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Abstract

Ongoing clinical studies on patients recently implanted with the auditory midbrain implant (AMI) into the inferior colliculus
(IC) for hearing restoration have shown that these patients do not achieve performance levels comparable to cochlear
implant patients. The AMI consists of a single-shank array (20 electrodes) for stimulation along the tonotopic axis of the IC.
Recent findings suggest that one major limitation in AMI performance is the inability to sufficiently activate neurons across
the three-dimensional (3-D) IC. Unfortunately, there are no currently available 3-D array technologies that can be used for
clinical applications. More recently, there has been a new initiative by the European Commission to fund and develop 3-D
chronic electrode arrays for science and clinical applications through the NeuroProbes project that can overcome the
bulkiness and limited 3-D configurations of currently available array technologies. As part of the NeuroProbes initiative, we
investigated whether their new array technology could be potentially used for future AMI patients. Since the NeuroProbes
technology had not yet been tested for electrical stimulation in an in vivo animal preparation, we performed experiments in
ketamine-anesthetized guinea pigs in which we inserted and stimulated a NeuroProbes array within the IC and recorded the
corresponding neural activation within the auditory cortex. We used 2-D arrays for this initial feasibility study since they
were already available and were sufficient to access the IC and also demonstrate effective activation of the central auditory
system. Based on these encouraging results and the ability to develop customized 3-D arrays with the NeuroProbes
technology, we can further investigate different stimulation patterns across the ICC to improve AMI performance.
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Introduction

Cochlear implants (CIs) are the most successful neuroprostheses

to date with over 200,000 subjects implanted worldwide [1–3].

However, in cases where the cochlea or auditory nerve is

congenitally malformed or damaged, a CI is not a viable option.

In such cases the only commercially available alternative is the

auditory brainstem implant [4,5], a device that stimulates the

brainstem with surface electrodes. In general, these patients do not

achieve hearing performance levels comparable to CI patients [6].

As an alternative, the auditory midbrain implant (AMI), which

targets the central nucleus of the inferior colliculus (ICC) with a

penetrating electrode array, was developed [7]. The AMI is in

clinical trials and patients receive daily benefits from their implants

[8,9]. However, as with brainstem implants, the AMI also does not

achieve performance levels comparable to a CI. Based on recent

human and animal studies [9–13], one major limitation is that the

current single-shank AMI array (consisting of 20 linearly spaced

electrodes) cannot sufficiently activate neurons across the three-

dimensional (3-D) IC structure for adequate spectral and temporal

coding, which are important features for speech perception [14–

16]. A single-shank array was implanted into the first AMI patients

since no 3-D array technologies were available for clinical

application [7] and this single-shank array technology had already

been shown to be safe for implantation into the ICC [17,18].

More recently, the European Commission began the NeuroP-

robes (NP) project to fund and develop new 3-D, chronic array

technologies to address the ongoing and significant need for such

technologies for neuroscience investigations and clinical applica-

tions [19]. We assisted the NP project by testing their new silicon-

based array technology in guinea pig experiments to assess

whether the NP technology could be used for ICC stimulation and

potentially in future AMI clinical trials.

The advantage of silicon-substrate electrode arrays compared to

traditional microwires is that they can be fabricated with

numerous sites in precise (with micron resolution) and closely

spaced (tens of microns) configurations and integrated with

electronics. There are other types of silicon-based array technol-
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ogies currently available in the neural engineering field. The two

major devices are known as the Utah array [20–22] and the

NeuroNexus array (i.e., Michigan Probe [23–26]). Both have been

successfully used for recording and stimulation applications in

acute and chronic animals. The Utah array has also been used in

humans for cortical recordings [27]. The major limitation with

these devices is that they typically only span a two-dimensional (2-

D) space. The Utah array consists of multiple shanks in a 3-D

configuration with only one site at the tip of each shank, resulting

in a 2-D pattern of sites. The lengths of the shanks can be altered

to record or stimulate in different planes but they cannot fully span

the 3-D space. The NeuroNexus array is a planar technology in

which multiple shanks consisting of several sites along each shank

can be configured in a 2-D pattern. There have been attempts at

stacking these 2-D arrays into a 3-D configuration using special

adapters (examples shown on NeuroNexus website: http://www.

neuronexus.com) or superglue [28], but these solutions have

resulted in a loss of precision and alignment between the stacked

shanks and/or require a bulky interface, which is not favorable for

chronic implementation [19].

