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Abstract

With developing interest in power generation applications of thermoelectrics and the

growing influence of advanced materials on thermoelectric device fabrication, there is an

increased demand for better understanding of module-level behavior. Likewise, novel module

geometries are being explored for higher performance and require sophisticated modeling

methods.

In addition to new geometrical design, transport phenomena, such as Thomson heat-

ing and contact resistances, aggravate the complexity of modeling thermoelectric modules

(TEMs) and thus limit design capability. Typically, these effects are either approximated

(or in some cases neglected entirely) with little exploration in to the validity of the under-

lying assumptions associated with the approximation. As such, standard models are often

predicated on assumptions that cannot be made beyond very limited operating regimes.

Consequently, most TEM analysis generally utilizes simplistic methods of modeling on a

module-level scale, which introduce inaccuracies that must be redressed.

Particularly with larger temperature gradients, typically negligible effects could begin to

impact overall system performance. Material property temperature-dependency, combined

with leakage effects, leave much to be desired of the simple property-average-based models.

Additionally, one-dimensional (1-D) models neglect the contribution of three-dimensional

(3-D) module facets that can significantly impact TEM performance. To compound the

analytical issue, complex material technologies are emerging that will require robust models

for module design.

With burgeoning focus in using thermoelectrics for waste heat recovery in automobiles,

industrial processes and power plants, new application and commercial development of high

temperature TEMs is imminent. However, modeling design and optimization of TEMs has

been piecemeal at best. Hence, it is imperative that a comprehensive model be developed

for TEMs that addresses some of the analytical problems stemming from over-simplification.

The primary intention of this work is to develop and validate a comprehensive model that

can be used as a TEM design tool and to quantify the error in the simple 1-D analytical

models.

The scope of this work is multifaceted. First, several models are developed, implemented

and compared to each other as design tools that are useful for determining material per-

formance and also for optimizing TEM performance. An improved 1-D analytical model,

a unique asymptotic model and a comprehensive 3-D finite element (FE) model are cre-

ated and established. These models are compared to each other for both validation and

for quantification of error in the analytical models. Secondly, the quantification of error

in 1-D analytical models based on module parameters, called error mapping, can be used

as a design tool in and of itself to either identify regimes where a 1-D model is inaccurate

(and thus establish when 3-D FE modeling is required), or as a corrective factor to a 1-D



model. Thirdly, an experimental test stand is developed for device characterization, to be

used either for system-level integration or for future model validation. Finally, the Thomson

effect is analytically explored and detailed, and its contribution to the overall performance

of a TEM is quantified. The role of the Thomson effect in previous analyitical models is

nebulous, but has been elucidated in this thesis both with derivation and the development of

the asymptotic model, which is the first analytical solution to the non-linear thermoelectric

governing equations.

Ultimately, this thesis defines the advantages and limitations of current TEM models,

quantifies their error and provides several new design tools that can be used for material

selection, module optimization and system-level design. These new design tools will provide

new leverage to advance thermoelectrics as a robust power generation technology at a time

when such capability is critical.
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Chapter 1

Introduction to Thermoelectrics

Over the past half century thermoelectrics have been the object of much study [1], and are

emerging as a potential means for increasing electrical power production, particularly in the

realm of waste heat recovery from low grade heat sources. Thermoelectric modules (TEMs)

utilize electron transport phenomena in extrinsic (doped) semiconductors for either refrigera-

tion or electrical power generation applications. In the presence of a direct current TEMs will

perform a refrigeration process, employing electrons as the primary energy carrier instead of

the fluid coolant typically used in vapor-compression cycles. Though the majority of ther-

moelectric applications involve cooling, demands for development of alternative energy and

remote power generation have coalesced into a niche market for thermoelectric devices. Be-

cause market demand for TEMs, until recently, was dominated by refrigeration, thermoelec-

tric material development remained generally in the near-room-temperature regime. With

the exception of the extreme minority of high-temperature power generation applications

(Global Thermoelectric, Globelte.com), current material design of commercially-available

TEMs restricts maximum operating temperatures to about 250 ◦C.

1.1 Motivation

In lieu of unbridled economic development and industrialization, demand for energy has

exploded and displays few signs of receding or plateauing. Coupled with a dependency on a

limited reservoir of fossil fuels, inefficient methods of power conversion, and pervasive damage

to the environment, energy has emerged as a critical global issue in the 21st century.

More efficient and cleaner energy conversion has been a growing issue in the scientific

community since the middle of the last century [2]. Most power plants that convert heat

into electricity employ multiple stages of energy conversion, with irreversible losses associ-

ated with each stage. Resultantly, most combustion engines, generators and plants convert

only about one third (as much as forty percent in high-efficiency reactors) into desired me-

chanical or electrical energy [3]. The remaining two thirds of the energy are accounted for

by exhausted waste heat (although in automobiles, some of this excess heat is sometimes de-

sirable for climate control). More explicitly put, over half of the potential energy consumed

1



in power production is wasted in the form of heat. Needless to say, development of more

efficient energy systems and more direct forms of energy conversion is paramount.

Thermoelectrics pose a unique solution to the issue of efficiency, since they recover waste

heat in the most direct manner, namely electron transport. The implications of employing

thermoelectrics as generators for reduction of fuel consumption via waste heat recovery are

substantial. In 2007 the United States consumed 103 quadrillion BTUs of energy, with

approximately half of that energy wasted in the form of heat. The thermal pollution of

the United States in 2007 accounts for the net energy of New York State’s industrial and

commercial sectors over a 100 year period. The potential for energy recovery from this

waste heat is staggering. Thermoelectrics, once optimized, pose a potential relief in energy

consumption.

1.2 Historical Context

Upon the preliminary discovery of thermoelectric phenomena, owed to Seebeck circa 1822,

little attention was given to the strange heat-induced electrical effect observed in metallic

substrates [4]. The reverse of the Seebeck effect is the capacity for a thermoelectric to act as a

heat pump or refrigerator in the presence of direct current. This effect was initially observed

(but misunderstood) by Jean Charles Peltier in 1834. However, it was the nascent field of

Thermodynamics, specifically a premier researcher by the name of William Thomson (better

known as Lord Kelvin), that commenced significant study into thermoelectric effects nearly

thirty years after Seebeck’s initial exposition. Utilizing the evolving field of Thermodynamics

as a scientific framework, Thomson fully described all of the observed phenomena associated

with thermoelectrics [4].

Study and development of thermoelectrics remained predominately academic for the bet-

ter part of a century. Dismal energy conversion efficiencies of thermoelectric materials and

general lack of interest for direct energy conversion methods discouraged probing into ap-

plications that could benefit from thermoelectrics. The eminant field of materials science in

the middle of the twentieth century equipped researchers with the expertise and the impetus

to improve the operating behavior thermoelectrics.

1.3 Characteristics of Modern Thermoelectric Mod-

ules

The typical configuration of a TEM is a multitude of thermocouples (or thermopiles), con-

nected in series electrically, and in parallel thermally, as shown in Fig.(1.1). Each couple

consists of a negative-majority-carrier doped (n-type) semiconductor leg conjoined in series

with a positive-majority-carrier doped (p-type) semiconductor. For electrical insulation and

structural support, ceramics typically sandwich the thermopiles.

2



Figure 1.1: Schematic of a Thermoelectric Module [5]

The nomenclature, hot-side interface temperature (TH) and cold-side temperature (TC),

are generally accepted in the research community. Typically for generation, a hot side and

a cold side temperature are prescribed and the TEM is analyzed accordingly.

A heat-recovery system comprised of thermoelectrics can assume a myriad of geometries

and is not limited in scale. Micro-thermoelectrics have been embedded in integrated circuits

for cooling, TEMs have been deployed as waste heat recovery systems in semi trucks and have

been used for power generation in stoves [6]. There has even been design for a large-scale

oceanic power production facility employing thermoelectrics [7]. An additional advantage

that compartmentalization offers is interchangeability of failed modules with no system down

time. With no moving parts, TEMs can operate continuously for over three decades without

failure. Additionally, thermoelectrics are excellent at recovering low-quality energy, and at

lower temperature gradients can operate more efficiently than a vapor-compression cycle [7].

Modern thermoelectric devices have a relatively small footprint when compared to other

power generation or refrigeration systems. TEMs are predominately limited to rectangular

geometries with linear dimensions not exceeding a few centimeters, and typical thicknesses

are on the order of millimeters. Much study has been focused on optimization of leg geome-

tries (e.g. length and cross-sectional area), with no attention given to leg spacing, ceramic

interface geometry, contact thickness, etc. The length and width of a module is principally

limited to a relatively small configuration (on the order of several centimeters) for reduc-

tion of structural stresses associated with thermal expansion due to extreme temperature

gradients [8].

1.4 Figure of Merit

The figure of merit, ZT , is a critical unitless metric for evaluating the performance of a

given thermoelectric material. Though often incorrectly used to describe module behavior,

the figure of merit is most accurately used to describe the ideal performance ceiling of a

module, since it cannot account for various module-level inefficiencies. The figure of merit

is expressed as follows [4]:
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ZT =
α2σ

k
T (1.1)

The figure of merit contains the inherent relationships between the thermoelectric ma-

terial properties (both electrical and thermal) with respect to overall performance. Clearly,

decreasing thermal conductivity would increase the overall figure of merit. By decreasing

thermal conduction the amount of stray heat that transmits through the TEM without be-

ing converted into electrical power is minimized. Since conduction is an irreversible loss, it

is imperative to minimize the thermal conductivity of a material. In addition, increasing

electrical conductivity diminishes the amount of heat generated by the current in the form of

Joule heating (another irreversibility) and thus improves material performance. Finally, in-

creasing the Seebeck coefficient impacts overall material performance the most, as the figure

of merit is proportional to the square of the Seebeck coefficient.

Recently, there has been great focus on utilizing new materials science technology to im-

prove the performance of thermoelectric devices. Significant advancement in thermoelectric

materials have only occurred in the last fifteen years, as seen in Fig.(1.2). These high-

efficiency materials have yet to be implemented commercially, and little study has been done

as to their performance on the device-level.

Figure 1.2: Development of ZT since 1950 [1]

The following relationship depicts how the figure of merit governs the maximum material

efficiency of an idealistic thermoelectric pair [4].

η =
TH − TC

TH

×
M − 1

M + TC/TH

(1.2)

where TH and TC are the hot-side temperature and cold-side temperatures respectively and

M =

√

1 +
1

2
Z(TH + TC) (1.3)

The first half of the expression in Eq.(1.2) contains the Carnot Efficiency, while the

second half of the expression depicts the mitigation of efficiency due to irreversibilities and
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contains the average figure of merit. For varying temperature gradients the thermoelectric

will exhibit maximum efficiency with respect to the figure of merit as follows:
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Figure 1.3: Module Efficiency vs. Figure of Merit, TC = 300K

1.5 Seebeck Effect

The principal thermoelectric phenomena are the Seebeck, Peltier and Thomson effects. See-

beck characterized the electromotive force (EMF), Vopen, generated by an open circuit ther-

moelectric experiencing a temperature gradient by the following relationship [8]:

dVopen = αdT (1.4)

Vopen =
∫ TH

TC

αdT (1.5)

This effect is the principal study of this review, as it governs the ability of a thermo-

electric system to convert heat flow into electrical energy. One characteristic of the Seebeck

effect that is critical to note is that it is a contact phenomenon that only occurs through

connection of two thermoelectric materials with different Seebeck coefficients. It should also

be noted that Eq.(1.5) accounts for the Thomson effect, which is the electrical power gener-

ated or absorbed in the bulk of the material. Eq.(1.4) can be rewritten to define the Seebeck

coefficient (or Thermopower), α, which can vary spatially and with temperature.

The main driving potential behind the electromotive force is a result of thermal excitation

at the junction between an n-type semiconductor and a p-type semiconductor. At the hot end

5



of the n-type leg, excited electrons begin occupying higher energy states and conversely at the

low-temperature end the electrons are remaining in relatively low energy states. The high-

energy electrons diffuse toward the available low-energy states, creating a positive voltage

with respect to the lower energy electrons at the cold-side (positive αn). The holes in the

adjacent, connected, p-type leg also get excited but, due to their polarity, generate a negative

voltage (at the hot-side with respect to the cold-side) associated with a negative αp. The

voltage that is generated in the p-type semiconductor is negative at the hot side with respect

to the cold side because the polarity of the majority carriers, holes, is positive. The result

is a relatively large voltage difference between the legs that, in a closed circuit, generates

a current. A physical description of this phenomenon would be that the thermally excited

electrons in the n-type leg translate through the connection to fill in the holes generated

in the p-type leg, thus creating a net current [2]. For 1-D analytical analysis, the overall

Seebeck coefficient of a thermocouple is the difference between the Seebeck coefficients of

each leg on a given side (i.e. hot side or cold side).

αThermocouple = αp,n = αp − αn (1.6)

To maximize this difference, it is desirable to have an n-type with a large positive value

coupled with a p-type with a large negative value. The polarity of α corresponds to the

carrier type. Thus, couples are constituted of one n-type leg and one p-type leg [8].

1.6 Peltier Effect

Succinctly, the Peltier Effect is the reverse effect of the Seebeck phenomenon. Thermal

energy is absorbed or emitted when translating charge carriers, associated with an electric

current, transition from relatively high voltage in the n-type leg to the lower voltage of the

p-type leg. The excited carriers in the n-type leg must transition from high energy states to

low energy states in the p-type leg. In order to transition they must discharge (or, if moving

from p-type to n-type, absorb) energy. The amount of heat absorbed or ejected due to the

Peltier Effect for a thermoelement junction is given by:

qPeltier = I(αp − αn)T = Iαp,nT (1.7)

where I is the electrical current and the temperature, T , is absolute. It is important to note

that the heat emitted, or absorbed, due to the Peltier effect occurs at the contact boundary

between two materials with differing Seebeck coefficients. The Peltier heat is reversible, as

it depends directly on the direction of the carrier flow, or electrical current. Thermoelectric

refrigeration cycles are said to be driven by the Peltier effect, but it is important to note

that the Peltier effect is present during thermoelectric power generation cycles as well.
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1.7 Thomson Effect

The Thomson effect is also a reversible thermoelectric phenomena. Similar to the Peltier

heat, the Thomson effect is observed when charge carriers change energy levels. The main

difference is that the Thomson effect occurs in bulk thermoelectric materials experiencing

a temperature gradient, and does not occur at the boundary between two materials with

differing Seebeck coefficients. Since the Seebeck coefficient is dependent on temperature, the

thermopower for a given material with a temperature gradient will change as a function of

the temperature. As carriers move from the hot end to the cold end of a thermopile leg their

overall energy will either increase or decrease due to the change in Seebeck coefficient as a

function of temperature. This change in electrical energy is accompanied by a reciprocal

generation or absorption of heat. The expression for the Thomson heat generated per unit

volume is simply:

Q′′′

Thomson = Jτ
dT

dx
(1.8)

where

τ = T
dα

dT
(1.9)

For materials that have Seebeck coefficients that vary dramatically with temperature,

or for modules experiencing large temperature gradients, this effect can significantly im-

pact module-level performance. The heat generated or absorbed by the Thomson effect is

proportional to the electrical current flowing through the device. As a result, the TEM

device behavior can be influenced by this effect (as well as Joule heating) to varying degrees

depending on electrical loading conditions.
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Chapter 2

Literature Review

Previous modeling of thermoelectric modules has focused mainly on analytical predictions,

with the incorporation of several effects such as contact resistance. Major limitations of

analytical models were the assumptions of temperature-independent properties and 1-D heat

flow. Modeling of TEMs is critical for both design of the modules and incorporation of the

modules into larger power generation systems. With a robust model, new module geometries

can be evaluated and optimized for improved performance and module configurations can be

tailored for emergent thermoelectric materials. In addition, because thermoelectric power

generation can take place in a myriad of operating conditions (viz. low-grade wast heat

recovery, high-grade heat source generation, continuous electrical load, variable load, etc.),

a robust model can optimize the module for the conditions it may experience in a given

system. For example, a TEM designed for recuperation of waste heat from a diesel truck

will have a vastly different configuration than one harvesting body heat for a biomedical

device.

Some work has utilized finite element and finite difference techniques for the purposes

of examining segmented unicouples [9] and has even incorporated temperature-dependent

properties. This exploration of thermoelectric modeling is motivated by the existence of sig-

nificant discrepancies between the results produced by analytical and numerical techniques.

Lau and Buist explored the limits of different techniques used to average material proper-

ties for implementation in analytical modeling methods [10]. Analytical solutions utilizing

both point-averaged and integral-averaged Seebeck coefficient values were compared to a

numerical solution accounting for temperature-dependent properties. The behavior of the

numerical model compared to the analytical solutions varies greatly even at temperature

gradients within the operating range of current thermoelectrics.

The discrepancy of the models illustrates the inadequacies of the analytical models. Be-

cause the analytical models assume averaged property values, the impact of the dramatic

changes in material properties at large temperature gradients is neglected. This impact is

especially sensitive in the case of the Seebeck coefficient, since the Thomson effect arises

from the temperature-dependency of the Seebeck coefficient. The Thomson coefficient can

be either augmentative or parasitic, depending on the temperature gradient and the material
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Figure 2.1: Diagram of a thermoelectric module for analysis

properties. In both cases, the Thomson effect can contribute (or detract) significantly from

device performance and warrants further exploration into the limitations of current modeling

techniques.

