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Abstract: 

Slug flow characteristics in highly viscous liquid and gas flow are studied 

experimentally in a horizontal pipe with 0.074 m ID and 17 m length. Results of flow 

regime map, liquid holdup and pressure gradient are discussed and liquid viscosity 

effects are investigated. Applicable correlations which are developed to predict liquid 

holdup in slug body for low viscosity flow are assessed with high viscosity liquids. 

Furthermore, a mechanistic model is developed for predicting the characteristics of 

slug flows of highly viscous liquid in horizontal pipes. A control volume is drawn 

around the slug body and slug film of a slug unit. Momentum equations with a 

momentum source term representing the significant momentum exchange between 

film zone and slug body are applied. Liquid viscosity effects are considered in 

closure relations. The mechanistic model is validated by comparing available 

pressure gradient and mean slug liquid holdup data produced in the present study 

and those obtained from literature, showing satisfactory capabilities over a large 

range of liquid viscosity. 
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1 Introduction 

Liquid and gas two-phase flow is a very common occurrence in processes of many 

industries including chemical, power generation, and petroleum. Flow characteristics 

of two phase flows have been studied for decades, and a variety of models for the 

prediction of the flow behaviours have been developed. However, new challenges 

have emerged, particularly for the oil and gas industries where high viscosity 

(typically more than 1000 cP) liquid and gas flows are increasingly involved. Liquid 

viscosities were found to significantly affect flow behaviours, such as flow patterns, 

liquid holdup, slug characteristics and wave behaviours at the interface between 

liquid and gas phases. Most published models are developed based on data from 

much less viscous liquids and their applicability to such viscous liquid and gas flows 

need to be ascertained.  

Liquid viscosity effects have been revealed in several experimental studies. Taitel et 

al. (1986) conducted liquid and gas experiments in a horizontal pipe with liquid 

viscosities of 1 cP, 90 cP and 165 cP. They reported that their previous model (Taitel 

and Dukler, 1976) specifically for water and gas flow still showed good agreement for 

liquid with a viscosity of 165 cP. Andritsos et al. (1989) experimentally investigated 

effects of liquid viscosity on the transition from stratified to slug flow in a horizontal 

pipe. They proposed a new mechanism for slug initiation in which the slug formation 

occurred with the appearance of Kelvin-Helmholtz waves with a small wavelength. 

Their results showed slug flow tended to be stabilized with increasing liquid viscosity 

but interpretations were contradicted against long-wavelength inviscid analysis. 

Gokcal et al. (2006) investigated slightly higher liquid viscosity (up to 587 cP) and 

their results were compared with models developed by Xiao et al. (1990) and Zhang 

et al. (2003a). Results showed that these models can be improved with specific 
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consideration on liquid viscosity. Marquez and Trujillo (2010) investigated flow 

characteristics with liquid viscosity of 10 cP, 392 cP and 1000 cP. Flow regime 

transitions tested at different viscosity clearly showed that the range of slug flow in 

the flow regime map was extended as liquid viscosity increased. A similar trend has 

been identified by Matsubara et al. (2011) who conducted experiments with high 

liquid viscosity of 11000 cP. Their results indicated that regions in the regime map for 

roll wave and stratified flow at low liquid viscosity were replaced by those for 

intermittent and annular flow. Viscous liquid slug flow also has particular features. It 

was characterized as a high frequency (Gokcal, et al., 2009b), a short length (Al-

Safran, et al., 2011), and a high liquid holdup both in slug body (Al-Safran et al., 

2013) and in slug film region (Nädler and Mewes, 1995). Although a number of 

studies on the effect of viscosity on slug flows have been conducted, available 

experimental data and validated correlations for high viscosity (more than 1000 mPa 

s) liquid and gas flow are still scarce. 

Steady-state models for gas-liquid two phase flows have been developed for many 

years. Early developments were established on empirical or semi-empirical 

equations. These models heavily relied on fitting experimental and/or field data. 

Beggs and Brill (1973) developed a semi-empirical model for gas-liquid flow and 

investigated pipe inclination effects on liquid holdup and pressure loss. They found 

that liquid holdup had a strong dependence on pipe inclinations and could be 

calculated by correlations developed from experimental data for different flow 

patterns. To further understand the physics behind the complex flow behaviours, a 

mechanistic model was developed based on solving two-fluid continuity and 

momentum equations. The pioneer work was carried out by Taitel and Dukler (1976) 

who developed models for flow regime transitions in gas and liquid flow. The model 
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is applicable for steady-state liquid and gas flow with a low liquid viscosity in 

horizontal and slightly horizontal pipes (i.e. ±10º). Barnea (1987) extended Taitel and 

Dukler’s works by considering different flow regime models and incorporated effects 

of fluid properties, pipe size and pipe inclinations. Since then, several mechanistic 

models were developed to predict not only flow regime transition, but also pressure 

and liquid holdup in each flow regime (Xiao, et al., 1990; Gomez et al., 1999). 

Particularly for slug flow, Xiao et al. (1990) applied the combined momentum 

equation for stratified flow to solve the equilibrium liquid film level in slug film region. 