The NP array takes advantage of the fabrication processes of

both types of technologies described above. However, the key

difference is that it uses a modular approach to create custom 3-D

arrays. The NP array consists of a slim backbone or interface that

allows individual shanks and/or groups of 2-D planar arrays to be

precisely inserted into this backbone in a Lego�– like fashion

[29,30]. This backbone is slim and connects to a highly flexible

ribbon cable to reduce the bulkiness of the interface. It is also

possible to incorporate fluidic channels through this interface

connecting to some or all of the inserted shanks for drug delivery

and chemical sensing, resulting in a fully integrated system [30,31].

Several prototype NP arrays have been developed and successfully

inserted into cortical regions without breakage, have achieved

recording of neural activity, and have maintained biocompatibility

within brain tissue [32,33]. Further details on the fabrication

process and various configurations of the NP arrays are provided

in [29,30,32].

Considering the 3-D capabilities of the NP array and the need

for 3-D stimulation within the ICC for improving the AMI, we

tested the stimulation effects of the NP array in the ICC of the

guinea pig. Since the NP technology had not yet been tested for

stimulation in an in vivo preparation, our initial objective was to

assess if we could electrically stimulate through the NP sites with

sufficient current to activate the central auditory system. The

shanks also required long lengths of 10 mm to reach the deep

location of the ICC, and thus we assessed if the arrays were stiff

and strong enough to be inserted through the tissue without

breakage. We used 2-D arrays for this study since they were

already available and would be sufficient to achieve our objectives,

whereas a 3-D array customized to the ICC would require

additional time and costs for development. Demonstrating the

feasibility of stimulating deep brain structures with the NP arrays

in this study will justify further development of 3-D NP arrays for

the ICC that can lead to improved stimulation strategies for the

AMI.

Methods

Anesthesia and surgery
Detailed methods have been presented previously [11,34].

Briefly, experiments were performed on three albino guinea pigs

(494–630 g; DH; Harlan Laboratories, Horst, Netherlands) that

were anesthetized with a ketamine (40 mg/kg) and xylazine

(10 mg/kg) mixture with additional supplements to maintain an

areflexive state. Atropine sulfate (0.05 mg/kg) was administered

subcutaneously to reduce bronchial secretions when necessary.

Body temperature was maintained at 3860.5uC with a water

heated blanket, and heart rate and blood oxygen levels were

monitored via pulse oximetry. The guinea pigs’ care and all

experiments were carried out in accordance with the German law

for animal protection and were approved by the Landesamtes für

Verbraucherschutz und Lebensmittelsicherheit (LAVES, registra-

tion number 05/1055).

The animal was placed in a stereotaxic frame (David Kopf

Instruments, Tujunga, CA) with hollow ear bars to allow for

calibrated closed-field acoustic stimulation. A craniotomy was

performed exposing the right temporal and occipital lobes and the

dura was then resected. The occipital lobe was carefully aspirated

to provide visual access to the inferior colliculus. The NP array

(Fig. 1; 4 shanks, 10 mm long, 8 IrOx sites/shank, 960 mm2/site;

impedances of 310–630 kV at 1 kHz) was then placed at a 45u
angle to the sagittal plane and inserted into the inferior colliculus

to be aligned along the tonotopic axis of the ICC [35,36]. Proper

array placement in the ICC was confirmed by observing frequency

response maps that exhibited an orderly shift from low to high

frequencies for superficial to deeper locations, respectively, along a

shank [35,37]. We implanted a 2-D NP array instead of a 3-D

version in these initial experiments since 2-D arrays were already

available that could achieve the objectives of our study in accessing

and acutely stimulating the ICC. Future studies will assess the

ability to implant and stimulate a 3-D NP array over longer

periods.