There are two main metrics for quantifying the performance of a TEM. The first metric

is the power output of the thermoelectric module, PTEM , and is typically expressed as a

function of either electrical current, I, or electrical load resistance, RLoad. The second metric

is the thermodynamic efficiency of the TEM, η, and likewise is expressed in terms of I or

RLoad. Analytically, both of these metrics can be determined by solving the heat flow into

(N · qH) and out of (N · qC) the module.

Generally speaking, the steps to analytically solving the system of equations to determine

TEM performance are (as seen in Fig.(2.1):

1. Solve the temperature profile, T (x), of the respective heat equation in the thermoele-

ment legs

2. Use the derivative of the temperature profile dT
dx

to determine the flow into and out of

the module, N · qH and N · qC

3. With the heat flowing into and out of the module, solve electrical current I if needed

4. Using the heat into and out of the module, obtain PTEM = N(qH − qC) and η = 1− qC

qH

One assumption that is generally made for analytical models is that the Thomson heat

is negligible and the Seebeck coefficient is constant (unless otherwise specified). When this

assumption is made, the temperature-dependent Seebeck coefficient is averaged over the

temperature range experienced by the thermoelectric leg. There are two methods of aver-

aging the Seebeck coefficient, the standard average [4], and the integral average [2]. The

assumptions behind this method are later addressed in section 3.2. The integral averaged

Seebeck coefficient takes the form:

α =
1

∆T

∫ TH

TC

αdT (2.1)
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2.1 One Dimensional Analytical Solution of a Standard

Thermoelectric Module

Let us begin with the simplest technique and the model that is most widely used in industry,

the one dimensional model, with constant properties, of a typical TEM. Hodes outlines the

approach and assumptions made for the simplified modeling of TEMs [8]. In this model, ther-

mal conductivity and resistivity and Seebeck coefficient of the thermocouples are assumed

to be isotropic, and independent of temperature. Additionally, 1-D transport is assumed.

Since the Seebeck coefficient is assumed to be constant, it is important to note that the

Thompson effect is neglected. Additionally, all connections between pellets are assumed

to be perfect electrical and thermal conductors, contributing negligible contact resistances.

Likewise, the Seebeck coefficient of all interconnecting materials are assumed to universally

be zero. Lineykin and Ben-Yaakov demonstrated that a basic model (utilizing a module-level

equivalent Seebeck coefficient, thermal conductivity and electrical resistance) could describe

module behavior in certain regimes [5]. Hodes’ approach solves the steady state heat dif-

fusion equation and examines the location in the leg of the maximum temperature under

different conditions:

Figure 2.2: Thermopile p-n junction [11]

d2T

dx2
+

I2ρ

kA2
= 0 (2.2)

where ρ is electrical resistivity, k is thermal conductivity, and A is the cross-sectional area of

the thermoelectric pellet. The second term in Eq.(2.2) is the contribution of the Joule heating

term to the heat diffusion equation. Naturally, the energy generated by Joule heating per

unit volume goes as the product of the current squared and material resistivity divided by

the cross-sectional area normal to the flow of current. The boundary conditions are T = TC

at x = 0 and T = TH at x = L and once applied, yield:
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T =
−I2ρ

2kA2
x2 +

(

I2ρL

2kA2
+

TH − TC

L

)

x + TC (2.3)

By conventional standards, thermal conductance (K) and electrical resistance (R) are

defined as:

R =
2ρL

A
(2.4)

K =
2kA

L
(2.5)

Recall that the thermocouple legs are thermally in parallel and electrically in series, thus

the thermal conductance and electrical resistance for a pair both have factors of two.

The heat flow across a boundary where thermoelectric phenomena is present takes a

slightly different form than heat flux at a typical boundary (assuming electrical current is

also flowing across the boundary). Because the charge carriers change energy levels when

crossing from one material into another, the Peltier heat, Eq.(1.7), must be represented in

the heat flow at the boundary. The generic expression for the heat flow at a boundary

between two materials (with arbitrary labels 1 and 2) is:

qin = Iα1,2TBoundary + qout (2.6)

where the overall Seebeck coefficient is the difference between the Seebeck coefficients of the

materials at the boundary α1,2 = α1 − α2 and TBoundary is the absolute temperature at the

boundary. The expression for the heat flow at the hot-side interface of the basic analytical

model takes the form:

qH = Iαp,nTH + 2kA
dT

dx

∣

∣

∣

∣

∣

x=L

(2.7)

The only heat leaving the interface is from the conduction through the two thermoelectric

legs, thus the second term represents the heat conducted through the thermoelement legs

assuming that they have the same material properties and geometries. From Eq.(2.3), the

conduction term in Eq.(2.7) can be evaluated, since the temperature gradient is known. The
dT
dx

term falls out and the energy balance at the respective surfaces can be used to determine

heat transfer at each surface.

qH = Iαp,nTH + K(TH − TC) − I2R/2 (2.8)

qC = Iαp,nTC + K(TH − TC) + I2R/2 (2.9)

Electrical power generated by a thermocouple is the difference between the two surface

heat transfer rates and is equal to the product of the current squared and the external
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electrical load resistance, RLoad. A module with N elements will produce a total power that

can be expressed as PTEM = N · P . Or,

PTEM = N(qH − qC) (2.10)

PTEM = INαp,n∆T − I2RTEM = I2RLoad (2.11)

Note that this is the power of a whole module, and not just a single pair of thermoele-

ments. This expression of output power differs from that of a single thermoelement simply

by the term RTEM = N · R which accounts for the number of thermocouples in a mod-

ule. Likewise the thermal conductance for the thermoelectric module, KTEM , is simply the

conductance of the leg pair with a multiple of N .

Eq.(2.11) reveals that current can be expressed as:

I =
Nαp,n∆T

RLoad + RTEM

(2.12)

By substituting Eq.(2.12) into Eq.(2.11), the electrical power output of a TEM may be

expressed in terms of electrical resistance, the Seebeck coefficient, and the hot and cold side

temperatures.

PTEM =
(Nαp,n∆T )2

RLoad + RTEM

−
(Nαp,n∆T )2RTEM

(RLoad + RTEM)2
(2.13)

Conversion efficiency follows as:

η =
PTEM

qH

(2.14)

η =
(Nαp,n∆T )2RTEM

2(Nαp,n)2∆TTH(RLoad + RTEM) − 4KTEM∆T (RLoad + RTEM)2 − (Nαp,n∆T )2RTEM

(2.15)

Optimal power occurs when the condition ∂PTEM/∂RLoad = 0 is achieved, which yields

maximum power at RLoad = RTEM . It is important to note that the value of RLoad at

maximum power differs noticeably from the value that meets maximum efficiency condition

∂η/∂RLoad = 0. For the purposes of simplicity of comparison, the different models will be

evaluated at the maximum power condition RLoad = RTEM .

The geometric optimization using this particular analytical model yields erroneous re-

sults. Because this model neglects contact resistances, linear optimization of this efficiency

will report that ideal geometric design requires very short legs. However, as Rowe and Min

reported , contact resistances become dominant as leg length decreases [12]. It is imperative

that these effects be factored in when optimizing pellet length.

12



2.2 One-Dimensional Thermoelectric Module Model with

Contact Resistances

Rowe and Min [12] offer a slightly more advanced approach to modeling TEMs. The basic

assumptions for the new model are similar to those described by Hodes’ work, with the

exception of included electrical and thermal contact resistances between the pellets and the

electrical connector. These contact effects are essential for optimization, because as leg

lengths become small, the contact resistances will become increasingly prominent.

The equations of module performance are nearly the same as the basic 1-D model, except

that resistance (R) would have a component related to the internal resistance of the module,

and a component associated with the contact resistances between the legs and the adjoining

electrical interconnect material, typically a copper film.

Voltage and current of a module at maximum power output (matched load condition)

can be expressed, with both internal and contact resistances, as:

VTEM =
Nαp,n(TH − TC)

1 + 2rLc/L
(2.16)

I =
αp,nA(TH − TC)

2ρ(n + L)(1 + 2rLc/L)
(2.17)

where N is the number of thermocouples, A and L are the cross-sectional area and length

of the thermoelement, Lc is the thickness of the contact layer, TH and TC are the hot and

cold side temperatures respectively. n = 2ρc/ρ, r = k/kc where the subscript “c” denotes

the respective characteristic of the contact layer.

Using this definition, power and efficiency become:

PTEM =
ANαp,n

2(TH − TC)2

2ρ(n + L)(1 + 2rLc/L)2
(2.18)

η =
(

TH − TC

TH

)(

(1 + 2rLc/L)2
[

2 −
1

2

(

TH − TC

TH

)

+
(

4

ZTH

)(

L + n

L + 2rLc

)])−1

(2.19)

The economic factor (a product of the conversion efficiency and the power generated per

unit area) was compared to element length. For the case that Rowe and Min explore, a

commercial Bismuth-Telluride TEM, optimization techniques yield an ideal element length

of just under one millimeter.

Additionally, a comparison was done between contact effects to examine the impact of

minimizing contact resistances. The results, Fig.(2.4), indicated that the largest factor for

effecting overall system performance was thermal contact resistance. The power density

and efficiency plots demonstrate that altering the ratio of contact resistance to bulk pellet

resistance shifts the curves more dramatically than altering the electronic resistance ratio.
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Figure 2.3: Product of power output per unit area and conversion efficiency as a function of
thermoelement length [12]

Comparably, altering the overall material properties had less of an effect on the overall

system performance. Altering both the bulk thermal and electrical conductivities by a

factor of two only altered the overall system performance by about twenty percent, Fig.(2.5).

Conversely, Fig.(2.3) indicates that altering the thermal contact resistance by a factor of two

led to a performance change of a factor of two.

2.3 One-Dimensional Thermoelectric Module Model with

Thomson Effect

So far, both TEM models have assumed that the Seebeck coefficient does not vary perceptibly

with temperature, and have thus excluded the Thomson effect from their analysis. Chen et

al. venture to examine a model that includes the Thomson effect, and determine a material-

property threshold criteria for neglecting the Thomson effect [13]. Assumptions in this model

include negligible contact resistances, and 1-D, steady state heat flow. In their analysis it is

also assumed that the material properties have fixed values, although a constant Thomson

coefficient is prescribed. Additionally, the Seebeck coefficient at the hot side, αH , has a

different value than the Seebeck coefficient on the cold side, αC where:

αi = (αp − αn)|
i

i = H,C (2.20)

The heat diffusion is examined in both legs (prescribed as n-type leg and p-type leg) with

the Thomson effect incorporated into the overall equation.
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(a) Thermal Contact (b) Electrical Contact

Figure 2.4: Power density vs. conversion efficiency for different contact properties (a) thermal
(b) electrical [12]

KnLn

d2T

dx2
− τnI

dT

dx
+

RnI
2

Ln

= 0, 0≤x≤Ln, (2.21)

KpLp

d2T

dx2
+ τpI

dT

dx
+

RpI
2

Lp

= 0, 0≤x≤Lp, (2.22)

Applying standard boundary conditions:

Tn(0) = Tp(0) = TC , (2.23)

Tn(Ln) = Tp(Lp) = TH , (2.24)

qC = αCTCI + KnLn

dTn

dx

∣

∣

∣

∣

∣

x=0

+ KpLp

dTp

dx

∣

∣

∣

∣

∣

x=0

, (2.25)

qH = αHTHI + KnLn

dTn

dx

∣

∣

∣

∣

∣

x=Ln

+ KpLp

dTp

dx

∣

∣

∣

∣

∣

x=Lp

, (2.26)

where Kn = knAn/Ln, Kp = kpAp/Lp, Rn = Ln/(σnAn), and Rp = Lp/(σpAp) are the

thermal conductances and electrical resistances of the n-type and p-type semiconductor ele-

ments respectively. The subscript H corresponds to hot-side parameters, while the subscript

C relates to cold-side parameters. For the purposes of this investigation, Ln = Lp = L.

Following a similar procedure outlined in the section covering 1-D analytical solution of a

TEM model, the temperature profile can be found using the boundary conditions. With the

temperature profile, the dT
dx

terms can be evaluated in Eq.(2.25) and Eq.(2.26). Net power
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Figure 2.5: Effect of altering bulk material properties on system performance. [12]
A: λ = 0.5W/mK; α2σ = 15·10−4W/mK2

B: λ = 1.0W/mK; α2σ = 30·10−4W/mK2

C: λ = 1.5W/mK; α2σ = 45·10−4W/mK2

D: λ = 2.0W/mK; α2σ = 60·10−4W/mK2

E: λ = 2.5W/mK; α2σ = 75·10−4W/mK2

produced by the thermoelectric generator can then be expressed as:

PTEM = N(qH − qC) = N(αHTH − αCTC)I − τTEM(TH − TC)I − I2RTEM (2.27)

And likewise efficiency can be expressed as:

η = 1 −
qC

qH

=
(αHTH − αCTC)I − τ(TH − TC)I − RI2

αHTHI + (K∗

1 + K∗

2)(TH − TC) − τ(TH − TC)I + (R∗

1 + R∗

2 − R)I2
(2.28)

with R = Rn + Rp, τ = τp − τn, K∗

n = τnI/[exp(ωnL)− 1], K∗

p = τpI/[1− exp(−ωpL)], R∗

n =

Rn(1/(ωlL) − 1/[exp(ωnL) − 1]), R∗

2 = Rp(1/[1 − exp(−ωpL)] − 1/(ωpL)), ωn = τnI/(KnL),

and ωp = τpI/(KpL).

Clearly, the expression for efficiency is complex and difficult to analyze. Chen et al.

examine a particular case where they assume (τpI/Kp)
2≪1, (τnI/Kn)2≪1. This assumption

holds true for the material properties of some of the commercially available thermoelectrics.

Collapsed parameter values can be expressed as:

K∗

p = Kp

(

1 −
τpI

2Kp

)

K∗

n = Kn

(

1 +
τnI

2Kn

)

R∗

p =
Rp

2

(

1 +
τpI

6Kp

)

R∗

n =
Rn

2

(

1 −
τnI

6Kn

)

(2.29)

Chen et al. have defined a method for analyzing TEM efficiency while incorporating
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the Thomson effect. One disadvantage to this model, however, is that all of the analysis is

predicated on the assumption that the material properties remain constant with temperature,

except for the Seebeck coefficient. As described later, this assumption can lead to errors for

materials with properties that are heavily temperature dependent. The Seebeck coefficient

is assumed to be be logarithmic with respect to temperature, and thus yields a constant

Thomson coefficient. Typical functions for describing the Seebeck coefficient are polynomial,

and yield a heavily temperature-dependent Thomson coefficient, as seen in the Appendix and

the section labeled “The Thomson Effect Revisited”.

2.4 Improved Analytical Thomson Effect Model

A further expansion of the Thomson model made by Freunek et al. [14] implements a

linearization of the Seebeck coefficient in addition to both thermal and electrical contact

resistances. The same governing heat equations and boundary conditions seen in Eqs.(2.21-

2.24) are implemented for the thermoelement legs in this model. A thermal resistance due

to the ceramic interface is accounted for, as well as electrical contact resistances between the

legs.

Figure 2.6: TEM. 1-Ceramic Interface (Hot), 2-Conducting Strip, 3- Thermoelement Legs,
4-Ceramic Interface (Cold). Note that K in this analysis represents a thermal resistance,
instead of conductance [14]

Because of the additional contact resistances, the heat flow equations into and out of

the thermoelement junction are altered in two ways. First, the temperatures in the Peltier

heat term are changed to be the temperatures at the legs and not the temperature at the

interfaces since there is a thermal resistance in between, as seen in Fig.(2.6). Secondly, a

boundary generation term representing the Joule heating due to the contact resistance at

the hot side (Rch) and cold side (Rcc) has been added. The new boundary heat flow terms

are:

qh = knLn

dTn

x

∣

∣

∣

∣

∣

x=Ln

+ kpLp

dTp

x

∣

∣

∣

∣

∣

x=Lp

+ IThαp,n − I2Rch (2.30)
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qc = knLn

dTn

x

∣

∣

∣

∣

∣

x=0

+ kpLp

dTp

x

∣

∣

∣

∣

∣

x=0

+ ITcαp,n + I2Rcc (2.31)

Using Eq.(1.5) and the fact that the Thomson coefficient τ is constant, Freunek et al.

express the electrical current through a thermoelectric as:

I =
(α(T0) + τ

T0

Kcqc)∆Tg + τ
2Tc

∆T 2
g

Rg + RLoad

=
(α(T1) −

τ
T1

Khqh)∆Tg −
τ

2Th
∆T 2

g

Rg + RLoad

(2.32)

where T0, T1, Kc, and Kh are the cold-side temperature, hot-side temperature, cold-side

thermal interface and hot-side thermal interface respectively. The overall generator electrical

resistance can be represented as Rg = RLeg + Rcc + Rch. The Thomson coefficient is defined

as τ = τp − τn.

