry band 

arcs [4:5].  

LC monitoring has been applied on various specimens, 

under a large variety of conditions [6]. The basics stages of 

activity have been correlated with certain waveform shapes. At 

the very first stage of activity, insulator acts as a capacitor and 

LC is sinusoid and capacitive [7:9]. As surface becomes 

conductive, a sinusoid resistive current is recorded, and as 

activity advances the waveform gets distorted [7, 9:12]. 

Advance from sinusoids to distorted sinusoids may be rapid 

and pure sinusoids may even not be recorded at all [13:14].  

Distortion at this stage has been correlated to surface condition 

and the chemical content of the pollution layer [7, 15:19]. At 

the next stage, pulses are recorded on the waveform’s crest 

[11:12, 20]. Smaller pulses have been correlated with point 

and filamentary discharges. As stronger discharges appear, 

pulses become larger and more frequent [9:13, 20:21]. It 

should be noted that isolated large pulses have also been 

recorded in some cases [10, 13, 22]. At the next stage, 

consequent large pulses are recorded, giving the waveform a 

symmetrical shape, [10:13]. This is considered to be the final 

stage prior to flashover.   

It should be noted that, although surface activity is linked to 

the shape of LC waveforms, continuous waveform recording 

and investigation has been applied only in the laboratory, 

whereas in the field, waveforms are recorded intermittently or 

not at all [6], due to the long term monitoring required and the 

size of acquired data. Several techniques have been applied on 

LC waveforms in order to extract representative information 

[6]. In the case of field monitoring, the most commonly 

extracted values are the peak value, the charge and the number 

of pulses exceeding pre:defined thresholds, whereas the 

harmonic content is an added commonly investigated value in 

the case of laboratory measurements [6]. However, a fully 

representative value of the LC waveform’s shape is yet to be 

determined. Classification and pattern recognition techniques 

have been also applied in order to cope with the problem, but 

only in case of laboratory measurements [6] or small sets of 

field measurements [23]. The complexity of field waveforms 

[24, 25] however, hints that further investigation is required in 

order to adequately address the issue. 

In this paper, a number of 1540 activity portraying field LC 

waveforms are investigated to provide a detailed image of the 

waveforms’ shapes, to show the limitations of conventional 

techniques, such as peak value monitoring, and propose and 

evaluate different techniques and criteria that can be employed 

to classify field waveforms based on their shape. Simple 

classification criteria are employed, using wavelet analysis, to 

distinguish between basic types. Further investigation and 

classification is performed on waveforms portraying 

discharges. Twenty different features, ten from time domain 

and ten from frequency domain are used. Two feature selection 

algorithms (student t:test and Minimum Redudancy–Maximum 

Relevance – or mRMR) and three classification algorithms (k:

nearest neighbors, Naïve Bayes, Support Vector Machines) are 

employed. This paper complements previous work [23:29], 

providing a detailed image of field LC waveforms and 

proposing techniques capable to maximize the efficiency of the 

LC monitoring technique.  

������������������������

The LC waveforms investigated in this paper have been 

recorded during a period exceeding six years, in two 150 kV 

Substations of the Transmission System of Crete, in Greece. 

The 150 kV Transmission network of Crete is exposed to 

intense marine pollution and the Greek Public Power 

Corporation (P.P.C. S.A.) has issued a large research project 

in collaboration with the University of Patras and the 

Technological Educational Institute of Crete, to monitor the 

behavior of insulators. Details about the sites, the monitoring 

system and the research project can be found in [23:29]. 

Waveforms investigated in this paper have been recorded on 

eighteen 150 kV post insulators (porcelain, RTV SIR coated 

and composite). The monitoring system employed 

incorporated the time:window technique to record waveforms 

[26:27]. Using this technique, a waveform of 480 ms around 

the largest peak value in each time window (e.g. a day) is 

recorded. The sampling rate is 2 kHz (960 data points per 

waveform). The techniques described in [26:28] have been 

applied in a group of more than 80,000 waveforms in order to 

remove waveforms portraying field noise, resulting to the 1540 

waveforms which are investigated in this paper. 
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A schematic representation of the basic waveform shapes 

towards flashover is shown in Figure 1, with field waveforms 

selected and placed considering the waveform shapes and 

correlated stages of activity described in the literature [7, 9:14, 

20:22]. The three discrete steps of Figure 1 correspond to the 

three basic stages of activity. The fact that field activity is not 

straight forward is shown with the use of two arrays showing at 

opposite directions. The dotted line at the lower right side 

indicates that within the investigated set of measurements a 

flashover has not been aloud, as the monitored insulators are 

live parts of the transmission system. Typical noise [26:28] is 

included with a typical noise waveform placed at the upper left 

side. It should be noted that since waveforms have been 

intermittently recorded on various insulators, Figure 1 is only 

hypothetical aiming to show that the basic waveform shapes 

reported in the literature in case of laboratory measurements, 

are also recorded in the field and also to depict a coherent 

hypothetical image of field LC waveforms’ shape towards 

flashover based on relative literature regarding laboratory 

measurements. 



