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ABSTRACT 

The existing Phase Change Material (PCM) thermal investigation methods have 

significant drawbacks and limitations in terms of the correct determination of phase 

change temperature and enthalpy values. It results in the inaccuracy and sometimes 

absence of experimental data which are required for the implementation of PCM based 

Thermal Energy Storage (TES) systems. An advanced T-history method for PCM 

characterisation was developed to overcome some of the shortcomings of the existing 

PCM thermal investigation procedures. The advanced T-history setup and the 

instrumentation system coupled with the LabView virtual instrument, which allows the 

continuous acquisition of T-history signals, were carefully designed, developed and 

evaluated. The development process was performed by sequentially addressing all the 

issues relating to the control and sensing mechanisms of the T-history setup, 

measurement accuracy and precision, PCM data representation, hysteresis, and finally 

subcooling. The instrumentation system was iteratively redeveloped and validated in a 

series of studies until the ±0.5 °C accuracy in PCM related measurements was 

achieved. Once the desired temperature accuracy was reached the data evaluation 

technique was implemented in MATLAB to allow the determination of thermo-

physical PCM properties from the measured T-history data. Furthermore, detailed 

studies of PCMs from the RT and PT organic series were performed. These 

comprehensive PCM investigations revealed various results including the details 

regarding the materials’ behaviour upon both cooling and heating, the heat 

release/storage in given 0.5 °C wide temperature intervals, the respective enthalpy-

temperature curves, and the total heat released/stored with respect to mass and volume. 

The comparison of the RT results with the data provided by the manufacturer showed 

very good agreement in terms of temperature (±1 °C margin) and heat release/storage 

content (±10 % margin) proving the validity of the advanced T-history method. A new 
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data evaluation technique considering subcooling was implemented in MATLAB to 

allow correct characterisation of inorganic PCMs and the obtained results were 

presented accordingly. Moreover, the PT PCM data were re-evaluated showing that 

subcooling in these materials can be neglected. Finally, pilot optical transmittance 

studies in a wide wavelength range (from 280 to 700 nm) at different temperatures 

were carried out and showed that the phase change temperature is one of the most 

determinative factors of material’s applicability in PCM enhanced glazing units used in 

solar applications. The results from the PCM characterisation measurements confirmed 

that a better planned PCM experimental tests in terms of more accurate and precise 

sensing and control modalities provide more comprehensive and reliable results than 

those described in the literature so far and hence enable the development of more 

efficient PCM based TES systems. 
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Chapter 1 

INTRODUCTION 

 

Due to the growing problem of global energy crisis and associated climate change the 

focus of energy research in the last decades has shifted towards the investigation of 

sustainable resources (Mehling and Cabeza, 2008). These resources are mainly of 

natural origin such as sunlight, wind, rain, waves, but they can also be a by-product of 

artificial processes (e.g. waste heat). In any case, the principal aim is the 

reduction/cessation of fossil fuel based energy production through enhanced utilisation 

of the aforementioned resources. The component of vital importance in alternative 

energy applications is the Energy Storage (ES). Energy storage enables storing of some 

form of energy so it can be drawn upon at a later time on demand (Gil et. al., 2008). 

There is a large variety of ES systems such as mechanical, chemical, biological, and 

magnetic energy storages. However, in many applications, the renewable energy 

manifests itself as thermal energy (Bailey, 2010). Therefore, Thermal Energy Storage 

(TES) is amongst the most important ES types. One of the most efficient means of TES 

implementation is through the use of Phase Change Materials (PCMs) (Zalba et. 

al., 2003; Mehling and Cabeza, 2008). 

PCMs are able to absorb/release large amounts of heat (latent heat) during the 

phase change which takes place in almost isothermal conditions or in a very narrow 

temperature range (Mehling and Cabeza, 2008; Maldonado, 2011). The isothermal 

phase change process enables the usage of these materials for temperature control so 

the application areas of PCMs are numerous including transport and general storage 

and medical applications. Meanwhile, high latent heat content enables utilisation of 

PCMs for TES applications (predominantly in buildings). 

The development of efficient PCM based TES system is a challenging task 

which includes several development stages: PCM characterisation i.e. determination of 

important material properties, design and modelling, and finally the implementation of 
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such system. Usually the design and modelling stage requires the solution of transient 

heat transfer problems involving phase change which is a relatively complicated task in 

itself. Nevertheless, according to Mehling and Cabeza (2008), one of the major limiting 

factors for both modelling and implementation of efficient PCM based TES systems is 

the inaccuracy/lack of the experimentally determined material data especially in terms 

of phase change temperature and enthalpy. This represents a serious problem since the 

accurate knowledge of thermo-physical material properties of PCMs is a prerequisite 

for more optimal and efficient design and implementation of PCM based TES units and 

the prediction of long-term behaviour of such systems. Moreover, more reliable 

determination of thermo-physical properties of existing PCMs should provide better 

understanding of the limitations of those materials and induce novel ideas to help the 

research activities regarding the development of new phase change materials. 

The existing PCM thermal investigation methods have significant drawbacks 

primarily related to the limited size of the investigated PCM samples and the unreliable 

determination of the phase change temperature and the phase change enthalpy. The aim 

of this research is to overcome some of the shortcomings of the existing PCM thermal 

investigation procedures. 

The main hypothesis underlying this project is that a better planned 

experimental tests in terms of more accurate and precise sensing and control modalities 

will be able to provide more comprehensive and reliable results than those described in 

the literature so far. This thesis describes various improvements developed for the 

implementation of the method originally developed for the exclusive investigation of 

PCM i.e. the T-history method (Zhang et al., 1999). The improvements are achieved by 

addressing the issues relating to the control and sensing mechanisms of the T-history 

setup, measurement accuracy and precision, effects of subcooling and hysteresis, and 

data representation. The details of the selected control and sensing modalities, 

developed measurement systems and mathematical data processing techniques required 

for the implementation of the advanced T-history method are discussed. Also, this 

thesis details the parametric studies performed on the well-known organic PCM which 

were carried out to discover which parameters affect the PCM characterisation mostly 

and to what extent. Additionally, the thesis illustrates the resulting accuracy of the 



  

26 
 

evaluation and characterisation studies of both organic and inorganic PCMs using the 

advanced T-history method. Finally, the potential of PCMs for solar heating 

applications and the preliminary optical tests of organic PCMs are also discussed.  

A brief description of the subjects that are covered in the following chapters is 

presented below. 

Chapter 2 introduces the science behind the PCMs. The chapter covers 

comprehensively the thermo-physical, kinetic, and chemical properties of various PCM 

classes. Basic technical principles of the development and production processes of 

PCMs are also covered. 

Chapter 3 covers various applications of PCMs starting from the use of PCMs 

for transport and general storage, through medical applications towards the applications 

in buildings. 

Chapter 4 is entirely dedicated to an explanation of the heat transfer 

mechanisms of thermal energy storage. The basic thermodynamics of PCM based TES 

systems is discussed. As heat transfer theory is vital for the understanding of PCM 

working principles, hence different mathematical formulations of a phase change 

problems are given including the basic analytical solution given by Stefan in 1891. 

Moreover, the development and execution of a simple parametric test, performed in 

order to estimate the most influential PCM properties in phase change processes, is 

explained. 

Chapter 5 gives an overview of the current technologies and methods used for 

the characterisation of PCMs. This is probably the most important review chapter since 

it gives a clear and in-depth insight into the experimental investigations on PCMs. In 

addition, the limitations of the current methods are reviewed in this chapter. 

Chapter 6 describes the development of the design strategy and the 

experimental setup of the advanced T-history method. The development of the 

experimental setup is explained detailing the investigation and selection of the 

appropriate control and sensing modalities. The design and development of the testing 

containers is also described. 
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Chapter 7 covers the iterative development of the instrumentation system of 

the advanced T-history method. The first PCM temperature measurements are 

presented and discussed. 

Chapter 8 presents the experimental studies of organic PCMs using the 

advanced T-history method which led to important conclusions regarding the influence 

of the certain parameters on the T-history data. 

Chapter 9 describes the experimental studies of inorganic PCMs using the 

advanced T-history method. It also details the mathematical improvements of the T-

history data evaluation technique through the utilisation of the subcooling phenomenon 

and consequently the data re-evalution process for some organic materials. 

Chapter 10 covers the pilot optical investigation of organic PCMs. 

Spectrophotometric studies and transmittance spectra of tested PCMs are described in 

detail. 

Chapter 11 presents the conclusions and discussion along with the future work 

suggestions.  
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Chapter 2 

FUNDAMENTAL PHYSICAL AND 

TECHNICAL PRINCIPLES OF 

PHASE CHANGE MATERIALS (PCMs) 

 

Renewable energy resources and energy efficiency (improvements) are identified as the 

two main supporting technologies of the sustainable energy scheme 

(Mehling and Cabeza, 2008). The sources of renewable energy are various such as 

sunlight, wind, rain, ocean, and biomass. The common properties that the foregoing 

resources share are their natural origin and the possibility of timely replenishment 

(Amaya, 2009). Nevertheless, the sustainable energy concept can also be implemented 

by artificial means. In the context of sustainability, energy efficiency is represented by 

the efforts taken towards the reduction of energy requirements in the provision of 

different products and services (Dincer, 2000). This reduction can be achieved in 

different ways. Namely, the second law of thermodynamics tells us that a 100 % 

efficiency of energy conversion processes is not attainable, so a surplus of heat, usually 

designated as the waste heat, is produced as a by-product of those processes 

(Bailey, 2010). The generators of the excess thermal energy are abundant like 

household and industrial processes, electronic equipment, human body, and solar 

radiation (Zalba et al., 2003). However, the major barrier for overall energy efficiency 

improvement is both the spatial and the temporal gap between the waste heat 

production and energy requirements (Chiu, 2011; Maldonado, 2011). Adequate 

harvesting and storage of the excess thermal energy is the main mechanism to bridge 

this gap. This can be achieved through the utilisation of various thermal energy storage 

methodologies (Bailey, 2010). 
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2.1 Thermal Energy Storage (TES) 

The concept of thermal energy storage is very old. Since ancient times, people had the 

practice of putting food in the snow and using ice as cold storage. According to the 

history records, the Romans were using ceramic tiles as heat storage media in under 

floor heating systems about 2 millennia ago. Nonetheless, for the greater part of our 

history, heat and cold energy storages did not have an important role in the course of 

human development. This direction changed with the arrival of steam engines, the 

increasing development of machine tools, and the overall transition to new 

manufacturing processes. That was the time of the great industrial revolution when the 

living standard and human comfort demand changed forever. Nowadays, different heat 

and cold technologies which store thermal energy using various storage reservoirs are 

employed on a daily basis (Dincer and Rosen, 2011). Thermal energy storage is used in 

both household and industrial processes and it serves to bridge the spatial and temporal 

gap between the supply and demand of energy. Moreover, it matches different powers 

on both supply and demand side (Mehling and Cabeza, 2008; 

Chiu, 2011; Maldonado, 2011). 

TES systems can be classified according to the various criteria 

(Gil et. al., 2008). However, the classification, which is of the most interest for this 

study, is the classification according to the storage medium. According to that 

classification TES systems can be implemented through the physical or chemical 

means, depending on the type of the storage medium. TES systems implemented 

through the physical processes use two types of media, sensible and latent heat storage 

whereas systems implemented through the chemical processes rely on the heat of 

chemical reactions (Dincer and Rosen, 2011). 

 

2.1.1 Sensible heat 

In many applications like domestic hot water and various underground TES systems, to 

name a few, thermal energy is stored as sensible heat. In these applications energy is 

stored by changing the temperature of the storage medium and since this change can be 

detected by sensors or human senses the energy stored is called sensible heat (Whiffen 
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and Riffat, 2012). The usage of the term “heat” in this context could be interpreted as a 

misnomer since heat itself is not a physical quantity, but rather a process or a mode of 

energy transfer (Atkins, 2010). However, in the aforementioned context, the terms 

“heat” and “energy” are often interchanged and therefore will be used in that way 

throughout the text.  

Evidently, the most distinctive feature of sensible heat storage medium is the 

accompanying increase of temperature (Figure 2.1). The heat stored ΔQ upon the 

temperature change ΔT can be measured and is expressed as the property called heat 

capacity Cp of the storage medium. This relation is given in Equation 2.1: 

 

 

,/ TQC p   (2.1) 

where the subscript p is used to denote the fact that, in the TES context, processes 

usually imply constant pressure (Mehling and Cabeza, 2008).  
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Figure 2.1: Stored heat-temperature relation for ideal sensible storage media 

(amended from Mehling and Cabeza, 2008, p. 2). 

 

The heat capacity is an extensive property and thus dependent on the amount of 

material in use (Atkins, 2010). Therefore more practical, intensive properties which are 

independent on the amount of material present are used. These include: mass heat 

capacity, volumetric heat capacity, and molar heat capacity. The mass heat capacity is 

often simply called specific heat capacity or just specific heat. These quantities 

basically represent the heat capacity given with respect to the mass, the volume, and 
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the amount of substance. Certainly, the most important and often used property is the 

specific heat capacity cp, calculated by using Equation 2.2: 

 

 

./ mCc pp   (2.2) 

Simplicity is the main advantage of sensible heat applications. However, the 

disadvantages are far-reaching. Namely, the usage of sensible TES systems requires 

large volumes of the storage media and the large driving temperature range for the 

storage/release of heat. To remedy these drawbacks another thermal energy storage 

technology in the form of latent heat storage media is used (Sharma et al., 2004; 

Mehling and Cabeza, 2008). 

 

2.1.2 Latent heat 

Latent heat is the heat released or absorbed by a chemical substance or a 

thermodynamic system during a change of phase (state of matter) that occurs without a 

change in temperature or in almost isothermal conditions (Mehling and Cabeza, 2008; 

Maldonado, 2011). The most common phase change processes are melting of ice and 

boiling of water. Given the almost isothermal conditions upon the change of phase the 

heat stored/released is hidden to human senses and therefore the term “latent” is used to 

describe such quantity (Mehling and Cabeza, 2008). 

Latent heat can be stored/released in three different ways: solid-vapour, solid-

solid, and solid-liquid phase transformation. Solid-vapour transition, although 

accompanied with the highest values of latent heat, undergo large changes of volume 

resulting in complex and impractical systems. Solid-solid transformations usually do 

not result in large latent heat values but are yet to be fully explored. In contrast to the 

possible limitations of solid-vapour and solid-solid transitions, solid-liquid 

transformations i.e. melting and solidification are characterised by a relatively large 

amount of latent heat (5-14 times greater than its sensible equivalent) and a small 

volume change (less than 10 %) making them economically attractive for the use in 

TES systems (Sharma et al., 2009). Therefore solid-liquid transformations are of the 

most interest in this study and from this point onwards the term “phase change” will 

only refer to the solid-liquid transitions. 
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As previously stated, solid-liquid phase change is characterised by a small 

volume change. Moreover, in the context of TES, such transitions usually occur 

without significant change of pressure. In this way melting and solidification of the 

storage material also proceed at a constant temperature or in a very narrow temperature 

range (Figure 2.2). 
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Figure 2.2: Stored heat-temperature relation for ideal sensible and latent storage 

media (amended from Mehling and Cabeza, 2008, p. 3). 
 

The temperature, upon melting/solidification, at which the heat is 

transferred/taken to/from the storage material, is called the melting/solidification 

temperature or temperature range depending on the direction of the heat flow during 

the process. In addition, the term “phase change” temperature or temperature range can 

be used (Mehling and Cabeza, 2008). After the completion of phase change further 

energy is stored in the form of sensible heat (Figure 2.2). 

The latent heat ΔQ that is stored/released upon melting/solidification, due to the 

small volume change and the constant pressure, in the case of usual conditions, equals 

the enthalpy difference ΔH between the solid and the liquid phase as expressed by 

Equation 2.3: 

 

 

.HQ   (2.3) 

This heat, in the case of solid-liquid transitions, is called heat of fusion or phase change 

enthalpy. It is an extensive property and therefore depends on the amount of material. 
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For this reason, an intensive property, specific enthalpy change Δh, is often used to 

describe the storage potential of solid-liquid transformations as in Equation 2.4: 

 

 
.mHh   (2.4) 

Given the aforementioned descriptions and terminology, the materials which 

undergo solid-liquid transformation, with relatively large associated heats of fusion, to 

make them suitable for storage of heat or cold, are commonly denoted as latent heat 

storage materials or simply phase change materials i.e. PCMs (Mehling and 

Cabeza, 2008). 

 

2.1.3 Heat of chemical reactions 

Although of no interest for this study, the thermal energy storage by means of chemical 

reactions will be briefly discussed, for consistency purposes. Heat of reaction is the 

amount of heat that needs to be added/removed during a chemical reaction in order to 

keep all the present substances in thermal equilibrium. If the pressure in the reacting 

container is kept at a constant value, the measured heat of reaction will be equal to the 

difference between the enthalpy of the end products and the enthalpy of the reactants. If 

the reaction is endothermic, heat will be absorbed by the reaction substances in contrast 

to the exothermic reaction where heat is released. Any reversible chemical reaction 

with high heat of reaction can be used for thermal energy storage (Mehling and 

Cabeza, 2008). 

 

2.2 Phase Change Materials (PCMs) 

One of the most efficient means of thermal energy storage implementation is through 

the utilisation of phase change materials. Phase change material (PCM) refers to any 

substance able to undergo reversible solid-liquid transformation and store/release large 

values of energy at constant temperature or within a narrow temperature range during 

the transformation process. Here, the term “large” refers to the enhanced energy 

storage capacity (heat of fusion) in regard to the heat capacities of the conventional, 

usually sensible, TES media. The chemical bonds within the substance break upon the 
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transformation and as a result the material changes its molecular structure manifesting 

in change of phase from solid to liquid or vice versa (Baetens et al., 2010; Dincer and 

Rosen, 2011). 

Although the usage of PCMs dates back into ancient days (water and ice 

storages) the elaborated investigation of these materials has commenced only in the 

past few decades. According to Agyenim et al. (2010) Telkes and Raymond reported 

on some pioneering studies in 1940s, but those results didn’t receive much attention 

until later times and the emerging energy crisis of late 1970s and early 1980s. Zalba et 

al. (2003) emphasized that the first thorough PCM references were given by Abhat and 

Lane in 1983. In the last 20 years the research areas of PCMs have expanded 

considerably as witnessed in numerous reviews, starting by two of the firsts and most 

comprehensives given by Zalba et al. (2003) and concluding with the most recent ones 

(Zhu et. al., 2009; Agyenim et al., 2010; Baetens et al., 2010; Oro et al., 2012; Whiffen 

and Riffat, 2012; Zhou et al., 2012). Nowadays, information on PCMs is quantitatively 

enormous containing the results obtained from diverse fields of material studies. 

However, fundamental principles for the exploitation of PCMs remain unchanged until 

today. Two defining properties of phase change materials are: 

(i) Constant or almost constant phase change temperature and  

(ii) High heat of fusion. 

In addition to these, few more material properties are essential for optimal and 

design of efficient TES systems based on PCMs and therefore will be explained in 

detail. 

 

2.2.1 Material properties 

Many materials have been investigated as potential PCMs. However, for a material to 

be useful some criteria must be met and those are best described in terms of material 

properties. The attractive properties of PCMs can be classified into four major 

categories: thermo-physical, kinetic, chemical, and economic properties (Sharma et al., 

2004; Oro et al., 2012).  
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2.2.1.1 Thermo-physical properties 

Predominantly depending on the values of the thermo-physical properties, a PCM is 

determined to be better for a specific application than some other material (Oro et al., 

2012). The most important thermo-physical properties of PCMs include: 

(i) Phase change temperature (range), 

(ii) Heat of fusion (i.e. latent heat or phase change enthalpy), 

(iii) Specific heat (including molar and volumetric heat capacities), 

(iv) Thermal conductivity, 

(v) Cycling stability, and 

(vi) Volume change. 

Specifically, phase change temperature (range) needs to be known and 

determined with high accuracy in order to assure the storage and release of heat in the 

desired operating temperature range. This range is usually quite narrow, in the order of 

± 10 °C around the phase change temperature of the material or even ± 5 °C (Günther 

et al., 2009). The phase change also takes place over a narrow temperature range and 

thus the design of thermal energy storage system within this range has to be founded on 

reliable and high resolution material data (Günther et al., 2006).  

Additionally, PCMs need to have high heat of fusion. This results in higher 

storage densities than those provided by sensible heat storage media. Higher storage 

density leads to volume reduction of the storage containers and more compact TES 

systems (Dincer and Rosen, 2011). 

High specific heat and consequently high molar and volumetric heat capacities 

are desirable to provide additional sensible heat storage which can be valuable in 

certain applications (Sharma et al., 2004). 

Furthermore, high thermal conductivity in solid and liquid phases is also 

desirable to assure fast storage/release of energy in a given storage volume and thus 

assist the charging/discharging process of the storage media. Low thermal conductivity 

may prove to be one of the major problems of some otherwise high-quality PCMs; 

therefore PCMs are often combined with materials of high thermal conductivity like 

metals and graphite. The solution to low thermal conductivity problems is usually 
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addressed through the more optimal and efficient design strategies of the TES systems 

(Sharma et al., 2004; Dincer and Rosen, 2011). 

Also, PCMs need to remain stable upon cycling in order to be used for the 

storage/release of heat as many times as required. The number of cycles varies 

depending on the application, Sometimes, only one cycle is necessary as when the 

PCM is used for heat protection from a fire. In other situations several thousand cycles 

are inevitable like in building applications. One of the main indications of unstable 

cycling is the phase separation. Namely, upon PCM cycling phases with different 

compositions can form. This happens within materials which are assembled of several 

components. Phase separation is a visible effect since the phases with different 

composition separate macroscopically. Generally the phase with the higher density 

sinks to the bottom and the phase with the lower density flows to the top. This effect is 

also called decomposition. The problem can cause the decrease of the heat storage 

capacity of the phase change material during repetitive cycling. There are several 

methods to solve this like artificial mixing of the material, gelling, and thickening 

(Mehling and Cabeza, 2008). 

Small volume change is also desirable to reduce mechanical stability 

requirement of the PCM containers (Dincer and Rosen, 2011). 

Clearly, phase change materials need to meet some requirements in terms of 

their thermo-physical properties in order to be used as effective thermal energy storage 

media. Evidently, the most important thermo-physical properties are the phase change 

temperature (range) and heat of fusion; therefore the proper determination of these 

properties with high accuracy is an integral part of any design, development, and 

implementation process of thermal storage system based on PCMs. 

 

2.2.1.2 Kinetic properties 

Vital kinetic properties of phase change materials include: 

(i) Nucleation rate, and 

(ii) Rate of crystal growth. 

PCMs need to have high nucleation rate to avoid excessive subcooling of the 

liquid phase (Sharma et al., 2004). This phenomenon is one of the most serious 
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problems in terms of phase change materials. Subcooling (also called supercooling) is 

the effect manifesting in the decrease of the material’s temperature significantly below 

the expected phase change temperature before the material begins to solidify and 

release heat during the discharging process of the PCM. If that lower temperature (also 

called nucleation temperature) is not reached, the PCM will not solidify at all and thus 

will not release latent heat. Moreover, in the case of the new charging cycle and 

accompanying temperature increase it will store only sensible heat (Mehling and 

Cabeza, 2008).  

Subcooling is an important aspect to observe since it can significantly diminish 

the usability of a PCM upon discharging. Namely, if the nucleation temperature is 

reached and solidification triggered, some sensible heat will be lost upon the 

temperature rise of the material from the nucleation to the phase change point. If that 

heat is larger than the heat released upon solidification or if the rate of heat loss to the 

ambient is greater than the rate of heat release during solidification the material will 

never reach its phase change point. The subcooling is usually expressed as the degree 

of subcooling represented by the difference between the phase change and nucleation 

temperatures. Considering the impact of the subcooling on the discharging processes of 

PCMs, profound investigations were taken towards the potential reduction of the 

subcooling effect. In these studies special additives (called nucleators) were 

investigated and developed to reduce subcooling. The additives often have similar 

crystal structure to the one of the solid PCM to allow the solid phase of the phase 

change material to grow. Nucleators also have higher melting temperatures than PCMs 

to avoid deactivation upon PCM melting. During solidification, the slow nucleation 

process is followed by the rapid crystal growth. The higher the rate of crystal growth 

the better the process of heat recovery from the storage system is (Günther et al., 2007; 

Oro et al., 2012). 

The study of kinetic properties of PCMs is important. However, the 

performance of these materials is dominated by the phase change temperature and 

enthalpy; therefore the studies of these two thermo-physical properties are the most 

important in terms of PCM investigations. 
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2.2.1.3 Chemical properties 

Important chemical properties of PCMs are: 

(i) Chemical stability, 

(ii) Compatibility with other materials, 

(iii) Flammability, and 

(iv) Toxicity.  

Chemical stability of PCMs is desirable to assure long lifetime of the materials 

in the case of exposure to severe conditions in terms of elevated temperatures, 

radiation, gases, etc. Compatibility of PCMs with other materials is also important to 

assure long lifetime of the storage containers and of the surrounding materials in the 

case of leakage. One of the most important properties is corrosiveness. PCMs need to 

be non-corrosive in order to be used as thermal energy storage since metal is used as 

one of the most common container materials in TES systems. In the case of metal 

containers, preliminary corrosion tests need to be performed prior to any application of 

the unknown PCMs (Mehling and Cabeza, 2008). 

Furthermore, the implementation of thermal energy storage can be restricted by 

laws imposing the use of non-flammable and non-toxic materials. Although other 

safety constraints can be applied these are the most common ones; therefore 

flammability and toxicity are emphasized as important chemical properties of PCMs 

(Sharma et al., 2004; Agyenim et al., 2010). 

 

2.2.1.3 Economic properties 

Even the best PCMs, in terms of their thermo-physical, kinetic, and chemical 

properties, will not be good for commercial or widespread use unless they meet the 

satisfying levels of some basic economic properties: 

(i) Cost, 

(ii) Availability, and 

(iii) Environmental performance. 
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Useful PCMs need to be low cost and easily available on the large scale. Apart 

from that, the materials need to be easily recyclable and show good overall 

environmental performance (Sharma et al., 2004; Oro et al., 2012). 

 

2.2.2 Classes of materials 

Through the years of research an abundant number of potential PCMs have been 

identified (Zalba et. al., 2003), but most of those can be categorised into four classes 

(Pasupathy et al., 2008; Zhou et al., 2012): 

(i) Organic (paraffin materials, fatty acids, and sugar alcohols), 

(ii) Inorganic (water, salt-hydrates, and metallics)  

(iii) Eutectics, and 

(iv) Miscellaneous materials (e.g. clathrates). 

Since the two most important PCM properties i.e. the phase change temperature 

and the phase change enthalpy depend on molecular effects, it is not surprising that 

materials within the same class behave similarly. Now, each class of PCMs will be 

explained in more detail. 

 

2.2.2.1 Organic PCMs 

Organic PCMs are one of the most common phase change materials for latent heat 

storage. The phase change temperatures of these materials range between -30 °C and 

200 °C. At higher temperature the covalent bonds within these materials break causing 

instability. In addition, the density of organic PCMs is usually less than 103 kgm-3 

making organics less dense than most inorganic materials like water and salt hydrates. 

This results in smaller phase change enthalpy per volume (volumetric phase change 

enthalpy) values (Mehling and Cabeza, 2008). 

The most frequently used organic PCMs are paraffin materials. Paraffin is a 

technically used term for an alkane, but in the context of PCMs it is used to denote 

linear alkanes with the general formula CnH2n+2.With the rising number of C atoms and 

the expanding chain length the phase temperature of these materials increases (Mehling 

and Cabeza, 2008). Commercial paraffins are obtained from petroleum distillation and 
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they usually are not pure materials yet a combination of different hydrocarbons (Hiran 

et al., 1994). Moreover, these PCMs are easily available from different manufacturers 

but generally more expensive than the matching salt hydrates. The storage capacities of 

commercial paraffins vary from 120 kJkg-1 to 210 kJkg-1 (Baetens et al., 2010). 

Another advantage is the relatively low degree of subcooling so it is not necessary to 

introduce any type of nucleators into the phase change material. Paraffins are safe and 

non-reactive substances, compatible with most metal containers and therefore easily 

incorporated into TES systems. Conversely, special care needs to be taken when using 

plastic containers as paraffins tend to penetrate and soften some plastics. Another 

disadvantage of paraffin materials is their low thermal conductivity (around 0.2 Wm-

1K-1), especially in the solid state. This can cause problems in the case of high heat 

transfer rate requirements during the charging/discharging processes. The solution of 

this problem is usually implemented through more optimal design of the TES systems 

by using finned containers and metallic fillers or by combining latent with the sensible 

storage media. Paraffins are flammable substances, but this can be easily controlled 

through the use of an inflammable containers. In contrast to inorganic salt hydrates, 

commercial paraffins usually do not have sharp well-defined melting/solidification 

temperatures since they are a mixture of materials and therefore not entirely pure 

substances. The lack of sharp phase change temperatures partially decreases the 

efficiency of the heat storage systems (Sharma et al., 2004; Mehling and Cabeza, 

2008). 

Fatty acids represent another subclass of organic PCMs, characterised by the 

chemical formula CH3-(CH2)2n-COOH. These materials are very much similar to 

paraffins. Their advantage of sharper phase change temperatures is cancelled out by the 

fact of being about three times more expensive than paraffins. In addition, they are 

mildly corrosive. Their phase change enthalpy is matching to that of paraffin waxes, 

and accordingly their phase change temperature increases with the molecular length. 