After solving the temperature profile in the legs, the flux terms can be approximated

(by assuming τI/K ≪ 1, a reasonable assumption using commercial thermoelectric material

properties, the exponentials are simplified) as:

qh =
Rg + RLoad

Rg + RLoad + ∆Tgα(T1)Kh(2τ + α(T1))
(2.33)

×





∆Tg

Kg

+
α2(T1)T1∆Tg

Rg + RLoad

−
∆T 2

g α(T1)(τ + (1 − ǫ) Rgα(T1)
Rg+RLoad

)

Rg + RLoad





qc =
Rg + RLoad

Rg + RLoad − ∆Tgα(T0)Kc(2τ + α(T0))
(2.34)

×





∆Tg

Kg

+
α2(T0)T0∆Tg

Rg + RLoad

+
∆T 2

g α(T0)(τ + (1 + ǫ) Rgα(T0)
Rg+RLoad

)

Rg + RLoad





The simplification is made with a new parameter to describe the distribution of the Joule

heat:

ǫ =
1
2
R + Rcc

R + Rcc + Rch

(2.35)

Finally, using the relationship between the temperature difference across the leg and

the temperature difference across the module, ∆T = ∆Tg + Kcqc + Khqh = T1 − T0, the

temperature across the legs can be solved for by utilizing Eqs.(2.34-2.35).

∆Tg = ∆T

(

1 +
Kc

Kg

+
Kh

Kg

+
2τ∆T (Kcα(T0) − Khα(T1))

Rg + RLoad

+
α2(T0)KcT1 + α2(T1)KhT0

Rg + RLoad

)

−1

(2.36)

It is important to note that several Taylor series linearizations were required to simplify
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Figure 2.7: A thermopile with air space and ceramic insulation along the legs[15]

these systems of equations, and an approximation was used to simplify the exponential terms

in the temperature profile. The appendix contains descriptions of this analysis. The system

of equations described above can be used to calculate the performance of a TEM with an

approximation of the Thomson coefficient as a temperature-independent term. The validity

of this assumption is explored in a later section.

2.5 Thermoelectric Module Model with Heat Leakage

One significant source of inefficiency in a TEM is heat leakage. If a significant portion of

heat transmits through the TEM without being absorbed and converted to electricity by the

Seebeck effect, the module efficiency decreases, since it ’wastes’ heat by allowing it to pass

through without conversion. This is why the figure of merit, ZT , is inversely proportional

to thermal conductivity, Eq.(1.1). This model, however, assumes that thermal conduction

through the thermopile is the only form of heat leakage. In fact, there are gaps between

thermopiles that could permit significant radiative and conductive heat transfer between the

hot side and the cold side of the TEM. An improved model, which accounts for fluid and

radiative heat leakage, was developed by Omer and Infield, as depicted in Fig.(2.7)[15]. As

it stands, the model is flawed because of mistakes in the heat flow analysis and cannot be

used in its current form. In a later section, the heat leakage is correctly implemented in a

new analytical model and the role of heat leakage in module performance is evaluated.

The improved model proposed by Omer and Infield accounts for the air space between

the hot and cold substrates. At high temperatures, the magnitude of heat leakage due to

radiation could easily approach that of the heat leakage due to conduction through the

thermopile. Additionally, some TEMs have an insulation layer of ceramic along the outside

of each thermocouple leg that could provide another conduction route for heat leakage.

The energy balance described by Omer and Infield at the hot junction has the following

incorrect form.

qh = qCond + qPeltier + qRad + qAir + qSeal −
1

2
qt −

1

2
qj (2.37)
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where qh, qCond, qPeltier, qRad, qAir, qSeal, qt, qj are the heat flow into the TEM at the hot side

interface, the heat flow by conduction through thermoelement legs, the Peltier heat (or heat

absorbed due to the Seebeck effect), the heat transfered by radiation in the gap between the

thermopile, the heat transfered by convection in the gap, the Thomson heat, the Joule heat,

the heat leakage via the space and the heat leakage via the sealant ceramic material to the

cold junction.

The first mistake made in this model is in Eq.(2.37), and is merely a semantic error, but

could lead to mathematical errors if not corrected. The terms qt and qj, which represent

the Joule and Thomson heats, are accounted for in the conduction term, qcond, because the

temperature profile (which is used in the conduction to determine dT
dx

) contains the heat

distributed by the Joule and Thomson effects. The equation should read:

qh = qCond + qPeltier + qRad + qAir + qSeal (2.38)

since the Thomson and Joule heat terms are redundant.

The heat flow is assumed to be 1-D, and thus no heat leakage occurs through the sides of

the TEM. Additionally, the fluid bulk properties of the air in the space between the hot-side

and cold-side junctions are assumed to be at the mean temperature Tm = 0.5(Th + Tc).

Simultaneously, this model accounts for electrical and thermal contact resistances. Each

of the two junction layers contributes a contact resistance and the total thermopile resistance

can be expressed as follows:

r = 2rc + 2ρ
L

A
=

2ρ

A

(

rcA

ρ
+ L

)

= 2ρ(ρoc + L)/A (2.39)

where ρoc = ρc

ρ
, and the quantity ρc = rcA characterizes the quality of the junction. Taking

all resistances into account, the overall heat flow through the module, q, is represented

(incorrectly) as:

q =
∑

Rth
−1(Th − Tc) (2.40)

where
∑

Rth is the total thermal resistance through the thermoelectric module. This as-

sumes that the heat flow through the module is constant, which is only true if there is no

electrical load (open circuit condition). However, this is not true for the behavior of an

active thermoelectric generator. A simple examination of the heat flowing into the module

and heat flowing out of the module (as seen in Fig.(2.1) demonstrates that the flow is vari-

able throughout the thermoelement leg. This is also clear because qH 6= qC . The overall

resistance, including all forms of bypass heat leakage, is lumped into the parameter U , which

is defined as:

U = 1 + kosAos + kogAog +
ǫEMσSBAog

2 − ǫEM

(T 2
hj + T 2

cj)(Thj + Tcj) (2.41)

where kos, kog are, respectively, the ratios of thermal conductivity of the sealant, and the
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Figure 2.8: Power and Efficiency of the Model vs. Experimental Data [15]

thermal conductivity of the air in the gap to the thermal conductivity of the thermoelement.

The terms ǫEM and σSB are the emissivity and Stefan-Boltzmann constant respectively. Aos

and Aog are the ratios of the cross-sectional areas of the sealant and the gap to the cross-

sectional area of the thermoelement. Thj and Tcj are the hot and cold side temperatures of

the thermoelement.

The derivation for PTEM and ηTEM differ from the previous models only in accounting

for this additional U term, but the results vary greatly. The derivation for the expressions

is lengthy and needs slight corrections. The concept behind this model is implemented later

in section 3.1, and detailed account of the authors’ derivation can be found in [15].

The results shown in Fig.(2.8) for predicted efficiency and power output vs. experimental

data shows some deviation. It is unclear whether this discrepancy is a fault of the model or

because the experimental arrangement which was not designed to characterize thermoelectric

modules but instead determine their performance under a specific radiative heat load (to

simulate solar radiation for power generation). Further discussion on the results of this

model is made in the following section.

2.6 Review of Previous Work

The aforementioned analytical techniques have been implemented and validated with varying

degrees of success. The simple 1-D model is valuable for estimating the ideal behavior

of a thermoelectric device, but cannot be used as a model for comprehensive geometric

optimization of a device. Because contact resistances are neglected, the simple 1-D model

will report that an infinitely small leg will yield the highest power output of a module [12].

Additionally, the impact of electrical contact resistance is not fully understood. Electrical
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contact resistances, particularly those associated with soldered joints as in the case with many

TEMs, are difficult to quantify. The impact of the contact resistance on TEM performance

can be large, but because the contact resistance is used as a fitting parameter between models

and experimental data [16], the size of the resistance and its impact is ambiguous.

As mentioned earlier, the the model that accounts for the Thomson effect proposed

by Chen et al. makes the simplification that the Thomson coefficient is independent of

temperature for the sake of treating the governing equations as an ordinary differential

equation. Additionally, their model is not experimentally validated. This does not fully

capture the contribution of the Thomson effect to the overall system performance. With

large temperature gradients, or Seebeck coefficients that are highly temperature sensitive,

the Thomson coefficient will change dramatically and increase the amount of heat generated

or absorbed by this effect throughout the module.

The heat leakage model proposed by Omer and Infield is slightly more comprehensive,

though some of the assumptions need to be reevaluated. The effective temperature across

the thermoelements is calculated by making the incorrect assumption that the total heat flow

through the thermoelectric module is simply the temperature difference between the hot side

and cold side of the module, divided by the overall module thermal resistance. This model,

however, is the only model to account for other forms of heat leakage and may prove to be

accurate at high temperature gradients where this bypass heat may become more prevalent.

Further examination of this model is warranted.

Freunek offers an improvement on the constant Thomson coefficient by accounting for

thermal interface resistances. This model is comprehensive, and makes few assumptions, but

is still limited by assuming a constant Thomson coefficient. The beginning stages of this

model are explored in the section “Thomson Effect Revisited”.

2.7 Numerical Modeling

When analytical solutions are difficult or impossible to derive, numerical techniques can be

a powerful alternative. As it stands, analytical solutions to thermoelectric systems require

making broad assumptions. Already, discrepancies have arisen that indicate that making

some of these assumptions for an analytical solution is inappropriate [10],[11]. Models that

assume that material properties as temperature-independent, or that the resistances between

the thermoelement and the hot and cold sides are negligible, or neglecting the Thomson effect

have all been shown to be inadequate in many scenarios.

Rodriguez, et al. implemented numerical techniques to model thermoelectric behavior,

though the Thomson effect and stray heat leakage were neglected [17]. Additionally, Hirano

et al., El-Genk et al., and Lau et al. utilized numerical techniques for the purposes of

modeling functionally graded or segmented thermoelectrics to some success [18],[19],[9].

Recent advances in multiphysics coupling in commercial software have made finite el-

ement packages, such as ANSYS, competitive with finite difference techniques tailored for
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Figure 2.9: Temperature profile of a thermopile cooler in ANSYS[11]

thermoelectric analysis [11]. These new advances couple the Thomson and Peltier effect

electrically and thermally. In the past, only Joule heating has been accounted as a coupled

effect in the ANSYS package. Using the ANSYS finite element package, Antanova was able

to produce temperature profiles of a Peltier cooler, as can be seen in Fig.(2.9). In addition,

the performance of a TEM for the purposes of power generation was evaluated.

Because of their ease of implementation, and their robust nature, these packages have be-

come desirable as modeling tools to replace cumbersome numerical techniques. Additionally,

new geometrical configurations can easily be explored, thus the models are no longer limited

to rectangular, 1-D analysis. Some finite element packages allow for physical models to be

added for more complex analysis as well as allowing temperature dependent and spatially

dependent properties.
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Chapter 3

Improved Analytical Models

This section will address previously-neglected effects by integrating them into a robust an-

alytical model. Thermal contact resistance, heat leakage and the approximated Thomson

coefficient are all examined and explored for relative impact on TEM performance. In addi-

tion, the underlying assumptions are explicitly stated and their limitations are explored.

To quantitatively compare the different models and the relative impact of certain effects,

the module output power PTEM and module efficiency η are invoked. In some cases, it is

prudent to compare maximum power output PMax of some models, as described in section

2.1.

The module parameters used for model comparison can be seen in Fig.(3.1) and their

corresponding nominal values can be seen in Table 3.1. These parameters came from a

Melcor HT6-12-40-W6, a commercial Bi2Te3 module. The Melcor module was selected as

a benchmark due to its availability and likeness to many other commercial modules. The

material properties of the electrical contact and ceramic interface were provided, and the

dimensions of the module were measured.

Table 3.1: Parameters of a Thermoelectric Module

Parameter Value Symbol

Leg Height 1.092 [mm] L
Leg Width 1.397 [mm] W
Leg Spacing 1.016 [mm] D

Copper Thickness 0.318 [mm] tCu

Ceramic Thickness 0.787 [mm] tCer

Solder Thickness 0.140 [mm] tSolder

Ceramic Thermal Conductivity 27 [W/mK] kCer

Copper Thermal Conductivity 400 [W/mK] kCu

Copper Electrical Conductivity 6 · 107 [S/m] σCu

Number of Leg Pairs 127 N
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Figure 3.1: Parameters of a TEM for modeling. The copper contacts and solder are not
modeled in the 1-D analytical models, and likewise the leg spacing is not a parameter that
the 1-D models account for

3.1 Heat Leakage and Contact Model

The standard 1-D model serves as an excellent foundation for describing thermoelectric

material behavior; however, it neglects certain module-level facets that can significantly

impact TEM performance.

Typically a thermal interface material, such as a ceramic wafer, provides electrical insu-

lation for the junctions. Consequently, the temperature difference across the legs will always

be lower than predicted by the standard 1-D model. TEM models must account for the

temperature drop across the interface materials for accurate design and system integration

[12]. An implicit set of equations is established when the thermal resistances before and

after the module are accounted for:

qH =
TH − THE

RCer

(3.1)

qC =
TCE − TC

RCer

(3.2)

where THE and TCE are the temperatures of the hot-side and cold-side of the thermoelectric

legs, RCer is the thermal resistance of the ceramic plates covering the junction, assuming the

hot-side and cold-side ceramic interfaces have identical thicknesses and thermal conductivi-

ties as seen in Fig.(3.2).

TEM design can lead to additional forms of heat leakage, which diminishes module ef-

ficiency. Heat that is conducted from the hot side to the cold side of a module cannot be

converted into electricity, and is thus considered a parasitic loss. In most TEMs, the gap be-

tween the hot and cold side interfaces contributes to this heat leakage by conduction through
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Figure 3.2: Diagram of a thermoelectric couple as addressed by the improved analytical
model

the air and by thermal radiation. Accounting for this additional heat leakage, the heat rate

at the bottom edge of the ceramic plate is:

qH = INαp,nTHE −
I2RTEM

2
(3.3)

+

(

N

Rt

+
kAirNAGap

L
+

ǫσSBNAGap

2 − ǫ
(T 2

HE + T 2
CE)(THE + TCE)

)

(THE − TCE)

where kAir, AGap, ǫ, σSB, Rt are the conductivity of the air, the total cross-sectional area of

the gap between the ceramic plates per leg pair, emissivity of the ceramic plate, the Stefan-

Boltzmann constant and the thermal resistance of the thermoelements respectively. The

heat leaving the cold-side is similar to that entering the hot-side except for a sign difference

in the second term and the equivalent temperature in the first term.

qC = INαp,nTCE +
I2RTEM

2
(3.4)

+

(

N

Rt

+
kAirNAGap

L
+

ǫσSBNAGap

2 − ǫ
(T 2

HE + T 2
CE)(THE + TCE)

)

(THE − TCE)

The thermal radiation shape factor assumes two finite parallel plates connected on both

ends by perpendicular plates on either end, similar to the geometry created by the gap be-

tween two thermoelement legs. A constant, temperature-independent emissivity is assumed.

The heat leakage terms do not impact the power produced by the TEM because they sub-

tract out for PTEM = qH − qC . However the power takes a slightly different form, due to the
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equivalent temperatures, THE and TCE. The power production must account for the thermal

resistance of the ceramic interface, and takes the form:

PTEM = INαp,n(THE − TCE) − I2RTEM (3.5)

The efficiency of the module takes a very different form, since the heat flowing into the

module, qH , contains the terms for heat bypassing the thermoelements.

η =
INαp,n(THE − TCE) − I2RTEM

INαp,nTHE − I2RTEM

2
+
(

N
Rt

+
kAirNAGap

L
+

ǫσSBNAGap

2−ǫ
(T 2

HE + T 2
CE)(THE + TCE)

)

(THE − TCE)

(3.6)

Because the system of equations, Eqs. (3.1)-(3.5), are implicit, an iterative technique is

required. The heat flows, qH and qC reference the equivalent temperatures, THE and TCE,

and reciprocally the equivalent temperatures reference the heat flows. Once the heat flows

are determined using an appropriate iterative numerical technique, efficiency and power are

easily calculated.

To illustrate the respective impact of the ceramic substrate and the additional heat

leakage, the improved model is compared to the standard 1-D model. To examine the

relative impact of the heat leakage and the ceramic thermal resistance, three models are

compared to the standard model. The first model accounts for both the thermal substrate

resistance and heat leakage. The second model accounts only for the thermal substrate

resistance and the third model accounts only for the heat leakage. Using Melcor’s material

properties (Appendix A5) and the prescribed module parameters (Table 3.1), the module

power and the module efficiency, Fig.(3.3), for the various models are calculated.

Upon examination of the power predicted by the different models, depicted in Fig.(3.3), it

appears as though the heat leakage has minimal effect on module performance, and that the

ceramic interface adversely affects the module performance greatly. As could be expected,

the heat leakage model predicts the same power output as the standard model, since there

is no ceramic thermal resistance thereby causing THE = TH and TCE = TC . This, in turn,

would cause Eq.(3.5) to be equal to Eq.(2.11).

The heat leakage does have an impact, albeit minimal (less than 1% error at peak power

between the standalone ceramic thermal resistance model and the combined ceramic resis-

tance and heat leakage model), on the power output when coupled with the ceramic interface.

However, the impact of the heat leakage on the power output is dwarfed by the negative

impact of the ceramic thermal resistance, which predicts a peak power that is 20% less than

that predicted by the standard model.

The significant impact of heat leakage is more readily identified by examining the module

efficiency. The standalone heat leakage model has a 4% error in peak efficiency when com-

pared to the standard model, and likewise the coupled heat leakage and ceramic resistance

model has a 4% error in peak efficiency when compared to the standalone ceramic resistance
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Figure 3.3: (a) Model comparison of power output and (b) efficiency. TH = 473K, TC =
307K, Melcor material properties from Appendix, parameters from Table 3.1

model. Again, the ceramic interface resistance is the dominant facet, with a 10% error in

peak efficiency when compared to the standard model.