Gomez et al. (1999) developed a mechanistic model to predict gas-liquid flow 

behaviours in wellbores and pipelines. Their model was validated by comparing not 

only with laboratory measurements but also with field data obtained from North Sea 

and Prudhoe Bay, Alaska. A good agreement in pressure drop was shown. But the 

combined momentum equation which was used in stratified flow is not sufficient to 

represent complex momentum exchanges in slug flow. Zhang et al. (2000, 2003a, b) 

developed a momentum equation using the entire liquid film as the control volume to 

incorporate the momentum exchange between slug body and film zone. Their model 

was evaluated by experimental results with low viscosity liquids (Zhang et al. 2003b) 

and liquids with a viscosity up to 587 cP (Gokcal et al.2006). However, no validation 

works for the model were carried out for liquids which have a viscosity above 1000 

cP.  

The objective of this paper is to investigate effects of liquid viscosity on slug flow 

characteristics. Experiments using liquid viscosity ranged from 1000 cP to 6000 cP 

are carried out in a 0.074 m ID and 17 m long horizontal pipe. Liquid viscosity effects 

on flow patterns, liquid holdup and pressure gradient are discussed. A mechanistic 

slug flow model is developed and liquid viscosity effects on parameters used in 
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closure equations are evaluated. Experimental results and results from literature for 

pressure drop and mean liquid holdup over the slug unit are used to validate the 

model. Results show a good agreement for viscous liquids with a large viscosity 

range. 

2 Experiment set-up 

2.1 Flow facility 

 

Figure 1 The schematic of experiment facility 

A scale-up 0.074 m ID facility has been built in PSE lab in Cranfield University. As 

shown in Figure 1, this facility is a one-through facility and composed of a horizontal 

pipe with a length of 17 m long. A measure section is located at 14 m downstream 

from the inlet. A separator is settled at the end of the pipe, where the fluids are 

collected and separated.  

High viscosity oil is stored in a tank with a capacity of 2 m3 and fed into the main pipe 

via a T-junction by a progressive cavity pump (PCP). At the inlet, oil flow rate is 
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metered by a Coriolis flow meter (Endress+Hauser, Promass 83F80 DN80), and 

circulated to the oil tank to maintain a uniformed viscosity before being injected into 

the main pipe. The air is supplied from a screw engineering compressor, which has a 

maximum supply capacity of 400 m3/h free air delivery and a maximum discharge 

pressure of 7 barg. The flow rates are measured by flow meters: 0.5-inch vortex flow 

meter (Endress+Hauser Prowirl 72F15 DN15) and 1.5-inch vortex flow meter 

(Endress+Hauser Prowirl 72F40 DN40), which range from 0~20 and 10~130 m3/h 

respectively. At the end of the pipe, the mixture is collected in a separator where gas 

is ventilated. The oil stays for at least 48 hours until the gas is fully separated. 

At the T-junction, oil and gas fluids are mixed and the flow starts to develop along 

the pipe. Measuring section is located at 14 m downstream where flow pattern are 

recorded, pressure are measured by pressure transducers which are installed along 

the pipe and data in different locations are acquired by the Labview system. Liquid 

holdup is measured by an electrical capacitance tomography (or ECT) system which 

is designed and manufactured by Industrial Tomography System (ITS), UK.  

 

2.2 Electrical capacitance tomography facility 

Potential benefits inherent in the Electrical Capacitance Tomography (ECT) system 

include: non-invasiveness and non-intrusiveness, robust, high speed imaging 

capability, low cost and radiation free.  It is proved as a reliable approach in the 

measurement of very viscous liquid and gas flow.  For example, Zorgani et al. (2009) 

investigated the static measurement for heavy oil and water mixtures by using ECT 

system; Zhang et al. (2010) used ECT system to identify flow pattern in viscous 

liquid and gas two-phase flow.  
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The ECT system has 12 electrodes mounted externally and equally spaced around 

the pipe circumference.  Prior to measurements a calibration run will be carried out in 

order to establish a scale of the display with different colour codes, representing 

different phases. The low reference result is obtained by setting empty pipe, and the 

high reference result is taken when pipe is filled completely with oil. During a 

measurement capacitances between each pair of 12 electrodes are measured, 

giving rise to 66 measurements as an output. These data are collected by an 

acquisition unit and sent to a computer where a cross-section image is reconstructed 

and displayed using the colour codes for oil and gas. By the reconstructed image the 

phase distribution over the sensing cross sectional area at the measuring moment is 

obtained, and the liquid volume fraction in the pipe can further be estimated.  