 

 
Figure 1. A hypothetical schematic representation of field waveforms as activity advances towards flashover.  

 

However, the investigation of field waveforms revealed 

certain characteristics which call for further investigation, 

documented below.  
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The term “spikes” is used in this paper to describe single 

measurement points recorded far from the rest of the waveform 

and discriminate them from “pulses” which are consisted of 

more than one points. The presence of isolated spikes or 

Single Point Noise has been previously reported and 

investigated [26:28]. The Maximum and Minimum Point 

Smoothing technique [26:28] has been applied to the 

waveforms considered in this paper and isolated spikes have 

been removed. However, as shown in Figure 2, several 

waveforms have been recorded portraying a significant number 

of spikes. Further, the recorded spikes show a variety of 

amplitudes and they do not always follow the current’s trend. 

It should be noted that in some cases spikes are localized in 

time, meaning that they appear only for a small number of 

periods as shown in Figure 2. It should also be noted that such 

spikes are also recorded at the transition from typical noise to 

sinusoids and vice versa, as shown in Figure 3. Spikes do not 

portray significant amplitude in the investigated set (always 

portraying a peak value under 50 mA). It is not clear whether 

these spikes illustrate electrical activity or noise. However, 

their presence can lead to misleading results, e.g. if the peak 

value is considered, and therefore such waveforms should be 

identified. To classify these waveforms the SR ratio introduced 

in [27] can be employed. The SR ratio is given by: 

1 1

max max( )
R

i

D D
S

D D
� �  

where Di  denotes the i:th value of the STD_MRA VECTOR 

and Dmax the maximum value. The construction of the 

STD_MRA VECTOR requires the decomposition of the 

waveform using wavelet analysis and the calculation of the 

standard deviation of the details in each level, as described in 

[27]. The frequency bands for the different decomposition 

levels are shown in Table 1 [23]. 

 
Table 1. Frequency bands for different MRA levels. 

Decomposition 

Level 

Approximation Details  

1 0:500         (Hz) 500:1000          (Hz) 

2 0:250         (Hz) 250:500            (Hz) 

3 0:125         (Hz) 125:250            (Hz) 

4 0:62.5        (Hz) 62.5:125           (Hz) 

5 0:31.25      (Hz) 31.25:62.5        (Hz) 

6 0:15.625    (Hz) 15.625:31.25    (Hz) 

 

 
Figure 2. Field waveforms portraying spikes superimposed on sinusoid 

waveforms 

 

 
Figure 3. Spikes recorded at the transition from sinusoids to typical noise and 

vice versa.  



 

The value of SR can be used as a measure of the impact of 

spikes on the LC waveform. Waveforms similar to those 

depicted in Figures 2 and 3, having spikes as a dominant part, 

have an SR value that equals to 1 and using this criterion a total 

of 220 waveforms is identified in the current set. As the SR 

value decreases, spikes become less dominant. This means that 

the SR ratio can be used to avoid misleading results due to the 

presence of spikes, (e.g.  in the case of peak value monitoring), 

and also as a criterion for identifying waveforms having a 

specific impact of superimposed spikes as shown in Figure 4. 

The 20 waveforms in the investigated set having the highest SR 

values, under 100%, are shown in Figure 5. However, as 

shown in Figure 5, as lower SR limits are set some activity 

portraying waveforms may exceed the limit due to the 

presence of spikes.  It should be noted however that in any 

case, waveforms with SR lower than 50% are clear of spikes 

and that only 69 out of the 1540 waveforms have an SR value 

between 100% and 50%.  

 

 
Figure 4. SR ratio value Vs. the number of waveforms 
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Sinusoids and distorted sinusoids usually recorded in the 

laboratory portray low peak values [7, 9:14]. However, in the 

considered set sinusoids of various peak values are included, 

with the largest recorded sinusoid having a peak value of 

almost 50 mA, as shown in Figure 6. Classifying sinusoids is a 

rather simple task since the presence of discharges has been 

well correlated with the odd harmonic content and especially 

the ratio of third to first harmonic  [7, 10, 12:13, 30:33]. 