The same effects are examined at a higher temperature gradient (TH = 973K and Tc =

440K) using high temperature material properties provided by CRC Handbook (appendix A3

for p-type CeFe4Sb12 and A4 for N-Type CoSb3) and the same module parameters, Table 3.1.

The heat leakage is dependent on temperature, so sensitivity to the size of the experienced

temperature gradient must be probed.

Evaluation of power output at the higher temperature gradient (and new material prop-

erty values) revealed that the ceramic interface (kCer = 27W/mK, tCer = 0.79mm) dimin-

ished peak power by 35% when compared to the standard model, seen in Fig.(3.4). The heat

leakage had virtually no impact on power output at all, in this scenario.

Again, when the module efficiency is analyzed, the impact of the heat leakage is seen,

Fig.(3.4). The heat leakage introduces an error of 5% when the heat leakage standalone is

compared to the standard model, and an error of 5% when the ceramic resistance standalone

was compared with the combined ceramic resistance and heat leakage model. It is worth

mentioning that these contributions to error are true for the models where a constant hot

and cold side temperature are maintained. In reality, the hot and cold side temperatures

will slightly decrease and increase respectively due to the heat leakage.

The heat leakage was assumed to have a radiative emissivity of 1, which is a “worst case

scenario”. In fact, ceramic has an emissivity on the order of 0.2, indicating that the calculated

radiative heat leakage is as much as an order of magnitude larger than would actually occur.

In light of this, the heat leakage is not considered a critical modeling component of these
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Figure 3.4: (a) Model comparison of power output and (b) efficiency. TH = 973K,
TC = 440K, CRC material properties from Appendix (p-type CeFe4Sb12 and n-type CoSb3),
parameters from Table 3.1

TEMs.

3.2 Thomson Effect Revisited

Two analytical models in an earlier section accounted for the Thomson effect by assuming

that it was temperature-independent. The validity of assuming the Thomson coefficient,

τ , is constant has not been probed by anyone, it has merely been assumed. In fact, both

published and manufacturer’s material data indicate that this assumption is inaccurate over

large temperature gradients. In order for the Thomson coefficient to remain constant, the

Seebeck coefficient, α, must be a logarithmic function of temperature. This can be seen by

invoking Eq.(1.9):

∫

dα = τ
∫ 1

T
dT (3.7)

α = τ ln(T ) + C (3.8)

Because α must be a logarithmic function of temperature, the validity of the constant

Thomson coefficient can be evaluated by examining a logarithmic curve fit if the Seebeck

coefficient over a temperature range. There are some regimes where this assumption is

appropriate, as seen in Fig.(3.5). The curve fit seen in Fig.(3.5) has the following form:

29



α = −9.2769 · 10−5 ln(T ) + 7.5186 · 10−4 [V/K]

R2 = 0.97828

350 375 400 425 450
0.000180

0.000185

0.000190

0.000195

0.000200

0.000205

0.000210

0.000215

 

 [V
/K

]

T [K]

Figure 3.5: Melcor’s Seebeck coefficient with logarithmic curve fit (appendix A5)

The curve fit above can provide a good estimate for the overall contribution of the

Thomson coefficient. Because, in this particular case, the Thomson coefficient can accu-

rately be estimated as constant, a single parameter value can be assigned. In this case,

τ = −0.093[mV/K]. Compared to the Seebeck coefficient, which over the same range has

an integrated average value of α = 0.20[mV/K], the Thomson coefficient can contribute

significantly to the performance of the system (it is 47% the size of α).

Naturally, this has a significant impact on TEM performance. The Seebeck coefficient and

Thomson coefficients are plotted against each other in Fig.(3.6). At any given temperature,

the Thomson coefficient is at least 20% of the size of the Seebeck coefficient, and can get

as large as 55%. Without a doubt, the Thomson effect is substantial, and should not be

discounted in analysis. Additionally, the Thomson effect is sensitive to the temperature

operating regime. In lower temperature ranges, the effect is beneficial, while in higher

temperature ranges it is parasitic.

For other published thermoelectric material property data, the Thomson coefficient is not

constant in any temperature regime, as seen in Fig.(3.7). This motivates the development of

both a numerical model that can account for any material property temperature dependencies

and also an analytical approximation of the non-linear Thomson coefficient term. In the next
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Figure 3.6: Melcor thermoelectric properties (appendix A5). τ calculated from a polynomial
fit of α

section, a novel analytical model is developed to approximate the non-linear behavior caused

by the Thomson effect using asymptotic theory.

Any model that uses the integral of the Seebeck coefficient to determine the open-circuit

voltage, as seen in Eq.(1.5), accounts for the Thomson effect by approximation. In the

case where the Thomson coefficient is constant, the predicted power output of the standard

model with an integral averaged Seebeck coefficient, and the predicted power output of the

constant Thomson coefficient model are identical. Re-examining Eq.(2.11) with the Seebeck

coefficient integral averaged, the power of the standard model takes the form:

P = I
∫ TH

TC

α(T )dT − I2R (3.9)

Assuming the Thomson coefficient is constant, the Seebeck coefficient takes the form of

Eq.(3.8) and thus the power may be rewritten as:

P = I [τ(T ln(T ) − T ) + CT ]TH

TC
− I2R (3.10)

Substituting the definition of α from Eq.(3.8), the standard model output power takes

the final form:

P = I(αHTH − αCTC) − Iτ(TH − TC) − I2R (3.11)

If a factor of N is distributed in the preceding equation to account for N thermocouples

in a device, Eq.(3.11) takes the same form as Eq.(2.27). The latter equation was derived by
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Figure 3.7: CRC Bi2Te3 (a) p-type and (b) n-type thermoelectric material properties. τ
calculated from a polynomial fit of α

solving the heat diffusion equations with the Thomson coefficient, Eqs.(2.21-2.26). The iden-

tical form of the two models in the case of the constant Thomson coefficient is demonstrative

of the fact that any model using the integral average of the Seebeck coefficient approximates

the Thomson effect.

The Thomson effect is present in any situation where the Seebeck coefficient is a function

of temperature. Fig.(3.8) demonstrates that even at relatively low temperature gradients,

the Thomson effect can be substantial (the equation governing the performance of a module

that neglects the Thomson heat is Eq.(3.12)). The Thomson effect is never truly neglected by

standard analytical models, although the authors will typically use language that indicates

as much. If the Seebeck coefficient is averaged (by standard or integral averaging), the

Thomson effect is implicit, and accounted for by approximation. This is expressed explicitly

by Ioffe (Page 38) [4]:

“For the time being we shall neglect the Thomson heat, regarding it as small
in comparison with the other terms and shall assume α1 = α0 = α. When
α1 6= α0 the Thomson heat is accounted for in the determination of the efficiency
by substituting for α the mean value for the two ends α = α1+α0

2
.”

The Thomson effect can be neglected in analytical models by simply using the non-

averaged Seebeck coefficients for the heat flow into and out of the module. The power

generated by a module, neglecting the Thomson heat entirely, may be represented as:

PTEM = N [α(TH)TH − α(TC)TC ]I − I2RTEM (3.12)
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Figure 3.8: (a) Module power output and (b) efficiency of models with and without the
Thomson effect. The analytical models include the thermal resistance of the ceramic. Melcor
properties with TH = 473K and TC = 307K

The preceding equation is highly inaccurate, as demonstrated by Fig.(3.8) and only serves

to demonstrate the importance of quantifying the Thomson effect.

3.3 Asymptotics

Asymptotic mathematical techniques are powerful for modeling the behavior of complex

differential equations. When implemented carefully, asymptotics can be used to approximate

non-linear differential equations to a high degree of accuracy. Additionally, asymptotic

methods provide a unique perspective on the effect of physical parameters on overall system

behavior. By condensing the governing equations of a system into non-dimensional form,

the impact of individual lumped parameters on the behavior of the overall system can be

evaluated.

Depending on the given parameters, some of the normalized terms may contribute signif-

icantly less than others to the general system. Should a typically non-linear term be scaled

such that it contributes less to the governing equation than the other terms, it is possible to

replace it with an approximation. Careful identification of these small terms, and judicious

substitution of simplified expressions can yield accurate results to previously unsolvable dif-

ferential equations. The 1-D, steady state heat equation within a thermoelectric material

is:

k
d2T

dx2
+ JT

dα

dT

dT

dx
+

J2

σ
= 0 (3.13)
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where the first term is the diffusion of heat within the body of a material, the second term

is the Thomson heat (and non-linear term) that accounts for the heat liberated or absorbed

due to the changing voltage profile as a result of the temperature-dependency of the Seebeck

coefficient, and the last term is the Joule heat.

Expressing the heat equation in non-dimensional form:

d2T̄

dx̄2
+

JL

k
(T̄∆T + Tc)

∆α

∆T

dᾱ

dT̄

dT̄

dx̄
+

J2L2

σk∆T
= 0 (3.14)

where L is the length of the thermoelement legs,

T̄ =
T − TC

TH − TC

(3.15)

x̄ =
x

L
(3.16)

dᾱ

dT̄
=

dα∆T

dT∆α
(3.17)

and ∆α is the difference in the Seebeck coefficient from the hot side to the cold side of the

leg and ∆T = TH − TC .

With given parameters, the impact of the individual terms on the whole system can be

evaluated. Very accurate analytical approximations of the system behavior can be made if

the non-linearities are carefully replaced. Condensing Eq.(3.14), the non-dimensional ther-

moelectric heat equation may be represented:

d2T̄

dx̄2
+ ǫ[ST̄ + 1]

dᾱ

dT̄

dT̄

dx̄
+ RA = 0 (3.18)

with

S =
∆T

TC

(3.19)

ǫ =
JLTC∆α

k∆T
(3.20)

RA =
J2L2

σk∆T
(3.21)

and the boundary conditions T̄ = 0 at x̄ = 0 and T̄ = 1 at x̄ = 1.

Until now, the only actions performed on the heat equation have been non-dimensionalizing

the equation and rearranging terms. Using parameter values that can be seen in typical mod-

eling scenarios, the relative sizes of the non-dimensional terms can be evaluated. To roughly

determine the term sizes, the Melcor material properties from Appendix A5, the approxima-

tion for the constant Thomson coefficient from the preceding section (τ = 0.093mV/K) and

the leg parameters from Table 3.1 are used (in this case electrical current, I is assumed to
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range from 1.5A to 3A with TH = 473K and TC = 307K).

The first term in Eq.(3.14) is of order one because it has been normalized. The second

term, which is non-linear, is conveniently order 0.1 (with current ranging from 1.5A to 3A,

the term ranges from 0.05 to 0.11), which allows for a series approximation with few terms.

Finally, the last term ranges (because of the current) from 0.08 to 0.33, although the relative

size of this term is less important since it does not require approximation. From Eq.(3.18),

ǫ is selected as the expansion coefficient, since it has a relatively small value (0.01 to 0.05).

Here, in the limit as ǫ → 0 the temperature profile is expanded using an asymptotic series:

T̄ = T̄0 + ǫT̄1 + ǫ2T̄2 + ... (3.22)

Because ǫ is small, the expansion can be limited to the first two terms, which contribute

the most.

T̄ ≈ T̄0 + ǫT̄1 + 0(ǫ2) (3.23)

Substituting Eq.(3.23) into Eq.(3.18) and ignoring any term with ǫ2 or higher yields:

d2T̄0

dx̄2
+ ǫ

d2T̄1

dx̄2
+ ǫ(ST̄0 + 1)

dᾱ

dT̄

∣

∣

∣

∣

∣

T̄0

dT̄0

dx̄
+ RA = 0 (3.24)

Grouping terms of like order ǫ, the heat equations can be expressed as simple differential

equations with polynomial forcing functions:

d2T̄0

dx̄2
= −RA (3.25)

d2T̄1

dx̄2
= −(ST̄0 + 1)

dᾱ

dT̄

∣

∣

∣

∣

∣

T̄0

dT̄0

dx̄
(3.26)

with the boundary conditions T̄0 = T̄1 = 0 at x̄ = 0 and T̄0 = 1, = T̄1 = 0 at x̄ = 1. Solving

for T̄0 and dT̄0

dx̄
is trivial:

T̄0 = −
RA

2
x̄2 + (1 +

RA

2
)x̄ (3.27)

dT̄0

dx̄
= −RAx̄ +

RA

2
+ 1 (3.28)

In order to evaluate T̄1, a functional form of ᾱ must be defined. The experimental data

for α is typically curve-fit using a polynomial of varying order. It is assumed that the Seebeck

coefficient will always be expressed by a polynomial function:

ᾱ =
n
∑

i=0

CiT̄
i (3.29)

The Melcor data for the Seebeck coefficient is fit with a fifth-order polynomial. For
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simplicity, the Seebeck coefficient will be assumed to be curve-fit with a polynomial of order

five or less. The polynomial is left in general form so that the coefficients from a curve fit

from any material may be entered into the model for analysis. If a polynomial of order less

than five is used for a curve fit, then the superfluous terms may be set to zero from here

throughout the rest of the analysis. The non-dimensional Seebeck coefficient will thus take

the form:

ᾱ = C0 + C1T̄ + C2T̄
2 + C3T̄

3 + C4T̄
4 (3.30)

Likewise, the derivative of ᾱ with respect to normalized temperature is:

dᾱ

dT̄
= C1 + 2C2T̄ + 3C3T̄

2 + 4C4T̄
3 (3.31)

The conversion from α to ᾱ is simple, but necessary. If the dimensional Seebeck coefficient

takes the form:

α = β0 + β1T + β2T
2 + β3T

3 + β4T
4 (3.32)

then the corresponding coefficients of the non-dimensional dᾱ
dT̄

, Ci are defined as:

Table 3.2: Coefficients of ᾱ terms

Coefficient Value

C4 (β4∆T 3)(∆T
∆α

)
C3 (β3∆T 2 + 4β4∆T 2Tc)(

∆T
∆α

)
C2 (β2∆T + 3β3∆TTc + 6β4∆TT 2

c )(∆T
∆α

)
C1 (β1 + 2β2Tc + 3β3T

2
c + 4β4T

3
c )(∆T

∆α
)

Substituting Eq.(3.27), Eq.(3.28) and Eq.(3.31) into Eq.(3.26) yields an expression of
d2T̄1

dx̄2 in terms of x̄ and TEM parameters. Thus, integrating d2T̄1

dx̄2 twice with respect to x̄

and applying the boundary conditions T̄1 = 0 at x̄ = 0 and T̄1 = 1 at x̄ = 1, the following

expression for T̄1 is achieved:

T̄1 =
11
∑

i=2

Bix̄
i + x̄

5
∑

i=0

DiR
i
A (3.33)

where the coefficients Bi and Di are expressed in Table 3.3 and Table 3.4.

With expressions of T̄0 and T̄1 in terms of x̄ and module parameters, T̄ can be expressed

by combining Eq.(3.33) and Eq.(3.27) into Eq.(3.23). T̄ (x̄) is the approximate solution to

the non-linear differential equation.

The non-dimensional variables can be differentiated and transformed quickly using the

normalizing identities Eqs.(3.15-3.16) to get an expression of dT
dx

.

dT̄

dx̄
=

dT̄0

dx̄
+ ǫ

dT̄1

dx̄
(3.34)
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Table 3.3: Coefficients of x̄ terms

Coefficient Value

B11
1

440
SR5

AC4

B10 − 1
80

SR5
AC4 −

1
40

SR4
AC4

B9 − 1
192

SR4
AC3 + 1

9
SR3

AC4 −
1

144
R4

AC4 + 1
9
SR4

AC4 + 1
36

SR5
AC4

B8 −3
8
SR3

AC4 −
3
16

SR4
AC4 + 3

64
SR3

AC3 −
1
4
SR2

AC4 + 1
32

R4
AC4 + 1

16
R3

AC4

+ 3
128

SR4
AC3 −

1
32

SR5
AC4

B7 − 9
224

SR4
AC3 + 1

7
SR4

AC4 + 2
7
SRAC4 + 1

56
SR5

AC4 −
9
56

SR2
AC3 + 4

7
SR2

AC4

+ 1
56

R3
AC3 −

3
56

R4
AC4 −

3
14

R2
AC4 −

3
14

R3
AC4 −

9
56

SR3
AC3 + 3

7
SR3

AC4 + 1
84

SR3
AC2

B6
1
24

R4
AC4 + 1

3
RAC4 + 1

4
SRAC3 −

1
3
SRAC4 + 3

8
SR2

AC3 −
1
8
R2

AC3 + 3
16

SR3
AC3

+1
4
R3

AC4 −
1
6
SR3

AC4 −
1
24

SR4
AC4 + 1

2
R2

AC4 −
1

240
SR5

AC4 −
2
15

SC4 + 1
32

SR4
AC3

−1
3
SR2

AC4 −
1
12

SR2
AC2 −

1
24

SR3
AC2 −

1
16

R3
AC3

B5
3
10

RAC3 −
3
40

SR3
AC3 + 3

40
R3

AC3 −
2
5
RAC4 + 3

10
R2

AC3 −
1
80

R4
AC4 −

3
320

SR4
AC3

− 1
40

SR2
AC1 −

9
40

SR2
AC3 + 1

5
SR2

AC2 −
1
20

R2
AC2 + 1

5
SRAC2 −

1
10

R3
AC4

− 3
10

R2
AC4 + 1

20
SR3

AC2 −
3
10

SRAC3 −
3
20

SC3 −
1
5
C4

B4 − 3
16

R2
AC3 −

1
4
SRAC2 −

1
32

R3
AC3 + 1

8
SRAC1 + 1

8
R2

AC2 −
1
4
C3 + 1

4
RAC2

+ 1
16

SR2
AC1 −

1
4
SR2

AC2 −
3
8
RAC3 −

1
48

SR3
AC2 −

1
6
SC2

B3 −1
6
SRAC1 −

1
24

SR2
AC1 −

1
12

R2
AC2 + 1

6
RAC1 −

1
3
C2 −

1
3
RAC2 −

1
6
SC1

B2 −1
2
C1 −

1
4
RAC1

Table 3.4: Coefficients of RA terms

Coefficient Value

D5
1

110880
SC4

D4
1

13440
SC3 + 1

10080
C4 + 1

5040
SC4

D3
1

1120
C3 + 1

1680
SC2 + 3

2240
SC3 + 1

560
C4 + 1

504
SC4

D2
1
84

SC4 + 1
120

C2 + 1
80

C3 + 3
280

SC3 + 1
120

SC2 + 1
240

SC1 + 1
70

C4

D1
1
12

C1 + 1
20

SC2 + 1
20

SC3 + 1
15

C4 + 1
12

C2 + 3
40

C3 + 1
24

SC1 + 1
21

SC4

D0
1
2
C1 + 1

3
C2 + 1

4
C3 + 1

5
C4 + 3

20
SC3 + 1

6
SC1 + 2

15
SC4 + 1

6
SC2

dT

dx
=

(

dT̄0

dx̄
+ ǫ

dT̄1

dx̄

)

∆T

L
(3.35)

where dT̄1

dx̄
can be expressed as:

dT̄1

dx̄
=

11
∑

i=2

iBix̄
i−1 +

5
∑

i=0

DiR
i
A (3.36)

Thus the heat flow into and out of the leg can be calculated by combining the preceding

equation and Eq.(3.28) into Eq.(3.35).

dT

dx
=

(

−RA(
x

L
) +

RA

2
+ 1 + ǫ

[

11
∑

i=2

iBi(
x

L
)i−1 +

5
∑

i=0

DiR
i
A

])

∆T

L
(3.37)

The module’s performance can be fully described with dT
dx

, utilizing the definition of heat

flow out of the module Eq.(2.25), into a module Eq.(2.26) and the definition of module
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output power, Eq.(2.10).