For recording the cortical activity, a second array (8 shanks,

200 mm apart, 2 mm long, 4 Ir sites/shank, 413 mm2/site;

impedances of 1–2 MV at 1 kHz; NeuroNexus Technologies,

Ann Arbor, MI, USA) was inserted into the primary auditory

cortex (A1). The A1 area was identified by its clear tonotopic

organization of low to high frequencies with a rostrolateral to

caudomedial orientation within the auditory cortex [38,39]. The

array was inserted approximately perpendicular to the cortical

surface in an attempt to align each shank along a column in A1

[39,40]. The depth of the sites was controlled with current source

density (CSD) analysis [41–43] so that one site per shank was

positioned into the main input layer (III/IV) of A1. The one-

dimensional CSD approximation provides a consistent represen-

Figure 1. Comb-like, silicon-based NeuroProbes array with four
10-mm-long probe shafts separated by 400 mm. Each shank is
comprised of eight IrOx electrode sites. The array is interconnected to a
highly flexible polyimide ribbon cable interfacing with a zero insertion
force (ZIF) connector on a printed circuit board (PCB) that was
connected to the stimulator. For probe insertion, the probe comb is
fixed adhesively to the insertion plate and attached to a micromanip-
ulator. The 100-mm-thick probe shanks proved to be stiff enough for
insertion into deep brain structures.
doi:10.1371/journal.pone.0082148.g001
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tation for the current sinks and sources associated with columnar

synaptic activity in the guinea pig auditory cortex [44,45]. Further

details on how to perform the CSD analysis and to identify layer

III/IV are provided in [46].

After array placements into ICC and A1, the brain surface was

covered with agarose gel to minimize pulsations and drying. The

A1 array was used to assess the activation properties of NP

stimulation in online and offline analysis.

Stimulation and recording
Stimulation and recording were performed using a computer

interfaced with TDT System 3 hardware (Tucker-Davis Technol-

ogy, Alachua, FL) using custom written software with Matlab

(Mathworks, Natick, MA). Acoustic stimulation was used to guide

placement of arrays based on neural response patterns. In each

animal, we then identified one stimulation site per shank on the

NP array for a total of four sites that were in similar frequency

regions of the ICC. We electrically stimulated each site with single

biphasic pulses (cathodic-leading, 205 ms/phase) and recorded the

corresponding neural activity on an A1 site in a similar frequency

region. The following frequency regions were stimulated across

animals: 15, 16, and 17 kHz. Stimulation level varied from 20–

52 dB (in 2-dB steps relative to 1 mA; 10–398 mA). All stimuli were

randomly presented for a total of 20 trials, including 20

spontaneous trials (i.e., no stimulus trials), at a rate of 2/s.

Analysis
We analyzed both A1 local field potentials (LFPs) and multi-unit

activity (MUA) in response to ICC stimulation. The LFP responses

recorded on our main input layer sites generally correspond to the

synaptic input into layers III/IV of A1 whereas the MUA

corresponds to the spiking pattern of multiple neurons surrounding

the recording sites within layer III/IV [42,47]. LFP analysis was

performed on the averaged unfiltered trials after removal of the

stimulus artifact (Fig. 2A shows examples with artifact for better

visualization of stimulus onset). Artifacts were removed by

blanking the 1.5-ms period following stimulus onset for each trial

and connecting the points before and after this window with a

straight line. We then calculated the magnitude and area of the

negative LFP peak as described elsewhere [11,48]. LFP threshold

was defined as the level that elicited a response that was 3.5 times

above the average background noise. We used this threshold

method because it provided values that were consistent with those

determined visually when selecting the level that elicited a

noticeable LFP response above the background activity. MUA

was displayed as post-stimulus time histograms with 1 ms bins

(PSTHs; Fig. 2B) after artifact removal and filtering (300–

3000 Hz) of each trial of data and detecting spikes that exceeded

three times the standard deviation of the noise floor (Fig. 2B shows

example of detected spikes). From the PSTHs, we calculated the

driven spike rate (total spikes minus spontaneous spikes within a

30-ms window relative to stimulus onset) across different levels for

further analysis. MUA threshold was defined as the lowest level

that elicited a visible response above spontaneous activity for two

consecutive PSTH level steps.