 

2.3 Viscosity measurement and test condition 

Oil viscosities at different temperatures are measured by using a viscometer 

(Brookfield, LVDV-I, Prime). This viscometer is a type of the rotation variety which 

measure the torque required to rotate an immersed spindle in a fluid. The spindle is 

driven by a motor through a calibrated spring. The deflection of the spring is 

indicated by a pointer and a dial which are located above of the spring. For a given 

viscosity, the viscous drag is proportional to the spindle’s rotation speed and is 

related to the spindle’s geometry. Viscosity changes in a large range by changing the 

temperature in a water bath are measured by using a multiple speed transmission 

and interchangeable spindles. Results are shown in Figure 2, from which it can be 

seen that measured shear stress and shear rate at different viscosities are collated 

by a linear line, indicating the liquid used in this work with viscosity up to 9000 cP is 

a Newtonian fluid. 
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Figure 2 Power law model comparisons for different viscosities 

The physical properties of the liquid and test conditions are listed in Table 1. The 

liquid viscosities used in experiments range from 919 cP to 6226 cP. Liquid flow rate 

is controlled and varies from 0.06 m/s to 0.2 m/s. The minimum and maximum 

velocities are limited by the rated pressure in the pipeline and the capacity of the 

pump. Gas flow is injected with a velocity range from 0.3 m/s to 9 m/s. It might be 

noted that viscosity ranges, which are used to present results in the following 

sections, are taken from the minimum and the maximum values from one data set.  

Table 1 Fluid properties and experiment conditions 

ID (m) Test fluids Density 
(kg/m3) Viscosity (cP) 

Interfacial 
tension    

(25°C，N/m) 

Test 
matrix 
(m/s) 

API gravity 

0.074 
Air 1.293 0.017 

0.031 
0.3-9.0 

22.67 
CYL680 918 919~6226 0.06-0.2 
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3 Experimental results and discussion 

3.1 Flow patterns 

Flow patterns are observed to start with slug flow, which tends to dominate the entire 

flow regime. As gas velocity increases, rolling wave starts to occur at the film region. 

With further increasing gas velocity, oil phase is lifted by highly turbulent gas, and 

annular flow occurs with rolling wave at the interface. Snapshots for slug flow and 

annular flow obtained from videos and stacked images of ECT tomography are 

shown in Figure 3. A number of entrained gas bubbles are observed at the slug front. 

This could be attributed to scooping process in which the gas is entrapped in a 

mixing vortex resulted from a high kinetic energy in slug body (Dukler and Hubbard, 

1975). However, the amount of gas entrainment in high viscosity liquid might be 

different from that in low viscosity liquid. Another apparent effect caused by high 

liquid viscosity is found at slug film region, where a thin oil film remains and drains 

along the pipe wall. The film behaves as ripple waves and moves with the gas core 

as a low velocity, resulting in high roughness at the interface between the top liquid 

film and gas core. It also can be seen in stacked images obtained from ECT. The 

interface between gas core and bottom liquid film varies subsequently with slug 

bodies passing through. In annular flow, this interface is shaped as rolling waves and 

the mixing zone is particularly seen, indicating strong gas entrainments. Under 

strong gas shear forces, the top liquid film becomes  thinner than that in slug flow. 

ECT visualizes fluctuations in the middle and a mixing zone at the top, representing 

the rolling wave at the interface and thin oil film attachment on the wall. 
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a. Slug flow 

  

b. Annular flow 

Figure 3 Flow patterns in 3-inch experiments obtained from videos and ECT 
tomography (side view, Red: oil, Blue: gas) 

 

The comparison of flow regime map with regards to different oil viscosities is given in 

Figure 4. At oil viscosity range from 919 cP to 1280 cP, slug flow occurs at the low 

gas velocity, and tends to sustain until gas velocity is around 1 m/s. Rolling waves 

with different amplitudes are observed at gas velocity of 2 m/s. When gas superficial 

velocity increases to 5 m/s, slug flow is replaced completely by annular flow. At liquid 

viscosity ranges from 3151 cP to 3552 cP and from 5845 cP to 6226 cP, slug flow 

persists until gas superficial velocity is up to 2 m/s and transitional features appear at 

gas superficial velocity of 3 m/s. Then, annular flow with ripples on the wall occurs at 

high superficial gas velocity. It is clear that as liquid viscosity increases, the area for 

slug flow in flow regime map is amplified.  
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919 cP – 1280 cP 979 cP – 1183 cP 

  

3151 cP – 3552 cP 3281 cP – 3665 cP 

0.074 m ID 0.026 m ID (Zhao et al. 2013a) 

Figure 4 Flow regime map in experiments 

The present flow regime map is compared to those obtained from Zhao et al. 

(2013a), in which viscous liquids and gas are tested in a 0.026 m ID and 5.5 m long 

horizontal pipe. Effects of pipe diameter on flow regime map are exhibited in Figure 

4. At the similar liquid viscosity and velocity, the flow regime map for small diameter 

pipe tends to show more appearances of slug flow than that for large diameter pipe. 