In order to implement this model, one would use the module parameters and operating

conditions to get expressions for ǫ, S and RA, Eqs.(3.19-3.21), and combine them with the

coefficients of the curve fit of α (Ci) in preceding tables. If α requires a polynomial of less

than order four, the unused coefficients can be set equal to zero. This procedure can be

amended to accommodate either more coefficients for α, or to have a longer expansion of T̄

by taking more terms in Eq.(3.22).

The power output of a module accounting for separate thermoelectric leg material prop-

erties, according to the asymptotic model is:

PTEM = N

(

I(αHTH − αCTC) −
I2L

σpA
−

I2L

σnA
+ ITC∆αp

11
∑

i=2

iBp,i + ITC∆αn

11
∑

i=2

iBn,i

)

(3.38)

The asymptotic model, aside from being a new design tool in and of itself, sheds light

into specific terms that previously could not be solved analytically. Most importantly, it

can be used to define a bulk Thomson coefficient accurately, for any temperature-dependent

Seebeck coefficient. For simplicity’s sake, if the p-type and n-type material were assumed to

have the same material property values, Eq.(3.38) and Eq.(2.27) can be set equal to each

other to find the asymptotic expansion of the Thomson coefficient. Quick analysis reveals the

approximation for the Thomson coefficient in a bulk thermoelectric material experiencing a

temperature gradient:

τ ∗ = ±TC

∆α

∆T

11
∑

i=2

iBi (3.39)

where the sign is positive for the p-type material and negative for the n-type material. This

expression holds true for any material, and does not require that the p-type and n-type

materials share the same material properties. This is the Thomson coefficient throughout

the entire leg, and can be used to quantify the bulk Thomson heat in a thermoelectric

module.

The asymptotic model elucidates the Thomson heat in another manner. Fig.(3.9) depicts

the unitless temperature profile of the asymptotic model when the term ǫ is active and when

it has a value of zero. The asymptotic contribution (the term that ǫ is a coefficient for, which

is the Thomson heat), only shifts the temperature profile order ǫ, which is to say order 0.05.

However, this subtle shift in the temperature has a profound impact on the temperature

gradient, dT̄
dx̄

, which is used in calculating the output power of the thermoelectric module.

As such, the asymptotic expansion has a large impact on power output, and confirms the

findings of the previous section, namely that the Thomson heat is present and accounts for

a substantial portion of the module’s output power. When ǫ = 0, the Thomson heat is

neglected, and reciprocally when it is active (non-zero value), the Thomson heat is present.

The output power comparison for the asymptotic model (which accounts for the Thom-
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Figure 3.9: Unitless temperature profile of asymptotic and standard models. Melcor material
properties (appendix A5), TH = 473K, TC = 307K and I = 3A

son heat exactly) compared to the standard model can be seen in Fig.(3.10). The asymptotic

expansion does not appear to deviate significantly from the standard model which approxi-

mates the Thomson heat by averaging the Seebeck coefficient. The models in the left hand

side of Fig.(3.10) do not account for the thermal resistance of the ceramic substrates while

the models in the right hand side do contain ceramic interfaces.

The asymptotic model allows for the calculation of the effective bulk Thomson coefficient

for a thermoelectric material, τ ∗, which was previously unattainable because of the non-

linearity of the governing equations. Resultantly, the contribution of the Thomson heat

can be quantified exactly. In all cases, the Thomson heat contributes significantly to the

performance of the module, and this contribution is approximated in the standard model by

averaging the Seebeck coefficient.

3.4 Model Summary

Several effects have been dissected and evaluated for accuracy in the modeling of a thermo-

electric module. The objective of this investigation was to develop a robust analytical model

that could be used as a design tool. The following has been ascertained of the effects that

were evaluated:

1. The thermal resistance of the ceramic substrate significantly diminishes module per-

formance, and should always be accounted for.
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Figure 3.10: Asymptotic model vs. standard model power output. TH = 473K, TC = 307K.
(a) Melcor Bi2Te3 material properties, no ceramic substrate (b) CRC Bi2Te3 a ceramic
substrate has been included

2. Heat leakage around the thermoelement legs is negligible. In worst case (a radiative

emissivity value of 1), bypass heat leakage amounted to less than 5% of the heat moved

by the Peltier effect and conducted through the thermoelectric device.

3. The Thomson heat is always present in a thermoelectric material, and has a significant

impact on module performance.

4. The asymptotic model allows for an effective bulk Thomson coefficient to be calculated,

and likewise the Thomson heat to be quantified.

5. The Thomson heat is approximated in the standard analytical model by averaging the

Seebeck coefficient between the hot and cold sides of the thermoelectric device. When

this is done, the Seebeck coefficient is assumed to be constant, and thus the Thomson

heat is removed from the governing heat equation but is still present in the analysis in

the form of the averaged Seebeck coefficient.

6. Assuming a constant Thomson coefficient is typically inappropriate for analysis. Ther-

moelectric material properties under most applicable temperature gradients do not

permit the assumption of a constant Thomson coefficient.

For further comparison to finite element models, the standard model (averaged Seebeck

coefficient), is augmented with the ceramic resistance model. The heat leakage is assumed

to be negligible, and is thus not incorporated into the improved standard model.
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Chapter 4

Experimental Work

In 2006, RIT commissioned the design and fabrication of a test stand capable of addressing

many of the issues that arise from testing thermoelectrics [20]. The test stand was designed

to explore and document thermoelectric module behavior under varying operating temper-

atures. The thermal delivery system is comprised of a copper heating block with integral

cartridge heaters to supply heat flow into the hot-side of a TEM, and a cold-plate with

circulating coolant to remove the heat from the cold-side of the TEM.

4.1 Description of Thermoelectric Module Test Stand

A test stand was designed to capture critical module parameters necessary for analysis

[22]. Special attention was given to ensure: i) uniform and constant hot-side and cold-side

temperatures, ii) a variable electrical load must be provided to dissipate the power generated

by a test specimen, iii) the load pressure experienced by a given test specimen should be

recordable and repeatable, iv) the amount of heat being delivered to the test specimen must

be accurately measurable.

Measuring the heat flow into a module is critical to defining overall module conversion

efficiency, and is arguably the most difficult parameter to quantify.

The test stand consists of a shielded heating block, cold-plate, as well as electrical and

mechanical loading systems as seen in Fig.(4.1). Capable of delivering up to 1300 W of

heat, the test stand can maintain a constant, uniform hot-side temperature up to 500 ◦C

on modules of sizes up to 14cm x 15cm. The heat delivered to a TEM specimen, which is

notoriously difficult to quantify and is frequently cited as a shortcoming of test stand designs,

is determined using a novel method described in the proceeding section.

Mechanical loading conditions can have a significant effect on TEM performance. Since

thermal contact resistances can be non-trivial, it is important for them to be understood and

minimized. The force applied to the specimen is measured by load cells located under the

cold-plate. The pressure loading system, in conjunction with the load cells allow for loading

conditions of a module to be both varied for study and repeated for consistency between

scans.
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Figure 4.1: Schematic of the RIT TEM Test Stand [21]

4.2 Thermal Characterization of Test Stand

To determine the heat transfer through a TEM, the heat losses through the insulation on the

top and the sides of the heating block must be accounted for, in addition to the losses through

the insulation surrounding the sides of a TEM specimen. Typical module characterization

tests involved monitoring the power delivered to the copper hot plate using a power analyzer.

To determine the heat flow across an individual module, heat losses to the top and bottom

of the test stand were determined at a range of temperatures. The heat losses through the

top insulation were measured with 3% or less uncertainty [22]. TE module testing involved

placing a module between the hot and cold plate, with thin insulation surrounding the

TEM. The thermal losses through this insulation were also characterized with 5% or less

uncertainty.

By monitoring the power delivered to the heating block and removing the losses through

the top and bottom insulation, one is able to extract the total amount of heat transferred

through a TE module. To validate the heat transfer measurements, two reference materials

were tested: Borofloat borosilicate and Macor glass ceramic. These materials are highly

thermally stable and have comparable thermal conductivities to those found in TE modules.

The sample dimensions were chosen to have comparable thermal resistance to what was

expected in typical room temperature TEM. Thermal grease was applied and the samples

were pressed between the hot and cold plates at a pressure of 690 kPa and allowed to reach

steady state.

The measured and published thermal conductivity are shown in Fig.(4.2). There is excel-

lent agreement between the measured and published values. In the case of the borosilicate

sample, the differences were less than the uncertainty in the measurement which was 4.2%

or less. In the case of the Macor, the differences were less than 6.5%, which is close to

the experimental uncertainty of 4.2%. Therefore we have great confidence in our ability to
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Figure 4.2: Measured versus published thermal conductivity for Borofloat (light blue tri-
angle) and Macor (dark blue diamond) reference samples. The open shapes are published
thermal conductivity values.

determine the heat flow through TE modules within 5% uncertainty.

Other areas of potential concern were in variations due to different loading pressures and

application of thermal grease. A series of tests were conducted on the same TEM at loading

pressures of 345, 690, and 1035 kPa. Although there was a slight increase in max operating

power and the measured TEM parameters, the differences in all values was less than 4% over

the tested loading range. All future tests were loaded at 690 kPa. A repeatability study

between multiple operators revealed a deviation of measured parameters of less than 9%.

4.3 Module Scan and Parameter Measurement

A module scan consists of loading a module to the desired pressure and temperatures and

leaving the module in open circuit conditions for approximately an hour to reach steady

state conditions, which was determined by monitoring the heat input rate to the hot plate.

Once steady state was reached, after typically 30 minutes or more, temperature and power

data was collected and averaged in order to determine the module total thermal resistance

(Rte/N), which is explained below. The module was then connected to the loading box and

typically twelve different electrical loads were automatically applied to capture the entire

voltage-current curve for the module. For each load, the system was allowed to reach steady

state for at least a minute and then voltage, current, and input thermal power were recorded

and averaged for nearly two minutes before proceeding to the next loading condition.

The scan data can be used in one of three ways: i) to compare with theoretical models

as will be demonstrated later, ii) validate performance of newly designed TE modules, and

iii) extract TE module parameters for system design purposes.
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Figure 4.3: Sample Melcor module scan,TH = 473K, TC = 306K

For TE system design there are three TEM parameters needed (assuming a standard

1-D model): i) module level Seebeck parameter (Nαp,n), ii) module level electrical resis-

tance (NRe), and iii) module level thermal resistance (Rt/N), where N is the number of

thermoelectric leg pairs. Consider the energy transfer and temperatures in Fig.(4.3 for a

thermoelectric module with N thermoelectric leg pairs.

Assuming negligible contact resistances and substrate resistances, the heat flowing into

the hot surface and out of the cold surface of a TEM can be expressed with Eq.(2.8) and

(2.9) where KTEM = N/Rt and RTEM = NRe.

The principal approach to extracting module parameters is to minimize the residuals

between the measured generated power (or voltage, either will suffice) and hot side heat

transfer data and Eqs.(2.8) and (2.11) for all electrical loads by varying the three module

parameters. A typical scan can be seen in Fig.(4.3).

Dividing the module power by current, I, Eq.(2.11) can be rewritten as an expression of

voltage:

V = −NReI + Nαp,n(TH − TC) (4.1)

NRe and Nαp,n can be determined by measuring the open circuit voltage (VOC) and

short circuit current (ISC).

Nαp,n =
VOC

TH − TC

(4.2)
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Table 4.1: Parameters of Two Thermoelectric Modules

Module Th(C) Tc(C) Nαp,n(mV/K) NRe(Ω) Rt/N(K/W) Pmax(W) ηmax(%)
Melcor HT8-12-40-W6 99.2 29.0 47.3 ± 4.2 2.19 ± 0.30 1.68 ± 0.07 1.3 2.4

148.9 30.9 46.0± 2.6 2.4± 0.21 1.73± 0.06 3.1 3.6
198.5 33.5 47.0± 1.9 2.66± 0.17 1.68± 0.05 5.6 4.7

Hi-Z Technology 14W 99.0 29.1 13.4± 0.3 0.130± 0.005 0.729± 0.016 1.7 1.5
148.7 31.8 13.7± 0.2 0.137 ± 0.003 0.752± 0.014 4.7 2.5
198.2 34.1 14.1± 0.1 0.150± 0.003 0.750± 0.013 8.9 3.4
247.4 36.7 14.1± 0.1 0.164± 0.003 0.765± 0.013 13.5 4.1

NRe =
VOC

ISC

(4.3)

The thermal resistance can be determined by measuring NqH under open circuit condi-

tions such that

Rt

N
=

TH − TC

NqH

(4.4)

Table 4.1 shows measured module parameters along with the max power and efficiency

obtained by using the methods on two different TEMs. The uncertainty was generally less

than 8% and in many cases less than 2%.
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Chapter 5

Finite Element Modeling

While techniques for quantitatively evaluating thermoelectric materials for power generation

are well understood, little focus has been given to modeling module-level behavior. Facets

of module design which can contribute to module inefficiency, such as lateral leg spacing and

ceramic interface thickness, have been largely ignored. It is imperative that a comprehensive

model is developed to efficiently design thermoelectric modules (TEMs) to fully capitalize

off of recent materials advancements.

Where analytical solutions fail, finite element methods (FEM) can provide a robust and

accurate alternative. Recent advances in multiphysics coupling in commercial software have

made finite element (FE) packages competitive with finite difference techniques tailored for

thermoelectric analysis [11]. These new advances fully couple the electrical and thermal

governing equations and can easily converge on solutions to non-linear system of equations.

Additionally, new geometrical configurations can easily be explored with 3-D FEM, thus

providing a new opportunity for thermoelectric module design improvement.

The FE technique is a powerful method for solving partial differential equations, and in

many cases can handle non-linear governing equations. In general, FE algorithms break up

geometric domains (the TE leg pair) that are governed by a set of equations (in this case

the governing equations of thermoelectric heat transfer and direct electrical current) into a

finite number of elements called a mesh. An approximate solution form of the dependent

variable is assumed for each element by basis functions known as “shape” or “interpolation”

functions. After applying appropriate boundary conditions, a solution is converged upon by

several possible methods, including iteratively solving weighted residuals, or solving a global

stiffness matrix.

With regards to thermoelectric modules, a FE model can provide several unique advan-

tages. First, an FE model can solve the governing set of partial differential equations that

cannot be solved analytically. This can permit the investigation of complex geometries,

including curved geometries that cannot be solved analytically due to boundary condition

constraints. The standard rectangular configuration of a thermoelectric leg pair cannot be

solved analytically when the ceramic substrate has a larger area than the legs. Secondly,

when material property temperature-dependency is accounted for, the non-linearities that
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arise can be handled by a carefully chosen FE solver, whereas an analytical solution does

not exist.

Explicitly put, there is likely to be a strong divergence between the analytical and FE

models when either i) the geometry deviates significantly from a 1-D configuration or ii)

the material property temperature-dependence is accounted for under large temperature

gradients. Both of these scenarios are tested in the next chapter, once the FE model has

been described.

Generally, the steps for FE analysis are:

1. Selection of general governing physics (viz. heat transfer and DC electricity)

2. Creation of appropriate subdomains (geometries)

3. Application of appropriate boundary and subdomain conditions (viz. temperatures,

insulation, grounding, internal heating, etc.)