Since they are composed of only one component fatty acids don’t undergo phase 

separation and remain stable upon cycling. Similar to paraffins, fatty acids show small 

or no degree of subcooling and have a low thermal conductivity (Sharma et al., 2004; 

Mehling and Cabeza, 2008). 
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Sugar alcohols are essentially hydrogenated carbohydrates represented by the 

general chemical formula HO-CH2-[CH-(OH)]n-CH2-OH. These are a rather newly 

investigated material class and therefore reliable information is limited. Their phase 

change temperatures range from 90 °C to 200 °C and their specific phase change 

enthalpies are generally high. Moreover, they have high densities resulting in high 

volumetric phase change enthalpies. Contrary to other organic materials, sugar alcohols 

show a certain degree of subcooling. In general, these are safe materials given that 

some like xylitol are proposed to replace sugar as sweetener (Mehling and 

Cabeza, 2008). 

 

2.2.2.2 Inorganic PCMs 

The second category of phase change materials are the inorganic PCMs. Apart from 

water which is by far the most known PCM, the main subcategory of inorganic phase 

change materials are the salt hydrates. 

Salt hydrates are some of the most important heat storage PCMs. They consist 

of a salt and water mixed in a discrete ratio in the form of salt∙nH2O. The salt and water 

are combined in a crystalline matrix when the material solidifies. Salt hydrates are 

sometimes used alone or as a part of eutectic mixtures. Their phase change 

temperatures range from 15 °C to 117 °C. Principally, the low cost and easy 

availability makes them commercially attractive for TES applications. Two easily 

available and the least expensive salt hydrates are CaCl2∙6H2O and Na2SO4∙10H2O. 

One advantage of these materials which increases the overall efficiency of the heat 

storage system is their sharp phase change temperature. In addition, they show high 

thermal conductivity values in comparison to other PCMs. This is beneficial in terms of 

the increased heat transfer ratios upon charging/discharging of the TES systems. They 

have a high phase change enthalpy resulting in smaller storage units. Also, salt 

hydrates undergo a lower volume change than other PCMs upon melting/solidification. 

However, since they are composed of few substances they suffer from a segregation 

process (formation of other hydrates or dehydrated salts resulting in the reduction of 

the active volume available for heat storage) and accompanying phase separation 

problems. These problems can be partially eliminated through the use of gels or 
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thickening mixtures. However, that can diminish the heat storage capacity even further. 

Salt hydrates show larger degree of subcooling compared to organic PCMs. This can be 

reduced by using proper nucleating agents to initiate the crystal growth in the materials. 

Another disadvantage of salt hydrates is the predisposition to cause corrosion in metal 

containers that are often used in TES systems. For this reason, material compatibility 

check is necessary in the case of salt hydrates and container materials (Sharma 

et al., 2004; Zhang et al., 2007; Zhou et al., 2012). 

 

2.2.2.3 Eutectics 

Eutectic compositions are mixtures of two or more constituents, which melt/freeze 

congruently. The material is said to melt/freeze congruently in the case when the state 

before the phase change is of the same homogeneous composition throughout as the 

state after the phase change plus the same phase change enthalpy and temperature are 

observed at any place; therefore eutectic compositions usually do not show phase 

separation. In addition, eutectic mixtures usually have sharp phase change temperature. 

However, they tend to cause corrosion. These materials as potential PCMs are still in 

an early investigation stage and limited data are available on their thermo-physical 

properties, but three main subcategories have been identified: organic-organic, 

inorganic-organic, and inorganic-inorganic (Sharma et al., 2004; Mehling and Cabeza, 

2008; Baetens et al., 2010; Oro et al., 2012). 

 

2.2.2.4 Miscellaneous materials 

PCMs that do not belong under the three main, aforementioned categories can simply 

be denoted as miscellaneous PCMs. An important subcategory of these phase change 

materials are clathrates. Clathrates are crystalline structures formed when molecules of 

one type get implanted in the crystal lattice of another. If the crystal lattice is that of 

water the clathrates are called clathrate hydrates. The phase change temperature range 

of clathrates is usually limited between 0 °C and 30 °C. The advantage of these 

materials is their high phase change enthalpy, but unfortunately their low thermal 

conductivity represents a problem (Mehling and Cabeza, 2008). 
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It becomes clear that none of the mentioned categories represents a perfect 

PCM due to variety of drawbacks. Some materials have high phase change enthalpy 

and are quite stable, but on the other hand they have low thermal conductivity or high 

degree of subcooling. Therefore different approaches are used in research to suppress 

undesired behaviour and enhance the inherent qualities of PCMs resulting in the 

creation of various PCM objects. 

 

2.2.3 PCM objects 

These objects are the results of the efforts being made in order to suppress undesired 

behaviour of PCMs and achieve best possible performance. In these processes various 

material properties are treated. Subcooling is usually suppressed through introduction 

of special additive materials in the form of nucleators into the PCMs. These nucleators 

serve to initiate crystal growth and the solidification itself. In the case of phase 

separation artificial mixing is often used. Apart from this, diffusion processes can be 

used to aid homogenisation. However, this is only effective if the separation distances 

are small which in turn can be assured through gelling using various substances. 

Another alternative method to reduce decomposition is by thickening the phase change 

material. This implies the use of additional material in order to increase the viscosity of 

the PCM and thus avoid far separation of phases. In addition, corrosion is usually 

suppressed by using appropriate PCM containers (Ravikumar and Srinivasan, 2005; 

Mehling and Cabeza, 2008).  

Furthermore, increase in thermal conductivity is usually achieved through a 

composition with a highly conductive material. A composite material is a material that 

is developed by the composition of several different materials in order to improve the 

properties of the initial material. In the context of PCMs a composite can be formed by 

either embedding a new material into the PCM or embedding the PCM into the matrix 

of another material. The first combination is obtained through the introduction of metal 

or graphite (in the form of fibers, foam, or powder) into the phase change material. The 

second method is the infiltration of the phase change material into the graphite matrix. 

For PCMs which cannot be infiltrated into the matrix, a different approach is taken by 

mixing of PCMs and graphite in a compounding process. Compared to the matrix 
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infiltration, this method achieves somewhat lower values of thermal conductivities but 

the great advantage is that it allows the use of any and it can be moulded into any shape 

(Mehling and Cabeza, 2008). 

All of the aforementioned methods aim to improve the thermal performance of 

PCMs, but certainly one of the best methods to achieve better operation is the 

encapsulation of PCMs. One of the reasons is to avoid contact between the phase 

change material and the environment. Another reason is to increase the heat transfer 

between the PCM and the capsule and moreover the overall heat transfers from the 

capsule to the environment since the capsule itself serves directly as a heat exchanger. 

Furthermore, encapsulation increases the mechanical stability of the material. Based on 

the capsule size, PCMs can be classified into: macroencapsulated (capsule size (i.e. 

relevant dimensions) varies from 1-1000 mm) and microencapsulated (capsule size 

varies from 2-1000 µm) PCMs (Khudhair and Farid, 2004; Mehling and Cabeza, 

2008). 

 

2.2.3.1 Macroencapsulated PCMs 

The relevant dimensions in macroencapsulated units vary from 1 to 1000 mm. 

Therefore, in this case, capsule shells can accommodate several ml up to few litres of 

PCMs. The capsules are usually in the form of metal or plastic containers or bags made 

in different shapes and sizes. Upon macroencapsulation, special care needs to be taken 

in terms of volume. Namely, the volume of the containers needs to be small enough to 

prevent merely edge solidification and poor heat transfer due to the low conductivity of 

PCMs (Khudhair and Farid, 2004; Mehling and Cabeza, 2008). 

 

2.2.3.2 Microencapsulated PCMs 

Microencapsulation is the introduction of phase change material in liquid or solid form 

into capsules (shells) of the diameter between 2-1000 µm. Encapsulation entails many 

benefits from the enhanced heat transfer rates to the environment, due to the large 

surface to volume ratios of the capsules, to the improved mechanical stability. Apart 

from those, the problem of phase separation and cycling stability is also reduced due to 
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the reduction of molecular distances to the microscopic levels. In addition, it is possible 

to incorporate microencapsulated phase change material with other materials like solid 

blocks, bricks, concrete, and gypsum plates. The disadvantage of microencapsulation 

manifests in the potential occurrence of increased subcooling. Numerous 

microencapsulation products have been tested over the last decade. Some of those have 

even been commercialised. One of the leading manufacturers of microencapsulated 

paraffins is Basf chemical company (Basf SE, Ludwigshafen, Germany). The PCMs 

are available as fluid dispersion or as dried powder (Mehling and Cabeza, 2008; Zhou 

et al., 2012). Additionally, it is worth mentioning that the most recent investigations on 

microencapsulated PCMs aim towards the reduction of capsule sizes to nanoscale 

dimensions (Chen et al., 2012; Fuensanta et al., 2013; Seyf et al., 2013). 

 

2.2.3.3 Phase Change Slurries (PCSs) 

Special type of a PCM object is the Phase Change Slurry (PCS). They are widely used 

for active latent heat storage systems. Phase change slurry is a special type of PCM 

enabled to store/release latent heat through a phase change yet always remain in the 

liquid form. A very good PCS is the mixture of water with microencapsulated PCMs. 

In this case the phase change material stores/releases the latent heat while water works 

as a carrier fluid. This assures the slurry remains liquid even when the 

microencapsulated phase change material undergoes solidification. A PCS increases 

the storage density, increases the power of the TES system since more energy is 

transported per volume of fluid and finally improves the heat transfer coefficients. In a 

real application, PCSs are usually stored in a storage tank and pumped through the 

piping network resulting in improvement of heat transfer coefficients and thus smaller 

heat exchangers and less equipment. One of the problems of using slurries is the 

stratification resulting from difference of densities between the phase change materials 

and heat transfer fluids. The layers with higher content of PCMs and thus higher 

viscosity can form. In these cases, the pumps of greater power are required in order to 

circulate the slurry. Another form of PCS is the emulsion slurry. It is formed by a direct 

mixture of PCMs and the fluid, usually water. Sometimes different emulsifiers will be 

added to prevent time degradation of the initially homogeneous mixtures. Unlike 
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microencapsulated PCSs these slurries do not comprise shells which may decompose 

inside the system. Nevertheless, in comparison to the microencapsulated slurries the 

emulsions are less stable since the mixtures tend to separate over time. Current efforts 

in this field aim to overcome these problems (Mehling and Cabeza, 2008). 

 

2.2.3.4 Shape stabilised PCMs 

Shape stabilised PCMs are stable composite materials formed through the dispersion of 

PCM into another phase of supporting material like polyethylene. Some of the first 

studies on shape stabilised PCMs were conducted by Inaba and Tu (1997), but recently 

these materials are getting more attention due to their attractive properties in terms of 

large apparent specific heat capacities, acceptable thermal conductivities, and the 

ability to preserve their shape during the phase change process. The utilisation of shape 

stabilised PCMs seems to greatly simplify the implementation of TES systems (Zhang 

et al., 2006a; Zhou et al., 2012) 

 

2.3 Summary 

The emerging energy sustainability concerns can largely be addressed by adequate 

harvesting and storage of the abundant thermal energy, produced from various 

processes. Thermal energy storage technologies offer an efficient solution for energy 

harvesting and storage. Currently, one of the most attractive TES techniques includes 

the application of phase change materials. Many materials are being investigated as 

potential PCMs. However, a good quality phase change material needs to meet some 

basic criteria in terms of its thermo-physical, kinetic, chemical and economic 

properties. Depending on these substantial parameters PCMs can be classified in few 

categories: organic, inorganic, eutectic, and miscellaneous PCMs. All of these have 

correlated advantages and disadvantages. The objectives of numerous research studies 

focus towards the suppression of the existing problems of PCMs resulting in the 

development of various PCM objects. The overall technology is not yet fully matured. 

Many studies are still being conducted in terms of the development and testing of new 

materials (Dimaano and Watanabe, 2002; Matsui et al., 2007; Li et al., 2013a), 
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reduction of subcooling effect and improvements of cycling stability and phase 

separation (Kumano et al., 2009), corrosion tests (Cabeza et al., 2001), and efforts 

towards the thermal conductivity enhancement (Fukai et al., 2003; Zhou et al., 2011, 

Xiao et al., 2013). Nevertheless, some materials have undergone commercialisation 

generating the currently available market products. Finally, it can be inferred that, 

independently of the material development stages, the working principles of PCMs are 

primarily based on the phase change temperature and enthalpy resulting in the 

differentiation of two major application fields of PCMs: temperature control and 

storage of heat or cold. Various applications within these fields are discussed in the 

next chapter. 
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Chapter 3 

APPLICATIONS OF PCMs 

 

Given the two defining properties of PCMs, the phase change temperature and phase 

change enthalpy, the temperature control and the energy storage naturally impose as 

the two leading application categories of these materials. However this classification is 

rather complex in terms of individual applications. Namely, the more comprehensible 

outline of PCM applications requires a mildly different approach based on the 

application area. Therefore the applications, reviewed in this chapter, are divided into 

three main groups: transport and general storage, medical, and building applications. 

Each group is briefly analysed and then illustrated with some examples. 

 

3.1 Transport and general storage applications 

Although the technology of PCMs is not yet fully matured, the applications of PCMs 

for transport and general storage facilities have been extensively commercialised, 

especially in the course of the last decade. In essence, all these applications fall under 

the temperature control area considering their common feature, the necessity to keep 

the potential products thermally stable. Namely, when it is imperative to keep the 

sensitive merchandise within a narrow temperature swing, PCMs offer an unmatched 

solution. Moreover, the use of PCMs for temperature control of various products is 

especially convenient in impervious places with the limited or non-existent power grid 

accessibility where conventional heating/cooling appliances cannot be used. Few 

different methods in terms of PCM placement are used. Sometimes the PCM units are 

placed in direct contact with the products that need to be preserved. Frequently, the 

PCM is used alongside the wall insulation material of the product containers. 

Furthermore, in the case of large volume containers, the PCM is placed apart from the 

container wall and convection is used to aid the temperature stability (Bailey, 2010).  
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The transport and general storage applications cover many diverse fields like 

the transport and storage of fresh or cooked food, cold or hot beverages, electronic 

circuits, and many others. However, for brevity purposes, only a few typical examples 

are discussed below. 

Transport containers enhanced with PCMs are especially useful in catering 

services. In other words, these containers can be used when fresh or cooked food is 

prepared at one point and has to be transported to another location. One 

commercialised solution for the transportation of meals is the pizza-heater (Rubitherm 

GmbH, Berlin, Germany). It is essentially a plate impregnated with PCM. The pizza is 

usually placed on top of the plate and then the whole entity enclosed in the pizza 

delivery box. In this way, the pizza is held at 65 ºC three times longer than in 

conventional boxes. Rubitherm (Rubitherm GmbH, Berlin, Germany) also offers 

separate aluminium or plastic elements filled with PCM that can be used for the 

transport of various food products. These are available in numerous shapes and forms 

(Figure 3.1). Apart from Rubitherm (Rubitherm GmbH, Berlin, Germany), Teap PCM 

(Teap PCM, Mumbai, India), Climator (Climator Sweden AB, Skövde, Sweden), and 

va-Q-tec (va-Q-tec AG, Wuerzburg, Germany) are the companies with the largest 

variety of PCM products for food transport. 

 

 

 

 

 

 

Figure 3.1: PCM solutions for food transport (amended from Rubitherm GmbH, 

Berlin, Germany). 

 

Furthermore, the concept used for food can also be adapted for beverages. One 

of the well-known solutions is the “isothermal bottle” (Figure 3.2), developed by the 

company Sofrigam (Sofrigam, Rueil-Malmaison, France). The bottle has a double wall 

where the PCM fills the space between the walls. 
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Figure 3.2: The isothermal bottle concept (amended from Mehling and Cabeza, 2008, 

p. 200). 

 

The available volume of the bottle is about 0.5 l. Before the use, it needs to be 

cooled so the PCM can solidify. The performance is expressed in terms that the bottle 

can keep the beverage cold at about 13 °C for 3 h in the case of the ambient 

temperature of 25 °C (Mehling and Cabeza, 2008). 

Apart from the specifically designed containers, multipurpose boxes or pads for 

transportation of products are sold by some companies like Sofrigam (Sofrigam, Rueil-

Malmaison, France), PCM Products (PCM Products Limited, Yaxley, UK) (Figure 

3.3), TCP Reliable (TCP Reliable, Edison, New Jersey), PCM Thermal Solutions 

(PCM Thermal Solutions, Chicago, Illinois), Air Container (Air Container, Åkersberga, 

Sweden), and Entropy Solutions (Entropy Solutions Inc., Plymouth, Minnesota). 

 

 

 

 
 

 

Figure 3.3: Multipurpose transport solutions (amended from Sofrigam, Rueil-

Malmaison, France and PCM Products Limited, Yaxley, UK). 

 

In addition, general storage applications also include the storage facilities for 

electronic equipment. Generally, electronics is highly temperature sensitive and works 
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best within a certain temperature margins. However, sometimes certain electronic 

equipment is exposed to outdoor conditions with large temperature swings between -

40 °C and +50 °C, especially in desert areas. This can result in equipment’s failure or 

lifetime reduction. The application of PCMs, in junction with the electronic parts, leads 

to smaller temperature fluctuations and provides better performance of the equipment 

(Mehling and Cabeza, 2008). An illustrative study and some of the pioneering 

achievements for thermal management of batteries were reported by Khateeb et al. 

(2005). 

Moreover, the PCMs are also used as part of household and industrial 

refrigeration systems as explained in various studies (Cheralathan et al., 2007; Azzouz 

et al., 2009; Gin and Farid, 2010; Liu et al., 2012). 

A short summary of the transport and general storage applications of PCMs was 

given. From the PCMs’ perspective these applications include miscellaneous medical 

examples as well, but given the specifics of the application area those are explained in 

a separate section. 

 

3.2 Medical applications 

Medical applications of PCMs can be divided into two major groups: transport and 

storage of medical products and applications for the human body. 

 

3.2.1 Transport and storage of medical products 

Usually, medical products are quite expensive and strongly dependent on the transport 

and storage temperature. Although the transportation vehicles are equipped with air-

conditioning to the desired temperature, the problems emerge during the transport 

between the hospital or other supplier and the transportation vehicle and also between 

the vehicle and the final destination (Mehling and Cabeza, 2008). PCMs seem to 

provide a natural solution for these difficulties. Apart from transplantation organs, one 

of the most sensitive medical products is positively blood since it needs to be kept 

within a really narrow temperature margin. In order to meet the blood demand, many 

hospitals have to obtain the blood units from remote suppliers. Conventional 
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transportation systems used to keep the blood within the prescribed temperature range 

are highly complex and very expensive. Systems based on PCMs offer a simple and a 

relatively cheap solution. For instance, PCMs from Rubitherm (Rubitherm GmbH, 

Berlin, Germany) are used for the implementation of an innovative transport system, 

called “BLOOD IN MOTION” (Figure 3.4). This is an important, but certainly not a 

unique example of safe and efficient blood transport methods. 

 

 

 

 

BLOOD IN 
MOTION

 

 

Figure 3.4: BLOOD IN MOTION solution (amended from Rubitherm GmbH, Berlin, 

Germany). 

 

Furthermore, some companies are developing containers to ensure the safe 

transport of various pharmaceutical products like insulin, vaccines, and other 

medications. A representative example given here are the transportation boxes 

developed by Sofrigam (Sofrigam, Rueil-Malmaison, France) (Figure 3.5). 

 

 

 

 

Transportation boxes for 
various medical products

 

 

Figure 3.5: Transportation boxes for medical products (amended from Sofrigam, 

Rueil-Malmaison, France). 
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3.2.2 Application for the human body 

Applications for the human body are quite similar to the applications for transport and 

general storage except that in the former there exists an additional internal heat source, 

the human body, and secondly, the insulation provided by clothes is usually not as 

effective as the insulation of transportation containers. However, the applications are 

equivalent in terms that they are both decentralised from the power sources. The main 

role of PCMs in this case is to provide thermal comfort for the human body. As with 

sensitive products, the human comfort temperature requirement range is very narrow 

and therefore PCMs appear as a promising solution. One approach to achieve thermal 

body comfort is to integrate PCMs into clothes either by utilisation of 

macroencapsulated materials (pouches filled with PCM), either by integration of 

microencapsulated PCMs directly into textiles (Mehling and Cabeza, 2008). 

The number of companies developing and testing PCM textiles and fabrics 

seems ever-growing. One of the leading companies is Outlast Technologies (2012). 

This company incorporates PCMs into fibers spun to yarns used for further 

manufacturing of garments. In addition, Schoeller Textiles (Schoeller Textiles AG, 

Sevelen, Switzerland) is a Swiss company involved in the development of PCM based 

wool textiles which should be applied for the production of winter outfits. Also, they 

develop the kidney belts to be used by motor cyclists. These belts are based on the 

latent heat storage/release principle. Namely, when the body temperature or that of the 

environment increases, the microencapsulated PCM integrated into the belt absorbs and 

stores the excess heat and vice versa, when temperature falls the PCM releases the heat. 

Furthermore, one of the best known applications of PCMs for the thermal body 

comfort is the pocket warmer. They are specific since in this case subcooling of the 

PCM is actually desirable since it allows the material to cool down to the ambient 

temperature without changing phase and releasing the latent heat. Only when heat is 

needed, a mechanical trigger integrated into the warmer is used to start the 

solidification process and release the latent heat. This is an example of the controlled 

phase change mechanism (Mehling and Cabeza, 2008). 

In addition, various other thermal comfort PCM solutions are being developed 

like the cooling vests for people who need to endure hot environments (Climator 
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Sweden AB, Skövde, Sweden), the bedding products (Outlast Technologies LLC, 

Golden, Colorado), the shoe inlets (Colortex GmbH, Pirmasens, Germany) and 

numerous other products. 

Heat and cold therapies are some of the most important medical applications. 

Cold therapy is useful for the reduction of body temperature in the case of fever as well 

as for the treatment of the inflamed body parts. On the other hand, heat therapy can be 

used for pain treatment, increase of blood flow, and muscle regeneration (Mehling and 

Cabeza, 2008). Some leading products in this are developed by Rubitherm (Rubitherm 

GmbH, Berlin, Germany) (Figure 3.6). 

 

 

 

 

Rubitherm’s 
hot products

 

 

Figure 3.6: Rubitherm’s hot products for heat therapy (amended from Rubitherm 

GmbH, Berlin, Germany). 

 

These products are filled with fine grain PCM powder that stays soft at any 

temperature resulting in comfortable moulding of the products that fit the body 

contours at any time point. The used PCM is non-toxic and the products are completely 

safe and environmentally harmless. 

 

3.3 Building applications 

Recently, the energy demand for indoor human comfort has increased worldwide. 

Namely, apart from conventional heating demands, the use of electrical power for 

cooling and air-conditioning is rising fast resulting in increasing economical charges 

and an extending environmental impact (Bailey, 2010). During the course of the past 

decade, TES systems based on PCMs have been recognized as one of the leading 

technologies for the enhancement of energy efficiency and sustainability of buildings. 

Hence, building applications of PCMs are of the most interest for this study. The 

studies in this area are abundant and almost impossible to compile as indicated in 
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various review papers (Zhu et al., 2009; Agyenim et al., 2010; Baetens et al., 2010; Oro 

et al., 2012; Zhou et al., 2012). However, a modest attempt has been made here to 

briefly summarise these studies in terms of the most important spheres of interest. 

 

3.3.1 Free-cooling applications 

According to Zhu et al. (2009) the definition of free-cooling as the amount of cooling 

that can be acquired from existing, additional, or retrofitted components of the system 

during low ambient temperatures and used later on demand, given by De Saulles in 

1996, stands even today. Usually two different approaches are used, water and air side 

free-cooling. It is worth noting that generally various mechanical tools are used to aid 

the heat transfer in these applications so technically speaking free-cooling is not indeed 

free. During the last few decades, various designs and solutions for free-cooling have 

been proposed, but only some will be mentioned at this point. 

A testing system for free-cooling applications in buildings was designed by 

Zalba et al. (2004). Zhang et al. (2006b) and Butala and Stritih (2009) listed some ideal 

and candidate PCMs for free-cooling applications in terms of the available thermo-

physical properties. Arkar et al. (2007) investigated the efficiency of free-cooling 

through the use of latent heat storage integrated into the ventilation system of a low 

energy building. Moreover, Medved and Arkar (2008) developed a correlation between 

the local climate conditions and the free-cooling potential of TES systems based on 

PCMs. In general, this and other studies showed that the capability of free-cooling 

primarily depends on the amplitudes of the outdoor temperature fluctuations. 

 

3.3.2 Peak shifting applications 

Diurnal weather conditions as well as the industrial and household activities dictate the 

electricity demand which varies significantly during the 24 h span. Many countries 

have a policy of higher peak utility rates imposing the need for the shift of peak energy 

demands towards the off-peak hours. TES systems using PCMs can use the cheap cool 

energy, stored through the PCM solidification during the nocturnal electricity rates, or 

an almost free one, coming from natural ambient conditions, to provide for the peak 
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cooling demand, later in the day. Moreover, the same latent heat storage/release 

principle can be used for shifting or reduction of peak heating loads in winter months 

(Zhu et al., 2009). 

Hasnain (1998) presented an overview of the commercial TES technologies for 

off-peak air-conditioning mostly based on water, ice, and eutectic salt storage media. 

Over the following years both numerical and experimental studies were conducted. 

Yamaha and Misaki (2006) evaluated the PCM peak shaving methodology in air 

distribution systems. Later on, Halford and Boehm (2007) modelled the whole scenario 

of peak load shifting based on PCMs. The general conclusion of these studies was the 

same. Essentially, the price of the PCM is usually the most important parameter that 

needs to be taken into the account during the development of peak-shaving TES 

systems since it dictates the pay-back period and consequently the return on investment 

of these systems. 

 

3.3.3 Active building systems 

Active building systems are implemented through the integration of PCM solutions and 

mechanical heating/cooling equipment like heat pumps, floor and ceiling heating 

systems, heat recovery systems, and others. Few examples of these systems are 

presented to illustrate the general concept. Kaygusuz and Ayhan (1999) reported the 

experimental and theoretical investigations on PCM-aided solar heat pump system for 

residential buildings. In 2005, Saman et al. (2005) investigated the performance of 

PCM thermal storage unit for a roof integrated solar heating system. Following, 

Hammou and Lacroix (2006) developed a hybrid TES system for simultaneous 

management of solar and electric energy. Zeng et al. (2009) and Wang and Niu (2009) 

investigated the potential of microencapsulated phase change materials slurries in 

active TES systems. Moreover, Lin et al. (2005) and again Lin et al. (2007) studied the 

integration of shape stabilised PCM products and electric heating systems reporting 

satisfying results regarding the indoor temperature control. Many active TES systems 

remain only in the domain of numerical investigation, but many studies undergo an 

experimental validation too (Delgado et al., 2012; Dolado et al., 2012). In general, the 
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usability of the active TES systems highly depends on the heating/cooling loads of 

buildings and the associated costs of such systems. 

 

3.3.4 Passive building systems 

In the passive systems various forms of PCMs are directly integrated into building 

envelopes like walls, roofs, and floors to increase the thermal mass of buildings (Zhu et 

al., 2009). This can be achieved in various ways through the PCM enhanced wallboard, 

concrete (thermocrete), or other building insulation materials. Numerous passive 

systems are being tested in the laboratories as well as in the real world. Some of the 

studies report on the PCM enhanced wallboards since the wallboard is cheap and 

widely used as building material (Neeper, 2000; Chen et al., 2008; Kuznik et al., 2008; 

De Gracia et al., 2011). Other studies are involved with PCM enhanced concrete which 

is also called thermocrete (Bentz and Turpin, 2007; Cabeza et al., 2007; Pomianowski 

et al., 2012). Generally, the techniques used to impregnate the construction materials 

with PCMs are numerous and yet increasing. However, these are not an important 

subject of this study and therefore not discussed in detail. 

 

3.3.5 Solar applications 

Special and yet a challenging type of TES applications are the solar applications where 

PCMs are usually integrated with the glazing systems or used as window curtains in 

order to reduce the solar gain in buildings. These systems can be either passive or 

active. Some of the pioneering works in this field were reported by Ismail and 

Henriquez (2001) and Weinläder et al. (2005). Moreover, the company Greenlite Glass 

Systems (Greenlite Glass Systems, Port Coquitlam, British Columbia) commercialised 

the PCM enhanced glass façade system, called GLASS X. However, thorough 

information on the real-time performance of PCMs used in these solutions is still 

lacking. 
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3.4 Summary 

Applications of PCMs are genuinely diverse. Transport and general storage as well as 

medical applications are being widely commercialised. Nonetheless, the area of 

building applications where PCMs seem to exhibit the greatest potential in terms of 

energy sustainability, large scale employment, and conceivable economic revenues, is 

still research in progress. Numerous achievements have been published, yet the 

technology is not mature enough. Various studies are intensely being conducted in 

terms of both development of new phase change materials and testing of whole 

laboratory/real world scale TES systems. Regardless of the type of studies, the essential 

research principle requires the precise knowledge of the heat transfer mechanisms 

underlying the phase change process. For this reason, the thermodynamics and heat 

transfer analysis of phase change processes are discussed in the next chapter. 
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Chapter 4 

THE THERMODYNAMICS AND 

HEAT TRANSFER ANALYSIS 

OF PHASE CHANGE PROCESSES 

 

Temperature control and storage/release of heat/cold are the two principal application 

areas of PCMs. The underlying mechanism that allows the control of temperature and 

the storage of energy is the transfer of heat. From the scientific point of view, the terms 

“heat” and “heat transfer” are equivalent (Atkins, 2010). Nevertheless, given the 

aforementioned perspective of TES and PCMs (discussed in chapter 2), the term “heat” 

is interchanged with the term “energy” and used as such in this thesis. There are three 

modes of heat transfer: conduction, convection, and thermal radiation. Some authors 

point out the phase change as one of the heat transfer modes. However, the change of 

phase is a very complex process that usually includes all three modes of heat transfer 

(Mehling and Cabeza, 2008). 