In a small diameter pipe, slug flow is easily formed due to small pipe areas; while in 

a large diameter pipe with a higher ceiling, waves might need additional energy to 

develop into a slug. The mechanism responsible for the slug formation could be 

slightly different from that in a small diameter pipe.  
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Since in high viscosity liquids, the critical gas superficial velocity which is required to 

cause unstable waves is still quite low, the transition from stratified flow to 

intermittent flow is not seen. But significant diameter effect is found on the transition 

from intermittent flow to annular flow. Annular flow in a large diameter pipe takes 

place at lower gas superficial velocity than that in a small diameter pipe, indicating 

that slug flow in small diameter pipe easily persist to large gas velocities. This 

tendency might be resulted from the mechanism of slug decay and transition to 

annular flow. In a small diameter pipe, it is expected that the unstable waves formed 

at the liquid-gas interface tend to bridge the pipe with less difficulty, and once slug 

body is formed slug flow maintains until gas flow containing high energy to penetrate 

through the slug body. But in a large diameter pipe, due to large available spaces, 

those unstable waves developing to slug need high gas energy and once the slug 

body is formed it might be difficult to maintain liquid body at such high gas superficial 

velocities.  

3.2 Liquid holdup 

Mean liquid holdup at the cross sectional area of the pipe is measured by ECT 

facility. The obtained time-series signals show an instantaneous volumetric fraction 

for liquid phase, and represent the characteristics for various flow patterns occurred 

in the pipe. Time-series data for slug flow regime is shown in Figure 5. It is seen that 

in slug flow, slug body and slug film are distinguished since the former has a large 

liquid content but a few of aerated gas bubbles; while the latter is characterized by a 

gas core and liquid film at the bottom. Slug units occur periodically as time increases 

and its mean liquid volume fraction (Eu) is represented by the average time-series 

liquid holdups. A similar threshold (Eth), given in the equation below is adopted: 
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 (1)  

Liquid holdup for slug body, Es, can be determined by averaging those liquid holdups 

which are greater than Eth; slug film has lower values of liquid holdup than Eth and the 

average of liquid holdup for film zone is defined as Ef. As gas superficial velocity 

increases, those peaks representing liquid volume fraction in slug body decreases 

and considerable fluctuations start to occur at the film region. As discussed above, at 

this flow pattern, slug body still passes but with a low frequency; while, large 

amplitude waves occur at film zone showing fluctuated trend. As increasing gas 

superficial velocity, slug body and slug film no longer occur and the average value of 

liquid holdup is obtained specifically for annular flow.   

 

Figure 5 Time-series liquid holdup data (Slug flow at Uso=0.11 m/s, Usg=0.41 m/s, 1204 
cP) 

3.2.1 Mean liquid holdup 

Liquid holdup in slug unit can be estimated by post-processing measured time-series 

liquid volume fraction. The experimental results in slug and annular flow are shown 

 )()(
2
1

kkth EMinEMaxE 

Slug body Slug film 
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in Figure 6, in which it can be seen that the measured mean liquid holdup decreases 

as gas superficial velocity increases. This tendency seems gentle in slug flow but 

slightly sloping in annular flow. This indicates that increasing gas velocity only has a 

fairly limited effect on mean liquid holdup for both slug and annular flow. At low gas 

velocity, liquid flow tends to accumulate and gives a high liquid content in the pipe. 

Due to viscous nature, the liquid tends to attach on the pipe wall, which contributes a 

high value for the mean liquid holdup. With an increased gas superficial velocity, 

additional amount of gas result in the decrease in liquid holdup. As gas superficial 

velocity further increases, liquid phase no longer form liquid slugs in the pipe and 

annular flow occurs. The tendency of liquid holdup decreases continuously over the 

whole range of the gas superficial velocity. However, it is found that the entire 

decreasing trend is not so significant comparing with low viscosity liquid/gas flows. 

This indicates a large slip ratio and a rough interface.  

On the other hand, mean liquid holdup in slug flow exhibits a little dependency on 

liquid viscosity and liquid velocity. In slug flow region, liquids with high viscosity and 

velocity tend to give a slightly higher liquid holdup. In annular flow region, this 

tendency is less obvious. The possible reason is attributed to the fact that the 

process of liquid deposition dominates in annular flow and is driven by turbulent gas 

energy, rather than viscous forces induced by liquid film. However, although the 

liquid volume fraction decreases with a relatively steep slope in slug region, it still 

travels and deposits on the top wall due to the adhesive property, leading to small 

reductions in overall liquid holdup in the whole gas velocity range.  
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Figure 6  Liquid holdup in a slug unit in 3-inch experiments 

3.2.2 Slug body holdup 

Slug body holdups representing the gas aeration in slug body are sensitive to liquid 

viscosity. Slug body holdup results are shown in Figure 7. It is seen that slug body 

holdup slightly decreases as mixture superficial velocity increases.   

 
Figure 7 Slug body holdups in different liquid viscosities 
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High viscosity liquids have high slug body holdups, indicating less gas aerations in 

viscous slug body. These effects are obvious when a critical velocity is reached. Al-

Safran et al. (2013) discussed liquid viscosity effects on slug body holdup and found 

that viscosity effects were significant when the mixture velocity was above a critical 

value. They found this critical velocity obtained from their tests using liquid with 

viscosity of 587 cP was 2.0 m/s, and indicate it might become lower at higher liquid 

viscosity.  

 

Figure 8 Slug body holdup comparison with 0.026 m ID experiments data from Zhao et 
al. (2013) 

Liquid holdup data in slug body for both diameter pipes are shown in Figure 8. 