4. Meshing of the subdomains into an appropriate number of elements

5. Selecting and utilizing a solver algorithm

6. Postprocessing to acquire pertinent information

Every aspect of FE analysis is multifaceted, and thus a detailed account for a finite

element model is outlined in the following sections. Foremost is the selection of the governing

equations for a thermoelectric material.

5.1 Governing Equations

The general form of the steady-state, coupled governing equations that dictate thermoelectric

behavior within and on a subdomain are [11] the following:

q = T [α] · J − [k] · ∇T (5.1)

where q is the vector form of the heat flux on a boundary of a thermoelectric subdomain

(volume), [α] is the Seebeck coefficient matrix, J is the vector form of the current flux on

a boundary, [k] is the thermal conductivity matrix and T is the absolute temperature. All

material properties are assumed to be isotropic.

The electrical current density is defined as:

J = [σ] · (E − [α] · ∇T ) (5.2)

where [σ] is the electrical conductivity matrix and E is the electric field vector.

The thermoelectric subdomains are governed by:
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∇ · q = QJoule (5.3)

∇ · J = 0 (5.4)

which indicates that current is conserved under steady-state, and that several forms of in-

ternal heating occur within a thermoelectric subdomain.

The joule heating per unit volume within the thermoelectric subdomain takes the form:

QJoule = J2/σ = E · J − [α]∇T · J (5.5)

The second term on the right side of the Joule heat represents the work done against the

electric potential that is generated by the temperature gradient. Combining Eqs.(5.1-5.5)

yields the following heat equation [23]:

TJ · ∇[α] +
dα

dT
T∇T · J −∇ · ([k] · ∇T ) = J2/σ (5.6)

The first term of Eq.(5.6), which is the bulk Peltier effect, is typically neglected since

the gradient of the Seebeck coefficient is zero unless the thermoelement leg has functionally

graded doping. The second term is the bulk Thomson heat, which accounts for the electric

potential change due to the temperature-dependency of the Seebeck coefficient.

Any metal or ceramic is assumed to have [α] = [0], and any ceramic is assumed to have

[σ] = [0]. These assumptions permit the use of all of the governing equations in any material

subdomain.

5.2 Finite Element Software Package, COMSOL

The selection of an appropriate FE software package hinges on several issues. Foremost, the

FE package must either have the thermoelectric governing equations built in as a modeling

option, or give the user the ability to alter the governing equations to incorporate the TE-

unique terms (as seen in Eq.(5.6)). The latter option is preferable, since it allows for flexibility

and the option to engage/disengage specific terms to see their relative impact on the model.

Additionally, the ideal package would have a good selection of solver algorithms to choose

from to allow for rapid and accurate convergence on a solution. Because the governing

equations are non-linear (where convergence is not guaranteed), the solver must be carefully

selected in order to ensure convergence.

One such package, COMSOL, provides flexibility both in the manipulation of the govern-

ing equations and the selection of appropriate solvers. Whereas competitors have constrained

thermoelectric governing equations, COMSOL permits the user to select which terms to in-

corporate, such as the Thomson heat, to determine the overall impact on the module perfor-

mance. This ability to alter the governing equations is critical to determining which models
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are appropriate under specific conditions and thus COMSOL proves to be an ideal tool for

this study.

5.3 General Model Description

Commercially available TEMs consist of dozens of thermoelement p-n junctions (or leg pairs)

connected in series by copper contacts. The assembly is typically packaged by being sand-

wiched between ceramic substrates for electrical insulation and structural support. The

ceramic interface thickness, electrical contact geometry and leg spacing can play a primary

role in heat recovery, despite being neglected as critical module design parameters. The

efficiency and power density of a module can be significantly improved by optimizing the

module layout.

The analysis of dozens of thermoelement pairs can be highly computationally intensive, so

the model is limited to a single pair, seen in Fig.(5.1). All of the TEM geometry parameters

can be probed by examining a single leg pair connected by electrical contacts and solder.

Extrapolating the module performance from the behavior of a single pair assumes that the

heat flux through the module is constant across the ceramic interfaces.

Since the solder bead between modules can provide a secondary heat path into the legs

and increase the effective area of the thermoelement junction, both efficiency and power-

density of a module can be affected by the thickness of the solder. Likewise, increasing

the leg spacing and the copper contact thickness can increase the heat captured by the

thermoelement, and thus positively effect the efficiency and power production of a TEM.

The critical module facets are described in the proceeding section.

Figure 5.1: FEA model of a thermoelement junction in COMSOL
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5.4 Nuances of the COMSOL Model

Singularities in computation arise in FE algorithms when sharp right angle geometries exist,

and cannot be alleviated with standard mesh refinement. Small fillets (radius of 0.05mm) can

be added to right-angle geometries to minimize computational error without compromising

the behavior of the thermoelectric device.

Electrical contact resistances can have a significant impact on module performance and

design optimization. In order to implement contact resistance boundary conditions, it is

necessary to implement identity pairs at the critical internal boundaries. This can be done

by treating the couple as an assembly (this option treats every subdomain as independent,

unless identity pairs are specified by the user governing the interactions between subdomains)

and creating identity pairs at all internal boundaries. The subdomains can be modeled with

thermal and electrical insulation while the identity pairs can be given either continuity or

contact resistance boundary conditions. With ρc = d/σ , any combination of d and σ that

yields the necessary contact resistance value will suffice.

However, the contact resistance for a given element pair is difficult to quantify. Previous

work reports contact resistance values spanning 10−12 to 10−8Ω·m2, however many values are

listed merely as a variable that is numerically altered to fit a model to given experimental

results [16]. Previous work that attempts to experimentally quantify contact resistances

disclaim the results as piecemeal [24]. As such, the proposed model does not contain any

contact resistances, but can easily incorporate them with the alteration of a few boundary

conditions. The boundary conditions are left in a form that can incorporate the contact

resistances if required, but ρc, the contact resistance of a boundary, is assumed to have a

value of zero in the analysis that follows.

5.5 Implementation of Model in COMSOL

For quantitative comparison to other models, the same module parameters were used in the 3-

D FE model as the 1-D analytical models, seen in Table 3.1. Several sets of material property

data were used to test varying extremes of module operating conditions. Melcor material

property data, provided by private communications with Dr. Jeff Herschberger of Melcor,

was used as a benchmark commercial Bi2Te3. Additionally, data was taken from the CRC

Handbook for the purposes of external reproducibility (the data is available to everyone),

to simulate p-type and n-type legs with different material properties, and to probe high

temperature (TH = 973K, TC = 440K) thermoelectric materials [12]. The material property

data can be seen in Appendices A1-A5. The properties for the thermoelement leg pairs are

assumed to be isotropic, and temperature-dependent and the properties for the p-type and

n-type materials are different.

The hot and cold sides of the TEM are held at desired constant, uniform temperatures

(TH and TC). One side of the thermoelement leg pair is electrically grounded to provide a
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voltage reference, while a current boundary condition is applied to the other leg to simulate

closing the loop on a given electrical load. The current can be adjusted to simulate a range

of loading conditions to fully capture the current-voltage relationship for a specific TEM for

a given set of temperatures. All of the subdomains and boundaries are depicted in Fig.(5.2)

and correspond to the conditions outlined in Tables 5.1 and 5.2.

Figure 5.2: TEM COMSOL model subdomain and boundary conditions

Table 5.1: COMSOL Model Subdomain Physics Settings

Subdomains Condition

1 : p-type subdomain obeying Eqs.(1-6)
2 : n-type subdomain obeying Eqs.(1-6)
3 : Copper (Cu) contacts obeying J = [σ] · E and ∇ · ([k] · ∇T ) = J2/σ
4 : Tin Lead (Sn-Pb) contacts obeying J = [σ] · E and ∇ · ([k] · ∇T ) = J2/σ
5 : Alumina substrates with no current and ∇ · ([k] · ∇T ) = 0

All non-specified external boundaries in Table 5.1 are electrically and thermally insulated.

All non-specified internal boundaries observe continuity. Boundaries E, F, G, and H can be

made to have electrical contact resistances ρc = d/σ, (where ρc is the electrical contact

resistance and d and σ are the COMSOL parameters for contact resistance thickness and

electrical conductivity respectively) however for the purposes of this investigation the contact

resistances are assumed to be zero. The contact resistances conditions are left in the model

for the sake of completeness, however ρc = 0 as described earlier.
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Table 5.2: COMSOL Model Boundary Physics Settings

Boundaries Condition

A : T = TH

B : T = TC

C : V = 0
D : JLead = I/ALead

E : [k]1∇T1 − [k]2∇T2 = T [α]P · J + ρc · J
2

F : [k]1∇T1 − [k]2∇T2 = −T [α]P · J − ρc · J
2

G : [k]1∇T1 − [k]2∇T2 = −T [α]N · J − ρc · J
2

H : [k]1∇T1 − [k]2∇T2 = T [α]P · J + ρc · J
2

5.6 Implementation of Boundary Conditions in COM-

SOL

A heat flux discontinuity known as the Peltier heat occurs at the internal boundaries between

a thermoelectric and any other material when operating in power generation mode. This

heat represents the amount of energy absorbed or liberated by charge carriers when crossing

from the energy band of one material into the energy band of a different material, and can

be seen as the first term on the right side of Eq.(5.1). Because there is an electrical potential

discontinuity, energy (in the form of heat) must be absorbed or given off in order to preserve

current (or charge carrier) continuity.

The heat at a given boundary is governed by Eq.(5.1). It is important to recognize that

the Seebeck coefficient, α , is the difference between the respective Seebeck coefficients of

the materials that form the internal boundary.

[α] = [α1] − [α2] (5.7)

where the subscripts 1 and 2 represent the local material at the internal boundary. The

convention for determining the order of the Seebeck coefficients of adjacent materials in

Eq.(5.7) is defined as follows: subtract the value of the material Seebeck coefficient bottom

from top, right from left etc.

The convention for specifying the Peltier heat that is implemented in the COMSOL FE

package is demonstrated in Fig.(5.3). The surface normal direction is determined by the

order in which the subdomains are assembled, and can be identified by an arrow plot of the

parameters unx, uny and unz. Using the convention in the example depicted in Fig.(5.3),

the Peltier heat liberated takes the following form:

This form of the boundary condition preserves electrical current directionality and is

thus generalized. Note that metals and other conductors are treated as having a Seebeck

coefficient of zero. A TEM operates at a generator when a heat flux is experienced and

the legs are connected in series with an electrical load. The heat flux, in the case of this

particular model, is imposed with constant temperature boundary conditions on the two
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Table 5.3: Example of Peltier Heat Sign Convention in COMSOL

Boundaries Heat Flux Discontinuity B.C.

a : q = −[k]II · ∇T = T ([α]I − [α]II) · J − [k]I · ∇T
b : q = −[k]I · ∇T = T ([α]III − [α]I) · J − [k]I · ∇T
c : q = −[k]II · ∇T = T ([α]III − [α]II) · J − [k]III · ∇T

Figure 5.3: Example of COMSOL boundary sign convention. Red arrows indicate surface
normal direction

interfaces of the module. Power generated by the module can be calculated by the product

of the current and the voltage across the two leads. Likewise, the difference between the

heat flowing into and out of the module indicates power generated.

5.7 Mesh

The thermoelectric leg pair model is sensitive to mesh size. Because the Seebeck effect

causes a heat flux discontinuity, a boundary integration is necessary for the computation of

the Peltier heat. The boundary integration for the Peltier heat requires a fine mesh (more

than ten elements per linear dimension of the boundary) in order to accurately estimate

the heat generated or absorbed at the contact. A tetrahedral free mesh is applied in the

thermoelement subdomains with a maximum element size of 0.14mm, ensuring a fine, even

mesh throughout the legs. The legs, which has a volume of L · W 2 (or 1.09mm · (1.4mm)2

using nominal parameter values), can be meshed adequately with about ten elements along

each dimension. An element size of 0.14mm would create ten elements along each linear

dimension of the leg boundary where the Peltier heat is calculated. The final mesh can be

seen in Fig.(5.4).

To confirm that the mesh was of the appropriate size, a mesh refinement series was per-

formed. The mesh was periodically refined (5, 10, 15 and 20 divisions along each dimension

corresponding to 125, 1000, 3375 and 8000 elements per leg) and the power output at a con-

stant electrical current (1.5A) was obtained at each iteration, as seen in Fig.(5.5). A decaying

exponential curve fit was applied to the peak power predicted at each iteration to determine

the actual power at the limit of an infinite number of elements per leg (which presumably
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Figure 5.4: Final COMSOL mesh

would be the most accurate model). The purpose of this exercise was to find an optimal solu-

tion time for accurate results. With 8000 elements per leg, the simulations required 12 hours

on the Large Memory Computer (LMC) to converge and occupied 12-14 Gigabytes of RAM.

The LMC is a quad-core machine and is well equipped to handle computationally-intensive

models. However, the time of computation was too long to achieve results reasonably (test

series would take weeks). Thus, 1000 elements per leg was selected as a reasonably accurate

mesh (under 3% error) that could achieve solutions on a regular desktop computer in less

than 10 minutes. The exponential took the form:

P = a · eb·n + Ptrue (5.8)

where n is the number of elements per leg and Ptrue is the power predicted as the number of

elements in the leg goes to infinity. After fitting, the exponential took the form:

P = 1.812 · 10−3 · e−1.342·10−4
·n + 0.05455 (5.9)

Because the rest of the assembly’s physics do not require boundary integrations, the

other subdomains are not as sensitive to meshing sizes and can be meshed coarsely. This

was confirmed by performing a mesh refinement on the ceramic substrates. Changing the

number of elements in the ceramic substrates from 150 elements per substrate (the final

amount used in the model) to 4000 elements per substrate only amounted to a 0.07% change

in predicted power output. Since the mesh involving 4000 elements was more computational

intensive and did not amount to a more accurate model, the mesh in the ceramic was left at

150 elements per substrate.
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Figure 5.5: Mesh refinement of thermoelement leg and (a) predicted power output and (b)
percent change from the true power (right, nominally SS Power). The power output is curve
fit to a decaying exponential and the offset is the calculated actual power

An added benefit of using an assembly, aside from using identity pairs for contact resis-

tances, is that each individual subdomain can be meshed separately. For the purposes of

computational accuracy, the same maximum mesh size is used for the free mesh in all sub-

domains. However, mapped meshing is often more efficient and reduces computational error

and can be easily implemented for certain geometries, such as purely rectangular blocks.

Because small rounded fillets were required to reduce error due to singularities, a mapped

mesh was not possible in the current model of the thermoelectric couple.

5.8 Solver

Selecting an appropriate general solver and linear system solver is critical to solution con-

vergence. Serious computational errors can arise because the governing equations of a ther-

moelectric device are uniquely-coupled heat and electrical physics. Likewise, some solvers

may inefficiently converge, if at all, because they are not suited for the thermoelectric gov-

erning equations. By definition, a thermoelectric system is governed by multiple physics,

thus a segregated stationary solver is used for the thermoelectric system with voltage, V ,

and temperature, T , being the first and second independent variables respectively.

The linear system solver must be carefully selected based on a given model, governing

equations and computational resources. The overall model is decomposed into a large sys-

tem of linear equations and the solver spends most of the time solving the vast number of

unknowns. There is a myriad of methods for converging on a solution to a system of linear
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equations, each technique with varying advantages and disadvantages.

Most 3-D models using the COMSOL package are implemented with an iterative solver

to conserve computational memory. Iterative solvers must have preconditioners carefully

selected and tuned to converge on some systems. In some cases, an iterative solver cannot

converge on a solution at all. Direct solvers, which are memory-intensive, are typically used

for two-dimensional models because they inherently have fewer elements or 3-D models that

have a coarse mesh. However, if a large memory resource is available for 3-D models, direct

solvers have no difficulty converging on a solution, regardless of the form of the Jacobian.

The UMFPACK algorithm, which is a direct method, was used instead of an iterative method

for the solving of the TEM model because of the reasons stated above.

For this work, the Research Computing Group (RCG) has permitted use of the Large

Memory Computer (LMC) for the utilization of COMSOL. With 32 Gigabytes of memory

and four parallel processors, the LMC can easily utilize a direct solver and converge rapidly.

The LMC was necessary in determining the appropriate mesh size because the finely meshed

models could not be run on a typical workstation. However, as described in section 5.7,

it was found that a coarse mesh could predict module performance with minimal error

(approximately 3% error) and that the modeling could be done on a standard workstation.

5.9 Postprocessing

Once a solution has converged, there are a few steps of postprocessing to obtain the necessary

data. Boundary integrations must be completed to determine the power produced, module

efficiency and energy balance. A boundary integration of heat flux on the hot and cold sides

(boundaries A and B respectively of Fig.(5.2)) yields heat flowing into and out of the module,

and likewise a boundary integration of electric potential of the electrical lead boundary with

a current density (surface D in Fig.(5.2)), yields the surface electric potential VS(V · m2). All

three of these values can be used to determine module power and efficiency. First, an energy

balance can confirm that the electrical and thermal predictions of power are comparable.

Often there are errors due to meshing and computation, typically on the order of 3% or less.