Results

We analyzed the LFP and MUA responses recorded in A1 due

to ICC stimulation with the NP array. A total of 12 NP sites were

stimulated across three animals with various current levels. In all

three consecutive animals, we successfully inserted the NP array

into the ICC without breakage and could deliver sufficient current

through the 12 sites to activate the central auditory system from

the ICC up to A1.

LFP responses
Figure 2A presents A1 LFPs in response to stimulation for

varying levels from threshold up to 52 dB (all values in dB relative

to 1 mA). The LFP response consisted of a negative deflection that

generally exhibited a monotonically increasing magnitude and

area with higher current levels (Fig. 3A and 3B, respectively). The

mean LFP threshold was 27.7 dB (SD: 5.5), which is approxi-

mately 24 mA. Encouragingly, the shape and monotonic nature of

these LFP responses appear similar to what has been observed for

ICC stimulation with the current AMI array [11,34]. Monotonic

growth functions are important for auditory implants in enabling

systematic control over loudness sensations with changes in current

level. One main difference is that NP stimulation achieves lower

LFP thresholds than what was previously observed for AMI

stimulation (,63 mA; [49]) using similar stimulation and recording

parameters (also in guinea pigs). These previous AMI thresholds

were obtained by determining the highest level where the evoked

potential could not be observed (i.e., a response that was lost in the

spontaneous activity), which identifies a threshold level that is

lower than what would be selected using our current method (i.e.,

the lowest amplitude with a detectable LFP). Yet, NP stimulation

still achieved lower thresholds suggesting that this difference may

be related to the significantly smaller sites of the NP array.

MUA responses
Figure 2B presents PSTHs for NP stimulation for the same data

set used for the LFP responses in Fig. 2A. The MUA responses

also generally exhibit monotonically increasing growth functions

(Fig. 3C) consistent with the LFP responses. The mean MUA

threshold was 33.5 dB (SD: 5.7), which is about 47 mA.

Interestingly, these MUA thresholds were higher than what has

been observed for AMI stimulation (,27 mA; [50]) using similar

Figure 2. Raw data and PSTH plots. A) Averaged unfiltered raw
data (20 sweeps) showing LFP in response to stimulation with an NP
site from 20 to 52 dB relative to 1 mA (actual stimuli were 12–52 dB in 2-
dB steps). The monotonic increase in LFP size with stimulation
amplitude is evident. The LFP threshold is 28 dB in this example. B)
PSTHs corresponding to the different stimulation levels indicated in
each plot. PSTH bars represent 1 ms bins. The dotted line indicates
stimulus onset at 0 ms. Bottom right trace is a single trial filtered for
spikes with the artifact removed and showing multi-unit activity in
response to a stimulation at 52 dB. Each detected spike is marked by an
* with the red line indicating threshold for spike detection. The MUA
threshold is 34 dB, which is higher than the LFP threshold.
doi:10.1371/journal.pone.0082148.g002
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stimulation and recording parameters and the same threshold

method as in our study (also in guinea pigs). This result is in

contrast to the lower LFP thresholds we observed for NP

stimulation compared to AMI stimulation. It is possible that the

smaller sites of the NP array will more effectively elicit LFP activity

than spike activity (LFP thresholds were significantly lower than

MUA thresholds; p,0.0001 using a two-tailed Welch’s t-test),

whereas the reverse is true for the AMI array. These discrepancies

may also be due to the use of different breeds of guinea pigs or

different array placements throughout the ICC or A1 across

studies.

Discussion

We were able to successfully insert the NP array into the ICC

without breakage. Considering the LFP and MUA thresholds and

neural responses presented above, we have also shown that

stimulation of the NP array can activate the central auditory

system and exhibit similar growth function trends to those

previously published for the current AMI array [49,50]. However,

due to the significantly smaller sites of the NP array compared to

the current AMI array (960 mm2 versus 126,000 mm2), one must

consider the issue of safety limits for neural stimulation since it

depends on the site area.