Significant effects of pipe diameter are represented by comparing results obtained 

from 0.074 m ID and 0.026 m ID pipes (Zhao et al., 2013a) for viscosities from 

around 1000 cP to 3500 cP. It is found that at a similar viscosity range, slug body 

liquid holdup in the large diameter pipe is greater than that in the small diameter 

pipe, suggesting slug body in the small diameter pipe has more gas aerated. Since 

the scooping process explains the mechanism for gas entrained in slug body (Dukler 
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and Hubbard, 1975), the turbulent kinetic energy is responsible for such 

phenomenon. However, Al-Safran et al., (2013) studied gas entrainment in viscous 

slug body and found that bubble fragmentation, occurred when turbulence kinetic 

energy overcomes the surface tension, is responsible for the dispersed gas bubble, 

as clearly seen in Figure 3.  

Slug body holdup obtained are compared with predictions from Al-Safran et al. 

(2013), Kora et al. (2011), Abdul-Majeed (2000) and Gregory et al. (1978) and results  

are shown in Figure 9. The correlations of Gregory et al. (1978) were developed 

based on experiments using liquid viscosity of 6.75 cP. Kora et al. (2011) and Al-

Safran (2013) used liquids with viscosities up to 587 cP. The maximum liquid 

viscosity used in Abdul-Majeed (2000) was 7 cP. It is found that Kora et al. (2011) 

give a very close prediction to Al-Safran et al. (2013) for viscosity range around 1000 

cP, and they both give a better prediction than Abdul-Majeed (2000) and Gregory et 

al. (1978). However, when liquid viscosity increases to around 3500 cP scatters are 

found at high mixture superficial velocities (above 1.0m/s). It might be expected as 

both models under predict the results when mixture velocity is higher than 1.5 m/s 

and the viscosity starts to affect slug body holdup.  
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Figure 9 Slug body holdup from 3-inch experiments and comparison with correlations 

 

3.3 Pressure gradient 

In Figure 10, pressure gradient results obtained from experiments using around 1000 

cP, 3500 cP and 6000 cP liquid viscosities are plotted against gas superficial 

velocities. For low liquid viscosity case with liquid superficial velocities of 0.10 m/s 

and 0.21 m/s, pressure gradient increases steadily with increasing gas superficial 

velocity. This tendency is consistent with the trend in low viscosity liquid and gas flow 
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(Gokcal et al., 2006; Foletti et al., 2011). When liquid viscosity increases to the range 

of around 3500 cP and 6000 cP at high liquid velocities, pressure gradient decreases 

at low gas superficial velocity and then increases with increasing gas superficial 

velocities.   

.  
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Figure 10 Pressure gradient in 3-inch experiments 

It is found that variations of pressure gradient strongly depend on flow patterns. In 

slug flow, pressure gradient tends to persist as a stable trend. When flow becomes 

annular flow, pressure gradient increases as gas superficial velocity increases. This 

might be due to the fact that in annular flow, oil droplets are carried by turbulent gas 

flow and deposit at the top forming a thick oil layer. As a result, frictional pressure 

drops become significant. With further increasing gas superficial velocity, the oil layer 

becomes thicker and pressure gradient exhibits an increasing trend.  
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4 Model development 

4.1 Continuity equations 

 

Figure 11 Slug flow geometry 

The model described here is a steady-state two-fluid model and its derivation starts 

with assumptions that both liquid and gas flow are incompressible. This assumption 

applies even for long pipelines, where the density of gas phase is not constant, as 

suggested by Taitel and Barnea (1990). As shown in Figure 11, a slug unit consists 

of a liquid slug body with a length of sL  and a film region with a length of fL . The 

entrained gas bubble in slug body and gas pocket in film region are also presented. 

The continuity equation for liquid phase is written by balancing liquid mass flow rate 

at the inlet and outlet: 

)()( ftflts UUEUUE   (2) 

where, sE , fE  are liquid fraction in liquid slug and film region respectively. fU , lU  

are liquid velocity in the film region and liquid slug. tU  is the translational velocity at 

which slug unit propagates.  
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The continuity equation for gas phase is  

))(1())(1( gtfbts UUEUUE   (3) 

where gU  is gas velocity in gas core and bU is the dispersed bubble velocity and 

Xiao, et al. (1990) and Wallis (1969) suggested sU2.1  ( sU  is the mixture superficial 

velocity) in horizontal pipes.  

Summing Eq. (1) and (2) gives: 

)1()1( sblsgfffs EUUEUEUEU   (4) 

For a slug unit: 

fffsssslu UELUELUL    (5) 

gffssssgu UELUELUL )1()1(   (6) 

fsu LLL    (7) 

where, uL , sL , fL are the length of slug unit, slug body and slug film respectively. 