PTEM = N · (qH,P − qC,P ) = N · I · V = N · JLead · Vs (5.10)

where qH,P and qC,P are the absolute values of the postprocessed heat flow at the hot side

and cold side respectively. VS and J are the absolute values of the postprocessed surface

electric potential and the current density boundary condition respectively. The efficiency of

a module can also be calculated by the following equation:

ηTEM =
qH,P − qC,P

qH,P

=
I · V

qH,P

(5.11)

To calculate the peak power of a TEM from the finite element model, the power is

determined at five electrical current loads. These five operating points are then fit to a
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second order polynomial using a least squares technique.

PTEM(I) = aI2 + bI (5.12)

The parameters a and b are altered to minimize the residual. The maximum operating

power, PMax occurs when the derivative of PTEM with respect to current, I is equal to zero.

The conditions are as follows:

IPMax =
−b

2a
(5.13)

PMax = −
b2

4a
(5.14)

This curve fit and resulting calculation gives a good approximation for PMax of the finite

element model and allows for quantitative comparison with the analytical models.

5.10 Model Validation

To ensure that the finite element model was developed correctly, it was compared with the

analytical model in a 1-D scenario. A thermoelement leg was implemented in COMSOL,

given temperature-independent properties (from the integral average method) and had a

uniform cross-sectional area, ensuring 1-D transport for both electrical current and heat

flow.

This FE model was compared to a 1-D analytical model with identical parameters, as can

be seen in Fig.(5.6). As expected, the 1-D COMSOL model with temperature-independent

material properties has excellent agreement with the analytical model. This indicates that

the Peltier boundary conditions and bulk heating terms were correctly implemented and that

the FE model is sound.

5.11 Summary

A comprehensive 3-D FE model has been developed. Its modeling capabilities include

temperature-dependent properties (including the Thomson effect) and contact resistances,

although the later are neglected in further modeling due to a lack of accurate resistance

measurements. Likewise, the model has the capability of evaluating functionally-doped ther-

moelectric materials (whose Seebeck coefficient varies spatially) but this effect is neglected

in further analysis because it is out of the scope of this work.

A mesh-sensitivity test series was performed, and it was found that the leg surface where

Peltier heat occurs is highly sensitive to mesh refinement and required a relatively fine mesh.

Conversely, it was found that the ceramic substrate was fairly mesh-insensitive and could be

modeled with a coarse mesh for optimal conversion time.
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Figure 5.6: Validation of FE Model. Melcor Bi2Te3 material properties, TH = 473K, TC =
307K, no ceramic interface

Finally, a 1-D FE model with temperature-independent material properties was developed

for comparison with a 1-D analytical model and excellent agreement was found, giving good

confidence in the FE governing equations and mesh. Because nearly any TEM geometry can

be accurately modeled, the 3-D FE model serves as an excellent benchmark for evaluation

and validation of analytical models.
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Chapter 6

Model Comparison

Several models have been presented and explained, however the discrepancies between them

have thus far been minimally explored. As a benchmark (and also independent design tool),

a finite element model has been developed. Because of the robust nature of finite element

techniques, the FE model is the most accurate representation and thus can be used for

quantitative comparison between models. Two module facets were identified as potential

sources of discrepancy between the 3-D finite element model and the 1-D analytical model:

i) material property temperature-dependency coupled with high temperature gradients and

ii) heat spreading due to 3-D geometries, particularly in the ceramic interface. These two

facets are explored to determine the threshold at which point the 1-D analytical model

becomes inaccurate and thereby loses credence as a design tool.

6.1 Temperature Dependency

Temperature dependency of thermoelectric material properties, particularly the Seebeck co-

efficient, give rise to behavior that may not be fully captured by the 1-D analytical models.

To probe this issue, a 1-D approximation of a thermoelectric module was implemented in

COMSOL. The 1-D COMSOL model consisted of a single thermopile leg. The top of the leg

experienced the hot-side temperature, TH , and the inward current flow, I, while the bottom

of the leg experienced the cold-side temperature, TC and electrical grounding.

To ascertain the relative impact of the temperature-based Seebeck coefficient, the 1-

D COMSOL model was run in two scenarios, the first with constant material properties

(determined by the integral average over the experienced temperature difference) and the

second with a temperature-dependent Seebeck coefficient only. In both cases, there is no

ceramic substrate. The results are seen in Fig.(6.1).

There was little error when the 1-D COMSOL model with temperature-independent

properties was compared to the 1-D COMSOL model that had the Seebeck coefficient as a

function of temperature (cross-sectional area and leg length from Table 3.1 with no ceramic

interface, Melcor Bi2Te3 material properties, Appendix A5). Immediately it is clear that for

1-D cases in the materials that are evaluated, the analytical model with integral-averaged
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Figure 6.1: Impact of the temperature-dependency of the Seebeck coefficient. Melcor mate-
rial properties Bi2Te3, TH = 473K, TC = 307K, no ceramic substrates are included

material properties is an excellent predictive model.

6.2 Geometrical Effects and Error Mapping

All analytical models of a TEM have one assumption in common, namely they assume that

the heat transfer through the module can be considered 1-D. The validity of this assumption

in actual module geometries has yet to be explored. Even with a basic geometry, 3-D voltage

profiles can be seen inside the thermoelectric legs, as seen in Fig.(6.2). It should be noted

that Fig.(6.2) serves as an example to illustrate 3-D transport, and that it does not reflect

the model used for error mapping (which is the quantification of the error between the 1-D

analytical model and the 3-D FE model based on geometrical facets which the 1-D model

cannot account for).

Given that temperature-dependency does not cause discrepancy between analytical and

finite element models, the primary source of error between the two modeling methods must

multi-dimensional transport due to geometrical factors. Resultantly, the error between the

modeling types should increase at larger temperature gradients, since the 3-D model has two

additional dimensions in which heat can flow into the leg. This multi-dimensional transport

is referred to as “heat funnelling” in this work. Because the 1-D analytical model cannot

account for heat funnelling by itself in any capacity, the performance it predicts will begin

to deviate more and more from the 3-D FE model as the heat flow through the module

increases. The heat flow through a module at a given temperature gradient can be impacted
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Figure 6.2: Example of a 3-D voltage profile within a thermoelectric junction

by several module design parameters. For a given module geometry configuration, α, k, σ

and kCer can all impact heat flow through the module.

The solder and electrical contact resistances have been removed from the FE model used

in the error mapping analysis (see Fig.(3.1)). This allows for quantitative comparison of the

discrepancies between the 3-D FE model and 1-D analytical model (with ceramic interface

included) due to geometrical effects. Any difference between the models would therefore be

a direct result of the 3-D geometry, and not a result of a new geometry facet such as a solder

connection or a new contact phenomena, such as electrical contact resistances.

The geometry of the thermoelement legs are identical between the 3-D FE and 1-D

analytical models, which is to say that they have the same length and cross-sectional area.

However, the 3-D FE model also has leg-spacing, electrical (copper) contacts, and a ceramic

interface with a larger cross-sectional area than the thermoelement junction. This leaves

the ceramic substrate as the primary contributor to the 3-D transport effects and likewise

indicates that the 3-D effects are driven by the heat transport in the ceramic interface.

The two main sources of resistance in the thermal circuit of the TEM is the ceramic

substrate and the equivalent thermal resistance of the thermoelectric junctions. The equiva-

lent thermal resistance of the junctions is not the same as the thermal resistance calculated

using the thermal conductivity of the thermoelectric materials because the Peltier, Joule

and Thomson heat all impact the overall equivalent resistance. Any error between the 1-D

analytical model and 3-D FE model would therefore be a function of the ratio between the

thermal resistance of the ceramic interface and the effective thermal resistance of the ther-

moelectric junction. The equivalent thermal resistance of a thermoelectric junction can be

approximated as:

RTE,Eq =
∆T

qH

(6.1)
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where ∆T = TH − TC is the difference in temperatures from the hot-side ceramic interface

to the cold-side ceramic interface and is not based on equivalent junction temperatures. The

reason that the boundary temperatures (TH and TC) are used instead of equivalent junction

temperatures (THE and TCE) in this calculation is to allow predictive error mapping, which

is also the reason why the resistance is approximated as 1-D despite having 3-D transport.

The heat flowing into the module, qH holds the standard form from Eq.(2.7) and is thus a

function of k, α and σ at a fixed current (recall that in qH the Peltier heat is accounted for in

the first term, and the Thomson heat and Joule heat are accounted for in the dT
dx

term). The

the thermal resistance for the ceramic is also approximated as 1-D for predictive mapping:

RCer =
tCer

kCerA
(6.2)

where A is the cross-sectional area of the thermoelement legs and not the cross-sectional area

of the expanded 3-D ceramic substrate and tCer is the thickness of one ceramic substrate.

The 1-D analytical model with ceramic interfaces was compared to the 3-D FE model

(also with ceramic interfaces and temperature-independent material properties) by deter-

mining the predicted peak power PMax in both scenarios. The error between the two models

was plotted against the ratio of RCer to RTE,Eq for hypothetical scenarios by altering the

parameters that the ratio was dependent on- namely k, kCer, α and σ.

Two sets of material properties were selected as base materials to alter, the Melcor

material properties (p-type and n-type Bi2Te3), and the high-temperature CRC material

properties (p-type CeFe4Sb12 and n-type CoSb3). The hypothetical scenarios were gener-

ated by selecting one thermoelectric material parameter (k, α, σ) from the base material

and multiplying it by a factor, f to alter the ratio RCer/RTE,Eq or alternatively RCerqH∆T−1,

where f was 1, 1.5 and 1.8, with f = 1 being the exact material properties of the base ma-

terial property. Every factor, f , represents a hypothetical material with different properties

(say, a material of higher Seebeck coefficient or higher thermal conductivity). The ratio

RCerqH∆T−1 was also altered by multiplying the thermal conductivity of the ceramic, kCer

by much larger factors fcer = 1, 40, and 100 to test the regime where the models converge.

The results of the error mapping, Fig.(6.3), indicate that the error between the 1-D

analytical model and 3-D FE model is proportional to the ratio RCerqH∆T−1 for both the

lower-temperature Melcor Bi2Te3 properties and the higher-temperature CRC CeFe4Sb12

and CoSb3 properties. In Fig.(6.3), qH (and therefore RTE,Eq) is determined in COMSOL

by post-processing.

Linear fits of the error, E as a function of the ratio RCerqH∆T−1 for the two cases in

Fig.(6.3) yield:

EMelcor = 1.840RCerqH∆T−1 − 0.008

R2 = 0.996
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Figure 6.3: Error mapping of analytical model vs. COMSOL. (a) base Melcor material
properties Bi2Te3, TH = 473K, TC = 307K, ceramic substrates are included. The hot-side
heat flow, qH is post-processed from COMSOL. (b) base CRC material properties (p-type
CeFe4Sb12 and n-type CoSb3), TH = 973K, TC = 440K, ceramic substrates are included

and

ECRC = 1.539RCerqH∆T−1 − 0.005

R2 = 0.988

Intuitively, the line in Fig.(6.3) should have a y-intercept of zero. The intercept is slightly

off from zero (less than 1% error in the COMSOL post-processed models in Fig.(6.3)) and is

an artifact of the numerical FE model likely caused by the mesh. A 1-D FE model slightly

underpredicts power output when compared to the 1-D analytical model with identical pa-

rameters when a free mesh is implemented. Given that the ratio RCerqH∆T−1 is largely

approximated, a less than 1% error is acceptable.

Even more valuable is the predictive error mapping. The issue with Fig.(6.3) is that

qH is determined via postprocessing in COMSOL, which means that the model has to be

developed and implemented in COMSOL in the first place. This is not helpful when trying

to choose whether or not to model a TEM with a 1-D analytical model or a 3-D FE model,

prima facie. However, when the error between the 1-D analytical and 3-D FE is plotted

against RCerqH∆T−1 where qH is determined by the analytical model, the trend still indicates

proportionality, as seen in Fig.(6.4). Presumably, once a comprehensive error mapping has

been completed, a researcher can determine whether or not an analytical model would be

adequate for modeling a given TEM versus using a more complex (and expensive) finite
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Figure 6.4: Error mapping of analytical model vs. COMSOL. The thermal resistance ratio
is based on the equivalent hot-side heat flow, qH from the analytical thermal resistance
model. On the left side, Melcor material properties Bi2Te3, TH = 473K, TC = 307K, ceramic
substrates are included. On the right side, CRC material properties (p-type CeFe4Sb12 and
n-type CoSb3), TH = 973K, TC = 440K, ceramic substrates are included

element model, without ever using a FE package. This can be done for this particular TEM

geometry by calculating RCer using Eq.(6.2) and RTE,Eq (or qH∆T−1) from Eq.(6.1) (which

can be done with known parameters L, W (or A), tCer, k, kCer, α, and σ), and comparing

the result to Fig.(6.4).

The results for the fit of the predictive curves in Fig.(6.4) are:

EMelcor,Pred = 2.049RCerqH∆T−1 − 0.013

R2 = 0.996

and

ECRC,Pred = 1.899RCerqH∆T−1 − 0.020

R2 = 0.988

Remarkably (and possibly coincidentally), the Melcor material properties (p-type and

n-type Bi2Te3), and the high-temperature CRC material properties (p-type CeFe4Sb12 and

n-type CoSb3) yield predictive slopes for the error curves within 5% of each other. In both

cases, the error reaches 0.1 (say, the limit when the one-dimensional model becomes too
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inaccurate to use) when the ratio RCerqH∆T−1 reaches about 0.05. This is the case when

the ratio of ceramic thermal resistance to the effective resistance of the thermoelectric leg is

greater than 5%, the 1-D model will underpredict performance by more than 10% because

of 3-D effects. Note that the current TEM parameters have already reached and exceeded

the 10% error mark.

The y-intercept for the predictive error mapping results drifts farther away from zero,

presumably because more approximations are being made with qH being treated as fully

1-D transport, but the y-intercept error never exceeds 2%. It is important to note that the

predictive error mapping is only valid for the this particular modeled TEM configuration,

and has not been made general for multiple geometry scenarios. To examine the impact of

other geometry effects on power output (and also qualitatively show the stability of the error

mapping), the next section explores new TEM configurations.

As an example of predictive error mapping, a case with Melcor Bi2Te3 is considered with

TH = 395K and TC = 325K. The analytical model reports that peak power is PMax = 1.44W

and occurs at IMax = 0.86A with a heat flow into the module of qH = 61W. Using the

predictive error mapping equation, the predicted error of the analytical model vs. the 3-D

FE model is 9%. The FE model was run with the same properties and conditions, and

reported a peak power PMax = 1.58W, which indicated that the 1-D analytical model had

9% error in the peak power.

6.3 New Geometry Configurations

New geometries are modeled using COMSOL for several reasons. First, the geometries are

altered to see the relative impact on predicted power output of the module. If a given

module parameter, say leg spacing D, is altered drastically with little impact on predicted

peak power then it can be inferred that the predictive error mapping holds accuracy for

varying leg spacing. This analysis is purely qualitative and does not establish a universal

predictive error map, but it serves to give confidence in error prediction for a family of

geometry configurations.

Secondly, this geometric parameter sweep illustrates the design capability of the FE

model. Previously unexplored geometric facets can now be probed for optimal TEM perfor-

mance.

Because a parametric sweep of a geometry can be computationally and labor intensive, the

model was simplified to 2-D analysis to facilitate rapid testing. While the 2-D model provides

excellent insight, some of the heat funneling effects are exaggerated. This is because there

is heat funneling into the leg in the third dimension which is inherent in the thermocouple

and not captured in the 2-D model. That is to say, a 3-D model will report slightly higher

power output than a 2-D model due to the extra heat being funneled into the leg in the

third dimension. As a result, a parametric sweep of a 2-D model would slightly over predict

percentage increases in power output. Since the parametric sweeps in this section are meant
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Table 6.1: Parameters for Modeling a 2-D Thermoelectric Module from Fig.(3.1)

Parameter Value Symbol

Leg Height 1.219 [mm] L
Leg Width 1.371 [mm] W
Leg Spacing 0.610 [mm] Dnorm

Copper Thickness 0.122 [mm] tCu,norm

Ceramic Thickness 0.794 [mm] tCer

Solder Thickness 0.122 [mm] tSolder,norm

Ceramic Thermal Conductivity 27 [W/mK] kCer

Copper Thermal Conductivity 400 [W/mK] kCu

Copper Electrical Conductivity 6 · 107 [S/m] σCu

Number of Leg Pairs 127 N

to be qualitative and illustrative, the discrepancies between the 2-D and 3-D model are

tertiary.

The impact of altering main geometric effects (e.g. leg spacing, contact thickness, solder

thickness) is captured in a 2-D model, and yields insightful results. The parameters for the

2-D model are seen in Table 6.1.

The first parameter that was evaluated was leg spacing. The spacing was increased by

factors of 2, 3, and 4 and the peak power at each new leg spacing DP was compared to the

peak power at the nominal leg spacing, Dnorm. No solder was used in this model so that the

impact of solder on module performance would not convolute the effect of increasing the leg

spacing. The voltage profile of the most exaggerated case, DP /Dnorm = 4 seen in Fig.(6.5)

indicates 1-D transport in the leg, with only slightly more heat being taken in laterally in the

ceramic interface. The small increase in peak power (see Fig.(6.6)) indicates that the multi-

dimensional heat funneling is minimal and that at large leg separation lengths the predictive

error mapping still holds true. The largest increase from peak power is 1.6%, as seen in

Fig.(6.6), while the change in efficiency remains negligible. The peak power diminishes after

a certain point because increasing the leg length proportionately increases electrical contact

length, and thus overall internal electrical resistance of the module.