It is well known that total charge is the main factor eliciting

neural activation with central stimulation [51]. Tissue damage to

stimulation, on the other hand, is dependent on the synergy of the

total injected charge per phase (i.e. sum of charge over time) and

charge density per phase (i.e. total charge divided by surface area)

[52,53]. A multi-study comparison has provided a ‘‘threshold’’ for

tissue damage that can be modeled with a simple equation, known

as the ‘‘Shannon curve’’, and a safety parameter k (lower k values

correspond to more conservative stimulation regimes) that are

described in [54]. A k value of 2 has been approximated as the

border between safe and unsafe stimulation (for further details, see

[53]). However, care should be taken when using this parameter.

This equation was largely based on stimulation studies performed

with surface electrodes, and thus may overestimate the limits for

safe stimulation with penetrating electrodes [55]. Furthermore, the

k parameter was calculated based on a limited set of acute

stimulation parameters and should be interpreted with care for

other stimulation regimes.

Since activation levels (i.e., total charge) on the same order of

magnitude were observed for both NP and AMI stimulation, the

smaller electrode surface area for the NP sites will lead to higher

charge density values, which in turn can lead to greater tissue

damage at lower current levels [52,53]. Figure 4 shows the

modeled charge per phase versus charge density per phase for both

NP and AMI stimulation using the equation from [54]. Although

only pulse widths of 200 ms/phase were delivered experimentally,

we have included 100, 200, and 400 ms/phase for comparison.

The limits of safe stimulation are approximated by the thick solid

line (k = 2). The AMI can be safely stimulated up to about 62 dB

(1259 mA) for 200 ms/phase pulses (charge = 0.25 mC and charge

density = 199 mC/cm2 on the plot). However, NP stimulation can

only reach approximately 42 dB (charge = 0.025 mC and charge

density = 2623 mC/cm2) before exceeding the safety limit. Thus, it

is apparent that the total charge range for NP stimulation from

threshold to this safety limit (i.e., dynamic range) is smaller than

for AMI stimulation.

It is not yet clear if stimulation of smaller and possibly different

neural clusters with the NP sites will elicit similar or different

auditory percepts as those achieved with AMI sites. This needs to

be further investigated in behavioral animal models. However, the

key advantage of the NP technology is that a greater number of

sites can potentially be implanted throughout the 3-D ICC. It is

possible that simultaneous stimulation of multiple sites may enable

louder percepts with lower current levels, thus remaining within

the safety limits for stimulation. In fact, the ICC normally codes

for different sound features through activation of multiple neurons

throughout its 3-D structure [56–58]. Therefore, a 3-D NP array

may provide more realistic activation patterns throughout the ICC

to improve overall hearing performance. In this initial feasibility

study, we have shown that a 2-D NP array can access and activate

Figure 3. Rate growth curves recorded from A1 and pooled
from all 12 stimulated NP sites. A) Growth rate of LFP peak
magnitude versus stimulus level (in dB relative to 1 mA). B) Growth rate
of LFP area versus stimulus level. C) Growth rate for multi-unit spikes
versus stimulus level.
doi:10.1371/journal.pone.0082148.g003

Figure 4. Modeled safe stimulation parameters. Stimulation
above the solid black line (k = 2) has been shown to induce tissue
damage and co-varies with total charge and charge density per pulse
phase. The curves with different symbols reflect how charge density
changes with increasing charge per phase for either the NP or AMI sites,
i.e., for different site areas, for three different pulse widths each. The
local field potential (LFP, red dot, 200 ms/phase) and spike (Spk, blue
dot, 200 ms/phase) thresholds obtained from animal studies are labeled
on the plot for direct comparison.
doi:10.1371/journal.pone.0082148.g004
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central auditory pathways. The next stage of research will be to

develop appropriate 3-D arrays that can more fully activate the

ICC over longer periods and eventually translate this NP

technology into future AMI patients.
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