Therefore, the ratio D3/D5 of the STD_MRA VECTOR [23, 

27], the frequency bands of which contains the third and first 

harmonic is used in this paper to identify sinusoid waveforms, 

with the value of 12% successfully identifying 367 sinusoid 

waveforms in the considered set. The peak value distribution 

of the 367 sinusoid waveforms is shown in Table II, showing 

that sinusoid waveforms may provide misleading results if the 

peak value and/or the charge is considered. 

Table 2. Sinusoids. 

Peak value range (mA) Number of waveforms 

2.5:5 200 

5:10 111 

10:15 33 

15:20 9 

20:25 8 

25:30 5 

30:45 0 

45:50 1 

 

 

 

 
Figure 5. The 20 waveforms having the largest SR value under 100%. 

 
Figure 6. Sinusoids of various peak values recorded in the field. 



 

   Another issue concerning field sinusoid waveforms is sudden 

and gradual amplitude and distortion type changes as shown in 

Figure 7, which should be attributed to changes in the 

chemical content of the pollution layer. This issue should be 

considered especially if differential current values are 

calculated in order to detect arcing [34], since in such a case a 

sudden change may be taken for an arc. Such waveforms are 

also identified using the above mentioned criterion of the 12% 

value for the D3/D5 ratio. 
 

 
Figure 7. Sinusoids with amplitude and distortion type changes. 
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3.3.1 I4VESTIGATIO4 

The complexity of discharge portraying waveforms yields 

for the setting of added criteria in order to further categorize 

waveforms [24, 25]. It has been proposed [22] that the 

duration of discharges should be used to further categorize 

waveforms. An arbitrary duration of five half:cycles is set in 

this paper in order to classify waveforms in two different 

categories. A number of 387 discharge portraying waveforms 

are examined and classified by hand to the following two 

classes: C1 if the largest discharge portrayed in the waveform 

lasts four half:cycles or less, and C2 if the largest discharge 

portrayed in the waveform lasts five or more half:cycles. The 

distribution of the peak values for the two classes is shown in 

Table III. It should be noted that only waveforms of the second 

class exhibit peak values over 50 mA. Since both sinusoids 

and spikes are also recorded only under 50 mA, it can be 

concluded that the peak value can be representative of surface 

activity of large amplitude (over 50mA in this case), providing 

that waveforms portraying field noise [26:28] has been 

removed. 

Table 3. Discharges. 

Peak value 

range (mA) 

Class 1 (C1): Number of 

waveforms 

Class 2 (C2): Number of 

waveforms  

2.5:5 63 14 

5:10 65 63 

10:15 27 37 

15:20 7 26 

20:25 2 17 

25:30 3 13 

30:35 1 8 

35:40 0 6 

40:50 2 8 

50:60 0 3 

60:70 0 6 

70:80 0 3 

80:90 0 2 

90:100 0 2 

100:140 0 5 

>140 0 4 

3.3.2 FEATURES 

To automate the classification of discharge portraying 

waveforms to the classes C1 and C2, a set of 20 features is 

employed, as shown in Table 4. Features have been selected so 

as for the time and the frequency domain to be evenly 

represented and also considering the literature [6].  

Table 4. Employed features. 

 

No.  

 

Feature 

(Time Domain : TD) 

 

 

No.  

 

Feature  

(Frequency Domain : FD) 

1 Amplitude 11 Third to First Harmonic ratio: K3/K1 

2 Mean 12 Fifth to First Harmonic ratio: K5/K1 

3 Median 13 Fifth to Third Harmonic ratio: K5/K3 

4 Variance 14 Total Harmonic Distortion ratio: THD 

5 Standard deviation 15 Harmonic Distortion ratio: HD 

6 
Median absolute 

deviation 
16 

STD_MRA VECTOR ratio: D1/D5 

 

7 Skewness 17 STD_MRA VECTOR ratio: D2/D5 

8 Kurtosis 18 STD_MRA VECTOR ratio: D3/D5 

9 Interquartile range 19 STD_MRA VECTOR ratio:D4/D5 

10 Charge ��� Distortion Ratio: DR 

�

3.3.3 FEATURE SELECTIO4 ALGORITHMS 

Two different filter techniques are applied for feature 

selection. Filter techniques are generally divided into 

univariate and multivariate ones. The main advantages of such 

techniques are their simplicity, their low computational 

complexity and their independence from the classification 

algorithm. One univariate, the student’s t:test [35:36] and one 

multivariate technique, the mRMR [37], are employed for 

feature selection. The main principle in both techniques is the 

calculation of a feature relevance score and the removal of 

low:scoring features.  