The copper contact thickness was also increased by factors of 2, 3 and 4 for peak power

comparison. No solder was used in this model so that the impact of solder on module perfor-

mance would not convolute the effect of increasing the contact thickness. The difference in

peak power is similarly plotted against the ratio of parameterized contact thickness to normal

contact thickness, tCu,P /tCu,norm. Again, the voltage profiles in Fig.(6.8) indicate largely 1-D

transport and the maximum power increase is less than 1% (seen in Fig.(6.7)) indicating that

the contact thickness does not have a significant impact in predictive error mapping. The

initial peak power increase is likely due to increased mobility for the heat flow in the center

of the couple, where the gap exists. The peak power drops after the copper contact thickness

was increased by a factor of three. This is due to the increased thermal resistance of the

thickening contact. At the standard thickness, the contact’s thermal resistance (0.16 K/W)
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Figure 6.5: 2-D example of increased leg spacing for a TEM with Melcor Bi2Te3 material
properties, TH = 473, TH = 307 and no solder. The voltage gradient is seen in color and the
arrows indicate heat flow. This case is for DP /Dnorm = 4
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Figure 6.6: 2-D FE module leg distance sweep with Melcor material properties Bi2Te3,
TH = 473K, TC = 307K and base device parameters from Table 6.1. (a) Peak power vs.
parametric sweep of inter leg distance (b) efficiency vs. parametric sweep of electrical contact
thickness
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Figure 6.7: 2-D FE module contact thickness sweep with Melcor material properties Bi2Te3,
TH = 473K, TC = 307K and base device parameters from Table 6.1. (a) Peak power vs.
parametric sweep of contact thickness (b) efficiency vs. parametric sweep of electrical contact
thickness

accounts for 12% of the equivalent thermal resistance of the thermoelectric at I = 0.5A (1.33

K/W) and increases to 49% of the equivalent thermal resistance of the TE couple when the

contact thickness is increased by a factor of four (corresponding to a thermal resistance of

0.65 K/W). Because both of these numbers are overwhelmed by the resistance of the ceramic

interfaces (15.52 K/W), the increase in copper thickness has minimal parasitic effect on the

overall peak power production of the module and negligible effect on efficiency.

Finally, the solder thickness was increased by factors of 2, 3, 3.5 and 4, and the peak

power captured at every instance and compared to a case with no solder (zero thickness). The

difference in peak power is plotted against the ratio of parameterized solder thickness to nor-

mal solder thickness, tSolder,P /tSolder,norm. In this case, the model is highly sensitive to solder

joint thickness, as seen in Fig.(6.9). Between tSolder,P /tSolder,norm = 3 and 3.5, the peak power

increases by nearly 10%. In the image of the worst case scenario, tSolder,P/tSolder,norm = 4

seen in Fig.(6.8), heat flow is visibly entering the legs diagonally at the top ceramic interface.

This means that heat is being drawn in laterally, and thus the transport is multi-dimensional

which can also be seen by the voltage profile in the legs. This heat funnelling effect not only

indicates that a solder joint causes the 1-D analytical model to lose accuracy (and also lose

predictive error mapping) because of multi-dimensional transport, but that module geometry

can be optimized to increase power output by 10% or more, which is congruent with the new

high-power-density module design proposed recently by Crane et al [16]. The peak efficiency

diminishes only slightly (about 2%), which indicates a net benefit due to the optimization

of the solder thickness.
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(a) Contact Thickness (b) Solder Thickness

Figure 6.8: 2-D FE module of new TEM geometries with Melcor material properties Bi2Te3,
TH = 473K, TC = 307K and base device parameters from Table 6.1. (a) thickened copper
contacts with tCu,P /tCu,norm = 4 (b) thickened solder joint with tSolder,P /tSolder,norm = 4

This is profound, because the peak power has increased significantly without adding any

expensive material (such as copper or Bi2Te3). Instead, adding slightly more solder (which

is just a tin-lead mixture), has caused a dramatic change in power output. The increase in

power output can be attributed to two causes. First, the heat funneling effect has caused

heat to come into the legs from a larger area- namely that the solder is assisting the heat

in conducting it down into the legs. Relatively large heat flow can be seen going through

the solder into the legs in Fig.(6.8). More heat flow through the module leads to higher

effective leg temperature differences, which in turn produces higher module power output.

The second cause for an increase in power output is that the effective cross-sectional area of

the leg has increased at the solder interface, thus the Peltier heat (and resultantly produced

power) has increased accordingly. There is, however, a law of diminishing returns, since the

solder joint thickness will cause an electrical short through the leg. The peak power occurs

when the solder thickness is about one-third of the leg length in this particular geometry,

and thus a full optimization may yield a different device configuration than that proposed

by Crane et al [16].

The predicted power output is stable (does not change more than 1.6%) across a wide

range of geometries for the facets that govern the electrical contacts and ceramic interfaces.

This gives good confidence in the predictive error mapping for thermoelement legs of this

particular geometric configuration.

When a new geometric facet is introduced, such as increased solder thickness, the multi-

dimensional transport can cause a significant increase in the temperature difference across

the legs, and likewise a significant increase in power output. The case of the thickened

solder joint demonstrates two things. First, it is demonstrative of the shortcomings of the
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Figure 6.9: 2-D FE solder thickness parametric sweep with Melcor material properties Bi2Te3,
TH = 473K, TC = 307K and base device parameters from Table 6.1. (a) Peak power vs.
parametric sweep of solder thickness (b) efficiency vs. parametric sweep of solder thickness

1-D analytical model (and the inability to use predictive error mapping as a correction for

solder geometries) in predicting module performance and secondly, the ability for FE models

to be used for sophisticated module optimization. With the price of copper and tellurium

increasing, improvements made to module performance by cheaper materials such as solder

become even more enticing. Ultimately, it will be economic factors that will determine how

large of a role thermoelectric modules play as a power generation technology, so module

optimization is critical.
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Chapter 7

Conclusion

As a nascent technology, the footprint that thermoelectrics will have in efficient, sustainable

and remote energy applications will be determined by device-level cost and performance.

To address this issue, much effort recently has gone into development of high-performance

materials with little impact on commercially available modules. Pivotal in the transition

from academic research to commercial development is device-level design tools that can aid

in the manifestation of novel materials into practical power production modules.

7.1 New Design Tools

At such a critical time in the emergence of thermoelectrics as a solvent power production

technology, several novel tools have been established for the purposes of designing and im-

plementing TEMs for power generation applications:

i) Improved analytical models have been proposed that can account for thermal inter-

face resistance, bypass heat leakage and Thomson heating. The exact quantification of the

Thomson heat in a bulk thermoelectric material has never been analytically achieved be-

fore the asymptotic model. The analytical models (as with any 1-D model), are excellent

for quantitatively comparing different materials for performance characteristics, but fail at

capturing 3-D effects that are present in TEMs.

ii) A finite element model was implemented in COMSOL to address the 3-D transport in

a TEM. This model can account for any possible geometry, thermal and electrical contact

resistances, functionally graded doping and temperature-dependent properties (including

the Thomson effect). Because the 3-D FE model is robust, it was used as a benchmark for

analytical model comparison and validation. The robustness of the 3-D FE model was used

in the dissection of module-level effects to determine which effect had the largest impact on

device-performance, and which could be neglected. Likewise, the 3-D FE model was used

to demonstrate module-level optimization capabilities (although the parametric series only

serves as a qualitative demonstration) and was immediately able to identify a new device

configuration with a possible 10% increase in power output.

iii) A new method of predictive error mapping for 1-D analytical models has been de-
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veloped and demonstrated. The deviation of the 1-D analytical model from actual device

behavior (due to 3-D transport) can potentially be predicted based on pre-defined module

parameters. With commercial thermoelectric materials, the 1-D analytical model already

has a 10-20% error depending on the material and temperature gradient. Eventually, with

further work, this technique can be used either as a corrective factor for the 1-D analytical

models to capture 3-D module performance without using FE software, or it can be used

as a model-selection criteria for researchers trying to determine an appropriate modeling

technique for new materials (since the analytical models are simple and cheap to implement,

while the finite element models are complex and expensive).

iv) A robust TEM test stand was created, validated and subsequently used for the char-

acterization of a commercially available TEM. The characterization of TEMs can be used

both for implementation of said modules into larger power generation systems, and can also

be used for model validation (provided accurate material properties are available for the

commercial modules). The test stand employs a novel technique for determining the heat

flow into a module (a metric notoriously difficult to quantify), and thus has the ability to

calculate a module’s thermodynamic efficiency. This technique can be extended to a wide

base of module test stand configurations, and can predict a module’s conversion efficiency

to within 5% error.

7.2 Discoveries

In addition to the design tools, new insight has been cultivated for both material and module-

level parameters that significantly impact device performance and could play new roles in

TEM design:

i) An asymptotic solution to the non-linear governing equation of heat in a thermoelectric

material has been established. This is the first direct analytical solution to a non-constant

Thomson coefficient, which corresponds to most thermoelectric materials. In addition, a

method for calculating the effective bulk Thomson coefficient has been established and can

be used for quantifying the Thomson heat in a material.

ii) The first such mathematical account for the accuracy of the standard 1-D analyti-

cal model in predicting performance of a material with a Seebeck coefficient that is highly

temperature-dependent has been established. A highly temperature-dependent Seebeck co-

efficient means that the governing equations are non-linear and cannot be solved analytically

without asymptotic techniques. However, the non-asymptotic analytical model that has an

integral-averaged Seebeck coefficient retains excellent agreement with a numerical solution

to the non-linear differential equation. This is because the Thomson heat (or the non-linear

portion of the governing equation) is embedded in the Seebeck coefficient when it is integral

averaged over the experienced temperature gradient. This was mathematically proven by

examining the only case when the governing equations can be analytically solved with the

Thomson heat (and without asymptotic techniques).
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7.3 Limitations

Several factors limited some of the original proposed scope of this thesis. Initially, the

hope was to use the test stand as a vehicle for validation of models. The ability for model

validation through experimentation is predicated on the ability to obtain accurate material

property data for a commercially available module. As the material properties that were

obtainable did not correspond to any available TEM, there was no way to quantitatively

compare a model to a given module and expect good agreement. To address the issue of

model validation, the 3-D FE model was rigorously developed as a benchmark. In this way,

models could be quantitatively compared and validated for a given set of parameters when

compared against the robust 3-D FE model.

Additionally, electrical and thermal contact resistances were left out of the analysis

(though the models are capable of accounting for them), despite initial hopes to do so.

Mainly, there has been no accurate measurement of contact resistances for thermoelectric

devices. Because contact resistances (particularly electrical contact resistances) are used as

curve-fitting parameters between models and experimental results, there is no way to tell if

the resultant value is capturing the contact resistance purely or is accounting for additional

effects. Because of this, reported contact resistance values can range by several orders of

magnitude. In addition, experimental characterization of electrical contacts has come with

explicit disclaimers of inaccuracy. Without any such accurate measurement, the modeling

of contact resistance is impossible.

Finally, the predictive error mapping is not universal for all module configuration. Be-

cause of time limitations, the technique could only be demonstrated for a given geometry

and has not been generalized yet. There is no way to analytically find a functional form of

the dependence of error (between 1-D analytical and 3-D FE) on module parameters since

the governing equations are implicit and inseparable. Thus, in order to find a universal func-

tional form of error a large-scale design of experiments (DOE) must be implemented on the

3-D FE model with all module material and geometry parameters. Given that 3-D model

geometry development and computation are time-intensive, the technique for error mapping

could only be demonstrated and not be made fully universal.

7.4 Future Work

Should this work be continued, there are two fronts which are immediately achievable given

the newly-developed modeling capabilities. First, a full DOE should be performed on a

comprehensive 3-D FE model to establish a universal error map that would include all module

geometric and material parameters. This would involve testing a combination of extreme

cases, where each parameter is probed. Non-dimensional analysis establishes that unitless

power is a function of the following lumped parameters (excluding contact resistances):
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P

kLTave

= f(α2σTave/k,A/L2, ACer/A, kCer/k, tCer/L, ∆T/Tave) (7.1)

where ∆T = TH − TC and Tave = TH+TC

2
, and are thus both a function of the hot and

cold side temperatures. The lumped parameters are found by identifying all of the model-

ing parameters and also all of the dimensions necessary. The smallest possible number of

main parameters are selected such that all of the dimensions are represented and then each

remaining parameter is expressed by a combination of the main (lumped non-dimensional)

parameters. As such, there are eight lumped parameters that govern the performance of a

module, and a simple DOE (a total of two extreme cases for each parameter, one large value

and one small value) would require at least 82 = 64 scenarios. With each scenario requiring

at least two data points to determine peak power, the 3-D FE model would have to be run

at least 128 times to determine a functional relationship between all of the parameters, al-

though more sophisticated DOE techniques may reduce this number. In this way, regardless

of the geometry, a researcher would be able to predict the error between a 1-D analytical

model and the actual module behavior and use the predicted error as a correction factor.

Optimal module design is the second potential research area, since COMSOL provides

a unique opportunity for module optimization because it is compatible with MATLAB, a

good scripting program with built in optimization algorithms. It would be possible to write a

script to optimize a cost factor based on material costs and the performance of a module, and

thus design a more economically-viable module. The capacity (and need) for optimization

has been demonstrated in this work by increasing module power output by 10% by adding

solder, a relatively cheap module component.

In the long term, it would be ideal to have in-house thermoelectric material property

testing capabilities and also material synthesis capabilities, although this would require sig-

nificantly more resources and the cultivation of more materials science expertise or collabo-

rations.

7.5 Summary

This work has demonstrated new design advancements and understanding at the mate-

rial, module and system scale, as summarized in Table 7.1. These advancements can be

useful immediately and, reciprocally, in the future. In the short term, increased module

performance can be realized with optimized module configurations. Additionally, currently-

available modules can be selected for system-level integration more rigorously to provide

better system-level performance. In the long term, material selection can be tailored to

specific operating conditions of a given application using these advanced models.

With these new insights and tools, tangible improvements to TE technology can be

realized, which will aid in securing thermoelectrics as an important power generation resource

in a time when energy production is so critical.
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Table 7.1: Design Tools and Scope of Use

Design Tool Use Ch.
Improved 1-D Model New material-level evaluation and comparison 3
Error Mapping Evaluation and selection of new materials for applications 6
3-D FE Model Module-level design and optimization 5

Design and evaluation of novel geometries
Evaluation of new materials at module scale

TEM Test Stand Module-level characterization 4
Integration of modules into power-generation systems
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Appendix A

Material Properties

Table A.1: CRC Thermoelectric Material Properties p-type Bi2Te3 [12]

T[K] α[V/K] σ[S/m] k[W/mK]
482 0.000196 44943 1.071
473 0.000198 45998 1.043
448 0.000202 49603 0.992
423 0.000204 54525 0.971
398 0.000203 61274 0.970
373 0.000200 70671 0.979
348 0.000194 83472 0.987
323 0.000185 98522 0.985
298 0.000173 107874 0.963

Table A.2: CRC Thermoelectric Material Properties n-type Bi2Te3 [12]

T[K] α[V/K] σ[S/m] k[W/mK]
438 -0.000161 34722 1.278
423 -0.000171 34246 1.207
398 -0.000187 34013 1.092
373 -0.000201 34482 0.980
348 -0.000210 35842 0.872
323 -0.000213 38314 0.823
298 -0.000209 42016 0.800
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Table A.3: CRC Thermoelectric Material Properties p-type CeFe4Sb12 [12]

T[K] α[V/K] σ[S/m] k[W/mK]
973 0.000156 117785 2.689
948 0.000160 118764 2.698
923 0.000164 119904 2.706
898 0.000166 121065 2.712
873 0.000167 122249 2.717
848 0.000167 123609 2.720
823 0.000167 125000 2.722
798 0.000166 126422 2.723
773 0.000164 127877 2.723
748 0.000162 129533 2.722
723 0.000160 131233 2.721
698 0.000157 132978 2.719
673 0.000154 134952 2.716

Table A.4: CRC Thermoelectric Material Properties n-type CoSb3 [12]

T[K] α[V/K] σ[S/m] k[W/mK]
973 -0.000186 101936 4.274
948 -0.000188 101522 4.186
923 -0.000191 101214 4.102
898 -0.000193 100908 4.024
873 -0.000194 100806 3.950
848 -0.000196 100704 3.883
823 -0.000197 100704 3.823
798 -0.000198 100806 3.771
773 -0.000198 101112 3.727
748 -0.000198 101522 3.693
723 -0.000198 102145 3.668
698 -0.000197 102880 3.655
673 -0.000196 103842 3.654
648 -0.000194 105042 3.665
623 -0.000191 106496 3.689
598 -0.000188 108225 3.725
573 -0.000184 110253 3.775
548 -0.000179 112612 3.837
523 -0.000174 115340 3.910
498 -0.000168 118343 3.992
473 -0.000161 121654 4.082
448 -0.000155 125156 4.179
440 -0.000153 126422 4.212
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Table A.5: Laird-Melcor Thermoelectric Material Properties for Both p-type and n-type
Bi2Te3

T[K] α[V/K] σ[S/m] k[W/mK]
273 ±0.000194 108696 1.61
300 ±0.000202 99010 1.51
325 ±0.000207 86207 1.53
350 ±0.000210 78125 1.55
375 ±0.000200 72993 1.58
400 ±0.000196 67568 1.63
425 ±0.000190 63291 1.73
450 ±0.000186 59524 1.88
475 ±0.000179 56818 2.09
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