The transient heat transfer problems combined with the melting/solidification 

are commonly denoted as “phase change” or “moving boundary” problems. Their 

mathematical formulation is governed by parabolic partial differential equation (PDE). 

These problems are nonlinear. The analytical solution of these problems is very 

difficult. Namely, the location of the moving solid-liquid interface is not known apriori 

and forms a part of the solution resulting in the nonlinearity of the phase change 

problems. A limited number of exact analytical solutions is available and only for few 

simplified cases (Dutil et al., 2011). Nonetheless, numerous numerical solutions have 

been published. Different approaches like finite differences, finite elements, or control 

volumes are used in these solutions. Additionally, the numerical studies can be 

classified into few categories depending on the underlying methods. These include: 

fixed grid methods, variable grid methods, front fixing method, adaptive grid 
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generation method, and enthalpy method (Verma et al., 2008). In literature, each 

category is supported by a number of studies (Hu and Argyropoulos, 1996; Verma et 

al., 2008), yet those specifics are not essential for this study; therefore only the basics 

of heat transfer in PCMs are discussed in this chapter, starting with the general 

formulation of the phase change problem. 

 

4.1 Mathematical formulation of the phase 

change problem 

For the simplicity purposes, the mathematical formulation of the phase change problem 

will be illustrated on an example given by Ozisik (1994): 1-Dimensional (1D) 

solidification/melting of a semi-infinite PCM layer. An important restriction used in 

this example assumes that there is no fluid motion so the heat transfer in solid and 

liquid parts proceeds by conduction only. Although this example is 1D, once it is 

formulated it is fairly easy to perform its generalisation for multidimensional space. 

For the solidification process, a liquid semi-infinite PCM layer at initial 

temperature Ti (higher than the phase change temperature Tpc) is confined within a 

region 0<x<∞. At time t=0 the temperature at the boundary surface x=0 is changed to 

T0 which is lower than Tpc. At this moment the solidification of the PCM starts from the 

boundary x=0 and progresses in the positive x direction as indicated by the location of 

the solid-liquid interface s(t) (Figure 4.1). 

The conduction processes within the solid and liquid parts of the PCM during 

phase change can be easily described mathematically by parabolic transient heat 

conduction Equations 4.1 and 4.2: 
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where the Ts (x, t) and Tl (x, t) are the temperatures in the solid and liquid part of the 

PCM while the s and l  are the corresponding thermal diffusivities of the material. 
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Figure 4.1: 1D solidification (left) and melting (right) of semi-infinite PCM layer 

(amended from Ozisik, 1994, p. 277). 

 

However, the situation at the solid-liquid interface at x=s(t) is rather different 

and needs to be described by the general energy balance equation (Figure 4.2). 

 

 

 

 

Rate of heat 
removed from 

the solid 
phase in the 
negative x 
direction 

Rate of heat 
supplied to the 
interface from 

the liquid phase 
in negative x 

direction

Rate of heat 
liberated at the 
interface during 

solidification

 

 

Figure 4.2: General energy balance equation at the solid-liquid interface during 1D 

solidification (amended from Ozisik, 1994, p. 277). 

 

This general equation can be expressed through the mathematical means in 

order to derive the first boundary condition for the solid-liquid interface. This condition 

represents one of the essential parts in phase change problem formulation and can be 

formally expressed as: 
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The ks and kl in the Equation 4.3 denote the thermal conductivities of the solid and 

liquid phases, ρs represents the density of the solid phase and L is the latent heat of 
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solidification/melting per unit mass (which usually equals the specific enthalpy change 

Δpch or Δh introduced in chapter 2).  

Furthermore, the densities in solid and liquid phases are different, but when the 

solid density is used in the Equation 4.3 the convective effects due to the difference in 

densities cancel out (Ozisik, 1994). 

Additionally, only one more equation (Equation 4.4) is necessary for the full 

formulation of the 1D solidification and that is the expression that describes the second 

boundary condition at the solid-liquid interface which essentially states that the 

temperature of the solid and liquid phases at the interface x=s(t) are equal to the phase 

change temperature of the PCM.  

 

 
pcls TttsTttsT  )),(()),((  (4.4) 

The set of equations (Equations 4.1-4.4) fully defines the 1D solidification of 

the semi-infinite PCM layer. Moreover, the same equations can be applied for the 

melting process as well. The solid-liquid interface progresses in the positive x direction 

even upon melting (Ozisik, 1994). 

The presented solidification/melting problem is simple in terms of the 

complexities that can arise in real phase change applications, but is a very good 

example for the understanding of the underlying physics of the phase change processes. 

Since the location of the solid-liquid interface forms part of the solution the more 

complex phase change problems are very difficult to solve analytically giving into the 

expansion of numerical solutions. 

According to Verma et al. (2008) and Dutil et al. (2011) various methods have 

been developed for phase change problem solving. The most important of the 

developed techniques and one of the most widely used is certainly the enthalpy 

method. Therefore, this method is explained in detail in the section 4.2. 
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4.2 Enthalpy method 

In the mathematical phase change problem formulation, given previously, the solid-

liquid interface location forms part of the solution and needs to be tracked in order to 

accurately solve the problem. Additionally, a constant phase change temperature was 

assumed in the previous mathematical schemes. However, in the real world problems 

phase change usually takes place in a narrow temperature range, but range nonetheless. 

In such situation, the presented phase change formulation is not applicable. The 

enthalpy method was developed to solve the problems in those situations. This 

formulation uses the temperature dependent H(T) function which represents the total 

heat content of the material (Ozisik, 1994). 

The enthalpy formulation of the phase change problem is expressed in 

Equation 4.5: 
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where k and ρ represent the thermal conductivity and density functions of the PCM and 

can be taken as constants or functions of the material temperature T depending on the 

specifics of the problem at hand. Moreover, the energy generation term g(T) can be 

used or overlooked depending on the presence of the internal energy generator in the 

investigated problem. Regardless, the enthalpy method reduces the phase change 

problem formulation to a single equation (Equation 4.5) to be solved in terms of 

enthalpy (Verma et al., 2008). 

The enthalpy-temperature dependency, in the form of H(T) function, is defined 

for both PCMs with the constant phase change temperature and the PCMs with the 

solidification/melting range (Figure 4.3). 

For the substances with the constant phase change temperature the H(T) 

function shows a discontinuity at the Tpc resulting in an infinite derivative value of 

∂H/∂T in Equation 4.5. Nevertheless, according to Ozisik (1994), it was proved that the 

integral form of the Equation 4.5 without the g(T) term matches the classical 

formulation of the phase change problem. Consequently, the enthalpy method can be 
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used for the solution of phase change problems occurring either at constant temperature 

or within a narrow range. 
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Figure 4.3: Illustrative enthalpy-temperature relation for PCMs with constant phase 

change temperature (left) and for PCMs with phase change range (right) (amended 

from Ozisik, 1994, p. 297). 

 

For the problems with constant temperature H(T) function needs to be defined 

in terms of sensible heat capacity Cp and latent heat of solidification/melting L as in 

Equation 4.6: 
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In addition, the numerical solutions founded on the enthalpy and classical phase 

change problem formulations are numerous, yet not of essential interest for this study. 

On the other hand, a solution, given by Stefan in 1890 as confirmed by Ozisik (1994), 

for the 1D solidification of semi-infinite PCM layer is very important for better 

understanding of the general thermodynamic mechanism and the main heat transfer 

parameters of the phase change processes. 

 

4.3 Stefan solution 

In 1891, Stefan generated an analytical solution for the solidification problem of the 1D 

semi-infinite PCM layer (Figure 4.4 and Figure 4.5) using some serious restrictions in 

terms of both, geometry and thermal effects (Mehling and Cabeza, 2008). The 
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geometry restrictions include 1D space, the semi-infinite PCM layer, and the 

assumption on constant volume during phase change. In addition, the thermal 

restrictions are following: the heat is stored only as latent heat because the sensible heat 

stored is negligible compared to the phase change enthalpy, the heat transfer is 

proceeding by conduction only in order to obtain linear temperature profiles, at the 

initial time point t=0 the PCM is liquid (upon solidification) and at the phase change 

temperature Tpc throughout (or solid at Tpc throughout upon heating), the temperature at 

the boundary x=0 is changed to T0 at t=0 and further kept constant. This simple heat 

transfer model is called “Stefan problem” and its solution is very straightforward 

considering all the restrictions applied (Mehling and Cabeza, 2008). 

 

 

 

 

 

 

 

 
 

 

Figure 4.4: Cooling of a 1D semi-infinite PCM layer at t=0 (left) and at later time 

(right) (amended from Mehling and Cabeza, 2008, p. 106). 

 

The amount of heat released dQ when the solid-liquid interface moves the 

distance ds is given in Equation 4.7: 

 ).()( thAdstdQ pc  (4.7) 

The heat released when the interface is moving equals the heat that leaves at the 

surface at x=0 since no heat is stored in between (sensible heat is neglected). 
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Figure 4.5: Heating of a 1D semi-infinite PCM layer at t=0 (left) and at later time 

(right) (amended from Mehling and Cabeza, 2008, p. 107). 

 

The heat flux density (heat flux per area) at the surface is calculated as given in 

Equation 4.8: 
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Since the heat transfer is by conduction only and sensible heat is negligible, 

temperature change from the location of the solid-liquid interface s to the surface at 

x=0 is linear; therefore the heat flux density at the surface is calculated as given in 

Equation 4.9: 
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After the separation of the variables for the location s and time t and integration 

from Equations 4.8 and Equation 4.9 follows the expression given by Equation 4.10: 
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From the above, the time for the solid-liquid interface to reach the location s 

from the surface is given by Equation 4.11: 
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Moreover, the location of the solid-liquid interface (phase front) s as a function 

of time is expressed as given in Equation 4.12: 
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Finally, the equations 4.11 and 4.12 form a solution of the Stefan phase change 

problem in terms of the time progress of the solid-liquid interface which is one of the 

most significant performance indicators of the TES systems based on PCMs (Mehling 

and Cabeza, 2008). 

Additionally, the heat flux density as a function of time can be expressed as 

given in Equation 4.13: 
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The Equations 4.11-4.13 can be used to estimate the influence of various PCM 

parameters like the phase change temperature Tpc, the phase change enthalpy ∆pch, and 

the thermal conductivity k, on the heat flux density and the movement of the solid-

liquid interface of the 1D semi-infinite PCM layer. However, considering the 

fundamental principles behind the Stefan model, these assessments could certainly 

provide useful information on the behaviour of more complex PCM systems. For these 

reasons, a simple parametric test was implemented and executed, as explained in the 

following subchapter.  

 

4.4 Parametric test 

The real world phase change problems are rather complex. Nevertheless, considering 

the thermodynamic principles of the phase change process, the general conception of 

the behaviour of real TES systems can be obtained from the understanding of the 

simple phase change problem like Stefan’s. Hence a simple parametric test was 

designed and implemented at this point, prior to any further research, to determine the 

most influential PCM properties in phase change processes. The general idea was that 

the influence of certain PCM parameters should reflect in similar manner in both 
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simple solutions like Stefan’s and the highly complex ones, employed in real-time 

applications. 

The parametric test was implemented using the Stefan solution given in the 

Equations 4.11 and 4.12. A MATLAB based program was developed and used to 

assess the influence of the most important PCM properties (phase change temperature, 

phase change enthalpy and thermal conductivity) on the time progression of the solid-

liquid interface in 1D semi-infinite PCM case. 

The parametric study was performed for the solidification process of an 

imaginary PCM with such properties to reflect the behaviour of common organic 

PCMs. The standard thermo-physical properties of this material were adopted as 

following: the phase change temperature was taken to be 21 °C, the phase change 

enthalpy was 140 kJkg-1K-1, and the thermal conductivity was 0.2 Wm-1K-1. 

Additionally, the driving temperature for the phase change was 18 °C. The available 

time for the phase change was evaluated in the range from 0 to 2 h. 

Given the above parameters, the evolution of the solid-liquid interface was 

investigated depending on the 10 % marginal fluctuations of the following parameters: 

the phase change temperature Tpc, the phase change enthalpy ∆pch, and the thermal 

conductivity k. Firstly, the phase change temperature was varied within the 

21 °C±10 % range (Figure 4.6). Following, the phase change enthalpy was varied 

within the 140 kJkg-1K-1±10 % range (Figure 4.7). Finally, the thermal conductivity 

was varied within the 0.2 Wm-1K-1 ±10 % range (Figure 4.8). 

In all three cases (Figure 4.6-4.8) the y and z axes were constant, representing 

the two most important parameters in Stefan’s solution, the time of the phase change 

process and the location of the solid-liquid interface. The variable parameter, being the 

phase change temperature in the first case (Figure 4.6), the phase change enthalpy in 

the second (Figure 4.7), and the thermal conductivity in the third one (Figure 4.8), was 

represented on the x axis. Evidently, given the same ranges of values for phase change 

temperature and the location of the solid-liquid interface in all three graphs (Figure 4.6-

4.8), even upon a simple visual investigation of the 3-Dimensional (3D) plots, it can be 

concluded that the phase change temperature is the most influential parameter in the 

Stefan’s solution.  
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Figure 4.6: The dependency of the solid-liquid interface location on the time available 

for the phase change process and the phase change temperature variation of the 

imaginary PCM reflecting the behaviour of common organic PCMs. 

 

 

 

 

 

 

 

Figure 4.7: The dependency of the solid-liquid interface location on the time available 

for the phase change process and the phase change enthalpy variation of the 

imaginary PCM reflecting the behaviour of common organic PCMs. 
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Figure 4.8: The dependency of the solid-liquid interface location on the time available 

for the phase change process and the thermal conductivity variation of the imaginary 

PCM reflecting the behaviour of common organic PCMs. 

 

Namely, the intersection of yz planes when x=const., especially for higher 

values of x, with the plotted 3D surfaces results in the steepest and least linear curves in 

the first scenario (Figure 4.6) clearly indicating that the phase change temperature is 

the most significant parameter influencing the propagation of the solid-liquid interface 

during phase change process. The same curves are not as steep and nonlinear in the 

second case (Figure 4.7) as in the first one (Figure 4.6), but steeper and less linear than 

in the third case (Figure 4.8). This indicates that the influence of the phase change 

enthalpy in the Stefan’s solution is greater than that of the thermal conductivity. Given 

the notion that the influence of certain PCM parameters should reflect in similar 

manner in both simple solutions like Stefan’s and the highly complex ones the 

observed behaviour leads to the conclusion that the phase change temperature and the 

phase change enthalpy are indeed the most important properties of PCMs. 
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4.5 Summary 

The design, implementation, and optimisation of any large scale TES system requires 

the solution of basic heat transfer problems regarding the components the system is 

based on. Considering the nonlinear nature of the phase change problems, analytical 

solutions appear unattainable. For this reason, the reported numerical solutions based 

on various implementation methods are numerous. However, all the solutions are 

founded on the mathematical description of the problems at hand. The mathematical 

equations rely on the physical quantities and their associated relations. Hence, it 

becomes clear that the essential part of any solution and the key for accurate prediction 

of the latent heat TES systems’ performances is the precise knowledge of PCM 

properties. The thermo-physical properties, especially in terms of phase change 

temperature and enthalpy are the most important as evidently indicated in the 

parametric study explained in this chapter, therefore the current technologies for 

behavioural characterisation of phase change materials are discussed in detail in the 

next chapter.  
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Chapter 5 

CURRENT TECHNOLOGIES FOR 

BEHAVIOURAL CHARACTERISATION 

OF PCMs 

 

Currently, the overall technology of PCMs is ever-growing. The new developments in 

both research and commercial sectors evolve in two main directions, towards the 

development of latent heat TES systems in terms of small or large scale products and 

towards the development of new materials. Regardless of these directions the 

underlying heat transfer problems involving the change of phase need to be defined and 

solved. Due to the nonlinearity of the phase change process and the specific nature of 

PCMs the numerical solutions are preferred over the exact analytical solutions. The 

numerical solutions and predictions directly dictate the development of any new latent 

heat TES products or materials. In addition, these solutions predominantly depend on 

the physical quantities of materials under investigation. Hence, accurate and precise 

determination and knowledge of PCM properties is imperative for the design, 

development, and optimisation of any latent heat TES systems. One of the major 

limiting factors for both modelling and implementation of efficient PCM based TES 

systems is the inaccuracy/lack of the experimentally determined material data 

especially in terms of basic and the most deterministic thermo-physical properties, the 

phase change temperature and enthalpy (Mehling and Cabeza, 2008). Therefore, the 

current technologies and methods for the determination of these properties are 

discussed in this chapter. Due to the very specific nature of PCMs many problems with 

measurement procedures arise. These problems along with the necessary measurement 

premises are summarised in the first section of this chapter. 
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5.1 Basic measurement premises 

Accurate knowledge of basic thermo-physical properties of PCMs primarily refers to 

the knowledge of the phase change temperature (range) and the energy stored/released. 

As briefly stated in the second chapter one of the most important principles which is 

used for characterisation of solid-liquid PCMs can be described by the following 

equation (Equation 5.1): 
 

 

,VdpdQdH   (5.1) 

which summarises the relations between enthalpy H, heat stored/released Q, volume V, 

and pressure p. This relation is a direct consequence of the first law of thermodynamics 

and the definition of enthalpy. Furthermore, since solids and liquids are incompressible 

under usual operational conditions the term Vdp can be neglected resulting in the 

simpler relation given by Equation 5.2: 

 

 

,dQdH   (5.2) 

which represents the basis of calorimetric measurements (measurements to determine 

the change of heat) of solids and liquids. Namely, this equation enables the energy i.e. 

heat stored/released between two temperature levels to be calculated using the 

difference of the respective enthalpy values (Mehling and Cabeza, 2008). However, 

due to the specific nature of PCMs, which can have a very high heat storage/release 

density in a narrow temperature range, the common calorimetric standards can lead to 

significant errors in behavioural characterisation. For this reason an initiative was 

launched in 2005 by few companies (Fraunhofer ISE, Freiburg, Germany; ZAE 

Bayern, Garching, Germany) towards the standardisation of material testing and quality 

control for PCMs (Mehling et al., 2006; RAL, 2010).  

Performing measurements on PCMs requires three general criteria to be taken 

into account: 

(i) The sample needs to be representative, 

(ii) Correct determination of the sample’s temperature and heat 

stored/released needs to be provided, and 
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(iii) Thermodynamic equilibrium in the sample needs to be assured (Mehling 

and Cabeza, 2008). 

The first criterion requires the sample to be larger than typical in-homogeneities 

of the investigated material. To satisfy the second criterion the determination of the 

sample’s temperature and heat stored/released needs to be subjected to corresponding 

calibration procedures. The third criterion requires the investigated sample to be 

isothermal and in reaction equilibrium. The “isothermal” part can be achieved through 

slow measurements or investigation of small samples. Unfortunately, the utilisation of 

small samples contradicts the first general criterion of representative samples. This 

contradiction evidently shows the importance of optimisations and balancing between 

different parameters in PCM measurements. The thermodynamic equilibrium can also 

be achieved by slow measurement i.e. small heating/cooling rates. This, however, can 

result in small Signal-to-Noise Ratios (SNRs) in certain measurement methods, 

emphasising once more the conflicts that can arise in PCM characterisation procedures. 

Additionally, the reaction equilibrium can be violated by various factors predominantly 

by very slow reactions and subcooling. The subcooling is related to the first criterion as 

well. Namely, the degree of subcooling can be dependent on the sample size requiring 

the sample used in characterisation methods to be the same or approximate size as in 

future PCM application (Mehling and Cabeza, 2008).  

Furthermore, it is common to achieve different results upon heating and cooling 

measurement of PCMs. This effect is called hysteresis. It can be a real property of the 

material or sometimes the consequence of the measurement conditions. In the latter 

case it is known as an apparent hysteresis. For this reason, it is essential to perform 

both heating and cooling measurement of the PCM samples. Again, to determine the 

existence of real or apparent hysteresis the isothermal conditions in the sample need to 

be obtained. Given the possible conflicts that can arise regarding the small samples and 

low heating/cooling rates, it is suggested to balance between the mentioned parameters 

in order to keep the sample close to equilibrium conditions as much as possible 

(Mehling et al., 2006; Mehling and Cabeza, 2008). 

To demonstrate the specifics of PCMs it is important to note that the thermal 

behaviour of the material in the temperature range where it does not undergo a phase 
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change can be characterised only by its (specific) heat capacity which is usually almost 

constant within a temperature interval of 10 °C. To describe the behaviour of the 

material when it undergoes a phase change, more parameters are necessary, usually at 

least four: phase change temperature (range), phase change enthalpy, (specific) heat 

capacity in the solid state and (specific) heat capacity in the liquid state. Few PCMs are 

pure materials with constant phase change temperature. Generally PCMs are not pure 

substances resulting in the existence of the phase change temperature range instead of 

the sharp temperature of transformation. Furthermore, this prevents the separation of 

sensible and latent heat values in measured/calculated data. Taking the onset or peak 

temperature of the melting/solidification measurement curves as the phase change 

temperature leads to significant errors in the design of a TES system and serious 

deviations between a planned system and an implemented one (Mehling and Cabeza, 

2008).  

Additionally, Arkar and Medved (2005) showed that even the shape of the 

apparent heat capacity curves, usually derived by using the four aforementioned 

parameters, influences the model predictions regarding the thermal responses of latent 

heat systems. The solution could be the results’ representation in the form of heat 

stored/released as a function of temperature in given temperature intervals (Mehling et 

al., 2006; Mehling and Cabeza, 2008). In this way the definition of a single phase 

change temperature is avoided as well as the need to report a constant (specific) heat 

capacity in liquid and solid states. Moreover, the separation between sensible and latent 

heat is also avoided since ultimately it is not necessary. Usually the calculated heat 

stored/released is given as the heat stored/released per mass. It should also be given in 

the form of the heat stored/released per volume by multiplication of the heat 

stored/released per mass with the minimum density in the operating temperature range 

of application. Also, due to subcooling and hysteresis effects the heat stored/released 

should be given as a function of temperature in given temperature intervals for both, 

heating and cooling experiments. Subcooling should be eliminated from the 

stored/released heat data and given separately with reference to the sample mass and 

other conditions that influence it (Mehling and Cabeza, 2008; RAL, 2010). The 
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procedure for the elimination of subcooling effect was suggested by Mehling and 

Cabeza (2008) (see Figure 5.1). 
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Figure 5.1: Determination of the stored/released heat as a function of temperature in 

given temperature intervals plus degree of subcooling (amended from Mehling and 

Cabeza, 2008, p. 68). 

 

Namely, according to Mehling and Cabeza (2008) the effect of subcooling 

should be eliminated from the heat stored/released graphs and given separately as the 

degree of subcooling while the heat lost upon subcooling should be attributed to the 

solidification temperature. 

Based on the investigation of different materials and characterisation 

methodologies of PCMs, the initiative launched in 2005 resulted in the definition of 

few additional criteria that need to be satisfied between different measurements of the 

same PCM, apart from three, previously mentioned, general ones: 

(i) Change in total enthalpy (heat stored/released) not greater than 10 %, 

(ii) Change in heat stored/released-temperature profiles not greater than 

±1 °C, and 

(iii) Change in mass not greater than 3 % (testing is imperative for 

encapsulated materials, but not for others) (RAL, 2010). 

These represent the so called “damage” criteria to be used to assess if the 

investigated material has become defective after prolonged cycling. Moreover, the 
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desired accuracy levels for temperature and enthalpy measurements of PCMs are 

±0.5 °C and ±10 %, respectively (Mehling et al., 2006). 

The RAL quality standard (RAL, 2010) represents the set of general rules and 

criteria that need to be taken into the account in measurements and characterisation 

methods of PCMs. However, the practical implementation of these rules is not easy or 

straightforward, but dependent on the characterisation methodology. Therefore the 

main principles and limitations of the current characterisation methodologies of PCMs 

are discussed in the next subchapters with a special emphasis on the two most 

important methods, Differential Scanning Calorimeter (DSC) and Temperature-history 

(T-history) method. 

 

5.2 Differential Scanning Calorimeter (DSC) 

Differential scanning calorimeter is one of the most common calorimetric methods 

used for behavioural characterisation of different materials including PCMs. The 

technology is based on the detection of differences in the thermal responses between a 

sample substance and a reference material which are simultaneously subjected to the 

controlled heating/cooling environment (Günther et al., 2006). Two types of DSC 

systems are used, the Differential Thermal Analysis (DTA) (also called power-

compensating DSC) and the heat-flux DSC (also called heat exchanging DSC). In DTA 

the sample and the reference are placed in identical, separate furnaces and kept at the 

same temperatures throughout the measurements by varying the power input of 

electrical heaters of the furnaces. This method unlike the heat-flux DSC is not 

commonly used. In opposition, the heat-flux DSC is frequently used for PCM 

characterisation. In this method, the sample (PCM in this case) and reference are 

enclosed inside the same furnace and linked by the heat-conducting support. A typical 

heat-flux DSC setup is represented in Figure 5.2. In heat-flux DSC the same amount of 

heat is supplied to or extracted from the sample and reference using the electrically 

heated furnace for heating and compression cooler or liquid nitrogen for cooling 

experiments. Given the same amount of heat supplied/extracted, the different thermal 

response of the sample and reference is reflected in their respective temperature 
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difference. This difference represents the useful signal recorded in heat-flux DSC 

measurements. The temperature difference between the symmetrically placed sample 

and reference crucibles is observed and recorded. (Mehling and Cabeza, 2008; Mehling 

et al., 2012). 
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Figure 5.2: Typical heat-flux DSC setup (amended from Mehling and Cabeza, 2008, 

p. 70). 

 

The heat-flux DSC measurements can be performed in two different modes, the 

dynamic and the isothermal steps mode. In the dynamic mode the ambient is subjected 

to the constant heating/cooling rates and the corresponding temperature difference 

between the sample and reference is measured. The basic equation for quantitative 

evaluation of measurements in dynamic DSC method is given by Equation 5.3: 

 

 

),( rsth CCRT    (5.3) 

where ΔT represents the measured signal, Rth represents the thermal resistance of the 

heat-conducting path (as well as the sensitivity of the instrument) given in KW-1, β 

given in Kmin-1 is the heating/cooling rate, and Cs and Cr are the heat capacities in JK-1 

of the sample and reference. The specific heat capacity cp(T) and the enthalpy h(T) of 

the sample are calculated by using the given formula (Equation 5.3) and the measured 

signal ΔT which can be the temperature difference given in K or a thermocouple 
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voltage expressed in µV (Mehling et al., 2012). Additionally, the proportionality 

constant Rthβ in the Equation 5.3 establishes the dependency between the signal-to-

noise ratios in the heat capacity data and the heating/cooling rates in dynamic DSC 

measurements (Mehling and Cabeza, 2008). 

Furthermore, to evaluate the desired thermal properties of the investigated PCM 

samples the necessary calibration procedures of the DSC instrument need to be 

performed. The calibration of the temperature sensors used in measurements is usually 

done through comparison of the recorded phase change temperatures of standard 

materials with the data available in literature. Moreover, in most cases the temperature 

calibration is directly applied to the measured data and included in the signal output of 

the DSC instrument (Mehling et al., 2012). 

To determine the heat capacity and enthalpy values the instrument calibration 

needs to be done by using the materials with the well-known properties. The calibration 

procedures commonly used are the heat capacity and enthalpy calibration depending on 

the type of the property used. In heat capacity calibration three measurements need to 

be performed: measurement with an empty sample and reference crucibles to obtain the 

so called empty line, then measurement with a standard material inside the sample 

crucible and an empty reference crucible to get the standard line, and finally 

measurement with the sample inside the sample crucible and an empty reference 

crucible to determine the sample line (Figure 5.3).  

Contrary to the situation displayed in Figure 5.3 the DSC software commonly 

makes the adjustments in such manner to represent the endothermic effect of the PCM 

upon heating with an upward peak of the raw signal since the endothermic effect is also 

manifested as an upward peak in heat capacity data (Mehling and Cabeza, 2008). 

After the measurements of the empty, standard, and sample lines the specific 

heat capacity of the sample cp,sample can be evaluated at any point in time using 

Equation 5.4: 
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where cp,standard represents the specific heat of the standard, well-known material, terms 



  

80 
 

msample and mstandard represent the masses of the sample and standard material, and the U 

values represent the corresponding measured signals (either temperature differences or 

the thermocouple voltages). The conversion between time and temperature for the 

specific heat capacity function of the sample can be done using the recorded 

temperature ramp. In this conversion the ambient or reference temperatures are 

commonly used (Mehling et al., 2012). 
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Figure 5.3: Temperatures (T) and measured signals (T differences) in dynamic DSC 

mode upon heating (amended from Mehling and Cabeza, 2008, p. 72). 