These equations yield several important relationships, one of which is the mean 

liquid holdup for a slug unit: 

t

sgsbst
u U

UEUEU
E




)1(
 (8) 

4.2 Momentum equations 

Momentum balance is also applied to the slug unit. Momentum equations are based 

on the analysis of forces exerted at the both side of the slug structure and are used 
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to solve pressure drop and other flow characteristics. Zhang et al. (2003a) 

considered the entire liquid film in a slug unit as a control volume, and derived 

momentum equations based on momentum input and output at the left and right 

boundary of the film, respectively. If a constant liquid height is assumed, the 

momentum equations for liquid film and gas core are given as: 
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If pressure term is eliminated, the combined momentum equation is given as: 
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M, represents momentum exchanges between slug body and film region. In stratified 

flow or annular flow, Lf tends to be infinitely long and hence M is negligible. In 

viscous liquid and gas flow, there is a high liquid film height (Nädler and Mewes, 

1995 and Zhao et al., 2013b), resulting in a low liquid velocity in slug film zone and a 

high gas velocity in gas pocket. In this case, the momentum exchange term 

becomes significant. Additionally, reported characteristics of high slug frequency and 

short length in viscous liquids may result in short film length and, therefore, a high 
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value of M. It is noted that high shear stresses on the liquid film induced by high gas 

velocity may cause complicated liquid droplet entrainments in gas pocket and the 

changes of wave characteristics at the interface. The liquid droplet may travel with 

gas core and deposit at the wall where a ripple wave is formed. Since this 

mechanism is not yet discovered, only a few amount of liquid droplet is assumed in 

gas pocket zone in this study.  

In above equations, f , g , i  are liquid-wall, gas-wall and interfacial shear stress, 

respectively. They are defined as: 
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Geometrical parameters, fA , gA , fS , gS , iS  , fE , are functions of liquid film height 

Dh f : 

AEA ff 
 

AEA fg )1(    

]}1)(2[cos{ 1   DhDS ff   (13) 

]1)(2[cos 1   DhDS fg   



25 
 

2]1)(2[1  DhDS fi   

}]1)(2[1]1(2[]1)(2[cos){/1( 21   DhDhDhE ffff    

Note that a flat interface is assumed here. The Reynolds numbers for liquid film and 

gas core are defined as: 
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Taitel and Dukler (1976) suggested that the chord length at the interface, Si, is 

considered in gas Reynolds number. It might still be applied in viscous liquid and gas 

flow. The reason could be that gas phase has a higher velocity than liquid, and 

interfacial shear stress still has a same direction with gas-wall shear stress. 

Pressure drop for an entire slug unit, uP , is the sum of the pressure drop of slug 

film, and slug body. The pressure gradient in the film zone for a horizontal pipe is 

calculated as: 
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The pressure gradient in the slug body is 
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The pressure gradient for a slug unit is: 
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The shear stress in the slug body, s , is given as: 
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where, sf is calculated using mixture properties in slug body, s and s , which are 

given as: 

gslss EE  )1(   

                 (19) 

gslss EE  )1( 
 

sE is liquid holdup in slug body. 

4.3 Closure equations 

4.3.1 Translational velocity  

Slug translational velocity, tU , is represented as a function of mixture velocity, sU , 

and drift velocity, dU , in the form proposed by Nicklin (1962). 

dst UUCU   (20) 

where, C  is a coefficient which refers to the ratio of maximum to the mean velocity 

for a fully developed velocity profile. Nicklin proposed a value of 1.2 for C when flow 

is turbulent, and a value of 2 when flow is laminar. dU  is the drift velocity which 

represents bubble motion in a stagnant liquid. Bendiksen (1984) gave a correlation 

for drift velocity at the horizontal and upward inclined pipe flow, which is widely used 

as: 
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 sin35.0cos54.0 gDgDU d   (21) 

Liquid viscosity effects on drift velocity was investigated by Gokcal et al.(2009a) for 

liquid viscosities ranging from 1 cP to 1237 cP. Experimental results showed a 

decreasing tendency in drift velocity with increasing liquid viscosity. Jeyachandra et 

al. (2010) extended Gokcal’s works for different pipe diameter and liquid viscosity by 

developing a simple model for drift velocity in horizontal pipes: 

1.046.07.1353.0
 oμ ENeFr  (22) 

where, Fr , N and oE  are dimensionless parameters:  

gD
U

Fr d     5.05.1 gDρ
μN

l

l
μ    

l

l
o σ

gDρ
E

2

  (23) 

Although this correlation was developed based on experimental results for a limited 

liquid viscosity range, it is tested against high viscosity results.  

4.3.2 Slug liquid holdup 

In Figure 12, the present experimental results and those obtained from Zhao et al. 

