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Abstract
This work investigates into recently proposed Bottle-Neck fea-
tures for ASR. The bottle-neck ANN structure is imported into
Split Context architecture gaining significant WER reduction.
Further, Universal Context architecture was developed which
simplifies the system by using only one universal ANN for all
temporal splits. Significant WER reduction can be obtained by
applying fMPE on top of our BN features as a technique for dis-
criminative feature extraction and further gain is also obtained
by retraining model parameters using MPE criterion. The re-
sults are reported on meeting data from RT07 evaluation.
Index Terms: Bottle-neck, ANN architecture, features, LVCSR

1. Introduction
The possibility of obtaining features for standard Gaussian mix-
ture model (GMM) based HMM recognition system from neu-
ral network has been studied for several years. In the begin-
ning, Hermansky [1] proposed the tandem feature extraction
in which posterior probability estimates obtained from artifi-
cial neural network (ANN) are modified to create an input to
standard GMM-HMM recognizer.

Although probabilistic features have not reached the per-
formance of standard MFCC or PLP features, they exhibit great
complementarity to them. This encouraging property led to
research addressing three parts of ANN: input features, ANN
structure, and output classes.

As ANN input features, standard PLPs or MFCCs, or more
innovative features, such as TRAPs [2] and their modifications
(e.g. [3]), were used. The question of ANN structure was usu-
ally approached by combination of several smaller ANNs. As
examples of this effort, Tonotopic Multi-layered Perceptron [4]
and Split Context ANN architecture [5] should be named. As
output classes, phoneme units were used at the beginning. How-
ever, using sub-phoneme classes such as phoneme states as
ANN targets was more successful [5].

Thanks to these efforts, the probabilistic features soon be-
came part of the state-of-the-art LVCSR systems [6, 7]. Never-
theless, they still did not themselves reach the performance of
standard features.

2. Bottle-Neck features
2.1. Overview

The recently proposed Bottle-Neck features [8] are also ob-
tained as a product of ANN, but they are not derived from the
class posteriors. To obtain Bottle-Neck (BN) features, five layer
ANN with narrow – bottle-neck – middle layer is used and the
features are based on linear outputs of the neurons in the bottle-
neck layer. These features significantly and consistently outper-
form the probabilistic features and reach the same or even better
performance than standard features.
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Figure 1: Block diagram of Split Context ANN architecture.

The advantage of the bottle-neck approach is its simplicity,
as the training of ANN is done in the same way as for proba-
bilistic features, only more layers are used. Moreover, the size
of feature vector is independent on the number of ANN output
classes, which allows for the use of phoneme states as ANN
targets without the need of cruel dimensionality reduction.

In the ongoing research [9], BN features were derived from
different input (“raw”) features and used in several LVCSR
tasks. The structure of ANN and its training targets were in-
vestigated together with the use of deltas. BN features outper-
formed the standard features in all tasks.

2.2. Split Context ANN Architecture

The bottle-neck approach can be introduced back into ANN ar-
chitecture, similarly to HATS [10]. The advantage of bottle-
neck is greater modeling power compared to only one ANN
layer used in HATS. The architecture of great interest for BN
features is the Split Context (SC) ANN, suggested in [5], which
systematically outperformed a single ANN.

In SC ANN, a block of input vectors is split into left and
right contexts of the current frame1. Each context block is clas-
sified separately and the resulting posterior estimates are fed
into a merger ANN to obtain the final classification. The scheme
of split context architecture is depicted in Fig. 1.

Since the probabilistic features obtained by this ANN ar-
chitecture outperformed features obtained from one ANN, we
expected the same behavior also on BN features. The first step
is to use BN ANN as the merger. But taking into account that
for GMM-HMM the BN outputs form better features than prob-
ability estimates, it is reasonable to expect that they will be
also better input features for the merger ANN. This hypoth-
esis is supported by better performance of HATS over classi-
cal TRAP approach [10]. BN ANNs are therefore used also as
context-specific classifiers and BN outputs (without any post-
processing) are used as merger inputs.

1Schwarz’s paper [5] contains a justification of this approach com-
paring splitting context to breaking N-grams in language modeling.
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2.2.1. Extensions of Split Context

The possible splits of the block of parameters presented at the
input of a classifier were examined up to five temporal splits
in [11]. The authors reported improved performance of the sys-
tem with increasing number of splits.