T:test [35:36] is one of the simplest, oldest and most 

famous feature selection algorithms. The basic idea is to 

calculate ti and the degrees of freedom and check whether the 

significance of the ti value is high enough for each feature 

according to a standard table. The ti  value  and the degrees of 

freedom are given by various equations depending on the form 

of the data. The form regarding unequal sample sizes and 

unequal variance is used in this paper. 

The minimum Redundancy : Maximum Relevance (mRMR) 

algorithm [37] is a recently developed feature selection 

algorithm. Being a multivariate method, mRMR is capable of 

taking advantage of the complex dependencies between 

features. Its goal is to select a feature subset that bares the 

minimum redundancy between the selected features and the 

maximum relevance to the classes. Several values can be 

employed to calculate redundancy and relevance, with the 

mutual information being used in this paper.  

 

3.3.4 CLASSIFICATIO4 ALGORITHMS 

Three of the most commonly used classification techniques 

[38] are employed: the k:nearest neighbors’ classifier (knn) 

[38:39], the Naïve Bayesian classifier [38, 40:41] and Support 

Vector Machines (SVMs) [38, 42:43].  

The k:nearest neighbors’ classifier [38:39] is a simple, easy 

to implement classifier that assigns an object to a class based 



 

on the classes of its k nearest neighbors. Several distances can 

be used to find the nearest neighbors, with the Euclidian 

distance being used in this paper.  

The Naïve Bayes classifier [38, 40:41] is a well known 

simple probabilistic classifier based on Bayes theory. It is one 

of the oldest classification algorithms and despite its 

simplicity, it is known to be rather effective. The algorithm 

assumes that features are independent and its efficiency is 

largely dependent on feature selection and also on the data 

used for training.  

Support Vector Machines (SVMs) [38, 42:43] are 

considered as one of the most accurate machine learning 

classifiers. The SVM algorithm is a supervised learning 

method that addresses the problem of linear and non linear 

classification by finding the maximum margin hyperplane that 

best separates the classes. Non:linear SVMs map the training 

samples from the input space into a higher:dimensional feature 

space with the use of some mapping function, also known as 

kernel function. Several kernel functions can be used and the 

Radial Base Function has been employed in this paper.  The 

mapping procedure resembles the hidden neuron layer of 

neural networks. However, SVMs do not suffer from local 

minima or overfitting, as neural networks do, they have the 

advantage of automatically selecting their model size and 

provide superior generalization ability by maximizing the 

margin of separation.  

�

3.3.5 RESULTS 

Twenty runs were conducted for each feature set and 

classification algorithm. In case of knn, in each run, 40% of 

the data was used as the training set, 10% as the evaluation set 

(testing different values for k, from 3 to 15) and 50% as the 

test set. In case of the Naïve Bayes classifier, in each run, 50% 

of the data were used as the training set and 50% as the test 

set. In case of SVMs, in each run, 40% of the data was used as 

the training set, 10% as the evaluation set (selecting optimal 

values for c and gamma parameters using grid search) and 

50% as the test set. The mean identification success rate 

(percentage) for the 20 runs is calculated and overall results 

are shown in Table 5.  

Table 5. Results for different feature sets and classification algorithms. 

Features 

 

TD 

 

{1:10} 

 

FD 

 

{11:20} 

 

All 

 

{1:20} 

 

t:test 

 

{1, 3:11, 

13:17, 19:

20} 

 

mRMR 

 

{3, 5, 7, 8, 11, 

13, 15, 16, 18, 

19} 

knn 82.13% 86.77% 85.22% 83.85% 85.74% 

Naïve Bayes 69.41% 77.66% 73.02% 73.88% 86.43% 

SVMs 82.48% 88.49% 87.80% 87.80% 90.21% 

Several results portrayed in Table 5 should be noted. At first 

it is shown that frequency domain features give better results 

for all three classification algorithms compared to the time 

domain features or the time domain features along with the 

frequency domain features. This fact, on the one hand shows 

that adding more features does not necessarily mean higher 

identification rate and on the other hand shows the higher 

correlation between the frequency domain and the waveform 

shape. 