(2013a) for 0.026 m ID pipe are compared with predictions from available 

correlations. Statistically analysis for the performance of these correlations using six 

evaluation parameters (equations are listed in Appendix 1) is given in Table 1. 
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Figure 12 Comparison of slug liquid holdup between the present results and results 

from Zhao et al. (2013) and predictions from correlations 

 

Table 1 Comparison of measured liquid holdups (Zhao et al. 2013) and prediction from 
correlations 

Correlations 
Statistical Parameters (%) 

1     
Al-Safran et 

al.(2013) 2.36 6.96 13.60 1.44 6.96 9.89 

Kora et al.(2011) 1.24 9.93 15.20 0.52 7.91 11.33 
Gregory et 
al.(1978) 5.66 9.99 14.35 4.14 7.94 10.22 

Abdul-
Majeed(2000) 16.09 16.09 12.69 12.98 12.98 8.10 

It can be seen that Al-Safran et al. (2013) and Kora et al. (2011) give the closest 

predictions. The reason is that their correlations were developed considering liquid 

viscosity effects and experiments were conducted by using liquids with relative high 

viscosity. The correlation of Gregory et al.(1978), which is proved to have a widely 

application in low viscosity liquid cases (Pereyra et al., 2012; Al-Safran et al., 2013), 
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gives slightly greater errors in the predictions of slug holdup at liquid viscosity above 

1000 cP. Therefore, the correlation of Al-Safran et al. (2013)  

27.2057.0075.085.0 2  sE  (24) 

89.02.0   NN Fr

 

 

is used in the model developed in this study.  

4.3.3 Slug body length 

Experimental observations for air and water slug flow in the horizontal pipe suggest 

that a stable slug length is independent of gas and liquid flow rate and fairly constant 

for pipe diameter (Taitel and Barnea, 1990). Slug liquid body length in air and water 

flow has an average value of 12-30D (Dukler and Hubbard, 1975). Al-Safran et al. 

(2011) studied experimentally the effect of liquid viscosity on slug body length in 

horizontal gas-liquid flow. Higher frequency and shorter slug length with increasing 

oil viscosity were observed and explained by theoretical and physical reasoning. A 

new correlation to predict slug body length with a consideration of liquid viscosity 

was proposed: 

321.0
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This correlation is used in the model developed in this paper. 

4.3.4 Two-phase friction factor 

Liquid-wall and gas-wall shear stress in two-phase flow have also been investigated 

(Taitel and Dukler, 1976; Newton, et al. 1999; Kowalski, 1987). No obvious 

dependence of the gas/wall shear stress on interfacial conditions or liquid properties 
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was found. Gas/wall friction factor in two-phase flow can be estimated by the 

following equations, as described in Taital and Dukler (1976): 

1Re16  ggf                  for 2100Re g  

(26) 
2.0Re046.0  ggf            for 2100Re g  

Zhao et al. (2013b) proposed a new correlation for the friction factor for laminar liquid 

and pipe wall in gas and liquid two phase flow, based on experimental results for a 

large range of liquid viscosity. 

1Re76.20  llf                            for 2100Re l  (27) 

For turbulent liquid and wall, the friction factor is determined by Kowalski (1987), in 

which wall-to-liquid shear was measured and data was used to fit a correlation in 

terms of in-situ liquid holdup, Ef, and superficial Reynolds number, Resl. 

139.0)Re(0262.0  slfl Ef                for 2100Re l  (28) 

Interfacial friction factor is a critical parameter associated with interfacial 

characteristic in gas and liquid flows. Andritsos and Hanratty (1987b) expressed 

different correlations for smooth and rough interface due to appearance of large 

amplitude waves: 
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D
h f is the non-dimension liquid film height. tsgU ,  is the critical gas superficial velocity 

at which large amplitude waves appear. For water and gas flow, the critical velocity 

is defined in Andritsos and Hanratty (1987b): 

5.0
,, )(5

g

go
wtsgU




  (30) 

where go  is the gas density at atmospheric pressure. In viscous liquid and gas flow, 

it was found that the onset of large amplitude wave motion on the gas-liquid interface 

happened at a low gas superficial velocity (Newton et al., 1999; Matsubara et al., 

2011). Another instability investigation carried out by Andritsos and Hanratty (1987a) 

also revealed that the ratio of the critical gas superficial velocity for water and any 

liquid was a function of liquid height and viscosity. Zhao et al. (2013b) considered 

viscosity effects on the critical gas superficial velocity and proposed a correlation for 

interfacial friction factor: 
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5 Model validation 

The mechanistic model is developed for the prediction of pressure gradient and 

liquid holdup in a dominant slug flow region for viscous liquid and gas flow in a 

horizontal pipe. A calculation procedure is given in Appendix 1. The model requires 

inputs of fluid properties, superficial velocities and pipe diameter and assumes an 

initial value for liquid height. Then from continuity equations, velocities in slug body 

and film zone are calculated. To solve the momentum equation in the film zone, 

correlations of friction factors for gas-wall, liquid-wall and interface are employed. As 
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a solution of the combined momentum equation, a new liquid height is evaluated and 

compared with the old value until the relative error is below 0.0001. The pressure 

and mean liquid holdup over the entire slug unit are then calculated. Model 

performance is evaluated by comparing experimental results of water and gas and 

viscous liquid and gas system.  

5.1 Pressure gradient predictions 

Two sets of water/gas experimental data are used to compare with model predictions. 

One is sourced from Andritsos (1986) who performed experiments in a horizontal 

pipe with a diameter of 0.025 m; the other is from internal data tested in a 0.026 m ID 

and 5.5 m long horizontal pipe in Cranfield University (Zorgani, et al., 2012). As seen 

in Figure 13, measured pressure gradient are well predicted by the derived model 

within an error of ±20%.  