If three splits are considered, then the merger input V can
be written as Vt = [YL, YC ,YR] where Y are outputs of left,
center and right context-specific ANNs each covering 1/3 of in-
put block Xt = [xt−cont . . .xt . . .xt+cont]. These context-
specific ANNs are trained with respect to the label associated
with center frame xt of the input block. The left and right con-
text splits therefore do not contain this labeled vector and corre-
sponding ANNs are forced to focus on the information carried
by coarticualtion.

2.3. Universal context

In the split context approach, the context-specific ANNs are
trained to output the label associated with the center frame xt

of the whole input block, Xt = [xt−cont . . .xt . . .xt+cont].
This might be quite far from the input vectors covered by the
given ANN. This way of training of context-specific nets seems
to make sense when the probabilities are used at the input of
merger ANN that classifies the central frame xt of the whole in-
put block. But the ANN is capable of more complex operation
than simple “assembly” of partial probability estimates. Espe-
cially when working with BN outputs, the concept of merging
the partial probability estimates into final ones naturally disap-
pears.

Thus we may think of parameters on the merger input Vt

as about another representation of underlying speech signal rep-
resented by Xt. The fact, that this information was obtained by
three different ANNs with respect to classification of a certain
frame does not play a role. We may as well use the same ANN
to obtain BN outputs from all three context splits. Then for
the three-split system V becomes Vt = [Zt−k,Zt,Zt+k],
where Z is output of context-independent – universal – ANN.
This universal ANN covers smaller block of input param-
eters XtU

= [xtU−Ucont
. . .xtU

. . .xtU +Ucont
], where

Ucont is the context of the input block respective to its center
frame xtU

.
The universal ANN is trained with respect to its central

frame xtU
. The k is shift of tU against t. If three splits are

considered, the input to merger Vt is created by sampling the
outputs of universal ANN at times t, t − k, t + k, but more
samples and even a sampling that is asymmetrical with regard
to t can be considered.

The universal ANN will convey maximum information
about its center frame xtU

in its BN outputs. If there is a useful
information for classification of the central frame of the whole
input block Xt in BN representation of farther context splits,
the merger should be able to extract and use it. The scheme
of this idea is depicted in Fig. 2. This approach will be called
Universal Context (UC) because only one – universal – ANN is
used to extract parameters from context splits.

By replacing context-specific ANNs by a general one, sig-
nificant simplification was achieved: it is obvious, that the ANN
does not have to be in the system several times. Instead, pro-
cessing of the smaller – contextual – block is done frame by
frame and stacked, and only desired frames are taken to form
merger input. The number of trainable parameters in the sys-
tem is therefore reduced, allowing for training of larger ANNs
to reach the same number of trainable parameters in whole ar-
chitecture. The stacking of context-independent ANN outputs
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Figure 2: Block diagram of Universal Context approach.

is also convenient when experimenting with different numbers
of temporal splits.

3. Experiments
3.1. Experimental setup

Our system is based on AMI-LVCSR system used in NIST
RT’07 evaluation [7] which is quite complex system running
in many passes. For detailed analysis of the novel features, we
stopped the process after the first decoding pass and estima-
tion of VTLN warping factor. The system was simplified by
omitting the constrained MLLR adaptation and lattice genera-
tion followed by four-gram Language Model (LM) expansion,
and full decoding using bi-gram LM was done instead. The LM
scale factor and the word insertion penalty were tuned for the
best WER.

The task is to recognize meeting speech recordings as de-
fined by NIST RT’07 evaluations. The independent head set
microphone (IHM) condition with reference segmentation was
used in our experiments.

The training set consists of the complete NIST, ISL, AMI
and ICSI meeting data – about 180 hours.

Mel-PLP features appended with derivatives Δ, Δ2 and
Δ3, are transformed by HLDA to 39 dimensional vector. The
HLDA considers each Gaussian component as a class. Result-
ing parameters are mean- and variance-normalized per speaker
and are used as standard features (further denoted as HLDA-
PLP). Cross-word tied-states triphone GMM-HMMs models
were trained by Maximum Likelihood (ML). The model con-
tains 5600 tied states with 18 mixture components per state.
The performance of this baseline is given in Tab. 1.

The systems for different BN features were trained by sin-
gle pass retraining from HLDA-PLP baseline system. Next,
18 maximum likelihood iterations followed to better settle new
HMMs in the new feature space.