 

Another type of calibration is the enthalpy calibration. In this procedure the 

materials with the well-known phase change enthalpies are used. The calibration 

requires a set of measurements to be repeated every other month. The sensitivity of the 

instrument is determined for a particular standard material and attributed to the phase 

change temperature of that material. This is repeated for several standard materials to 

determine the instrument’s sensitivity at different temperatures (Figure 5.4). Namely, 

based on the Equation 5.3, the integral of the peak area of the measured signal obtained 

from the standard material can be directly related to the phase change enthalpy ΔpcH of 

the material where the proportionality constant is the sensitivity of the DSC instrument 

(Equation 5.5). 
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Figure 5.4: Measurement evaluation principles of the enthalpy calibration in heat-flux 

DSC method (amended from Mehling and Cabeza, 2008, p. 76). 

 
Equation 5.5 enables the evaluation of the instrument’s sensitivity at various 

temperatures corresponding to the phase change temperatures of the standard materials. 

Since the peaks of these materials are narrow the sensitivity can be taken as constant 

within the particular temperature range. The sensitivity function of the instrument is 

determined by interpolation/extrapolation of the recorded sensitivity points. Once the 

sensitivity curve Rth(T) is known the sample material can be evaluated and its enthalpy 

determined using Equation 5.6 (Mehling and Cabeza, 2008; Mehling et al., 2012): 
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pc dt
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Mehling et al. (2012) reported on the new calibration procedure for heat-flux 

DSC measurement which is optimised for PCMs. In this procedure the empty line is 

not measured as in the heat capacity calibration but constructed by connecting the 

signals measured in isothermal states when the ambient temperature is constant. It is 

assumed that the empty line is linear under both constant and dynamic ambient 

conditions. 
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Furthermore, heat-flux DSC can be used in isothermal steps mode. In this mode 

a stepwise change of the ambient in a given temperature intervals is applied 

(see Figure 5.5). 

 

 

 

 

 

 

Figure 5.5: Typical heating ramp and signal in DSC measurement with isothermal 

steps mode (amended from Mehling and Cabeza, 2008, p. 78). 

 

The length of the steps is determined by the time that sample needs to come 

into thermal equilibrium with the ambient i.e. the time necessary for the signal to drop 

back to zero. At that moment the sample becomes isothermal. Consequently, the area 

below the corresponding peak is proportional to the heat stored by the sample in the 

heating experiment. The quantitative heat value can be estimated using the sensitivity 

curve obtained from the enthalpy calibration. The associated temperature uncertainty in 

this case equals the height of the corresponding step (Mehling and Cabeza, 2008). 

Apart from the advancements in the calibration procedures and DSC modes 

some authors also reported on the improvements of the DSC instruments. André et al. 

(2012) described the so called MicroDSC detector that uses Peltier element based heat 

exchangers to provide proper ambient conditions in both heating and cooling 

measurements plus Peltier element based sensors to measure the DSC signals. This 

detector enables the measurement of relatively larger samples than the ones scanned in 

standard DSC units.  
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5.3 Temperature-history (T-history) method 
In 1999 a new method, named Temperature-history or simply T-history, was 

specifically designed and developed for the thermal investigation of PCMs (Zhang et 

al., 1999). The typical experimental rig used in this methodology is represented in 

Figure 5.6. 

 

 

 

 

-  

 

Figure 5.6: A schematic diagram of the typical experimental rig for the T-history 

method (amended from Zhang et al., 1999, p. 204). 

 

Namely according to Zhang et al. (1999), the sample and reference (with well-

known heat capacity usually distilled water) in the test tubes of a defined geometry 

(cylindrical) and at the same initial temperature T0 (T0>Tpc=Tm) are subjected to the 

ambient temperature T∞,a(t) or simply Ta (Ta<Tpc). Their temperature history is 

recorded upon cooling (inside the water bath) from the initial temperature until both 

samples reach equilibrium with the ambient. Consequently, comparisons of the 

recorded curves (see Figure 5.7), assuming the same heat transfer coefficient between 

sample and ambient as well as between reference and ambient, enable the 

determination of the heat released by the sample (Mehling and Cabeza, 2008). 

Zhang et al. (1999) have developed the original T-history method using the 

Newton’s law of cooling which relates the rate of heat exchange to object’s 

temperature change with respect to the ambient. This law can be represented by 

equation in which the heat transfer coefficient between the ambient fluid and the 

object’s surface is denoted as h and the surface itself is represented as A (Equation 5.7): 
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Figure 5.7: Idealised T-history curves (amended from Mehling and Cabeza, 2008, 

p. 81). 

 

Another important parameter in T-history definition is the dimensionless Biot 

number (Bi) which represents the ratio of the heat transfer resistances inside and at the 

surface of an object i.e. the ratio between the convective and conductive heat transfer 

coefficients (Bi=hLC/k where LC is the characteristic length i.e. the ratio of the object’s 

volume and surface, k its thermal conductivity, and h the convective heat transfer 

coefficient). Biot number describes the spatial temperature distribution inside an object. 

If the value of this number is below 0.1 a uniform temperature distribution within the 

object can be assumed (Zhang et al., 1999). Consequently, the object can be treated as 

a lumped capacitance heat reservoir allowing the application of the lumped capacitance 

model as in Equation 5.8:  
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C   (5.8) 

where C represents the heat capacity of the lumped object (sample or reference within 

the corresponding test tubes in T-history measurements). 

Furthermore, Equation 5.8 is used to derive the final equations used in the 

original definition of the T-history method (Equation 5.9-5.11). 
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In these equations (Equations 5.9-5.11) cp,s and cp,l represent the mean specific 

heats of the solid and the liquid PCM; Hm is the heat of fusion of the PCM or 

alternatively denoted as the enthalpy change ΔpcH in the phase change range; mp or 

simply m, mw and, mt are the masses of the PCM sample, the reference and the test 

tube, respectively; cp,w or cp,r and cp,t are the mean specific heats of the reference and 

the tube material; the difference ΔTm=Tm-TS is the degree of subcooling also denoted as 

ΔscT=Tpc-TN where TN represents the nucleation temperature; and A1, A2, A3, A
’
1, and 

A
’
2 are the values of the corresponding integration areas obtained by integration of T-

history curves (Figure 5.8 and Figure 5.9). 

 

 

 

 

 

 

 

Figure 5.8: A typical T-history curve of a PCM during cooling process with subcooling 

effect (amended from Zhang et al., 1999, p. 202). 
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Figure 5.9: A typical T-history curve of a reference material during a cooling process 

(amended from Zhang et al., 1999, p. 202). 

 

For PCM without subcooling effect (Figure 5.10) where the temperature range 

of the phase change is between Tm,1 and Tm,2 the expression for cp,s and cp,l are the same 

as in Equations 5.9 and 5.10, but the heat of fusion Hm is different (Equation 5.12):  
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Figure 5.10: A typical T-history curve of a PCM during cooling process without 

subcooling effect (amended from Zhang et al., 1999, p. 202). 

 

T-history method has sustained several improvements since its definition; 

therefore the evolution of this method throughout the past decade is discussed in the 

next subsection.  
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5.3.1 Evolution of the T-history method 

At the beginning of the last decade, Marin et al. (2001) performed several experiments 

using the T-history method and proposed the use of air instead of water in the 

heating/cooling experiments.  

One of the major improvements of the original method was implemented by 

Marin et al. (2003). They emphasised that the original T-history method does not 

clearly define the determination of the boundary between the solid, phase change, and 

liquid states; therefore they developed an improved mathematical technique for the 

evaluation of the T-history data, the so called time delay technique. This technique is 

based on the concept of enthalpy-temperature functions H(T) i.e. Hp(T) and hp(T) 

(enthalpy and specific enthalpy functions of the PCM sample) instead on the simple 

concept of temperature variation with time. The authors observed the temperature 

variation of the sample and reference over very small temperature intervals ΔTi 

corresponding to time intervals Δti=ti+1-ti and Δt’i=t’i+1-t’i for PCM and reference 

respectively. Namely, they examined the time delay between the moments when 

sample and reference reach the specified temperature evaluation point. The temperature 

interval ΔTi represents the interval between the two consecutive temperature evaluation 

points. Furthermore, using the theoretical basis of the T-history method (Equation 5.8) 

they calculated enthalpy changes Δhp(Ti) of the PCM in the corresponding temperature 

intervals ΔTi. Given the Δhp(Ti) values the calculation of the specific enthalpy function 

hp(T) is straightforward as given in Equation 5.13: 
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where hp(T0) represents the reference value of specific enthalpy. The temperature T0 

can be arbitrarily selected depending on the temperature range of investigation. 

Moreover, the specific heat capacity of the PCM cp(T) (also called apparent heat 

capacity function) can be determined from the enthalpy function. (Equation 5.14): 
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The authors also improved the original setup by putting the samples in a cool down 

chamber upon cooling instead of using a temperature bath. 
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Another group of authors Hong et al. (2004) also observed that the original 

method does not clearly define the solid, phase change, and liquid boundaries and 

therefore proposed the use of an inflection point to mark the boundary between phase 

change and solid-state periods. This is the point where the first derivative of T-history 

curve for PCM becomes minimal. The approach is justified by the fact that the 

temperature is constant or decreases gradually during the phase change, but decreases 

exponentially in cooling process where only sensible heat is present. 

In 2005, a new installation of T-history was proposed (Marin et al., 2005). The 

improvements of this installation were based on better instrumentation and horizontal 

disposition of the tubes in the air enclosure in order to minimise the gravitational 

movements. 

In 2006, Günther et al. (2006) gave a thorough comparison of the DSC and the 

T-history methods as the major tools used for determination of the heat storage/release 

capacity of PCMs and PCM objects. They also constructed a custom built test chamber 

with the heat exchanger connected to a thermostat to control the ambient temperature. 

In addition, a fan was used to enforce the convection inside the chamber. Moreover, 

they developed a special setup for the characterisation of PCM-objects. Additionally in 

2006, Lazaro et al. (2006) gave a proper methodology for the verification of the correct 

instrument operation and data evaluation used in T-history installation. The 

methodology includes the sensor calibration and verification of the correct 

measurement of temperature and correct evaluation of enthalpy. 

In 2009, another detailed comparison of the DSC and T-history results was 

presented (Günther et al., 2009). The comparative methodology in this study is based 

on the required measurement precision and accuracy. 

In 2010, Rady at al. (2010) adapted the original T-history method and the 

corresponding data evaluation technique for the specific characterisation case of 

granular phase change composites. Also, a significant modification of the original T-

history method was published in 2010 (Kravvaritis et al., 2010). The improvements 

refer to the experimental arrangement in the form of fully controlled indoor 

environment, the way of measurement processing, as well as the presentation format of 

the results. The proposed measurement processing technique is based on the use of the 
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thermal delay (i.e. temperature difference) between PCM (at temperature Tm,i) and a 

reference (at temperature Tr,i) at any specified time ti and not on the use of their time 

delay at any specified temperature as suggested by Marin et al. (2003). The effective 

thermal capacity function cp,eff as a final result is proved to be more useful than the 

results of the original T-history method. The year 2010 brought yet another significant 

improvement regarding the T-history data processing techniques Moreno-Alvarez et al. 

(2010) developed the differential formulation of the T-history method (the dT-history 

method). This method aims to include the important experimental effect of the speed of 

the thermal process i.e. the cooling/heating rates of the samples in calorimetric 

calculations. Starting from Equation 5.8 the authors evaluated the specific heat capacity 

of the PCM cp(T) using Equation 5.15: 
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 (5.15) 

In 2011, Kravvaritis et al. (2011) reported the results from the characterisation 

experiments of various PCMs using the previously reported thermal delay method. 

Important study was reported in 2012 by Rathgeber et al. (2012). The authors 

developed a T-history calorimeter for the characterisation of phase change materials in 

the temperature range from 50 °C to 200 °C. Air as the heat transfer fluid in a closed 

cycle was used for the construction of the instrument. Fast switching times of cooling 

sessions inside the instrument were implemented by short opening of the cycle to the 

ambient (indoor) air. 

In 2013, Li et al. (2013) developed an analytical temperature model for the 

evaluation of the T-history curves. Apart from the lumped capacitance model, they 

assumed the rectangular shape of the effective specific heat capacity function and 

proposed the criteria for the selection of the start and end temperature of the phase 

change. The model was validated based on the evaluation of inorganic high 

temperature phase change materials. 
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5.4 Unconventional methods 

Apart from DSC and T-history other, less conventional characterisation studies of 

PCMs have been reported in literature. These include the adiabatic scanning 

calorimeter (ASC) method and macroscale PCM investigations including studies of 

PCM composites. 

In 2011, Losada-Perez et al. (2011) reported the heat capacity and enthalpy 

measurements of PCMs using the adiabatic scanning calorimeter (ASC) in constant 

power mode. The main equation describing the underlying operational principles of the 

ASC is given by Equation 5.16: 
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Generally, ASC can be run in four different modes by keeping P or dT/dt 

constant, while cooling or heating the sample. However, given the large values of latent 

heats, the constant power mode is usually used for PCM characterisation. The constant 

power (P or P
e) upon heating is maintained using an electrical source. Adiabatic 

conditions are met by keeping the leakage power P
l at its minimum value. Since the 

heating rate is proportional to the heat capacity the rise of sensible heat decreases the 

rates facilitating thermal equilibrium in the sample and the control of adiabatic 

conditions. During the phase change interval Δt the temperature change rate is close to 

zero resulting in Equation 5.17: 
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where L represents the latent heat of transformation. Moreover, using Equation 5.16 

ASC allows the direct evaluation of the enthalpy-temperature function (Equation 5.17): 

 ).()()( 00 ttPTHTH e   (5.17) 

Here, t0 represents the starting time of the sample scan with the corresponding 

temperature of the sample T0.  

Implementation of the cooling ASC experiment is not as straightforward as in 

heating case. It is usually implemented by keeping the constant temperature difference 

between the sample and its isothermal environment and including a lot of calibration 
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measurements. Moreover, the typical heating/cooling rates in ASC are three orders of 

magnitude slower than in DSC resulting in the enthalpy dependency of equilibrium 

temperature and potential elimination or reduction of the subcooling in cooling 

measurements (Losada-Perez et al., 2011). 

Additionally, some researchers develop the setups for macroscale evaluation of 

PCMs. Zalba et al. (2005) developed the experimental setup for the evaluation of PCM 

based TES using the design of experiments procedure. Le Du et al. (2012) reported on 

the development of the device for characterisation of a composite phase change 

material. In 2013, Barreneche et al. (2013) developed the device for the macroscale 

evaluation of thermal conductivity of real PCM samples as well as the device for 

registering the temperature-time response curves produced by such samples 

(Figure 5.11). 

 

 

 

 

 

 

Figure 5.11: Temperature-time curves device scheme (amended from Barreneche et 

al., 2013, p. 3). 

 

Although useful, the macroscale devices for characterisation of real-scale PCM 

sample are not particularly feasible since those devices are usually custom built for the 

investigation of specific PCM samples. Furthermore, these devices are sometimes 

closely coupled with the numerical models. This could result in significant errors upon 

PCM macro-evaluation in the case of unreliable material data underlying the operation 

of numerical models in question.  
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5.5 Limitations of the current technologies 
Although the DSC and T-history related studies of PCMs are numerous, these two 

widespread methodologies still have limitations in terms of the measurement premises 

regarding the characterisation of PCMs. 

The typical sample size in DSC experiments is in the range from 1 to 25 mg 

resulting in the violation of the first general criteria regarding PCM investigations. 

Namely, the thermo-physical properties of small samples determined in DSC 

experiments are usually non-representative and different from those of the bulk 

materials used in practical TES systems. Small DSC samples can also result in higher 

degree of subcooling and lower degree of phase segregation (Zhang at al., 1999; 

Günther et al., 2006). Moreover, the accuracy of the dynamic heat-flux DSC 

measurement is dependent on the heating/cooling rate (typically in the range from 0.5 

to 1 Kmin-1) and sample size. Standard DSC heating/cooling rates cannot be used for 

PCM investigations since those would result in low resolution data. During the change 

of phase in DSC measurements, the sample is not close to thermal equilibrium. Due to 

the typically low thermal conductivity a significant temperature gradient is created 

inside the PCM sample. This can result in deviations of several degrees of the 

determined heat storage capacity with respect to temperature. This deviation 

predominantly depends on the utilised sample size and heating/cooling rate. It is also 

dependent on the heat storage capacity and the thermal conductivity of the sample, but 

since these properties are usually unknown the deviation cannot be reduced through 

mathematical means. Experimentally, it is possible to reduce the temperature gradient 

and the imposed deviations by using smaller samples or heating/cooling rates. The 

differences in the cp(T) curves obtained from the measurements that were performed on 

the same material but with different sample masses and heating/cooling rates can be 

observed in Figure 5.12 (Günther et al., 2006).  
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Figure 5.12: Effect of sample mass and heating/cooling rate variation in dynamic 

heat-flux DSC measurements on cp(T) curves (amended from Günther et al., 2006, 

p. 2). 

 

The end of the phase transformation peak is shifted from 26 °C (sample A-

0.5 Kmin-1 in Figure 5.12) to about 30 °C (sample B-2 Kmin-1 in Figure 5.12). 

However, a reduction of the deviation is achieved at the expense of a weaker SNR 

(Günther et al., 2006). The increasing noise can be clearly observed in the 

measurements (sample A-0.5 K/min and sample B-0.5 K/min curves in Figure 5.12). 

The observed deviations in heat capacity curves were reported based on the 

measurements performed using a single DSC instrument by varying the mass of the 

sample and heating/cooling rates. Evidently, as reported by Lazaro et al. (2012) the 

DSC investigations of a single PCM can result in much larger deviations when multiple 

DSC instruments are used (Figure 5.13). Lazaro et al. (2012) concluded that the results 

of DSC investigations of PCMs highly depend on the DSC instrument, sample 

preparation, sample crucibles, heating/cooling rates, and data evaluation procedures. 

The DSC measurement performed in isothermal steps mode provides better 

accuracy given both, heating and cooling curves. Moreover, the temperature 

uncertainty is confined to the step size and therefore precisely known. However, this 

mode is much more complex in terms of programming and data evaluation. 

Additionally, it requires much longer measurement time (Mehling and Cabeza, 2008). 
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Figure 5.13: Comparison of DSC measurements of a single PCM from different 

laboratories (amended from Lazaro et al., 2012, p. 3). 

 

It is evident the DSC method has significant drawbacks in terms of PCM 

characterisation. In order to obtain more accurate results some of these drawbacks can 

be eliminated through the development of better data evaluation techniques and more 

precise measurement protocols (Lazaro et al., 2012; Mehling et al., 2012). However, 

the selection of optimal values for the sample size and heating/cooling rates in DSC 

measurements is a compromise between accuracy in temperature, accuracy in enthalpy 

and representation of the material (Castellon et al., 2008); therefore it still remains a 

challenging task. 

In comparison to DSC, the T-history has few advantages, the sample size being 

one of the most important. Namely, the PCM samples used in T-history method are 

around 1000 times larger than those in DSC (Mehling and Cabeza, 2008). This allows 

more reliable investigation of PCMs. The original T-history method, defined in 1999, 

had serious drawbacks which were promptly addressed in the following years by 

various T-history improvement studies. Majority of these investigations were 

addressing the data evaluation issues in T-history measurements resulting in the 

development of different mathematical procedures for the evaluation of T-history data 

(Marin et al., 2003; Kravvaritis et al., 2010; Rady et al., 2010; Moreno-Alvarez et al., 

2010, Li et al., 2013). However, very few of them addressed the issues regarding the 

control and sensing mechanisms of the T-history setup, accuracy and precision 

improvements, and problems of subcooling and hysteresis. 
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The original T-history experimental setup has gone through a number of 

improvements as indicated in the section 5.3.1 of this chapter and in the review article 

reported by Sole et al. (2013). Nevertheless, during the past decade researchers were 

developing their own custom built setups assembled from laboratory components 

without precise specification of the temperature control mechanisms in the T-history 

rigs. Moreover, only few authors gave some details regarding the sensor modalities 

used in their measurements (Zhang et al., 1999; Marin et al., 2003, Marin et al., 2005). 

They, however, did not highlight either the accuracy of the applied sensors or any other 

relevant sensor selection criteria.  

Lazaro et al. (2006) discussed the importance of measurement precision and 

accuracy for determination of temperature and enthalpy values in T-history 

installations. The authors suggested and implemented a verification methodology for 

T-history measurements. In the latter studies, apart from the discussion about the 

tolerable uncertainties of data used in the design of PCM systems (Günther et al., 

2009), majority of the authors didn’t emphasise either the importance of sensor 

precision and accuracy in T-history measurements or the tolerable uncertainties in 

temperature and enthalpy data. Moreover, the T-history reports usually lack the 

information regarding very important properties of PCMs like subcooling and 

hysteresis as well as the results obtained in heating experiments. 

Additionally, in order to avoid the possible ambiguities in PCM data, Mehling 

et al. (2006) suggested the standard format for the data representation which was 

further elaborated by Mehling et al. (2010). However, the recent T-history data are not 

reported in this form. 

 

5.6 Summary 

The inaccuracy/lack of reliable experimentally determined PCM data (especially in 

terms of phase change temperature and enthalpy) is one of the major limitations in the 

design and development processes of the efficient latent heat TES systems. For this 

reason, behavioural characterisation of PCMs is very important. Current technologies 

for the determination of thermo-physical properties of PCMs were presented in this 
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chapter with the emphasis on the two most important, DSC and T-history method. Both 

of them have significant drawbacks in terms of the basic premises that need to be 

satisfied during any measurement performed on PCMs. Namely, due to the very 

specific nature of PCMs many problems with measurement procedures arise limiting 

both methodologies. 

Currently, DSC has an insurmountable drawback regarding the limited sample 

size resulting in the PCM data that do not reflect the thermo-physical properties of the 

bulk materials used in practical systems. In terms of the sample size the T-history 

method performs much better since the PCM samples used in this method are around 

1000 times larger than those in DSC However, despite the many improvements 

reported during the last decade, T-history method has not yet been commercialised. 

Namely, the current method still has obvious limitations in terms of the correct 

determination of the phase change temperature and enthalpy of the investigated 

materials. This represents a serious problem since the accurate knowledge of these 

thermo-physical properties is a prerequisite for more optimal and efficient design and 

implementation of latent heat TES systems. Good prediction of the long-term 

behaviour of such systems also depends on the accurate characterisation of PCMs. 

Moreover, more reliable determination of thermo-physical properties of existing PCMs 

should enable better understanding of the limitations of current materials and focus the 

research of new materials towards the right direction. Therefore, there is an evident 

need to solve the present T-history related problems. 

In an attempt to overcome the limitations of the current T-history 

implementations an advanced T-history methodology was designed, developed and 

evaluated. In this process the issues relating to the control and sensing mechanisms of 

the current T-history setups, accuracy and precision improvements, problems of 

subcooling and hysteresis, and data representation were taken into consideration and 

addressed sequentially.  

As indicated at the beginning of the thesis the main hypothesis underlying this 

project is that better planned experimental tests in terms of more accurate and precise 

sensing and control modalities will be able to provide more comprehensive and reliable 

results than those described in the literature so far. To validate this hypothesis, the 
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design strategy and the experimental setup of the advanced T-history method were 

carefully developed as described in detail in the next chapter. 
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Chapter 6 

DEVELOPMENT 

OF THE DESIGN STRATEGY AND 

THE EXPERIMENTAL SETUP OF 

THE ADVANCED T-HISTORY METHOD 

 

Despite the recent improvements the T-history method has significant limitations, 

especially in terms of the correct determination of the phase change temperature and 

enthalpy of PCMs. To overcome these limitations an advanced T-history methodology 

was designed and developed. Given the specific nature of PCMs to store/release large 

amounts of energy in narrow temperature intervals, special care had to be taken to 

ensure the correct thermal characterisation of the investigated materials. During the 

development process of the advanced T-history the basic measurement premises and 

requirements, as described in the previous chapter, were taken into consideration. The 

aim in this process was to follow the rules and criteria established by the RAL quality 

standard (RAL, 2010) as close as possible. Due to the necessity to balance between 

different parameters like sample size and heating/cooling rates in PCM measurements, 

as explained in the previous chapter, the implementation of the given rules in the new 

T-history setup was not straightforward. Therefore a proper strategy to attack the 

specific aspects of the T-history method had to be developed. The issues that were 

addressed primarily include the control and sensing mechanisms of the T-history setup 

with the emphasis on the measurement accuracy and precision. Namely, the main 

hypothesis underlying this project was that a better planned experimental tests in terms 

of more accurate and precise sensing and control modalities will be able to provide 

more comprehensive and reliable results than those described in the literature so far. 

Furthermore, the subcooling and hysteresis problems as well as the data evaluation and 
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representation techniques also had to be analysed. The details of the development of 

the design strategy and the experimental setup of the advanced T-history method are 

the subject of this chapter.  

 

6.1 Design strategy 

The design strategy for the implementation of the advanced T-history method was 

developed in the form of a flowchart diagram (Figure 6.1). The first component of this 

diagram, the Design rules, represents a set of input parameters that had to be taken into 

consideration prior to any developments of the advanced T-history setup. These 

parameters are predominantly defined by the basic measurement premises given in the 

previous chapter. Namely, the general criteria in terms of the sample’s size, correct 

determination of its temperature and heat stored/released, and the thermal equilibrium 

maintained within the sample were taken into the account and defined as the first set of 

the design rules. In this way, the development of the entire T-history setup was 

continuously bound by the main criteria that need to be satisfied in any PCM 

measurement. Additionally, as explained in the previous chapter, the T-history method 

is based on the lumped capacitance model (Zhang et al., 1999). This model governs the 

exchange of heat between the body and its environment. Therefore, to correctly 

determine the thermal parameters of the PCM bodies i.e. test tubes filled with PCM 

samples in T-history measurements an additional requirement had to be considered. 

This requirement which enables the application of the lumped capacitance model is 

defined by the upper boundary imposed on the value of the Biot number. Hence, an 

additional design rule to keep the Biot number below 0.1 was adopted enabling 

uniform temperature distribution within the T-history samples and consequently the 

application of the lumped capacitance model.  

The next strategic action in the implementation of the advanced T-history 

method was identified as the development of the Experimental setup. This process 

mostly refers to the investigation and selection of the control and sensing mechanisms 

of the setup. However, it contains several sub processes which will be explained in 

detail in the separate section of this chapter.  
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Figure 6.1: Design strategy of the advanced T-history method. 

 

Another important stage, the development of the Instrumentation system, was 

predefined in the implementation of the advanced T-history setup. A proper 

measurement system had to be developed in order to enable the correct temperature 
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measurements of the investigated samples. This stage is also closely linked with the 

Validation point of the developed flowchart (Figure 6.1). Namely, as indicated in the 

previous chapter, a desired technical goal for the temperature accuracy in the PCM 

related measurements is ±0.5 °C (Mehling et al., 2006). This value was selected as the 

validity factor for the instrumentation system. It was presumed that any instrumentation 

system will be evaluated in the appropriate temperature measurement and also 

redesigned in the case the desired accuracy target of ±0.5 °C is not achieved. The 

design was made so the achievement of the desired accuracy level would stop the 

evaluation process. 

Once the evaluation of the instrumentation system would be identified as 

successful the T-history setup would be used for testing of PCMs. Given the 

distinguishable properties of the organic and inorganic materials it was planned to carry 

out two different processes, Testing of organic PCMs and Testing of inorganic PCMs. 

Finally, the design was made to use the output of the two set of studies to evaluate the 

advanced T-history method and draw appropriate conclusions. 

Given its direct relation with the set of the design rules discussed here the 

development of the experimental setup will be explained in detail in this chapter. 

Adversely, the details of the three other processes identified in the design strategy 

(Figure 6.1) will be given in the following chapters.  

 

6.2 Experimental setup 

The development of the experimental setup included several sub processes: 

investigation and selection of the control modality, investigation and selection of the 

sensing modalities, and the design and development of testing containers (Figure 6.2). 

These sub processes will be explained in detail in separate subsections. 
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Figure 6.2: Development of the experimental setup of the advanced T-history method. 

 

6.2.1 Investigation and selection of control modality 

The usage of hot and cold temperature baths was suggested to maintain the temperature 

control in the original T-history method (Zhang et al., 1999). The authors however 

reported only the results obtained in the cooling setup. Nevertheless, the original T-

history method has gone through a number of improvements as explained in the 

previous chapter. Marin et al. (2003) performed the cooling T-history measurements in 

a cool down chamber. Marin et al. (2005) were among the first to report the results 

obtained from the heating experiments. They concluded that those results don’t show 

good agreement with the data obtained by other methods and suggested that this 

happens due to the internal temperature gradients in the air enclosure which was used 

as a control setup. The solution of the problems, suggested by the authors, was to 

disperse the heat source inside the air enclosure and add a Proportional Integral 

Derivative (PID) controller. This solution was adopted by Lazaro et al. (2006) and 

Günther et al. (2009) for the analysis of PCMs in a wide temperature range from -20 °C 

to 65 °C. Kravvaritis et al. (2010) used the same principle to transform a deep freezer 

into an automated, insulated test chamber in which temperatures from -30 °C to 120 °C 

could be obtained. This chamber was designed to accommodate both cooling and 

heating measurements. However, in the reported T-history studies the temperature 

control chambers were custom built using different laboratory components making an 

absolute precision of the controlled environment questionable. Moreover, the detailed 

specifications of the temperature control facilities used in the reported studies were not 

given. The utilisation of the non-precise control mechanism could lead to potential 

uncertainties in the T-history temperature measurements and consequently to erroneous 
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PCM data. Therefore, one of the aims of this study was to develop a T-history setup 

with the precisely specified details of its temperature control mechanism.  