Regarding feature selection, it is shown that the student t:

test is ineffective since it removes only 3 features. It should 

also be noted that the t:test features gives worst results 

compared to the frequency domain set and better results 

compared to the time domain set in all cases. The mRMR 

algorithm removes 10 features and keeps 4 features from the 

time domain and 6 features from the frequency domain. It 

should be noted that, regarding time domain features, the 

algorithm removes, among others, the commonly used values 

of amplitude and charge and keeps only the median, the 

standard deviation, skewness and kurtosis. Regarding 

frequency domain features, the algorithm keeps the third to 

first harmonic ratio, the fifth to third harmonic ratio and the 

Harmonic Distortion but not the fifth to first harmonic ratio 

and the Total Harmonic Distortion ratio. The algorithm also 

keeps all ratios of the STD_MRA VECTOR values except for 

D2/D5. 

Regarding the classification, the superiority of SVMs is 

documented in every case. The significance of feature 

selection for the Naïve Bayes classifier is underlined. It is 

shown that the mRMR feature set produces the best results for 

all three algorithms with the only exception of the knn 

algorithm that shows slightly better results for the frequency 

domain set. It is noteworthy that knn and SVMs have similar 

results in case of the time domain features (difference of 

0.35%) and that overall best results are recorded in case of the 

SVMs using the mRMR feature set. These results underline 

two discrete approaches related to complexity and calculation 

cost: the first approach is a simple identification using only 

time domain values and the knn algorithm (success percentage 

over 82%) and the second is a more complicated approach 

employing SVMs and time and frequency domain features 

selected using mRMR (success percentage over 90%). 

#� ���������� 

It is widely accepted that field measurements are required in 

order to acquire an exact image of surface activity and 

insulators’ performance. However, field LC waveforms have 

not been thoroughly investigated and researchers commonly 

record and monitor extracted values such as the peak value and 

the charge from the LC waveform. These values, however, are 

not always representative of the waveforms’ shape and can be 

misleading. In this paper, a large number of field LC 

waveforms are investigated and classification techniques are 

employed in order to investigate the issue and offer tools to 

maximize the efficiency of field LC monitoring. Wavelet 

analysis and the STD_MRA technique is employed to perform 

basic identification. Further, three classification algorithms 

(knn, Naïve Bayes, SVMs) and two feature selection 

algorithms are employed in order to automate the classification 

of discharge portraying waveforms. 20 different features are 

employed, 10 from the time domain and 10 from the frequency 

domain. A total of 5 feature sets are employed in combination 

with the classification algorithms.  

 



 

The main conclusions are as follows. 

1) Field LC waveforms confirm the basic shapes reported in 

the literature referring to laboratory measurements. 

However, some peculiarities regarding field LC 

waveforms are recorded, such as the occurrence of 

spikes, sinusoids of exceptionally large amplitude and 

sinusoids portraying gradual and sudden amplitude and 

distortion type changes. Such waveforms show that 

classification between basic waveform types is required 

in order to avoid misleading results.  

2)  Wavelet STD_MRA analysis can be used to identify 

basic waveform types. The SR ratio previously employed 

for investigating waveforms of low amplitude, can also be 

employed to identify waveforms portraying spikes. 

Another ratio of the values from the STD_MRA 

VECTOR (D3/D5 in this paper) can be used to identify 

sinusoid waveforms. Waveforms portraying discharges 

can be indirectly identified using the above ratios.  

3) Discharge portraying waveforms are further categorized 

in two classes in relation to the duration of portrayed 

discharges. It is shown that waveforms of both classes 

may exhibit small and medium peak values (up to 50mA), 

but only waveforms of the second class (discharges with 

duration over 5 half:cycles) exhibit significantly large 

peak values (over 50mA) 

4) The previous conclusion combined with the peak values 

distribution for spikes and sinusoids yield the result that 

the LC peak value can be a trustworthy indication of 

activity and waveform type only in case of significant 

activity that corresponds to significant peak value levels 

(in this case, over 50mA).  

5) Features from the frequency domain provide better results 

compared to features from the time domain and also to a 

set containing both. This shows the correlation of the 

waveforms’ shape with the frequency content and hints 

that using more features may lead to worst results. 

6)  Feature selection algorithms can be used to enhance the 

classification performance and reduce the number of 

features used. 

7) Results show the superior performance of SVMs and of 

the feature set provided by the mRMR algorithm. 

8) If one is to consider the calculation complexity, results 

underline two different approaches: the first being to 

employ the time domain features and the knn algorithm 

(success percentage over 82%) and the second one being 

to employ SVMs and features from both time and 

frequency domain, selected using the mRMR algorithm 

(success percentage over 90%) 

 

   The work described in this paper complements previous 

work coping with field related noise and the data accumulation 

problem, providing a full image of field LC waveforms and 

identification approaches that may be used to significantly 

enhance the effectiveness of field LC monitoring. 
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