Feature concatenation is quite common for probabilistic
features, so it was also tested for BN features. The results are re-
ported for BN features separately, in concatenation with HLDA-
PLP and for BN features appended with their first derivatives
(denoted by D) – these derivatives help overcome the HMM
assumption of frame independence and significantly improve
system performance [9].

3.2. BN feature extraction

The raw features are based on 23 short-term mel-scaled log-
energies normalized by VTLN and speaker-based mean and
variance normalization. The input block to ANN contains 31
frames of these energies. This is kept constant over all exper-
iments. For the baseline BN features, the processing contin-
ues by weighting the energy trajectories (TRAPs) by Hamming
window and projection on first 16 Discrete Cosine Transform
(DCT) bases including the DC component. These raw features
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Figure 3: Block diagram of Bottle-Neck feature extraction.

HLDA-PLP 36.0
baseline BN 33.3

baseline BN D 32.3
HLDA-PLP + baseline BN 31.7

SC-M BN 32.2
SC-M BN D 30.5

HLDA-PLP + SC-M BN 30.6

Table 1: WER [%] of PLP features, baseline BN features and
Split Context architecture with bottle-neck in the merger.

have 23 × 16 = 368 elements and form the input to a five-
layer ANN with bottle-neck of size 30 in the middle layer2.
The sizes of the first and the third hidden layer are equal3.
The ANN of about 2 000 000 trainable parameters is trained to
classify 135 targets corresponding to phoneme states on about
173 hours of speech data4. Finally, linear outputs of the bottle-
neck layer are transformed by Maximum Likelihood Linear
Transform (MLLT), which considers HMM states as classes,
and mean- and variance-normalized. These features are fur-
ther referred as baseline BN and their performance is shown
in Tab. 1. The block diagram of BN feature extraction is shown
in Fig. 3.

3.3. Flavors of BN features

Split Context – The left and right contexts cover 16 frames of
input log-energies and they overlap by 1 frame. The energy
trajectories are weighted by corresponding half of Hamming
window and projected on 11 DCT bases including DC com-
ponent. The number of inputs to each context-specific ANN is
23× 11 = 253 elements. The total amount of trainable param-
eters in ANN architecture was kept the same: 2 000 000. The
amount of parameters in individual ANNs was the following:
2× 1/6 in context-specidic ANNs and 2/3 in the merger5.

First, the merger was replaced by a bottle-neck ANN. The
obtained features are denoted SC-M BN. They achieved 1% ab-
solute better results than the BN baseline – see Tab. 1.

The bottle-neck structure was then used also in context-
specific ANNs and outputs of bottle-neck layers were used as
inputs to the merger. Maximum amount of useful information
from context-specific ANNs is needed to ensure proper clas-
sification ability of the merger (and thus quality of derived BN
features), so experiments with different sizes of context-specific

2This size was chosen as optimal with respect to farther processing
in previous experiments [9] and was not tuned here.

3This applies for all ANN with bottle-neck
4Some parts of data causing problems in ANN training were dis-

carded
5Experiments with different proportions were done with only slight

effect on the final performance

Context-specific ANNs BN size
features 50 60 70 80 90
SC BN 31.3 31.2 30.8 30.6 30.6

SC BN D 30.4 30.0 29.8 29.6 29.5
HLDA-PLP + SC BN 30.5 30.2 29.8 29.5 29.7

Table 2: WER [%] of BN features generated by SC architecture
with bottle-neck in all stages.

Context-independent ANN BN size
features 50 60 70 80 90
SC BN 31.2 30.5 31.1 30.2 30.5

UC BN D 30.0 29.5 29.9 29.3 29.3
HLDA-PLP + UC BN 29.5 29.1 29.5 29.2 29.4

Table 3: WER [%] of BN features generated by universal con-
text architecture.

ANN bottle-necks were done. The results can be seen in Tab. 2.
Here, further improvement over 1% absolute was achieved.

Split Context – three splits – The problems with training
the context-specific ANNs on the edges were encountered and
the classification accuracy of the whole architecture was only
slightly better than the classification ability of the central ANN
alone. We hypothesize that there is not enough information in
the left or right context to classify the frame outside of this con-
text. The study in [11] was done on a small data set, so it is pos-
sible that the context ANNs learned the most frequent phoneme
context of given target. The WER of obtained BN features was
rather disappointing.