Given the aforementioned design rules and the general T-history concept the 

important parameters for the implementation of the control mechanism of the advanced 

T-history method were identified. These parameters include: 

(i)  Temperature range,  

(ii) Temperature accuracy, 

(iii) Heating/Cooling rate, and 

(iv) Dimensions. 

The materials of most interest in this study were PCMs used for building 

applications. The typical phase change temperature range is in the human comfort zone 

between 18 °C and 28 °C. A comprehensive study of a PCM requires the 

characterisation in a temperature range wider than its phase change range. This 

characterisation range was defined by RAL procedure as shown in Figure 6.3 

(RAL, 2010).  

 

 

 

 

 

 

Figure 6.3: Definition of the characterisation temperature range for PCMs (amended 

from RAL, 2010). 

 

Namely, the onset characterisation temperature should be minimally three times 

the width of phase change range below the onset of phase change and the end 
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characterisation temperature should be three times the phase change width above the 

phase change end temperature (Figure 6.3). Given the definition of the characterisation 

temperature for PCMs, the typical phase change range of PCMs used in building 

applications, and the assumption that the phase change range of a single, good quality 

PCM should be below 3 °C it was concluded that the control facility of the advanced T-

history method should provide the temperature control at least between 9 °C and 37 °C. 

As explained in the previous chapters, the desired accuracy level for temperature 

measurements of PCMs is ±0.5 °C. To obtain such accuracy the sensor calibration in T-

history studies should be regularly performed. Lazaro et al. (2006) suggested that the 

calibration of sensors used in T-history could be performed in a thermostatic bath using 

a pre calibrated sensor as a reference and checked later by comparing the values of 

different sensors when the entire T-history setup is in temperature equilibrium. In this 

case the temperature accuracy of the T-history would depend on several parameters: 

the accuracy of the temperature bath, the accuracy of the pre calibrated sensor, the 

accuracy of the T-history setup, the nominal accuracy of the T-history sensors, and the 

accuracy of the T-history temperature measurement system. Every parameter adds a 

certain level of uncertainty. It was concluded that the best accuracy level can be 

achieved if the number of the aforementioned parameters is minimised. One way to 

achieve this was to implement the control mechanism of the T-history setup in such 

way that it could also be used for the calibration of the T-history sensors. In that case 

the number of uncertainty parameters would be reduced from the initial five to three: 

the accuracy of the T-history control setup, the nominal accuracy of the T-history 

sensors, and the accuracy of the T-history temperature measurement system. Given the 

desired accuracy level for temperature measurements of PCMs it was decided that the 

accuracy of the T-history control facility should be equal or below ±0.5 °C. 

In addition, the recommended value for heating/cooling rates in T-history 

measurements is 1 Kmin-1(±0.1 Kmin-1) as suggested in RAL (2010). Accordingly, this 

value was adopted as the desired heating/cooling rate of the T-history control facility. 

Furthermore, one of the objectives of this project was to investigate the dependence of 

the T-history data on the size of PCM samples. Given the T-history restrictions 

regarding the value of the Biot number the PCM samples need to be placed in narrow 
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long cylinders. Since the diameter of the test tubes needs to be small their volume is 

highly dependent on their height. Consequently, the size of the investigated samples is 

also dominated by the height of the test tubes. Therefore it was determined that the 

height was the most critical dimension of the T-history control facility. Zhang et al. 

(1999) used 180.06 mm long cylinders. Marin et al. (2005) reported that the height of 

their cylinders was 130 mm. Since the objective was to investigate the dependence of 

the T-history data on the size of PCM samples it was decided that at least some test 

tubes need to be longer than 180.06 mm. Consequently, it was assumed that the height 

of the control facility should be above 300 mm. 

The desired specifications of the T-history control modality are summarised in 

Table 6.1. 

Parameter Desired value 

Temperature range Between 9 °C and 37 °C 
Temperature accuracy Below ±0.5 °C 
Heating/Cooling rate Recommended 1 Kmin-1(±0.1 Kmin-1) 
Dimensions Height above 300 mm 

 

Table 6.1: Desired specifications of the T-history control modality. 

 

Given the discussion about the specification parameters for the T-history 

control mechanism it was concluded that such specifications can be guaranteed through 

the usage of a commercial temperature control chamber. Accordingly, an adequate 

environmental chamber was purchased. The selected model was BINDER KMF 115 

(Binder GmbH, Tuttlingen, Germany) shown in Figure 6.4. 

The specifications of the environmental chamber are given in Table 6.2.  

Evidently, the chamber provides the temperature control between -10 °C and 

100 °C which is much wider than the desired range from 9 °C to 37 °C. The control 

inside the selected chamber is assured with high accuracy of ±0.2 °C, again well below 

the earlier specified value of ±0.5 °C. The mean heating rate of the chamber is 

1.3 Kmin-1 and in relatively good agreement with the recommended value of 1 Kmin-1 

(±0.1 Kmin-1). Before the purchase of the environmental chamber, an assumption was 

made that in the case of erroneous PCM data the excess in heating rate could be 

compensated through other means (e. g. insulation of test tubes). The cooling rate is not 

as the recommended value; however it is lower and therefore should provide reduced 
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temperature gradients inside the investigated samples as required in PCM 

measurements. The interior dimensions of the chamber are in a very good agreement 

with the previously imposed height restriction. In addition, the chamber enables precise 

humidity control between 10 %RH and 90 %RH. As previously explained, the 

selection of the BINDER KMF 115 environmental chamber was based on various 

factors. However, the most important criterion was the temperature accuracy since 

±0.2 °C is the value well below the desired accuracy of ±0.5 °C for PCM data. 

 

 

 

 

 

 

Figure 6.4: Binder KMF 115 environmental chamber (amended from Binder GmbH, 

Tuttlingen, Germany). 

 

Parameter Value at 25 °C ambient  

Temperature range Between -10 °C and 100 °C 
Temperature accuracy ±0.2 °C 
Mean heating rate 
Mean cooling rate 

1.3 Kmin-1 
0.5 Kmin-1 

Interior dimensions (W x H x D) 
Exterior dimensions(W x H x D) 

600 mm x 483 mm x 351 mm 
885 mm x 1050 mm x 730 mm 

Humidity range Between 10 %RH and 90 %RH 
 

Table 6.2: Specifications of the BINDER KMF 115 environmental chamber. 
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6.2.2 Investigation and selection of sensing modalities 

As explained in the previous chapter, only a few authors gave some details regarding 

the sensor modalities used in their T-history measurements. Zhang et al. (1999) used 

thermocouples and concluded that the errors in heat capacity data mainly originate 

from temperature measurement errors. Marin et al. (2003) also used thermocouples 

(type T). Marin et al. (2005) used Pt-100 due to its higher precision of ±0.05 °C. The 

authors, however, did not give details regarding the sensor calibration and achieved 

accuracy. Moreover, the other relevant sensor selection criteria were not discussed 

either. Lazaro et al. (2006) discussed the importance of sensor calibration and 

measurement precision for determination of temperature and enthalpy values of PCMs. 

They used type K thermocouples calibrated with the Pt-100 sensor. Günther et al. 

(2009) reported that the typical operational temperature ranges of PCM applications are 

in the order of ±10 °C around the phase change temperature. Moreover, this range in 

practice is often reduced to ±5 °C or less (e.g. in free-cooling applications). This 

implies that the maximum decrease in the temperature uncertainty in PCM 

measurements is very important since it should enable a more optimal utilisation of 

these materials. The decrease in temperature uncertainty can be achieved through the 

usage of properly calibrated and accurate temperature sensors. Mehling et al. (2006) 

stated that the desired accuracy level in temperature measurements of PCMs should be 

equal or below ±0.5 °C. In addition to accuracy, the size of the temperature sensor is 

another important parameter since the sensor should be small. Namely, even the 

smallest sensor inside the PCM sample can act as a nucleating agent and thereby 

change the natural course of the phase change process. This can further result in 

incorrect determination of PCM properties (e.g. the degree of subcooling). For this 

reason it is important to use temperature sensors as small as possible. 

Taking into an account the specifics of the T-history method and the identified 

parameters in terms of accuracy and size few types of temperature sensors have been 

investigated and their characteristics highlighted. 
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6.2.2.1 Thermocouples  

Essentially, thermocouples consist of two wires made of different but homogeneous 

metals or alloys and joined at one end (measuring or hot junction). The free ends of the 

two wires connect to the measuring instrument to form a closed path i.e. the 

thermoelectric circuit in which current can flow (Claggett and Worrall, 1982). After the 

thermocouple wires connect to the measuring instrument, the junction made inside the 

device is identified as reference or cold junction (Figure 6.5). 

 

 

 

 

 

 

Figure 6.5: Thermocouple terminology (amended from Claggett and Worrall, 1982, 

p. 675). 

 

Temperature changes at the measuring junction induce a change in 

ElectroMotive Force (EMF) between the other ends (reference junction) since the 

current flows in the closed thermoelectric circuit (Figure 6.5). This effect was 

discovered by Thomas Seebeck in 1821. As temperature goes up the output EMF i.e. 

the Seebeck voltage of the thermocouple rises. If the reference temperature is known, 

the unknown temperature at the measuring junction can be calculated using 

Equation 6.1: 

 

 

unknown temperature=(measured EMF/Seebeck 

coefficient)+reference temperature. 
(6.1) 

The rise of the measured EMF is not necessarily linear nor the Seebeck 

coefficient (the amount of voltage generated in µV by a one degree temperature 

change) is constant (Claggett and Worrall, 1982). The value of the Seeback coefficient 

is temperature dependent and different for various thermocouple types. Another 

problem regarding the Seebeck coefficient is its low value (sometimes around 
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10 μV°C-1) resulting in weak signals. Namely, the typical industrial transmitters have a 

minimum absolute error of about 0.01 mV i.e 10 μV. Hence it is difficult to obtain a 

measurement using industrial transmitter and some thermocouples, which would have 

less than a 1 °C error. This value is acceptable for higher temperature measurements 

but is not acceptable for measuring low temperatures. Additionally, the Seebeck 

voltage cannot be directly measured since direct connection of e.g. voltmeter with 

copper wires introduces a new thermoelectric circuit in the form of two additional 

metallic junctions. The technique which is used to eliminate the effect of additional 

junctions is called the cold junction compensation and it needs to be implemented in all 

thermocouple measurements (Claggett and Worrall, 1982). 

The advantages of thermocouples compared to other temperature sensors are: 

ability of utilisation in a wide temperature range, robustness, small price, and easy 

availability. The main disadvantages are low accuracy and low nonlinear output 

resulting in weak signals. However, given their advantages and the history of usage in 

previous T-history studies (Marin et al., 2003; Lazaro et al., 2006) it was decided that 

these sensors will be used as the sensing modality in the advanced T-history method, at 

least for comparison purposes. The details about the selected thermocouples and the 

appropriate instrumentation are given in the next chapter. 

 

6.2.2.2 Thermistors  

Thermistors belong into the group of resistance temperature devices. They are based on 

the resistance change in a ceramic semiconductor and have either a Negative (NTC) or 

Positive (PTC) resistance Temperature Coefficient. More usual thermistor types are 

NTC thermistors where their resistance drops nonlinearly with temperature rise. The 

PTCs are more linear, but less sensitive than NTCs (Claggett et al., 2003). The 

resistance-temperature relation can be expressed in the table form with the number of 

resistances associated with different temperatures or in the form of Steinhart-Hart 

equation (Equation 6.2): 

 ),(ln)ln(
1 3 RcRba
T

  (6.2) 
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where T represents the absolute temperature expressed in Kelvins and R the 

thermistor’s resistance at temperature T. Thermistors are usually designated according 

to their nominal resistances at 25 °C. The most common of these ratings are 2.252 kΩ, 

5 kΩ, and 10 kΩ. 

The R(T) relation of a thermistor is negative and highly nonlinear which is one 

of their major drawbacks. Thermistor’s nonlinearity poses a serious problem for 

engineers who need to design their own circuitry. Figure 6.6 illustrates the nonlinearity 

aspects of various temperature sensors clearly showing the main thermistors’ 

disadvantage. 

 

 

 

 

 

 

Figure 6.6: Nonlinearity aspects of various temperature sensors (amended from 

Claggett et al., 2003, p. 668). 

 

However, the difficulty regarding the nonlinearity can be eased by using 

different hardware or software approaches and linearisation techniques depending on 

the application. Additionally, a potential problem that needs to be controlled in a 

thermistor circuit is self-heating. Namely, the electric conditioning circuits associated 

with a thermistor originate a current flow in the sensor. If the current flow is large, the 

heat generated within the thermistor will gradually begin to raise its temperature above 

that of its environment. This will in turn lower its resistance and consequently enable 

more current to flow. The self-heating problem can also be resolved by appropriately 

limiting the current through the thermistor (Claggett et al., 2003). Despite the high 

nonlinearity, thermistors have great advantages in terms of high sensitivity and 

accuracy making them particularly responsive to changes in temperature. Additional 
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advantages are accessibility of small probes and short response time (Claggett at al., 

2003). 

Given their advantages especially in terms of high precision and accuracy these 

sensors were selected as the principal sensing modalities in the implementation of the 

advanced T-history method. The details about the particular sensors and the 

corresponding instrumentation are explained in the next chapter. 

 

6.2.2.3 Resistance temperature detectors (RTDs)  

RTDs as the second type of resistance temperature devices were investigated as well. 

These devices exploit the highly predictable change in the electrical resistance of a 

metallic material due to its temperature changes. As their name indicates, RTDs rely on 

resistance change in a metal. Their resistance rises more or less linearly with 

temperature. The main advantages of these sensors are the wide temperature range of 

utilisation, high accuracy and fairly good linearity. However, due to the disadvantages 

in terms of low sensitivity, relatively long response time, limited availability of small 

temperature probes, and due to their metallic non PCM compatible material properties 

RTDs (including Pt-100) were discarded as the possible sensing modalities for the 

advanced T-history implementation. 

 

6.2.3 Design and development of testing containers 

As explained in the previous chapter, T-history assumes the limitation on the Biot 

number value (Bi=hLC/k < 0.1). Namely, since the parameters like heat transfer 

coefficient (h ~ 5-15 Wm-2K-1 – typical values for free convection) and thermal 

conductivity (k ~ 0.2 Wm-1K-1 – typical value for PCMs) are relatively fixed the Biot 

number predominately depends on the characteristic length LC of the investigated 

bodies. Since the characteristic length represents the volume to surface ratio the Biot 

limitation directly defines the specific geometry of the test containers for the PCM 

sample and reference material test tubes need to be very narrow and long cylinders. 

Zhang et al. (1999) used 180.06 mm long cylinders with the diameter of 10.4 mm. 

Marin et al. (2005) reported that the height of their cylinders was 130 mm and the 
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diameter 10 mm. Given these values, the internal height of the environmental chamber 

(483 mm), the earlier established objective to investigate larger samples in this study as 

well as the discussed Biot restriction it was decided that the test tubes with two 

different heights of 300 mm and 430 mm will be used. Another restriction for the test 

tubes was their transparency. This was necessary to assure the correct placement of 

sensors in advanced T-history measurements. The transparency could be achieved by 

using glass test tubes. Additional requirement was to avoid the use of any sample 

holders to minimise the direct contact between the investigated samples and the 

environment. To achieve this special design of the test tubes had to be made 

(Figure 6.7).  
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Figure 6.7: Cross section of the designed test tubes. 

 

The tubes were designed in the form of long narrow cylinders with the 

appropriate base to enable self-accommodation within the environmental chamber. The 

desired outer diameter (o/d) and wall thickness (d) were set to be as small as possible. 

Once the design was finished the test tubes had to be custom made. The design was 

sent to the well-known glass making company Dixon Glass Limited (Dixon Glass 

Limited, Kent, UK). Given the design scheme and the desired height of the test tubes 

the outer diameter and wall thickness parameters were determined by taking into an 
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account the limitations of the manufacturing process. The outer diameter values were 

12 mm and 15 mm for the corresponding heights of 300 mm and 430 mm (see Figure 

6.8). On the other hand, the corresponding wall thicknesses were set to 1 mm and 

1.2 mm, respectively. The SIMAX glass with the thermal conductivity of 1.2 Wm-1K-1 

was used as the test tube material.  

 

 

 

 

 

 

Figure 6.8: Custom made test tubes. 

 

The specifications of the test tubes are summarised in Table 6.3. 

Test tube  

ID 

Height Outer diameter (o/d) Wall thickness (d) Material 

1 300 mm 12 mm 1 mm Simax glass 
2 430 mm 15 mm 1.2 mm Simax glass 

 

Table 6.3: Specifications of the test tubes. 

 

  



  

114 
 

6.3 Summary 

This chapter described the development of the design strategy and the experimental 

setup of the advanced T-history method.  

The design strategy was explained in terms of the most important actions that 

need to be taken in order to implement the advanced T-history setup. The special 

emphasis was put on the set of design rules that need to be considered prior to any 

developments. These rules were identified using basic PCM measurement premises and 

the restriction imposed by the T-history definition in terms of the Biot number value. 

The majority of the steps that need to be performed for the successful 

development of the advanced T-history method were briefly discussed, while the 

development of the experimental setup of the method was presented in detail. The 

investigation and selection of control and sensing mechanisms were explained in depth 

as well as the design and development of testing containers. All the important 

restrictions imposed on these processes were discussed in detail. The thermocouples 

and thermistors were identified as the types of sensors to be used in the advanced T-

history implementation based on their respective advantages and disadvantages. The 

selection of the particular sensor models as well as the development of the 

corresponding instrumentation systems are the main subject of the next chapter. 
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Chapter 7 

DEVELOPMENT OF THE 

INSTRUMENTATION SYSTEM OF THE 

ADVANCED T-HISTORY METHOD 

 

The development of the instrumentation system was identified as the second 

constructive process in the implementation of the advanced T-history setup. One of the 

main parts of the T-history method is to record the temperature history of the reference 

and the PCM under investigation. Therefore, a proper measurement system had to be 

developed to enable the correct temperature measurements of the investigated samples. 

The development of the instrumentation is closely linked with the validation point in 

the design strategy flowchart (Figure 7.1). As indicated in the previous chapters, the 

value of ±0.5 °C was set as the desired technical goal for the temperature accuracy in 

the PCM related measurements (Mehling et al., 2006). Consequently, this value was 

selected as the validation criterion in the instrumentation development. Moreover, a 

requirement to evaluate any developed instrumentation system in the appropriate 

temperature measurement and redesign it should the desired accuracy target of ±0.5 °C 

is not achieved was adopted. In this way the development of the proper instrumentation 

system was performed in an iterative procedure until the validation criterion was met 

(Figure 7.1). Given the selection of thermocouples and thermistors as the temperature 

sensing modalities in the advanced T-history measurements, as explained in the 

previous chapter, and the temperature accuracy requirement (±0.5 °C) three different 

instrumentation systems had to be developed and validated. The details of the 

development and validation procedures of these systems are discussed in the following 

subsections.  
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Figure 7.1: Constructive steps of the instrumentation development in the design 

strategy flowchart. 

 

7.1 Instrumentation system 1 

Given the history of thermocouple usage in previous T-history studies (Marin et al., 

2003; Lazaro et al., 2006) it was decided that these sensors will be used as one of the 

sensing modalities in the advanced T-history method. Thermocouples are nonlinear 

temperature devices. For this reason a proper instrumentation system had to be 

developed in order to perform temperature measurements. This instrumentation system 

was named instrumentation system 1. The development process of the instrumentation 

system 1 was split into several sub-processes (Figure 7.2). The first of those was the 

selection of the specific sensor device. The reason this sub-process is included in the 

development process is its close relation with the next two stages: linearisation and 

signal conditioning and data acquisition. The second sub-process, linearisation and 

signal conditioning, was one of the most important since it was developed to convert 

the nonlinear and weak thermocouple signal into the signal suitable for acquisition. The 

final stage, the development of the data acquisition system, enabled continuous 

temperature measurements. The details of these sub-processes as well as of the 

validation process will be explained in detail in the following subsections. 
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Figure 7.2: A detailed view of the constructive steps of the instrumentation 

development in the design strategy flowchart. 

 

7.1.1 Sensor selection 

As mentioned in the previous chapter, Marin et al. (2003) and Lazaro et al. (2006) used 

thermocouples in their studies. Marin et al. (2003) used type T thermocouples while 

Lazaro et al. (2006) used type K thermocouples. One of the aims of this project was to 

verify the suitability of thermocouples for T-history temperature measurements. Given 

this aim and the advantages of type K thermocouples in terms of easy availability, 

small size and low price this thermocouple type was selected for the measurements in 

this study. As noted earlier, T-history assumes the limitation on the Biot number value 

(Bi < 0.1), which implies the utilisation of specifically long and narrow cylindrical test 

containers. This therefore requires the usage of small temperature probes. Small and 

thin temperature probes are a prerequisite in this type of measurements also due to the 

nature of PCMs. When the sensor is placed inside the PCM sample it is essential to 

avoid the interference of the sensor and the phase change process. The sensor can act as 

a nucleating agent so it can affect the subcooling degree and suppress the real 

behaviour of the PCM; hence small size of the temperature sensor was one of the main 

selection criteria. An RS 621-2158 (RS Components, Corby, UK) thermocouple type K 
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(Chromel-Alumel type) was selected primarily due to its size (0.2 mm probe diameter), 

and then its robustness and easy availability. The technical specifications of the 

selected sensor are given in Table 7.1. 

Parameter Value 

Thermocouple type K 
Minimum temperature sensed -50 °C 
Maximum temperature sensed 1100 °C 
Accuracy class ±1.5 °C 
Probe diameter 0.2 mm 
Probe length 1000 mm 
Package 

 
 

Table 7.1: Specifications of the RS 621-2158 thermocouple type K sensor. 

. 

Despite the history of thermocouple usage in previous T-history studies, an 

initial assumption that thermocouples were not suitable for T-history temperature 

measurements was made at this stage of the project. Namely, the implicit tolerances of 

thermocouples, without any errors introduced by measurement systems, do not go 

below ±0.5 °C i.e. the value previously set as the desired technical goal for the 

temperature accuracy in the PCM related measurements (Mehling et al., 2006). 

Typically, the measurement system introduces errors on top of the implicit tolerance 

values of the sensors alone. Consequently, the assumption that the desired technical 

goal in terms of temperature accuracy in T-history measurements could not be obtained 

by using thermocouples was adopted as a logical one. However, a proper measurement 

system i.e. the instrumentation system 1 had to be developed and tested to verify the 

initial assumption. 
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7.1.2 Linearisation and signal conditioning 

As explained in the previous chapter, the temperature dependent voltage produced by 

thermocouples cannot be directly measured primarily due to its nonlinearity and low 

value. Additionally, direct connection of thermocouple and voltmeter with copper 

wires introduces a new thermoelectric circuit in the form of two additional metallic 

junctions. Hence, a circuit that enables linearisation and cold junction compensation of 

the thermocouple signals had to be developed. The main part of this circuit was the 

thermocouple amplifier AD595CQ, an Integrated Circuit (IC) purchased from RS 

Components (RS Components, Corby, UK). This IC includes a complete linearisation 

amplifier and thermocouple cold junction compensator on a single chip. It produces a 

high level (10 mV°C-1) output directly from a thermocouple signal. The detailed 

technical specifications of this IC are given in Table 7.2. Apart from linearisation and 

cold junction compensation, an additional conditioning of the thermocouple signal was 

implemented. Namely, the output of the AD595CQ IC was further amplified and then 

filtered to enable better data acquisition of the temperature signal captured by the 

thermocouple. The details of the thermocouple temperature processing circuit are 

shown in Figure 7.3. The circuit was designed using NI Multisim circuit design 

software (National Instruments, Newbury, UK). The complete conditioning of the 

thermocouple signal resulted in three clearly distinguishable stages of the temperature 

processing circuit: linearisation and cold junction compensation, amplification and 

filtering (Figure 7.3). As previously explained, the first stage is implemented through a 

direct connection of the thermocouple (TC_AL and TC_CR mark the connection points 

of type K thermocouple leads) and AD595CQ chip. The amplification was 

implemented using a standard operational amplifier TL084CN IC. This chip has four 

integrated operational amplifiers. One of those was used in the second stage as an 

inverting amplifier with the gain of -13 which was assured by using three resistors, R1 

with the value of 1 kΩ and R2 and R3
 with the values of 12 kΩ and 1 kΩ (Figure 7.3). 

The gain of the inverting amplifier is given by Equation 7.1: 
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Parameter Value 

+Vs to –Vs maximum rating 36 V 
Common mode input voltage -Vs-0.15 V (min), +Vs (max) 
Differential input voltage -Vs (min), +Vs (max) 
Operating temperature range -55 °C to 125 °C 
Calibration error at 25 °C ±1 °C 
Package details  

 

 
 

Table 7.2: Specifications of the AD595CQ IC. 

 

The other three operational amplifiers were used as voltage followers 

preventing the loading between different stages of the thermocouple temperature 

processing circuit (Figure 7.3). In total all four operational amplifiers of the TL084CN 

IC were used in the thermocouple conditioning circuit. The detailed technical 

specifications of the TL084CN IC are given in Table 7.3. The final, filtering stage was 

implemented by using a simple RC low pass filter with the resistor R4 (1 MΩ) and the 

capacitor C1 (100 nF) as shown in Figure 7.3. The values of R4 and C1 were selected in 

order to tune the cut-off frequency of the low pass filter, given by Equation 7.2: 

 

 142
1

CR
f c 
  (7.2) 

Namely, the thermocouple temperature signal is a Direct Current (DC) signal in 

its nature. Given the nature of the thermocouple temperature signal, the laboratory 

environment and the availability of RC components the low pass filter was designed to 

have a cut-off frequency of 1.59 Hz. The frequency response of the RC low pass filter 

is given in Figure 7.4. The filter was designed to cut the high frequencies from the 

thermocouple DC signal. The reason a simple RC low pass filter was used in this stage 

was the assumption that most of the signal filtering will be performed by using digital 

filters. The design and implementation of digital filtering is explained in the 

section 7.1.4. 
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Figure 7.3: Thermocouple temperature processing circuit. 
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Parameter  Value 

Supply voltage maximum rating ±18 V 
Input voltage maximum rating ±15 V 
Input offset voltage at 25 °C 3 mV (typ), 10 mV (max) 
Input offset current at 25 °C 5 pA(typ), 100 pA (max) 
Input bias current at 25 °C 30 pA(typ), 400 pA (max) 
Common mode rejection ratio 70 dB (min), 86 dB (typ) 
Operating temperature range 0 °C to 70 °C 
Package details  

 
 

 

 

 
 

Table 7.3: Specifications of the TL084CN IC. 

 

 

 

 

 

 

 

 

Figure 7.4: Frequency response of the RC low pass filter of the thermocouple 

temperature processing circuit. 

 

Additionally, given the DC nature of the thermocouple temperature signal the 

sampling frequency of the signal was set to be 15 Hz. This frequency value was 

selected as suitable to preserve the quality of the signal given the Nyquist-Shannon 

sampling theorem.  
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Apart from the thermocouple temperature processing system, an important part 

of the instrumentation system 1 was the power source. Given the ICs used for the 

thermocouple signal conditioning the standard laboratory scale ISO-TECH IPS-4303 

digital DC power supply (RS Components, Corby, UK) was used to power the 

temperature processing circuit with the dual ±12 V voltage supply (Figure 7.3). The 

specifications of the power supply instrument are given in Table 7.4. 

Parameter Value 

Variable DC voltage output 0-30 V 
Current output 3 A (max) 
Operating temperature range 0 °C to 40 °C 
Package details 

 

 

 
 

Table 7.4: Specifications of the ISO-TECH 4303 digital DC power supply. 

 

Once the thermocouple temperature processing circuit was designed and built a 

proper Data AcQuisition (DAQ) system had to be developed. The details of this system 

are explained in the next section. 

 

7.1.3 Data acqusition 

The data acquisition system was partially implemented in hardware and partially in 

software. Namely, the 16-bit NI Universal Serial Bus (USB) 6212 data acquisition card 

(National Instruments, Newbury, UK) was used in the hardware part of the system. The 

card has 16 single-ended i.e. 8 differential analogue input channels. The relevant 

technical specifications of the card are given in Table 7.5. 

This card was selected because of its USB interface which provided an easy 

plug and play connection with the desktop personal computer (PC) to perform the data 

acquisition. The PC used for the data acquisition was a Dell Optiplex 755 Desktop PC 

(Dell, Round Rock, Texas), equipped with the 1.6 GHz Intel Pentium Dual Core 
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processor, 1 GB of Random Access Memory (RAM), and 80 GB hard drive. The PC 

was able to detect and install the DAQ card automatically once the card was connected 

through the USB interface. Another important feature of the data acquisition card was 

the possibility of complete software configuration. 

Parameter Value 
Analogue input 
channels 

16 (single-ended), 8 (differential) 

Resolution 16 bit 
Sample rate 400 kSs-1 
Maxium voltage range -10 V to 10 V 
Package details 

 

 

 
 

Table 7.5: Specifications of the NI USB 6212 DAQ card. 

 

The software part of the data acquisition system was implemented in NI 

LabVIEW version 8.5 (National Instruments, Newbury, UK). The LabVIEW software 

environment is often used in conjunction with NI DAQ cards in measurement and 

control systems. The aim of the data acquisition software was to enable data sampling 

at the specified sampling frequency as well as the output file data storage. 