Further validations are carried out by comparing the present results, results obtained 

by Gokcal (2005). The latter performed experiments in a 0.0508 m ID horizontal pipe 

with liquid viscosities ranged from 180 cP to 589 cP. As shown in Figure 14, 

predictions from the mechanistic model agreed well with Gokcal’s results in the 

entire range of liquid viscosities. Errors are found to be within ±30%. These good 

agreements show promising performance of the model for pressure gradient not only 

for water and gas flows (1 cP), but also for other liquid flow with large range of 

viscosities (180 cP-589 cP). The comparison of pressure gradient calculated from 

the model and obtained from the present experiment, which results cover a liquid 

viscosity range from 1000 cP to 7500 cP, is shown in Figure 5. A good agreement is 

found and the model is proved to be applicable when liquid viscosity is within a much 

higher range (1000 cP-6000 cP).   
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Figure 13 Comparison of pressure gradient of water and gas flows from Andritsos 
(1986) and experimental measurements 

 

a. 587 cP 
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b. 387 cP 

 

c. 250 cP 
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d. 180 cP 

Figure 14 Pressure comparison between prediction and Gokcal et al.(2005) data with 
viscosities from 587 cP to 180 cP 

 

Figure 15 Pressure comparison between prediction and the present results with 
viscosities from 941 cP to 6226 cP 

5.2 Liquid holdup prediction 

The mean liquid holdup is calculated using Eq.(8). Liquid viscosity effects are 

implicitly included in closure relations of Es, Ub and Ut. Under the interaction of 
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viscosity effects on these parameters, an increasing trend in the slug mean liquid 

holdup with increasing liquid viscosity was observed by Nädler and Mewes (1995). In 

Figure 16, predicted mean liquid holdups in slug unit are compared with the 

experimental results obtained from Gokcal (2005). A good agreement within errors of 

±15% is found. The comparison with the present experimental results is given in 

Figure 17. An agreement with errors of ±30% is found. It may also be found that 

model tends to under predict the mean slug unit liquid holdups at higher liquid 

viscosities (1000 cP to 6000 cP). The possible reason could be due to the significant 

effects of the oil film attached on the wall. 

 

Figure 16 Comparison of predicted liquid holdup and measurement by Gokcal (2005) 
with different viscosities 
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Figure 17  Comparison of predicted liquid holdup and measurement of the present 
experiments 

 

6 Conclusion 

Experiments of highly viscous liquids and gas flow are performed in a large-scale 

horizontal facility. Liquid viscosity effects on flow regime map, liquid holdup and 

pressure gradient are studied. Results of mean liquid holdup and slug body holdup, 

measured from high viscosity liquids and gas flow, are assessed with widely-used 

correlations, and the applicable models for viscous liquid and gas flow are 

suggested. In addition, a mechanistic slug flow model for a large range of liquid 

viscosity is developed. Momentum exchange between slug body and film region is 

considered in order to capture particular features in viscous slug flow. Closure 

equations are carefully chosen with consideration of liquid viscosity. The 

performance of this model is validated by comparing predictions of liquid holdup and 

pressure gradient with experimental data. Results with large viscosity ranges from 1 
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cP to 6000 cP are tested, and good agreements are found. However, this model still 

needs to be validated by additional data, not only with large ranges of liquid 

viscosity, but also in different pipe diameters and with various gas properties. 
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Nomenclature 

Symbols Denotes Units 

A Area m2 

C Constants  

D Pipe diameter m 

E Liquid holdup   

Eo Eotvos number   

Fr Froude number   
G Acceleration due to gravity m. s-2 

f Friction factors  
h Liquid height m 

L length m 

M Momentum exchanges kg m/s �� Dimensionless viscosity number  

P Pressure kPa 

Re Reynolds number  
S Perimeter m 

U Velocity m/s 

Greek letter   
  Viscosity cP 
  Density kg/m3 

  Shear stress Pa 

  Pipe inclination angle ° 

 Statistical parameter  

Subscripts   

f Film zone  

g Gas phase  

i interface  

l Liquid phase  

m Mixture phase  

o Oil phase  

s Superficial or slug body  

t Translational  

u Slug unit  
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Appendix 1 Statistical analysis 

Six statistical parameters used to evaluate the performance of slug liquid holdup 

correlations are calculated based on relative error and actual error (Gokcal et al., 

2009b): 
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Average absolute actual error is: 
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Standard deviation about average actual error is: 
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Appendix 2  Model calculation procedure: 

 

 

Input parameter including , , , , 

calculate closure relations ( , , ) using 

Eq.(21), (23), (24).  

Eq. (3) - (6) are solved for  ,  , 

 ,  and  

 and geometrical parameters are 

determined by Eq. (12). Calculate , 

, using Eq. (26) - (30).  

, ,   are calculated in Eq. (11)  

is calculated in Eq. (17) and 

pressure and liquid holdup in slug unit 
are calculated from Eq. (16) and Eq. (7) 

No 

Yes 

Assume a value for  

 ��. (10) ∈ (±0.0001) 
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