Universal Context After several experiments, we con-
verged to the following configuration: The contextual ANN
covers 11 frames of input mel-scaled log-energy spectrogram.
The energy trajectories are weighted by Hamming window and
projected on 6 DCT bases including DC component. The result-
ing ANN input vector has 23× 6 = 138 elements. The amount
of trainable parameters was about 1 000 000. The input to the
merger was formed by five BN outputs of universal ANN corre-
sponding to five blocks of log-energy spectrogram overlapping
by six frames. The merger had about 1 000 000 trainable param-
eters, too.

The performance of this architecture is shown in Tab. 3.
Small but consistent improvement over SC architecture is
achieved.

3.4. Discriminative training

BN features is a feature extraction scheme based on discrimina-
tive training. Therefore, it is interesting to compare and com-
bine our feature extraction technique with other discriminative
training techniques used in speech recognition. Namely, we
have examined Minimum Phone Error (MPE) training of model
parameters [12] and fMPE [13]. The comparison and combi-
nation with fMPE is particularly interesting as fMPE is an al-
ternative discriminative feature extraction technique. However,
while neural net is trained to estimated phoneme state posterior
probabilities for each frame in the case of BN features, in case
of fMPE, the ensemble of linear feature transformations [14] is
discriminatively trained to optimize the MPE criterion, which is
believed to be better related to our task of speech recognition.

Table 4 presents the results for three different feature sets:

• HLDA-PLP
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Training
features ML MPE fMPE fMPE+MPE

HLDA-PLP 35.6 32.6 31.4 29.7
UC BN70 D 29.6 27.9 27.8 27.6
HLDA-PLP
+ UC BN70 29.4 27.5 26.9 26.1

Table 4: WER [%] of BN and HLDA-PLP features using differ-
ent techniques.

• UC BN70 D – UC with 70 neurons in contextual ANN
bottle-neck augmented with delta coefficients – one of
our best performing feature sets based purely on BN pro-
cessing

• HLDA-PLP+UC BN70 – feature set concatenating both
the HLDA-PLP and the UC BN70 (no deltas) stream

For each feature set, the results are shown for initial ML-
trained model, model re-trained using MPE, model ML-trained
on the features processed using fMPE, and the last mentioned
model additionally re-trained using MPE.

Comparing the two discriminative feature extraction
schemes, we see that the ML results obtained with UC BN70 D
features (29.9% WER) compare favorably to fMPE HLDA-PLP
(31.4% WER). Applying fMPE on top of BN feature extraction
and MPE training of the models brings further significant gains.
Highest gains are, however, obtained with fMPE and MPE ap-
plied on HLDA-PLP+UC BN70 features consisting of both BN
and HLDA-PLP feature streams. This suggests that fMPE is
able to extract additional complementary discriminative infor-
mation contained in the “raw” features that was already lost
during the BN processing.

4. Conclusions
The improvement of Bottle-Neck features through different
ANNs architecture is described in this paper. Starting with BN
features generated by a single ANN, we obtained the perfor-
mance of 33.3% WER – more than 2.5% absolute better than
HLDA-PLP baseline. When both features are concatenated, the
improvement increases to 4.3%.

When BN ANNs were introduced into Split Context archi-
tecture, the WER decreased by another 2% absolute reaching
the level of 29.5%. Here, the addition of HLDA-PLP features
does not bring an improvement and the same performance is
achieved by BN features appended with their delta parameters.
The best performance is obtained by architecture with bottle-
neck of size 80 neurons in context-specific ANNs.

Increasing the number of temporal splits in SC architecture
led to degradation of the system as the context-specific ANNs
on the edges of the input block were not able to learn the target
form its coarticulation behavior.

The developed Universal Context architecture performs
about the same as SC architecture reaching the performance of
29.3% WER in the best case. This configuration is also much
less sensitive to the size of the contextual ANN. In addition
to better performance, the resulting system is simpler as one
context-independent ANN is used for all temporal splits.

To examine the behavior of discriminative BN features to-
gether with discriminative training, two techniques were evalu-
ated – Minimum Phone Error training of models and fMPE fea-
tures. We have shown that BN features compares favorably to

fMPE as an alternative discriminative feature extraction tech-
nique. The combination of BN features with fMPE and MPE
training brings additional significant gains.
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