Consequently, the proper code in the form of the LabView Virtual Instrument (VI) had 

to be implemented. The block diagram of the developed virtual instrument 

(PCM_DAQ.vi) is given below (Figure 7.5). 
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Figure 7.5: Block diagram of the PCM_DAQ.vi. 

 

The implemented PCM_DAQ.vi is rather simple given that the LabVIEW’s 

built-in express VIs were used in its implementation. T-history measurements require 

the acquisition of temperature signals. These signals are DC signals in their nature. 

Given the nature of the selected sensing modalities (thermocouples and thermistors) it 

was clear that the signals to be measured in the advanced T-history studies will 

essentially be analogue voltages. Hence, one of the most important features of the 

developed PCM_DAQ.vi was to enable the DAQ card for the sampling of analogue 

voltages. This feature was implemented through the usage of LabVIEW’s built-in DAQ 

Assistant express VI (Figure 7.5). The express VI provides the necessary support for 

software configuration of the DAQ cards. It offers the possibility to adjust several 

parameters in order to properly configure the acquisition of the required signals 

(Figure 7.6). The most important settings that can be adjusted by using this VI are 

Channel settings and Timing Settings (Figure 7.6). In the channel settings one can 

configure the type and the number of channels i.e. signals to be sampled. Furthermore, 

the input range and the units of the selected signals can also be configured as well as 

their terminal settings. In the timing settings the acquisition mode, the sampling rate, 

and the size of the DAQ card buffer (samples to read) can be adjusted.  
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Figure 7.6: The configuration panel of the LabVIEW’s DAQ Assistant express VI. 
. 

As explained earlier, given the expected T-history measurements and 

temperature signals the PCM_DAQ.vi was supposed to enable the acquisition of 

multiple analogue voltage signals. One of the parameters expected to change between 

T-history measurements was the number of sampled channels on the DAQ card i.e. the 

number of temperature signals and the other parameters were the sampling rate and the 
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input range of the signals. For this reason, it was concluded that the DAQ Assistant 

express VI should be used in PCM_DAQ.vi since it provided more than enough data 

acquisition settings. Naturally, the sampling rate, the number of channels, their input 

range and consequently the size of the DAQ card’s buffer had to be adjusted before 

each T-history measurement. These four parameters were adopted as variable in the 

PCM_DAQ.vi. However, their adjustment represented a rather quick and easy task 

when the DAQ Assistant express VI was used. The other parameters, labeled as the 

fixed ones, were adjusted only once. These included the signal units, the terminal 

configuration of the channels, and the acquisition type. The signal units were set to 

Volts, the channel terminals were configured as Differential, the data acquisition was 

configured as Continuous. 

Another important feature of the PCM_DAQ.vi was to enable the storage of the 

acquired data into an output file. This was easily implemented by using the Write To 

Measurement File express VI (Figure 7.5). This VI also provides the user with the 

option to select few parameters regarding the data storage (Figure 7.7). 

In PCM_DAQ.vi the Write To Measurement File express VI was configured in 

such way to enable the user to choose the file for the storage of data. Moreover, in the 

case of the selection of an already existing data file, the software was configured to 

rename the existing file. The text file was selected as the desired file format. One 

header option in the entire storage file was also selected. The express VI was set to 

only store the actual voltage signals without the time data since those could be easily 

recovered based on the sampling frequency. 

The last implemented feature in the PCM_DAQ.vi was to display the acquired 

data on the waveform chart (Figure 7.5). 

The data acquisition, data storage, and data display were implemented to run 

continuously inside the while loop in the PCM_DAQ.vi. The continuous execution of 

the VI could be stopped once the stop button was pressed (Figure 7.5). 

The implementation of the PCM_DAQ.vi was the final step in the development 

of the instrumentation system 1. Once the instrumentation system was fully designed 

and assembled as described in sections 7.1.1-7.1.3 its validation could be performed. 
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Figure 7.7: The configuration panel of the LabVIEW’s Write To Measurement File 
express VI. 

 

7.1.4 Validation 

As explained at the beginning of this chapter, every instrumentation system had to be 

properly validated. This section explains the validation procedure for the 

instrumentation system 1. As previously noted, the value of ±0.5 °C in terms of the 

required temperature accuracy was selected as the validation criterion in the 

instrumentation development. Hence, in order to test the temperature accuracy of the 

instrumentation system 1 some temperature measurement had to be performed. It was 

decided that the instrumentation system 1 will be tested in the T-history measurement 

of a certain PCM. The selected PCM was a well-known commercially available 

organic material from Rubitherm’s RT paraffin series, the RT21 (Rubitherm GmbH, 

Berlin, Germany). The material properties of RT21 are given in Table 7.6. 
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Property Value 

Melting area 
Congealing area 
Typical phase change temperature 

18-23 °C 
22-19 °C 
21 °C 

Heat storage capacity (15 to 30 °C) 134 kJkg-1 
Specific heat capacity 2 kJkg-1K-1 
Density solid (at 15 °C) 
Density liquid (at 25 °C) 

0.88 kgl-1 
0.77 kgl-1 

Thermal conductivity 0.2 Wm-1K-1 
 

Table 7.6: Material properties of organic paraffin RT21. 

 

The T-history measurement of RT21 was performed using the advanced T-

history method based on the experimental setup explained in Chapter 6 and the 

instrumentation system 1.  

The explanation of the basic T-history setup was given in Chapter 5 

(Figure 5.6). It was explained that in any T-history measurement the sample and 

reference materials, placed in test tubes of a defined geometry (cylindrical) and at the 

same initial temperature T0 (T0>Tpc=Tm), need to be subjected to the ambient 

temperature T∞,a(t) or simply Ta (Ta<Tpc). Furthermore, their temperature history needs 

to be recorded until both samples reach equilibrium with the ambient so the recorded 

curves can be compared and the heat release/storage capacity of the sample determined. 

Accordingly, the very first PCM measurement using the concepts of the advanced T-

history method, developed in this study, needs to be explained in details at this point. 

Given this fact, it is only reasonable to firstly present the advanced T-history setup in 

details. This was not done earlier in the thesis because the presentation required the 

development of at least one measurement system. Provided that the development of the 

instrumentation system 1 was entirely explained, the details of the complete advanced 

T-history setup can be presented here. 

Figure 5.6 showed the schematic diagram of a general T-history setup. 

However, as noted earlier, the experimental chamber Binder KMF 115 was used as the 

control modality in the advanced T-history method. This resulted in marginally 

different perspective of the advanced T-history setup than that of the standard setup 

given in Figure 5.6. Namely, the boundary between the exterior and the interior of the 

setup was distinctly established here.  
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The exterior of the advanced T-history setup is shown in Figure 7.8. 

 

 

 

 

 

 

Figure 7.8: Exterior of the advanced T-history setup. 

 

In this T-history implementation, the main parts of the exterior setup include: 

the environmental chamber, the sensors, the instrumentation system, the power supply, 

the DAQ card, and the personal computer (Figure 7.8). 

The functional boundary between the exterior and interior setup is established 

through the port positioned on the left side of the environmental chamber (Figure 7.8). 

This port has a silicon plug which provides a secured placement of the sensors used in 

measurements as well as the hermetic seal of the chamber once the sensors are indrawn 

inside the chamber.  
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The interior of the advanced T-history setup is shown in Figure 7.9. 

 

 

 

 

 

 

Figure 7.9: Interior of the advanced T-history setup (amended from Stankovic and 

Kyriacou, 2013, p. 2). 

 

Here, as in the basic T-history setup, the PCM and the reference material are 

put inside the test tubes and placed in the temperature controlled environment i.e. in the 

chamber’s interior. The design, development, and specifications of the test tubes are 

explained in detail in section 6.2.3 and therefore not discussed here. However, it is 

important to mention that the test tubes were not directly placed on the chamber’s floor 

but on the 50 mm thick polystyrene board to isolate their bottoms from the chamber’s 

metallic surface.  

The sensors (Sensors 1 and 2 in Figure 7.9) used for the temperature 

measurements of the samples (PCM and reference distilled water samples) were placed 

inside the test tubes along the central axes of the tubes and secured with the rubber 

stoppers used to seal the tubes. Namely, very small diameter holes were made with a 

needle through the center of the 10 mm long rubber stoppers. The sensors were 

tunneled through the holes and tightly secured at a depth of 120 mm from the top of the 

test tubes. A separate temperature sensor, identical with the ones used in the two 
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samples, was used to record the temperature inside the chamber (Sensor 3 in 

Figure 7.9). At least three sensors were required in any measurement using the 

advanced T-history method. 

Given the presented specifics of the advanced T-history setup it is possible to 

describe the very first PCM measurement performed on the RT21 PCM in order to 

validate the instrumentation system 1. As noted earlier, some measurement parameters 

are fixed and defined in the explanation of the experimental setup, instrumentation and 

data acquisition systems. Other parameters are changeable between measurements. 

Accordingly, the specifics including the variable measurement parameters of the RT21 

PCM measurement using RS 621-2158 (RS Components, Corby, UK) type K 

thermocouples are described now. 

In the very first PCM measurement the RT21 and the reference material 

(distilled water) were put in 300 mm long test tubes and subjected to a temperature 

program with alternating heating and cooling cycles between 11 °C and 30 °C. At the 

beginning of every 2 h long cycle the chamber’s temperature was sharply changed 

between the two mentioned temperature points. Given the size of the test tubes, it was 

presumed that both samples will reach the thermal equilibrium with the chamber’s 

environment within the 2 h cycle. The samples’ temperatures and the chamber’s 

temperature were continuously recorded resulting in totally three (no_of_chan) data 

channels. Prior to the measurement, a prototype signals acquisition and pre-processing 

system for these three channels was built on the breadboard. Every channel on this 

prototype was implemented according to the schematic given in Figure 7.3. The three 

resulting signals from the developed prototype, although single-ended in nature, were 

connected to the differential inputs of the NI USB 6212 DAQ card (NI, Newbury, UK) 

and recorded using the developed PCM_DAQ.vi. The sampling frequency 

(sampling_freq) was 15 Hz. The expected input range of the signals was set between -

10 V and 10 V. Finally, the size of the DAQ card’s buffer (buffer_size) was set to 54 

according to the formula given by Equation 7.3: 

  .___2.1_ chanofnofreqsamplingsizebuffer   (7.3) 

The results obtained in the described measurement are given in the following 

subsection.  
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7.1.4.1 Results and discussion 

The raw results from the RT21 T-history measurement using instrumentation system 1 

captured by the PCM_DAQ.vi are displayed in Figure 7.10. 

 

 

 

 

 

 

 

 

 

Figure 7.10: Cooling (a) and heating (b) cycle in RT21 T-history measurement using 

instrumentation system 1 – raw results (ENV – environmental temperature, PCM – 

temperature of PCM sample, H2O –temperature of reference sample).  
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The signals captured by PCM_DAQ.vi show the increase in voltage in a 

cooling cycle (Figure 7.10a) and decrease in a heating cycle (Figure 7.10b). This is due 

to the negative gain of -13 in the amplification stage of the instrumentation system 1 

(Figure 7.3). Three different signals were captured in both cycles: temperature of the 

chamber’s environment (ENV in Figure 7.10), temperature of the PCM (PCM in 

Figure 7.10), and temperature of the reference material i.e. distilled water (H2O in 

Figure 7.10). It is evident that the captured signals are noisy, especially the ones 

representing the environmental and the temperature of the PCM. Moreover, the signals 

don’t reach the equilibrium state at the beginning and at the end of each cycle as 

expected. Hence, this could be justified by the nature of the raw signal (voltage) and 

the fact that equilibrium should be expected only in the case of temperature values. 

Repetitive measurements using the above mentioned signal acquisition and pre-

processing system have consistently produced low quality signals and therefore it was 

deduced that the instrumentation system 1 cannot meet the validation criteria (±0.5 °C 

accuracy). Nevertheless, the above presented raw results were subjected to some post-

processing in order to obtain the temperature data. The post-processing of the signals 

was done using MATLAB. Considering the gain used in the amplification stage and the 

fact that the AD595CQ chip produces an output of 10 mV°C-1 the conversion between 

voltage (expressed in V – voltage) and temperature (expressed in °C – temperature) for 

the obtained signals (ENV, PCM, and H2O in Figure 7.10) was rather easily 

implemented using Equation 7.4. 

 

 mV

voltage

mVG

voltage
etemperatur

101310 



  (7.4) 

The temperature data obtained from the raw voltage results after the conversion 

are given in Figure 7.11.  

Moreover, the Samples scale (Figure 7.10) was converted into the Time scale 

(Figure 7.11) by using the sampling frequency value of 15 Hz in the post-processing 

phase.  
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Figure 7.11: Cooling (a) and heating (b) cycle in RT21 T-history measurement using 

instrumentation system 1 – temperature results (ENV – environmental temperature, 

PCM – temperature of PCM sample, H2O – temperature of reference sample).  
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The temperature data reflect a similar perspective as the voltage data. Apart 

from noise, it is clear that the signals don’t reach the equilibrium state at the beginning 

and at the end of each cycle as expected at temperature levels of 30 °C and 11 °C. 

However, separately observed each signal shows a similar deviation at both 

temperature levels in both cooling and heating cycles (ENV – the smallest deviation, 

PCM – slightly greater deviation and H2O – the greatest deviation Figure 7.11). For 

this reason it was assumed that the observed deviations at in advance known 

temperatures of 30 °C and 11 °C could be used to calibrate the thermocouple signals. 

However, in order to achieve this additional post-processing had to be performed. 

As mentioned in section 7.1.2 the reason a simple RC low pass filter was used 

in the filtering stage of the instrumentation system was the assumption that most of the 

signal filtering could be performed digitally. Hence, at this point a digital low pass 

filter with the cut-off frequency close to 0 Hz had to be designed and implemented to 

extract the explicit DC temperature signal originally captured by the thermocouples. 

The developed filter was a MATLAB’s low pass generalised Butterworth filter based 

on the maxflat function. This filter type was selected due to its optimal maximally flat 

response. The cut-off frequency of the filter was 0.025 Hz. Its frequency response is 

given in Figure 7.12.  

 

 

 

 

 

 

Figure 7.12: Frequency response of the digital low pass filter.  
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The complete implementation details of the digital low pass filter in the form of 

the developed MATLAB’s function are given in the APPENDIX A1.  

Once the digital filtering was performed on the signals shown in Figure 7.11 the 

temperature calibration was enabled. Namely, a rather simplistic calibration protocol 

was developed. The mean value of the signal portion where the expected temperature 

value was supposed to be 30 °C was calculated. This was also performed for the signal 

portion with the intended value of 11 °C. Once these means were calculated their 

deviations from 30 °C and 11 °C were calculated (signal_dev_30 and signal_dev_11 

values). These values were used to readjust the original signals by adding the value of 

the calibration parameter (calibr_par), calculated using Equation 7.5, to them.  

 

 2
11__30__

_
devsignaldevsignal

parcalibr


  (7.5) 

The calibration parameter was used with the sign “+” or “-” depending on the 

original direction of the signal’s deviation (e.g. if the signal value at the expected 30 °C 

was higher than 30 °C the “-” sign was used in the calibration procedure, otherwise the 

“+” sign was used). 

The temperature calibration protocol was implemented for all three signals 

(ENV, PCM, and H2O) in both heating and cooling cycles. The obtained temperature 

results after the digital filtering and calibration are presented in Figure 7.13.  

The signals in Figure 7.13 are of much better quality than those shown in 

Figure 7.11 especially the H2O signals which are nicely smoothed after the filtering. 

The filtering of initially much noisier ENV and PCM signals resulted in relatively non 

smooth data (Figure 7.13). The non-smoothness of these signals also affected the 

calibration procedure since the evaluation of the aforementioned mean values was 

affected by it as well as the corresponding calibr_par value. In summary, the estimated 

typical phase change temperature of RT21 in the case of cooling was 19.9 °C and in the 

case of heating 23.3 °C. This values deviate from 21 °C, the typical phase change 

temperature of RT21 as given by the manufacturer (Rubitherm GmbH, Berlin, 

Germany).  
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Figure 7.13: Cooling (a) and heating (b) cycle in RT21 T-history measurement using 

instrumentation system 1 – filtered and calibrated temperature results (ENV – 

environmental temperature, PCM – temperature of PCM sample, H2O – temperature of 

reference sample).  
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The deviations in both cases with the deviations from the expected equilibrium 

temperatures (max ±1.9 °C) by far exceed the value of ±0.5 °C, previously adopted as 

the validation criterion of the instrumentation system. Hence, confirming the initial 

assumption that in terms of accuracy thermocouples were not suitable for the T-history 

temperature measurements. It was decided that the instrumentation system 1 is to be 

disregarded in any future PCM related measurement. The system was labeled as “not 

accurate enough” to be used in the advanced T-history method. 

In addition, the thermocouples were also labeled as inappropriate sensing 

modalities to be used in the advanced T-history measurements, primarily due to their 

noise related issues. Consequently, no other thermocouple based instrumentation 

system was developed. Nonetheless, the proper instrumentation necessary for the 

implementation and successful application of the advanced T-history method had to be 

found. Accordingly, a different type of temperature sensors i.e. thermistors were 

considered. Hence, the development of the thermistor based instrumentation systems is 

thoroughly explained in the following sections. 

 

7.2 Instrumentation system 2 

One of the principal reasons for the development of the advanced T-history method 

was to enable more accurate characterisation of PCMs principally in terms of 

temperature and consequently in terms of heat release/storage capacity. As explained in 

Chapter 6, thermistors have great advantages over other common temperature sensing 

modalities due to their accuracy and high sensitivity making them particularly 

responsive to changes in temperature as required in T-history measurements. Another 

important advantage is the accessibility of small probes since small sensor size is also 

one of the provisional requirements in PCM related measurements. Given this 

thermistors were selected as the principal sensing modalities in the implementation of 

the advanced T-history method.  

The main disadvantage of thermistors is their high nonlinearity. Consequently, 

a proper instrumentation system had to be developed to enable the temperature 

measurements. This instrumentation system was named instrumentation system 2. The 
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development process of the instrumentation system 2 was split into the same sub-

processes as the development of the previously described instrumentation system 1: the 

sensor selection, linearisation and signal conditioning, and data acquisition 

(Figure 7.2). The details of these sub-processes as well as of the validation process will 

be explained in the following subsections. 

 

7.2.1 Sensor selection 

Once thermistors have been selected as the principal sensing modality in the 

development of the advanced T-history method a specific thermistor had to be chosen 

to perform the temperature measurements. As noted earlier, T-history requires the 

utilisation of narrow cylindrical test containers and small temperature probes. 

Moreover, the sensors need to be small to avoid the interference with the phase change 

process. Hence, at this point the sensor size was the main selection criterion. An NTC 

MA100BF103A thermistor model with a sensitivity of 5 %°C-1 and a 0.762 mm 

diameter probe was selected (Newark Corporation, Newark, New Jersey). The 

technical specifications of the sensor are given in Table 7.7. 

Parameter Value 

Resistance at 25 °C 10 kΩ 
Sensitivity 5 %°C-1 
Minimum temperature sensed 0 °C 
Maximum temperature sensed 50 °C 
Accuracy class ±0.1 °C 
Probe diameter 0.762 mm 
Probe length 609.6 mm 
Package  

 

 

 
 

Table 7.7: Specifications of the NTC MA100BF103A thermistor. 
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Given the nonlinearity of thermistors, a proper linearisation and signal 

conditioning circuit had to be designed and developed once the particular sensor was 

selected. The details of the linearisation and conditioning procedures are discussed in 

the following subsection. 

 

7.2.2 Linearisation and signal conditioning 

As explained in the previous chapter, thermistors are essentially resistive elements 

whose resistance changes with temperature. The resistance-temperature relation of 

thermistors can be expressed in various forms. For the selected MA100BF103A sensor, 

the temperature dependence of the thermistor resistance Rt is given by the table of 

resistances. Its nominal resistance at 25 °C is 10 kΩ. Given that the MA100BF103A is 

an NTC thermistor, its Rt(T) relation is negative and highly nonlinear preventing 

straightforward temperature measurements. Hereof, a linearisation circuit as the main 

part of the instrumentation system 2 had to be developed.  

The principle function of the linearisation circuit was to transform the nonlinear 

thermistor’s resistance-temperature change into a linear voltage-temperature 

dependency. The accuracy of such transformation depended on various factors 

including, the circuit itself, the circuit component values, and the linearising 

temperature range. In this study the linearising range was fixed between 10 °C and 

39 °C to match the application requirements i.e. the temperature range between 9 °C 

and 37 °C as discussed in section 6.2.1. The linearising temperature range was 

marginally shifted in comparison to the application temperature range because the 

majority of the measured temperatures were expected to fall in the upper portion of the 

application range. Considering that the linearising range was fixed, accurate 

temperature measurements had to be made through the development of proper circuits 

with optimal component values. 

Various hardware linearisation techniques have been developed over the years 

based on voltage divider or bridge circuits as reported by Tsai et al. (2009) or 555 

timers as reported by Nenova and Nenov (2009) as well as different software solutions 

as indicated by Khan et al. (2002). However, at the time the instrumentation system 2 

was being developed there was no reported documentation on the utilisation and 



 

142 
 

evaluation of these linearisation techniques in the T-history related PCM 

measurements. Therefore, a certain linearisation technique had to be implemented.  

One of the commonly used thermistor linearisation techniques is the circuit 

based on the Wheatstone Bridge (WB) configuration. Therefore this circuit was 

selected to implement the linearisation part of the instrumentation system 2.  

The details of the WB based thermistor temperature processing circuit are 

shown in Figure 7.14. In the linearisation stage of the circuit the thermistor 

(NTC_Thermistor) was placed in a simple WB configuration with the resistors R1, R2, 

and R3 (Figure 7.14). Prior to the development of the linearisation circuit the optimal 

values of the R1, R2, and R3 resistors had to be determined. Namely, the aim was to 

provide fine linearisation and accuracy through minimisation of the thermistor’s self-

heating and nonlinearity errors. To achieve this few restrictions were adopted on top of 

the design rules and the restrictions imposed by the experimental setup, as explained in 

Chapter 6. The first and much stronger new restriction was to keep the thermistor’s 

self-heating error ΔT below 0.05 °C in order to keep the sensor from permanent 

damage. This error defines the value of the thermistor’s maximum permissible current 

Imax as indicated by Equation 7.6: 

 

 

,
min,

max
tR

TC
I


  (7.6) 

where C denotes the thermistor’s dissipation constant. Critical value (in air) of this 

constant for the selected thermistor is 2.5 x 10-3 W°C-1 (Newark Corporation, Newark, 

New Jersey). Rt,min denotes the thermistor’s minimal resistance in the operating 

temperature range. The thermistor’s maximum permissible current Imax can be 

calculated using Equation 7.6, as was done here, or it can be given as part of the 

thermistor’s specification. In any case, the adopted restriction can be expressed in the 

form of Equation 7.7:  

 

 

,maxIIt   (7.7) 

where It denotes the thermistor’s operating current.  
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Figure 7.14: The WB based thermistor temperature processing circuit. 
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The second newly adopted restriction was to minimise the non-linearity errors. 

This implied the linearisation of the OUTPUT voltage-temperature characteristic (see 

Figure 7.14) or otherwise known as the transfer function f(T). The f(T) function is 

linear in a particular region if its second derivative with respect to temperature equals 

zero in that same region as shown in Equation 7.8: 

 

 
.0

)(
2

2





T

Tf
 (7.8) 

Due to the rather complicated form of f(T) which includes three unknowns and 

one variable parameter Rt in the case of WB linearisation circuit the determination of 

the second derivative analytically was identified as non-feasible; therefore a numerical 

approach was used to determine the optimal values of the resistors R1, R2, and R3.  

Prior to the explanation of the concrete steps undertaken to evaluate the optimal 

values of R1, R2, and R3 it is essential to mention that the additional restriction to keep 

the supply voltage VCC equal to the standard value of 5 V was adopted. This was done 

in order to be able to use a simple mobile charger to power the instrumentation system 

2 and consequently minimise the system’s power dissipation. The mobile charger 

powering solution was adopted as more convenient than the laboratory power supply 

used for the instrumentation system 1.  

The selection of the fixed supply level of 5 V is important since it affected the 

calculation of the optimal values for R1, R2, and R3. However, prior to these 

calculations the development of the auxiliary power circuit (Figure 7.15) which 

enabled the utilisation of the mobile charger as the sole power supply needs to be 

explained. 

Namely, mobile chargers usually output a single supply voltage floating around 

the level of 5 V. The auxiliary power circuit (Figure 7.15) was developed to stabilise 

the output of the mobile charger at a sharp 5 V±10 % level. To achieve this 

MC7805CT voltage regulator chip (RS Components, Corby, UK) was used with the 

selected values of specific input and output capacitors (Figure 7.15). The technical 

specifications of the chip are given in Table 7.8. The configuration similar to the one in 

Figure 7.15 was seen in few Power Supply Units (PSUs) of old disassembled 

computers. It was presumed that such configuration will be suitable to provide the 
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necessary power to the instrumentation system 2 given the inherently low thermistor 

currents.  

 

 

 

Figure 7.15: Auxiliary power supply circuit.  

 

Parameter  Value 

Input voltage 35 V (max) 
Output voltage 5 V  
Output voltage tolerance ±4 % 
Output current 1 A (max) 
Operating temperature range 0 °C to 125 °C 
Package details  

 

 

 

 
 

Table 7.8: Specifications of the MC7805CT IC. 

 

Once its design was completed the auxiliary power supply circuit was 

implemented on the breadboard and kept ready for any thermistor based PCM 

measurement.  

Given the explanation of the power circuit the estimation of the optimal values 

for the R1, R2, and R3 resistors in the WB based thermistor temperature circuit can now 

be explained in detail.   
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Since a WB is essentially a form of voltage divider the adopted limitation of the 

thermistor’s self-heating error and consequently the maximum permissible current Imax 

automatically imposed the restriction on the value of R3. This restriction is expressed 

by Equation 7.9: 

 

 

,min,
max

3 t
cc R

I

V
R   (7.9) 

where Rt,min represents the minimum value of the thermistor’s resistance which in the 

case of NTC thermistors occurs at the highest operating temperature. Once the 

calculations were made it was clear that R3 needs to be higher than 24.78 kΩ. This 

restriction did not allow any flexibility for the reduction of non-linearity errors of the 

OUTPUT voltage (see Figure 7.14). Namely, a WB based linearisation model was 

developed in MATLAB to determine the optimal values of the components R1, R2, and 

R3 by taking into the account all the previously discussed restrictions. The 

implementation details of the model are given in the APPENDIX A2. The 

implementation of all the restrictions apart from the one expressed by Equation 7.8 was 

rather straightforward. As for the implementation of the Equation 7.8 the determination 

of the second derivative analytically was identified as non-feasible as previously 

discussed in this section. Therefore a numerical approach was used. Namely, the 

restriction regarding the nonlinearity error minimisation was implemented through the 

determination of the f(T) dependency for different combinations of circuit component 

values. Then the transfer function was fitted using the least square method and the 

optimal component values were determined based on the best linear fitting, i.e. the one 

that produced the minimal norm of the residuals.  

The MATLAB model showed that any higher resistance of R3 than the minimal 

value prescribed by Equation 7.9 increases the non-linearity error i.e. the norm of 

residuals. The model showed that the circuit configuration is such that the minimisation 

of the self-heating error highly restricts the minimisation of the nonlinearity errors.  

Following the model results, the value of 25 kΩ was selected for the resistance 

R3. This gave the fixed value for the voltage Vb (see Figure 7.14) and completely 

determined the shape of the transfer function f(T). Further on, the only possible 

manipulation, modification of the voltage Va, was done in order to shift the OUTPUT 
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voltage (see Figure 7.14) to a range more suitable for measurements from 0.8 V to 

2.2 V. This was done by using the values of 15 kΩ and 24 kΩ for R1 and R2.  

Once the optimal values for the WB resistors were determined additional signal 

conditioning was performed. The output of the WB is a differential signal. Hence, in 

the amplification stage a differential amplifier had to be designed. This was achieved 

through the utilisation of the TLE2024CN operational amplifier chip in a differential 

amplifier configuration (Figure 7.14). The technical specifications of this chip are 

given in Table 7.9.  

Parameter  Value 

Supply voltage maximum rating ±18 V (dual), 5 V(single) 
Input voltage maximum rating ±15 V 
Input offset voltage at 25 °C (Vcc=5 V) 1.1 mV (max) 
Input offset current at 25 °C (Vcc=5 V) 0.6 nA(typ), 6 nA (max) 
Input bias current at 25 °C (Vcc=5 V) 45 nA(typ), 70 nA (max) 
Common mode rejection ratio 
(Vcc=5 V) 

80 dB (min), 90 dB (typ) 

Operating temperature range 0 °C to 70 °C 
Package details  

 
 

 

 

 
 

Table 7.9: Specifications of the TLE20244CN IC. 

 

The principal reason this chip was selected was its relatively good performance 

with the single 5 V supply provided by the mobile charger as discussed before. The 

values for the resistor elements R4, Rf, R5, and Rg were selected in such way that the 

gain of the differential amplifier (Equation 7.10) equalled one and therefore the 

OUTPUT of the entire circuit equalled the output voltage of the WB bridge 

(Figure 7.14). 

 

 4R

R
G

f  (7.8) 
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After the amplification stage the filtering stage was designed. The used low 

pass RC filter had the same features as the one in the filtering stage of the 

instrumentation system 1 and therefore its details are not discussed here to avoid 

repetition. Also, as in the instrumentation system 1, the voltage followers were used to 

prevent the loading between different stages of the WB based thermistor temperature 

processing circuit (Figure 7.14). The final OUTPUT of the circuit was a single-ended 

voltage.  

 

7.2.3 Data acquisition 

The same elements including the NI USB 6212 DAQ card and the developed 

PCM_DAQ.vi were used for the data acquisition in all measurements utilising the 

instrumentation system 2. Consequently, the details of the data acquisition are not 

discussed again. However, the variable parameters of the data acquisition discussed in 

section 7.1.3 will be mentioned prior to each measurement. 

 

7.2.4 Validation 

As in the case of the instrumentation system 1, the instrumentation system 2 had to be 

validated against the ±0.5 °C validation criterion. To perform the validation the T-

history measurement of the RT21 PCM was conducted. The material properties of 

RT21 were previously given in Table 7.6. The T-history setup in this measurement was 

very similar to the one explained in section 7.1.4 with the exception of few minor 

changes. Instead of using the laboratory power supply (see Table 7.4), the 

instrumentation system 2 was powered by the mobile charger using the auxiliary power 

supply circuit (see Figure 7.15). The reasons behind such arrangement were discussed 

in the linearisation and signal conditioning section 7.2.2.  

Furthermore, the RT21 and the reference material (distilled water) were put in 

the same test tubes as explained in section 7.1.4 and again subjected to a temperature 

program with alternating 2 h long heating and cooling cycles between 11 °C and 30 °C. 

Three channels (the samples’ temperatures and the chamber’s temperature) were again 

continuously recorded using the three-channel breadboard prototype developed 
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according to the schematic given in Figure 7.14. The signals from the prototype, again 

single-ended in nature, were connected to the differential inputs of the NI USB 6212 

DAQ card and recorded using the developed PCM_DAQ.vi. The sampling frequency 

was 10 Hz. The expected input range of the signals was set between 0 V and 5 V. 

Finally, the size of the DAQ card’s buffer was set to 36 according to the formula given 

by Equation 7.3. 

The results from the validation measurement are presented in the following 

subsection. 

 

7.2.4.1 Results and discussion 

The raw results from the RT21 (subjected to the alternating cooling and heating cycles 

between 11 and 30 °C) T-history measurement using instrumentation system 2 

captured by the PCM_DAQ.vi are displayed in Figure 7.16. This figure shows only a 

portion of the measured cycles captured during the real-time data acquisition. In total, 

10 cooling and 10 heating cycles were recorded. 

As in the thermocouple measurements, the signals captured by PCM_DAQ.vi 

show the increase in voltage in the cooling cycles and decrease in the heating cycles 

(Figure 7.16). However, unlike in the instrumentation system 1 this happens due to the 

NTC nature of the used thermistors. Three standard T-history signals were recorded in 

all cycles: temperature of the chamber’s environment (ENV in Figure 7.16), 

temperature of the PCM (PCM in Figure 7.16), and temperature of the reference 

material i.e. distilled water (H2O in Figure 7.16). The captured signals are evidently 

less noisy and of better quality than the best thermocouple signals were (Figure 7.10). 

Hence, it was presumed that the instrumentation system 2 could give satisfying T-

history results in terms of temperature. 
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Figure 7.16: Alternating cooling and heating cycles in RT21 T-history measurement using instrumentation system 2 – raw 

results (ENV – environmental temperature, PCM – temperature of PCM sample, H2O – temperature of reference sample). 
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Furthermore, the raw results were subjected to the post-processing in order to 

obtain the temperature data. The post-processing of the signals was done using 

MATLAB as in the case of the thermocouple measurements. However, unlike before 

the temperature conversion of the voltage data was not straightforward due to the 

thermistors’ nonlinearity. To obtain the temperature data a proper calibration of each 

sensor had to be performed. Consequently, a certain calibration protocol had to be 

adopted.  

It was decided that prior to or post any PCM T-history measurement each 

sensor should be subjected to 1 °C step temperature program from 10 °C to 39 °C (or 

above) inside the precisely controlled environment of the chamber. The length of each 

1 °C temperature step was supposed to be 5 min which was enough to assure the 

temperature stability inside the chamber. The recorded OUTPUT voltage data were to 

be evaluated at known temperatures (10-39 °C in 1 °C step) and the calibration curves 

and equations were to be determined using the least squares method for data fitting. 

The calculation of absolute errors between expected and fitted measured temperature 

data was also to be performed. A special MATLAB script had to be developed to 

implement the voltage-temperature conversion based on the calibration data. The 

details of this script are given in the APPENDIX A3.  

Accordingly, the calibration measurement was performed post the T-history 

measurement of the RT21. The raw results are shown in Figure 7.17. These represent 

the signals from three sensors (ENV, PCM, and H2O) as the sensors were subjected to 

the previously described step temperature program. Given that the temperature of each 

step in this measurement was known in advance, the measured data were used to 

determine the calibration curves and equations necessary for the voltage-temperature 

conversion. 

Firstly, the data were filtered using the previously developed digital low pass 

filter described in section 7.1.4.1. The filtered data are shown in Figure 7.18. The 

digital filter proved to be of good efficiency to clean the originally measured data. 
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Figure 7.17: The calibration temperature measurement using instrumentation system 2 – raw results (ENV – signal from the 

sensor later used for environmental temperature measurement, PCM – signal from the sensor later used for the temperature 

measurement of PCM sample, H2O – signal from the sensor later used for the temperature measurement of reference 

sample). 
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Figure 7.18: The calibration temperature measurement using instrumentation 

system 2 – filtered results (ENV – signal from the sensor used for environmental 

temperature measurement, PCM – signal from the sensor used for the temperature 

measurement of PCM sample, H2O – signal from the sensor used for the temperature 

measurement of reference sample). 

 

Furthermore, the filtered data of each signal were used to extract the voltage 

data at each specified temperature level of the consecutive steps. The extracted voltage 

data at specified temperatures were then fitted using the least square method to obtain 

the voltage-temperature conversion equations for each signal. These operations were 

implemented in the aforementioned thermistor calibration script written in MATLAB 

(see APPENDIX A3 for the code listing of the implemented script). Additionally, the 

absolute errors between the expected and fitted measured temperature data were also 

calculated. The calculated errors for each signal i.e. measurement channel (ENV, PCM, 

and H2O) are shown in Figure 7.19.  
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Figure 7.19: Calibration measurement based absolute error values for the temperature 

channels based on the instrumentation system 2. a) Channel used for environment 

temperature measurement. b) Channel used for the temperature measurement of PCM 

sample. c) Channel used for the temperature measurement of reference sample 

(amended from Stankovic and Kyriacou, 2012, p. 5). 

  

As shown in Figure 7.19 the worst-case scenario results (Figure 7.19a) 

indicated the mean and maximum error of 0.67 °C and 1.69 °C respectively. This was 

regarded unacceptable due to the error magnitude exceeding the originally established 

±0.5 °C margin of success i.e. the validation criterion. Nevertheless, it was decided that 

the already measured T-history data (see Figure 7.16) should be converted to 

temperature values using the voltage-temperature conversion equations obtained from 

the calibration measurement. 

The raw data (see Figure 7.16) were firstly filtered using the digital filter 

described in section 7.1.4.1. Following this, the results were averaged to obtain the 1 s 

data samples from the initially 0.1 s samples imposed by the 10 Hz sampling 

frequency. Finally, the results from 10 recorded cooling cycles were also averaged to 

minimise random errors and improve measurement precision. The mean data obtained 

by the 10-cycle averaging were converted to temperature. The final results are shown 

in Figure 7.20. It was presumed that given the error results in Figure 7.19 the T-history 

data from the cooling cycles alone should be enough for the final validation of the 

instrumentation system 2.  
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Figure 7.20: The cooling cycle in RT21 T-history measurement using instrumentation 

system 2 – post-processed results (ENV – environmental temperature, PCM – 

temperature of PCM sample, H2O – temperature of reference sample). 

 

It is clear that all T-history curves during the first 10 min showed temperature 

higher than 30 °C which was the expected first equilibrium temperature in the cooling 

cycle of the T-history measurement (see Figure 7.20). The section around the phase 

change was zoomed-in for better visibility. At the temperature of 21 °C (the typical 

phase change temperature of RT21) the PCM curve showed the temperature value of 

21.65 °C. The recorder nucleation temperature of the PCM curve was 21.55 °C 

indicating a very small degree of subcooling. The section around the second 

equilibrium temperature of 11 °C was also zoomed-in. At the expected 11 °C all three 

curves showed a deviation greater than ±1.3 °C (see Figure 7.20).  

Given the presented results, it was evident that the instrumentation system 2 did 

not meet the ±0.5 °C accuracy validation criterion and therefore was labeled as non-

suitable for future PCM related measurements. However, the general quality of the 

signals obtained in the measurements described in this section suggested that 

thermistors are suitable to be used as sensing modalities in the advanced T-history 

method. Consequently, another instrumentation system for thermistor linearisation and 

conditioning had to be developed.  
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7.3 Instrumentation system 3 

Given the unsuccessful validation of the instrumentation system 2, another system for 

the conditioning of the inherently nonlinear thermistor signals was developed. This 

system was named instrumentation system 3. The development process of the 

instrumentation system 3 could be split into the same sub-processes as the development 

of the previously described instrumentation system 1 and 2 (see Figure 7.2). However, 

some of this sub-processes are identical to the ones described in sections 7.1 and 7.2, 

and although mentioned, will not be discussed in detail here.  

 

7.3.1 Sensor selection 

As previously explained, the quality of the signals obtained in the measurements 

described in the section 7.2.4.1 identified thermistors as the suitable sensing modalities 

in the measurement based on the advanced T-history method. The technical 

specifications of the selected NTC MA100BF103A thermistor were previously given in 

Table 7.7. 

 

7.3.2 Linearisation and signal conditioning 

As explained in the previous chapter, given the thermistors’ high nonlinearity an 

essential part of any temperature measurement system based on these sensors is the 

linearisation circuit. As shown in section 7.2 the linearisation based on the Wheatstone 

bridge configuration proved to be unreliable for the advanced T-history measurements. 

Hence, a different approach had to be adopted. 

Namely, following the design rules described in Chapter 6 and the same set of 

restrictions given in section 7.2.2, a new linearisation circuit had to be designed. Given 

the condition in the instrumentation system 2 where the minimisation of self-heating 

error highly restricted the minimisation of the nonlinearity errors a more flexible 

linearising configuration than the WB was desirable. In such configuration the self-

heating and the non-linearity errors could be considered simultaneously due to the 

existence of a minimum of two resistors which would influence both the maximum 
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permissible thermistor current Imax and the shape of the transfer function f(T). The 

necessary linearising configuration was found in the form of the Serial Parallel Resistor 

(SPR) connection circuit. This circuit was selected to implement the linearisation part 

of the instrumentation system 3.  

The details of the SPR based thermistor temperature processing circuit are 

shown in Figure 7.21. The linearisation stage of the instrumentation system 3 

(Figure 7.21) was simpler than the WB configuration (Figure 7.14) with the resistors 

R1, R2, and R3 (Figure 7.21). In the SPR configuration the input voltage VCC is divided 

between the resistor R1 and the parallel connection of the resistor R2 and the NTC 

thermistor. The output of the SPR connection is the voltage across the parallel resistor 

connection. Prior to the development of the linearisation circuit the optimal values of 

the R1 and R2 had to be determined. As in the case of the WB based circuit, an SPR 

linearisation model was developed in MATLAB to determine the optimal values of the 

components R1 and R2, taking into account the restrictions regarding the self-heating, 

nonlinearity errors, and the power supply as described in section 7.2.2. The 

implementation details of the model are given in the APPENDIX A4.  

The model was based on the calculation of the f(T) functions for different 

combination of resistor values R1 and R2. The resistor values were changed in small 

steps of 20 Ω and then the calculated f(T) functions were fitted with linear polynomial 

functions using the least squares method. The best fitting function i.e. the one that gave 

the minimum norm of residuals was used to retrieve the optimal R1 and R2 values. The 

model gave the values of 53 kΩ and 8.88 kΩ for R1 and R2. For the fixed value of 

resistance R1 the transfer function showed both linear and exponential behaviour in the 

same temperature range depending on the values of R2. Figure 7.22 shows that for an 

optimal value of R1 the output voltage-temperature dependency i.e. the transfer 

function shows relatively linear behaviour for the values of R2 below 20 kΩ 

(Figure 7.22a). The best linearity is achieved for the optimal value of R2 as seen in 

Figure 7.22b.  
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Figure 7.21: The SPR based thermistor temperature processing circuit. 
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Figure 7.22: The voltage-temperature dependencies i.e. the transform functions f(T) 

for optimal serial parallel resistor circuit component value R1=53 kΩ and variable 
values of R2. a) 3D view. b) 2D view with the optimal transform function for 

R2=8.88 kΩ shown in asterisk marked line (amended from Stankovic and Kyriacou, 

2012, p. 4). 

 

Given the optimal values from the model the resistance values of 50 kΩ and 

10 kΩ for R1 and R2 were chosen for the SPR linearisation circuit. Given the expected 

voltage range of the output of the SPR connection (Figure 7.21) the amplification stage 
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was not necessary and therefore omitted in the development of the instrumentation 

system 3. In the filtering stage the used low pass RC filter had the same features as the 

one in the filtering stage of the instrumentation system 1 and 2. Also, as in the 

instrumentation system 1 and 2, the voltage followers were used to prevent the loading 

between different stages of the SPR based thermistor temperature processing circuit 

(Figure 7.21). The voltage followers were implemented using the TLE2024CN chips 

(see Table 7.9 for specification details). The final OUTPUT of the circuit in this case 

was also single-ended voltage. 

 

7.3.3 Data acquisition 

As in the case of instrumentation system 1 and 2 the same elements including the NI 

USB 6212 DAQ card and the developed PCM_DAQ.vi were planned to be used for the 

data acquisition in the measurements utilising the instrumentation system 3. Hence, the 

details of the data acquisition are not discussed. As before, the changeable parameters 

of the data acquisition system discussed in section 7.1.3 will be mentioned prior to each 

measurement. 

 

7.3.4 Validation 

As with the instrumentation system 1 and 2, the instrumentation system 3 had to be 

validated against the ±0.5 °C validation criterion. To perform the validation the T-

history measurement of the RT21 PCM (see Table 7.6 for material data) was 

conducted. The T-history setup in this measurement was similar to the one explained in 

section 7.2.4. The only difference was that the SPR based instrumentation system 3 

was used instead of the WB based instrumentation system 2. The RT21 and the 

reference material (distilled water) were again subjected to a temperature program with 

alternating 2 h long heating and cooling cycles between 11 °C and 30 °C. Three 

channels (the samples’ temperatures and the chamber’s temperature) were recorded 

continuously using the three-channel breadboard prototype developed according to the 

schematic given in Figure 7.21. The data acquisition parameters were exactly the same 

as in the measurements described in section 7.2.4. 
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The results from the validation measurement are presented in the following 

subsection. 

 

7.3.4.1 Results and discussion 

The raw results from the RT21 T-history measurement using instrumentation system 3 

captured by the PCM_DAQ.vi are displayed in Figure 7.23. The figure shows only 

three measured cycles captured during the real-time data acquisition while 10 cooling 

and 10 heating cycles were recorded in total. 

The voltage range of the recorded signals corresponding to the 11 to 30 °C was 

around 0.2 V. This was an order of magnitude larger than the matching range of the 

signals captured using the instrumentation system 2 (see Figure 7.16). Consequently, it 

was evident that the instrumentation system 3 was much more sensitive than the 

instrumentation system 2. Hence, it was presumed that additionally it will be more 

accurate as well. However, this assumption had to be proven. 

Furthermore, the raw results were subjected to the post-processing in order to 

obtain the temperature data. The post-processing of the signals was once more done 

using MATLAB. The same calibration protocol as described in section 7.2.4.1 was 

implemented. Each sensor used in T-history was subjected to 1 °C step temperature 

program from 10 °C to 39 °C inside the chamber. The calibration measured data were 

used in the same manner as described in section 7.2.4.1 to determine the voltage-

temperature conversion equations for each sensing channel. This was done as before by 

using the MATLAB calibration script (see APPENDIX A3). The absolute errors 

between the expected and fitted measured temperature data were also evaluated. The 

calculated errors for each signal i.e. measurement channel (ENV, PCM, and H2O) are 

shown in Figure 7.24.  

As shown in Figure 7.24 the worst-case scenario results (Figure 7.24b) 

indicated the mean and maximum error of 0.07 °C and 0.26 °C respectively. This was 

smaller than the originally established ±0.5 °C validation criterion. 
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Figure 7.23: Alternating cooling and heating cycles in RT21 T-history measurement using instrumentation system 3 – raw 

results (ENV – environmental temperature, PCM – temperature of PCM sample, H2O – temperature of reference sample). 
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Figure 7.24: Calibration measurement based absolute error values for the temperature 

channels based on the instrumentation system 3. a) Channel used for environment 

temperature measurement. b) Channel used for the temperature measurement of PCM 

sample. c) Channel used for the temperature measurement of reference sample 

(amended from Stankovic and Kyriacou, 2012, p. 5). 

 

Moreover, the measured T-history data (see Figure 7.23) were post-processed to 

determine their corresponding temperature values. The raw data (see Figure 7.23) were 

firstly filtered using the digital filter described in section 7.1.4.1. Then the results were 

averaged to obtain the 1 s data samples from the initially 0.1 s samples. Finally, the 

results from 10 recorded cooling cycles were averaged to obtain the mean cooling cycle 

data to be converted to temperature. The final results are shown in Figure 7.25. The T-

history data from the cooling cycles alone are represented since the heating data 

showed the same trend in terms of temperature accuracy. 

All T-history curves were aligned at the 30 °C as expected during the first 

10 min of the equilibrium state (see Figure 7.25). At the expected temperature of 21 °C 

(the typical phase change temperature of RT21) the PCM curve showed the 

temperature value of 21.2 °C. The nucleation temperature was 21.1 °C. Hence, a small 

degree of subcooling was detected. At the expected 11 °C all three curves showed a 

deviation smaller than ±0.1 °C (see Figure 7.25).   
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Figure 7.25: The cooling cycle in RT21 T-history measurement using instrumentation 

system 3 – post-processed results (ENV – environmental temperature, PCM – 

temperature of PCM sample, H2O – temperature of reference sample). 

 

Given the presented results, it was concluded that the validation process was 

finally successful and the instrumentation system 3 was adopted as the integral part of 

the advanced T-history setup. 

 

7.4 Summary 

The development of the instrumentation system of the advanced T-history method was 

described in this chapter.  

The instrumentation development was explained in terms of the necessary sub-

processes that had to be performed to complete the instrumentation system. These 

included the selection of the specific sensors, the development of the necessary 

linearisation and conditioning circuits, the development of the data acquisition system 

and finally the validation of the instrumentation system. As indicated in the previous 

chapters, the value of ±0.5 °C was set as the desired technical goal for the temperature 

accuracy in the PCM related measurements (Mehling et al., 2006). This value was also 

selected as the validation criterion in the instrumentation development. Consequently, 

the development of the proper instrumentation system had to be performed in an 
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iterative procedure until the validation criterion was not met. This resulted in the 

development of three different instrumentation systems: one using thermocouples i.e. 

the instrumentation system 1 and two using thermistors, instrumentation system 2 and 

3. The details of the development and validation procedures of each instrumentation 

system were presented. Given the temperature accuracy requirement (±0.5 °C) the only 

acceptable system was the instrumentation system 3 which was adopted as the 

definitive instrumentation system of the advanced T-history setup. Once the ±0.5 °C 

temperature accuracy goal was achieved the advanced T-history method could be used 

for PCM characterisation. Hence, the testing of various organic PCMs using the 

advanced T-history method is discussed in detail in the following chapter.  
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Chapter 8 

INVESTIGATION  

OF THERMO-PHYSICAL PROPERTIES 

OF ORGANIC PCMs 

 

Once the validation process in the design strategy flowchart (see Figure 6.1) was 

identified as successful and the instrumentation system 3 adopted as an integral part of 

the advanced T-history setup two final processes in the development of the advanced 

T-history method could be implemented. Namely, the successful development of the 

advanced T-history setup and its validation in terms of temperature accuracy (±0.5 °C 

criterion) was not enough to designate the development of the advanced T-history 

method as completed. The new setup had to be tested to verify the main hypothesis 

underlying this project that a better planned experimental tests in terms of more 

accurate and precise sensing and control modalities will be able to provide more 

comprehensive and reliable results than those currently described in the literature. The 

tests were performed by following the basic measurement premises which were 

described in section 5.1 and summarised as the design rules in the design strategy 

flowchart (see Figure 6.1). As explained in section 6.1 the basic measurement premises 

given in section 5.1 were listed as the main part of the design rules (see Figure 6.1). In 

this way, each step in the development of the advanced T-history method was 

continuously bound by the main criteria that need to be satisfied in any PCM 

measurement. Several organic and inorganic PCMs were tested using the advanced 

setup. However, given the distinguishable properties of the organic and inorganic 

materials the testing of organic PCMs is described in this chapter and followed by the 

explanation of testing of inorganic PCMs in the next chapter. 

At this point, the T-history setup was validated and was fully ready to perform 

measurements on PCMs. However, the measurements so far gave the temperature 
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history curves which only presented a part of the necessary PCM characterisation. The 

temperature data had to be properly evaluated to determine the basic thermo-physical 

properties of investigated materials predominantly the phase change temperature 

(range) and the energy stored/released. Hence, a proper data evaluation technique had 

to be implemented. Given its relevance, the implementation of the computational data 

evaluation technique is explained prior to any measurements. Additionally, considering 

the need to balance between the various measurements’ parameters as explained in 

section 5.1 thorough parametric studies were performed on the well-known organic 

PCM RT21, introduced in the previous chapter. The details of the parametric studies 

are also explained in this chapter as well as the in-depth characterisation of few organic 

PCMs from Rubitherm’s RT series (Rubitherm GmbH, Berlin, Germany) and Entropy 

Solutions’ PT series (Entropy Solutions Inc., Plymouth, Minnesota). 

 

8.1 Data evaluation technique 

The original T-history method has undergone several improvements over the years as 

explained in chapter 5. Most of those improvements focused on the development of the 

appropriate evaluation techniques necessary to convert the raw temperature history 

curves into the meaningful PCM data in terms of phase change temperature (range) and 

associated heat capacity. The achievements regarding the data processing of the T-

history curves were summarised in subsection 5.3.1. Various improvements were 

discussed including two most extensive and relatively opposing data evaluation 

techniques, the time delay technique (Marin et al., 2003) and the thermal delay 

technique (Kravvaritis et al., 2010). In both techniques the T-history curves (that of the 

environment, of the PCM, and of the reference material) are used to determine the 

available heat capacity of the PCM in question. As previously explained Marin et al. 

(2003) observed the temperature variation of the sample and reference over very small 

and fixed temperature intervals ΔTi corresponding to time intervals ti+1-ti and t’i+1-t’i for 

PCM and reference respectively. The authors used the time delay between the moments 

when sample and reference reach the specified temperature and the theoretical basis of 

the T-history method (Equation 5.8) to calculate enthalpy changes Δhp(Ti) of the PCM 
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in the corresponding temperature intervals ΔTi (Figure 8.1). On the other hand, 

Kravvaritis et al. (2010) observed the temperature variation of the sample and reference 

over very small and fixed time intervals Δti corresponding to thermal intervals 

Tm,i–Tm,i+1 and Tr,i–Tr,i+1 for PCM and reference respectively. Moreover, they used the 

thermal delay (i.e. temperature difference) between PCM (at temperature Tm,i) and 

reference (at temperature Tr,i) at the specified moment in time to evaluate the effective 

PCM thermal capacity (Figure 8.1). Considering the arguments presented in section 5.1 

one of the aims in this study was to obtain the PCM data in the form of heat 

released/stored in given temperature intervals for both cooling and heating cases. Given 

this, the obtained temperature accuracy and precision of the T-history curves (as 

discussed in subsection 7.3.4.1) and the time resolution of those curves (minimum 

sampling frequency 10 Hz) it was concluded that the time delay evaluation technique is 

the most suitable for data processing in the advanced T-history method. Hence, its 

adaptation for the advanced T-history method will be explained further. 
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Figure 8.1: The conceptual differences between time delay and thermal delay 

techniques used in evaluation of T-history curves. 
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The Equation 8.1 and Equations 5.13-5.14 represent the basis for the 

implementation of the time delay technique adapted for the advanced T-history 

method.  
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As noted earlier, the Δhp(Ti) represents enthalpy changes of the PCM in the 

corresponding temperature intervals ΔTi; mp or simply m, mw and, mt are the masses of 

the PCM sample, the reference (distilled water) and the test tubes, respectively; cp,w or 

cp,r and cp,t are the mean specific heats of the reference and the tube materials; and I1 

and I
’
1 are the values of the corresponding integration areas obtained by integration of 

the PCM and reference T-history curves (Figure 8.2). 
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Figure 8.2: The graphic representation of the time delay technique used in evaluation 

of T-history curves. 
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Considering that the measurements carried out using the advanced T-history 

setup occur at constant pressure it was evident that the output of the time delay 

evaluation technique i.e. the enthalpy changes Δhp(Ti) of the PCM in the corresponding 

temperature intervals ΔTi represent exactly the heat released/stored in the PCM in given 

temperature intervals. As previously explained this was labelled as the desired output 

of the PCM characterisation using the advanced T-history method. Hence, the time 

delay technique had to be implemented in such a way to enable the calculation of both 

heat released upon cooling and heat stored upon heating of the PCM. Furthermore, the 

selection of the temperature evaluation interval ΔTi had to be flexible.  

The technique was implemented in MATLAB and the code listings of the 

important functions are given in the APPENDIX A5 and A6. The most important 

implemented function is the time_delay function which calculates the heat 

released/stored in given temperature intervals upon either cooling or heating depending 

on its input parameter Mode. If this parameter has the value ‘c’ then the output of the 

function time_delay is the heat released in given temperature intervals upon cooling. 

Otherwise, its output is heat stored in given temperature intervals upon heating. The 

other relevant inputs of this function are the measured T-history data, the temperature 

evaluation range i.e. the temperature range in which the heat is estimated, the width of 

the temperature intervals in which the heat is given, the temperature sensitivity with 

which the calculations are performed, and the parameters which contain the 

information about the masses of the PCM, reference, and test tubes as well as the 

information about the heat capacities of the reference and tube materials.  

Another important function is the enthalpy_calc function which enables the 

determination and file storage of enthalpy-temperature curves H(T) from the heat 

released/stored in given intervals data. This function is predominantly based on the 

Equation 5.13.  

Once the time delay technique was adapted and implemented for the advanced 

T-history method measurements to verify this method could be performed. The 

verification experiments are described in detail in the following sections.  
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8.2 Parametric studies of RT21 

As previously explained in section 5.1 PCM related measurements are very sensitive to 

various measurement parameters. Additionally, the need to balance between the 

parameters like the sample size and the measurement heating/cooling rates to maintain 

the thermal equilibrium inside the samples was also explained in the same section. 

Hence, it was decided to perform several measurements of the well-known PCM RT21 

(see Table 7.6 for material specifications) using the advanced T-history method. The 

measurements were to be performed on the same PCM but with varying measurement 

parameters in order to discover which parameters affect the PCM characterisation and 

to which extent. Initially it was planned to carry out a set of parametric studies of RT21 

by varying the parameters like the size and position of the sensors used for temperature 

measurements as well as the size of the investigated samples. However, after some 

measurements it was established that few other parametric studies need to be 

performed. Accordingly, all the performed studies are explained in detail in this 

section. 

 

8.2.1 Sensor size study – results and discussion 

To investigate the effects of the size of the sensors used in PCM measurements two 

different T-history measurements were performed. In the first one the standard 

MA100BF103A sensors were used while in the second one the MA100GG103A 

sensors were used. Both sensors have exactly the same characteristics minus the probe 

diameter. As given in the Table 7.7 the diameter of the MA100BF103A is 0.762 mm 

while the sensor MA100GG103A has larger diameter of 2 mm. By using the sensors of 

the same characteristics the instrumentation system 3 could be used in both 

measurements and given the precise control environment of the advanced T-history 

setup the only variable parameter in the measurements would be the sensor size. 

In both cases (with the 0.762 mm and the 2 mm diameter sensors) the T-history 

measurement of RT21 were performed using the advanced T-history method based on 

the experimental setup explained in Chapter 6 and the instrumentation system 3 

explained in section 7.3. In terms of T-history setup arrangements the same general 
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procedure as explained in subsection 7.1.4 was followed in both measurements. 

Namely, in both T-history measurements the RT21 and the reference (distilled water 

with the specific heat capacity cp,w of 4.185 kJkg-1K-1) were placed in 300 mm long 

SIMAX glass test tubes (the specific heat capacity of the SIMAX glass cp,t being 

0.98 kJkg-1K-1). The design details and specifications of the test tubes were given in 

subsection 6.2.3. The mass of the PCM test tube was 28.8 g and the mass of the 

reference tube was 29.3 g. The masses were measured using the lab scale with the 

0.01 g precision. The same tubes were used in both T-history measurements. The 

placement of sensors was done as explained in subsection 7.1.4. Since three 

temperatures (the environmental ENV, that of the PCM, and that of the reference H2O) 

were measured in total in both measurements the same instrumentation system 3 

prototype as in the measurement described in subsection 7.3.4 was used. Additionally, 

the data acquisition was done by using the system described in subsection 7.1.3 and the 

PCM_DAQ.vi. The variable parameters of the PCM_DAQ.vi were the same in both 

measurements. The sampling frequency was 10 Hz. The expected input range of the 

signals was set between 0 V and 5 V. Finally, the size of the DAQ card’s buffer was set 

to 36 according to the formula given by Equation 7.3.  

Prior to the T-history measurements it was decided that the calibration 

measurements for both 0.762 mm and 2 mm diameter sensors should be performed. As 

in previous measurements explained in section 7.2.4.1 and 7.3.4.1 the sensors were 

subjected to 1 °C step temperature program from 10 °C to 39 °C inside the chamber. 

The calibration data were used in the same way as in section 7.2.4.1 to determine the 

voltage-temperature conversion equations for each sensing channel. Once these 

preparations were made the T-history measurements could be performed. 

In the T-history measurement with the 0.762 mm diameter sensor the RT21 and 

the reference were subjected to the alternating cooling and heating 2 h long cycles 

between 11 and 30 °C. In total, 10 cooling and 10 heating cycles were recorded. The 

respective masses of the sample (mp) and reference (mw) were 19.6 g and 24.3 g. Once 

the data were recorded the post-processing was performed in the same way as 

described in section 7.2.4.1 to obtain the relevant T-history curves. For the T-history 

measurement with 2 mm sensors only the MA100BF103A sensors were replaced with 
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the MA100GG103A sensors and everything else remained the same. The masses of the 

PCM and reference were measured again but resulted in small changes in the order of 

10-2 g. As before, the recorded voltage data were post-processed using the appropriate 

temperature conversion equations to obtain the T-history curves.  

The 10 cooling cycles from the measurement with 0.762 mm diameter sensors 

were averaged as well as the 10 heating cycles to obtain the respective cooling and 

heating cycle data for this measurement. The same was done with the data from the 

measurements with the 2 mm diameter sensors. The cooling cycle data from both 

measurements were compared as well as the heating cycle data. In the case of heating 

the data from both measurements were almost identical with the temperature difference 

in the order of 10-2 °C. On the other hand, in the cooling data the only significant 

difference between the measurements was observed for the temperatures of the PCM 

(Figure 8.3). 

 

 

 

 

 

 

Figure 8.3: Comparison of the PCM cooling cycle data from RT21 T-history 

measurements with the 0.762 mm diameter sensor (PCM - 0.762 mm) and with the 

2 mm diameter sensor (PCM - 2 mm). a) Normal view. b) Zoomed-in view. 
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In normal view (Figure 8.3a) the difference between the data cannot even be 

observed. Hence a zoomed-in view was provided (Figure 8.3b). It is evident that the 

main difference between the measurements with different size sensors occurs during 

the phase change of the PCM i.e. during its solidification process. In the measurement 

with the 0.762 mm diameter sensor the observed typical phase change temperature 

(TPC0762 in Figure 8.3b) was 21.2 °C while the nucleation temperature 

(TN0762 in Figure 8.3b) was 21.1 °C. Hence, the observed degree of subcooling in this 

measurement was negligible 0.1 °C but still existent. The phase change plateau was 

flatter in the measurement with the larger 2 mm diameter sensors resulting in the 

typical phase change temperature of 21.15 °C (TPC2 in Figure 8.3b). Given the flatness 

of the phase change plateau the nucleation temperature could not be observed in this 

measurement resulting in the zero degree of subcooling hence lower than in the 

measurement with the smaller sensors. 

It was concluded that the sensor size indeed affects the degree of subcooling. 

Namely, the sensor, if used inside the PCM sample during T-history characterisation 

measurement, can act as a nucleating agent (seed) and suppress the naturally existing 

subcooling phenomenon i.e. lower the real degree of subcooling of the PCM sample. 

The larger the size of the sensor (i.e. the size of the nucleating seed) the solidification 

starts sooner without reaching the nucleation temperature as it would be the case in the 

naturally occurring solidification process and this consequently results in the lower 

degree of subcooling of the investigated PCM than the real one. Hence, it was decided 

that in the future PCM characterisation measurements using the advanced T-history 

method only the smaller size MA100BF103A sensors will be used in order to minimise 

the sensor effect on the natural course of the phase change process. 

Furthermore, another observation was made in this parametric study. Namely, 

in the case of T-history measurements with the 0.762 mm diameter sensors the 

observed subcooling lasted only for 1 min (Figure 8.3b) and consequently could not be 

observed if the data sampling frequency was not high enough. However, the 10 Hz 

sampling frequency used in the aforementioned T-history measurements was adequate 

to register the 1 min long subcooling effect. Hence, it was also decided to use the same 

sampling frequency in the future measurements.  
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8.2.2 Sensor position study – results and discussion 

One of the ways to avoid the interaction of the sensors and the investigated samples in 

T-history measurements is to place the sensors on the surface of the test tubes instead 

inside the PCM and reference samples. In the DSC instruments the measurement 

sensors are usually placed on the surface of the test crucibles. However, the size of the 

DSC samples is much smaller than the size of the samples investigated in T-history 

measurements. Hence, it is reasonable to use surface measurements in the case of small 

DSC samples and adequate heating/cooling rates. The aim of this parametric study was 

to verify if the surface temperature measurements can be adequate in T-history studies. 

The investigated PCM was again RT21. The measurement was performed in an almost 

identical way as the measurement with the 0.762 mm MA100BF103A sensors 

described in subsection 8.2.1. The only difference was that the prototype of the 

instrumentation system 3 had to be expanded to accommodate three more temperature 

channels. Namely, apart from the standard channels for the measurement of the 

environmental temperature (ENV or ENV-in in this case), that of the PCM (PCM or 

PCM-in in this case), and that of the reference (H2O or H2O-in in this case) three 

additional channels were used in this test. An additional channel to record the 

environmental temperature was added (labeled as ENV-s) as well as the channels to 

record the surface temperatures of the PCM (PCM-s) and reference (H2O-s) 

(Figure 8.4). The MA100BF103A sensors were used for all six channels. The 

instrumentation prototype was expanded by using the same processing circuit 

(Figure 7.21) for each added channel. The channels were connected to the analogue 

inputs of the DAQ card in differential mode. The parameters of the PCM_DAQ.vi had 

to be adjusted to enable it for the acquisition of six analog voltage channels. The 

sampling frequency was 10 Hz and the input voltage range was set from 0 to 5 V as in 

the measurement with the 0.762 mm MA100BF103A sensors described in subsection 

8.2.1. The size of the DAQ card’s buffer was set to 72 to accommodate the three extra 

channels as given by Equation 7.3.  
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Figure 8.4: Sensor position study with sensors placed inside and on the surface of the 

measured PCM and reference (H2O) samples – schematic diagram (ENV-in and ENV-s 

– sensors for the measurement of environmental temperatures, PCM-in and PCM-s – 

sensors for the measurement of temperatures inside and on the surface of the PCM 

sample, H2O-in and H2O-s – sensors for the measurement of temperatures inside and 

on the surface of the reference sample). 

 

As in the subsection 8.2.1, prior to the T-history measurement, an adequate 

calibration measurement was performed. All six sensors were subjected to 1 °C step 

temperature program from 10 °C to 39 °C inside the chamber. Once more the 

calibration data were used as described in section 7.2.4.1 to determine the voltage-

temperature conversion equations for each sensing channel. 

Once the calibration was performed, the RT21 and reference samples were 

measured. Given that the same test tubes were used as in the MA100BF103A T-history 

measurement in subsection 8.2.1 the masses of the samples were almost identical, 

19.5 g (PCM mass) and 24.3 g (reference mass).  
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The sensors labeled as PCM-in and H2O-in were placed inside the PCM and 

reference samples respectively and secured at the 120 mm depth from the top of the 

tubes (Figure 8.4) following the procedure described in subsection 7.1.4. The sensors 

labeled PCM-s and H2O-s were placed on the surface of the respective test tubes at the 

same level as the PCM-in and H2O-in sensors (Figure 8.4). The good thermal contact 

between the sensors and the tubes was secured by using a thermally conductive paste 

purchased from Omega (Omega, 2012) and simple adhesive tape. The sensors labeled 

ENV-in and ENV-s were placed inside the chamber in close proximity to one another 

(Figure 8.4). 

Once the aforementioned arrangements were made the RT21 and the reference 

were subjected to the alternating cooling (10 cycles) and heating (10 cycles) 2 h long 

cycles between 11 and 30 °C. The recorded data were post-processed in the same way 

as described in section 7.2.4.1 to obtain the relevant T-history curves. The 10 recorded 

cooling cycles were averaged as well as the 10 heating cycles to minimise errors and 

obtain the respective cooling and heating cycle data for this measurement. 

The obtained T-history curves are shown in Figure 8.5. The difference between 

the data recorded by the sensors inside and on the surface of the samples is evident in 

the case of both cooling (Figure 8.5a) and heating (Figure 8.5b) cycles. Both 

environmental temperature sensors (ENV-in and ENV-s in Figure 8.5) recorded almost 

identical temperature values. This confirmed that the temperature distribution inside 

the environmental chamber is rather uniform. Additionally, it demonstrated the 

consistency of the temperature circuit (Figure 7.21) used to build the instrumentation 

system 3 prototype.  

The cooling PCM curve recorded by the sensor inside the sample (PCM-in in 

Figure 8.5a) shows that the typical phase change temperature of the material is around 

21 °C as expected for RT21 (Rubitherm GmbH, Berlin, Germany). The cooling curve 

recorded by the sensor placed on the surface of the PCM tube (PCM-s in Figure 8.5a) 

shows lower temperature than the one of the PCM-in curve (Figure 8.5a) during the 

entire cooling cycle. It also shows the typical phase change temperature of around 

20 °C i.e. 1 °C deviation from the typical phase change temperature expected for RT21.  
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Figure 8.5: Cooling (a) and heating (b) cycle in RT21 T-history sensor position study 

(ENV-in and ENV-s – environmental temperatures, PCM-in and PCM-s – temperatures 

inside and on the surface of the PCM sample, H2O-in and H2O-s – temperatures inside 

and on the surface of the reference sample).  
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The deviation in the case of heating curves (PCM-in and PCM-s in Figure 8.5b) 

is even larger. The heating curve PCM-s generally shows higher temperature during the 

heating cycle than the PCM-in curve (Figure 8.5b). It can also be concluded that the 

phase change range is much wider in the case of PCM-s curve than in the case of PCM-

in curve (Figure 8.5b).  

The reference curve recorded by the sensor placed on the surface of the 

reference tube (H2O-s) shows lower temperature than the reference curve recorded by 

the sensor placed inside the reference sample (H2O-in) during the entire cooling cycle 

(Figure 8.5a). On the other hand the H2O-s curve shows higher temperature than the 

H2O-in curve during the heating cycle (Figure 8.5b).  

The tendency of surface curves to show lower temperature than the inside 

curves upon cooling and higher temperature upon heating is completely logical given 

that the cooling and heating of the samples occurs by firstly changing the 

environmental temperature. Hence, it is expected that the surfaces of the test tubes are 

cooler than the insides upon cooling and also warmer upon heating.  

Despite the obvious deviations between the surface and inside curves (PCM-s, 

H2O-s, PCM-in, and H2O-in Figure 8.5) it was decided to further evaluate the recorded 

T-history curves to obtain the relevant PCM heat release/storage data. The evaluation 

was performed using the evaluation technique described in section 8.1. The heat 

released/stored was evaluated between 15 °C to 30 °C. The width of the temperature 

interval in which heat data were to be given was set to 0.5 °C. Although the 

temperature interval could be smaller given the accuracy and precision of the measured 

T-history curves the value of 0.5 °C was selected in order to maintain the good 

precision of the heat data but also to have good visibility of the data presented. The 

results of the evaluation process are shown in Figure 8.6. 
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Figure 8.6: Heat released (stored) in given temperature intervals from RT21 T-history 

sensor position study (HR-in – heat released based on the cooling cycle data obtained 

from sensors placed inside the samples, HS-in – heat stored based on the heating cycle 

data obtained from sensors placed inside the samples, HR-s – heat released based on 

the cooling cycle data obtained from sensors placed on the surface of the samples, HS-

in – heat stored based on the heating cycle data obtained from sensors placed on the 

surface of the samples). 

 

The heat released upon cooling in given temperature intervals (HR-in in 

Figure 8.6) was calculated from the ENV-in, PCM-in, and H2O-in T-history curves 

(Figure 8.5a). The peak value in heat released occurs in the temperature interval from 

21 °C to 21.5 °C (HR-in in Figure 8.6) as expected for RT21. The heat stored upon 

heating in given temperature intervals (HS-in in Figure 8.6) was calculated from the 

ENV-in, PCM-in, and H2O-in T-history curves (Figure 8.5b). In this case the latent 

heat storage is distributed in a wider temperature range ending at 23.5 °C. The width of 

the melting temperature range and the end of melting is in relative agreement with the 

melting area between 18 and 23 °C for RT21 as given in Table 7.6. The heat released 

upon cooling in given temperature intervals (HR-s in Figure 8.6) was calculated from 

the ENV-s, PCM-s, and H2O-s T-history curves (Figure 8.5a). The peak value in this 

case is in the temperature interval from 20 °C to 20.5 °C showing that the temperature 
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measurements on the surface of the test tubes result in the shift of the congealing area 

for RT21 towards lower temperatures as expected in the case of surface measurement. 

Moreover, the peak value in the case of HR-s in much lower than in the case of HR-in 

(Figure 8.6) leading to the conclusion that the surface T-history measurements result in 

lower and incorrect overall heat capacity of the investigated material. The heat stored 

upon heating in given temperature intervals (HS-s in Figure 8.6) was calculated from 

the ENV-s, PCM-s, and H2O-s T-history curves (Figure 8.5b). In this case the melting 

range is shifted towards higher temperatures ending at rather high temperature of 26 °C 

in comparison to the expected melting area of RT21 (Table 7.6). Additionally, the HS-s 

shows higher values in the corresponding temperature intervals than the HS-in 

(Figure 8.6). This once more leads to the conclusion that the T-history surface 

measurement result in the misleading PCM characterisation in terms of both 

temperature and heat release/storage data. Hence, it was concluded that the 

measurements with the sensors placed on the surface of the test tubes cannot be 

performed as part of the advanced T-history setup. It was decided that further T-history 

measurements will be performed only with the sensors placed inside the PCM and 

reference samples.  

Apart from the shortcomings of the surface measurements another observation 

was made in this parametric study. Namely, this was the first time the T-history data 

were utilised to estimate the heat capacity of the investigated material resulting in the 

data given in Figure 8.6. Although the difference between the heat released and the 

heat stored data was expected especially in the case of surface measurement the 

interesting part was that the hysteresis between the HR-in and HS-in data was rather 

evident (Figure 8.6). The argument was made that the observed hysteresis could only 

be apparent due to the possible thermal gradients occurring inside the investigated 

PCM sample. It was decided that another parametric test to investigate the 

aforementioned hysteresis needs to be performed. 

The factors that can result in the existence of thermal gradients in PCM samples 

were explained in detail in section 5.1. Since one of the major aims of the overall study 

was to test the large size PCM sample the reduction of sample size was not possible. 

Hence, a reduction in cooling/heating rates used in T-history experiments had to be 
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implemented. As explained in chapter 6 the heating and cooling rates of the 

environmental chamber are fixed (0.5 Kmin-1 for cooling and 1.3 Kmin-1 for heating) 

and cannot be changed. Also the recommended heating/cooling rates for the PCM 

related studies are 1 Kmin-1 (RAL, 2010). The cooling rate of the chamber is not as the 

recommended value; however it is lower and therefore should provide reduced 

temperature gradients inside the investigated samples as required in PCM 

measurements. Adversely, the heating rate of the chamber is higher than the 

recommended value and it was identified as the possible source of the previously 

observed hysteresis problem. Hence it was decided to lower the heating/cooling rates 

of the PCM samples in the T-history measurements by means of the insulation of the 

test tubes. It was concluded that the test tubes need to be insulated with the thermally 

insulating tape of the appropriate thickness in order to avoid the creation of 

temperature gradients inside the PCM samples. The study to determine the optimal 

thickness of the insulating tape was performed and described in detail in the next 

subsection. 

 

8.2.3 Insulation thickness study – results and 

discussion 

As discussed in the previous subsection, it was concluded that the test tubes in the 

advanced T-history setup need to be properly insulated to reduce the temperature 

gradients inside the samples and enable accurate PCM characterisation. The aim of this 

study was to find the optimal thickness of the thermally insulating tape used to wrap 

the test tubes. For this the results of the measurements with different thicknesses of the 

insulating tapes had to be compared. The RT21 T-history results obtained in the 

measurement with the 0.762 mm diameter sensors described in subsection 8.2.1 were 

selected to be a part of the comparison procedure since no insulation (i.e. insulation 

thickness of 0 mm) was used on the test tubes in this measurement. Two additional T-

history measurements of RT21 were performed in the exactly same manner as the 

measurement with the 0.762 mm diameter sensors described in subsection 8.2.1. The 

only difference was that in the first of these measurements the test tubes were wrapped 



 

183 
 

with the adhesive polyethylene foam-tape purchased from RS Components 

(RS Components, 2010) with the tape’s thickness of 3 mm while the tape’s thickness 

was 6 mm in the second measurement. As before, prior to each T-history measurement 

the proper calibration measurement with 1 °C step temperature program from 10 °C to 

39 °C inside the chamber was performed to assure the accuracy of the sensors used in 

T-history measurements. Given that the same sample and reference were used as in the 

MA100BF103A T-history measurement described in subsection 8.2.1 the masses of the 

samples were checked prior to each measurement and in both cases remained almost 

unchanged, 19.5 g (PCM mass) and 24.3 g (reference mass). In total, 10 cooling and 10 

heating 6 h long cycles (to take the extra insulation into the account) were recorded in 

both measurements and averaged to determine the T-history cooling and heating cycle 

data. For comparison purposes, the obtained results and the results from the 

MA100BF103A T-history measurement described in subsection 8.2.1 are shown in 

Figure 8.7. 

Clearly, the environmental temperature in all three measurements is almost 

identical upon both cooling and heating as expected (ENV – 0 mm ins, ENV – 3 mm 

ins, and ENV – 6 mm ins in Figure 8.7). It is also evident that the time to reach 

equilibrium state for both PCM and reference samples increases as the insulation 

thickness increases in both cooling and heating cycles (PCM – 0 mm ins, H2O – 0 mm 

ins, PCM – 3 mm ins, H2O – 3 mm ins, PCM – 6 mm ins, and H2O – 6 mm ins in 

Figure 8.7). The corresponding PCM and H2O curves become less steep as the 

insulation thickness increases in both cooling and heating measurements (Figure 8.7) 

indicating slower cooling/heating processes. The phase change temperature was not 

affected to a great extent by the varying insulation thicknesses. Nevertheless, to further 

investigate the effects of different insulation thicknesses, the T-history curves from all 

three aforementioned measurements were evaluated in the 15 °C to 30 °C using the 

evaluation technique described in section 8.1 and the temperature interval of 0.5 °C to 

obtain the heat released/stored data in given temperature intervals (Figure 8.8). 
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Figure 8.7: Cooling (a) and heating (b) cycles in RT21 T-history studies with various 

insulation thicknesses (0, 3, and 6 mm) (ENV – environmental temperatures, PCM – 

temperatures of the PCM sample, H2O – temperatures of the reference sample).  
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Figure 8.8: Heat released (stored) in given temperature intervals from RT21 T-history 

studies with various insulation thicknesses (0, 3, and 6 mm) (HR – heat released upon 

cooling, HS – heat stored upon heating). 

 

The heat released upon cooling in given temperature intervals in the 

measurement with no insulation (HR – 0 mm ins in Figure 8.8) was calculated from the 

ENV – 0 mm ins, PCM – 0 mm ins, and H2O – 0 mm ins T-history curves (Figure 

8.7a). The peak value in heat released occurs in the temperature interval from 21 °C to 

21.5 °C (HR – 0 mm ins in Figure 8.8) which is in agreement with the typical phase 

change temperature of RT21 (Table 7.6). The heat stored upon heating in given 

temperature intervals in the same measurement (HS – 0 mm ins in Figure 8.8) was 

calculated from the ENV – 0 mm ins, PCM – 0 mm ins, and H2O – 0 mm ins T-history 

curves (Figure 8.7b). In this case the latent heat storage is distributed in a wider 

temperature range ending at 23.5 °C. The hysteresis between the HR – 0 mm ins and 

HS – 0 mm ins is evident. The heat released upon cooling in given temperature 

intervals in the measurement with 3 mm thick insulation (HR – 3 mm ins in Figure 8.8) 

was calculated from the ENV – 3 mm ins, PCM – 3 mm ins, and H2O – 3 mm ins T-

history curves (Figure 8.7a). The peak value in heat released in this case is in the 
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temperature interval from 20.5 °C to 21 °C (HR – 3 mm ins in Figure 8.8) which is also 

in agreement with the typical phase change temperature of RT21 (Table 7.6). The value 

of the highest peak is lower than in the case of HR – 0 mm ins (Figure 8.8). However, 

the latent heat release in this case occurs in a wider 19 °C to 21 °C temperature range. 

The heat stored upon heating in given temperature intervals in the measurement with 

3 mm thick insulation (HS – 3 mm ins in Figure 8.8) was calculated from the ENV – 

3 mm ins, PCM – 3 mm ins, and H2O – 3 mm ins T-history curves (Figure 8.7b). In 

this case the latent heat storage occurs in a temperature range ending at 22.5 °C (Figure 

8.8). The hysteresis between the HR – 6 mm ins and HS – 6 mm ins is even smaller 

than in the measurement with the 3 mm thick insulation (Figure 8.8). 

Furthermore, the heat released/stored data (HR and HS in Figure 8.8) were used 

to calculate the corresponding enthalpy curves upon cooling and heating in all three 

aforementioned measurements. The enthalpy was calculated using the function 

calc_enthalpy described in section 8.1. The results are shown in Figure 8.9. 

All the enthalpy-temperature curves were normalised to 0 kJkg-1 at 15 °C 

(Figure 8.9). From the enthalpy curves it is evident that the increase of the insulation 

thickness resulted in reduction of the hysteresis between the cooling and heating data in 

the case of RT21 T-history measurements. In the case of the measurement with the 

6 mm thick insulation the cooling and heating enthalpy curves were almost aligned 

(Cooling enthalpy – 6 mm ins and Heating enthalpy – 6 mm ins in Figure 8.9). Hence it 

was concluded that the 6 mm value represents the optimal value to be used for the 

insulation thickness in the advanced T-history studies. Another indicator that the 6 mm 

value represents the optimal value was the fact that in the measurement with the 6 mm 

insulation the total heat released/stored in the temperature range between the 15 °C and 

30 °C was in the range between 130 and 140 kJkg-1 (Figure 8.9). This was in much 

better agreement (±5 %) with the value of 134 kJkg-1 (Table 7.6) than the values 

around 120 kJkg-1 (±12 %) obtained from the measurements with the 0 and 3 mm thick 

insulations (Figure 8.9). 
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Figure 8.9: Enthalpy-temperature curves upon cooling and heating from RT21 T-

history studies with various insulation thicknesses (0, 3, and 6 mm) with the normalised 

enthalpy value of 0 kJkg
-1

at 15 °C. 

 

Given the low and similar values of thermal conductivities of different PCMs it 

was decided that the 6 mm insulation will be used as optimal even in the experiments 

with other PCMs and not just RT21.  

 

8.2.4 Sample mass study – results and discussion 

As mentioned in chapter 5 the size of the tested samples is around 1000 times larger in 

T-history experiments than in DSC ones. Hence, as explained in chapter 6 the test tubes 

were designed and built to enable the testing of relatively large representative PCM 

samples. The aim in this parametric study was to test the dependency of the PCM 

characterisation on the size of the samples. In all previous studies RT21 samples were 

placed in the test tubes with 300 mm height resulting in the sample’s mass of 19.5 g. 

As part of this study another RT21 T-history measurement was performed by using the 

same setup and parameters as in the measurement with the 6 mm thick insulating tape 

described in the previous subsection 8.2.3. The only difference was that in this 
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measurement the PCM sample and reference were placed in the 430 mm long test tubes 

resulting in their respective masses of 41.4 g and 47.5 g. It is evident that the sample 

mass in this case (41.4 g) was greater than in the former case (19.5 g). As before, 10 

cooling and 10 heating 6 h long cycles were recorded in this measurement and 

averaged to determine the corresponding T-history cooling and heating cycle data. The 

data from this measurement were compared to those obtained by the measurement of 

RT21 placed in 300 mm long test tube wrapped with the 6 mm thick tape described in 

subsection 8.2.3. The results of this comparison are shown in Figure 8.10. 

The environmental temperatures in both measurements are almost identical 

upon both cooling and heating as expected (ENV – small sample and ENV – large 

sample in Figure 8.10). The difference between the corresponding PCM and H2O 

curves is evident (Figure 8.10). However, the significant difference can only be 

observed in terms of time needed by samples to reach equilibrium state (Figure 8.10). 

The larger samples (both PCM and reference) as expected needed more time (around 

50 min) to reach the equilibrium states (Figure 8.10). On the other hand, by observing 

the T-history curves it can be concluded that the phase change temperature was not 

significantly affected by the samples’ masses. To investigate the effect of the samples’ 

masses, the T-history curves from both aforementioned measurements were evaluated 

in the 15 °C to 30 °C range using the evaluation technique described in section 8.1 and 

the temperature evaluation interval of 0.5 °C to obtain the heat released/stored data in 

given temperature intervals (Figure 8.11). 

The heat released upon cooling in given temperature intervals in the 

measurement with the smaller mass samples (HR – small sample in Figure 8.11) was 

calculated from the ENV – small sample, PCM – small sample, and H2O – small 

sample T-history curves (Figure 8.10a). The peak value in heat released occurs in the 

temperature interval from 20.5 °C to 21 °C (HR – small sample in Figure 8.11) 

corresponding to the typical phase change temperature of RT21 (Table 7.6).  
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Figure 8.10: Cooling (a) and heating (b) cycles in RT21 T-history studies with 

different masses of the PCM samples (ENV – environmental temperatures, PCM – 

temperatures of the PCM sample, H2O – temperatures of the reference sample).  
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Figure 8.11: Heat released (stored) in given temperature intervals from RT21 T-

history studies with different masses of the PCM samples (HR – heat released upon 

cooling, HS – heat stored upon heating). 

 

The heat stored upon heating in given temperature intervals in the same 

measurement (HS – small sample in Figure 8.11) was evaluated based on the ENV – 

small sample, PCM – small sample, and H2O – small sample T-history curves (Figure 

8.10b). In this case the latent heat storage is distributed in a slightly wider temperature 

range ending at 22.5 °C. The heat released upon cooling in given temperature intervals 

in the measurement with larger samples (HR – large sample in Figure 8.11) was 

calculated from the ENV – large sample, PCM – large sample, and H2O – large sample 

T-history curves (Figure 8.10a). The heat stored upon heating in given temperature 

intervals in the same measurement (HS – large sample in Figure 8.11) was calculated 

from the ENV – large sample, PCM – large sample, and H2O – large sample T-history 

curves (Figure 8.10b). The HR – large sample and HS – large sample data are almost 

the same as the corresponding HR – small sample and HS – small sample data (Figure 

8.11) in terms of both temperature and heat released/stored values. This indicates that 
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the samples’ mass does not affect the result of the PCM characterisation in the case of 

advanced T-history method.  

Moreover, the heat released/stored data (HR and HS in Figure 8.11) were used 

to determine the corresponding enthalpy curves upon cooling and heating in the case of 

both measurements with small (19.5 g) and large (41.4 g) PCM samples. This was done 

by using the function calc_enthalpy described in section 8.1. The results are shown in 

Figure 8.12. 

 

 

 

 

 

 

Figure 8.12: Enthalpy-temperature curves upon cooling and heating from RT21 T-

history studies with different masses of the PCM samples with the normalised enthalpy 

value of 0 kJkg
-1

at 15 °C. 

 

All enthalpy-temperature curves were normalised to 0 kJkg-1 at 15 °C (Figure 

8.12). The difference between the corresponding enthalpy curves (Cooling enthalpy 

and Heating enthalpy curves in Figure 8.12) is very small. The biggest difference in 

enthalpy values (4 kJkg-1) was observed at 22.5 °C between the Heating enthalpy –

 small sample and Heating enthalpy – large sample in Figure 8.12. However this 

represents only 3 % of the expected value (134 kJkg-1) for the total heat released/stored 

in the temperature range between the 15 °C and 30 °C for the RT21 (Table 7.6). Hence 

it was concluded that the samples’ mass does not significantly affect the PCM 
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characterisation. Given this and the aim of this research to investigate large PCM 

samples (larger than 20 g) it was decided that the 430 mm long test tubes will be used 

in all future PCM characterisation experiments. 

Additionally, the total heat released/stored in the temperature range between the 

15 °C and 30 °C in the case of both cooling and heating was in the range between 130 

and 140 kJkg-1 (Figure 8.12) in the case of both small and large samples. This is in 

good agreement (±5 %) with the expected value of 134 kJkg-1 (Table 7.6). 

 

8.3 Investigation studies of RT organic series 

Once the set of parametric studies, described in section 8.2, was performed and the 

conclusions regarding the parameters that mostly affect the measurement drawn the 

advanced T-history method was ready to be used for reliable PCM characterisation. It 

was decided that two organic materials from the Rubitherms’s RT series (Rubitherm 

GmbH, Berlin, Germany) will be firstly tested. The previously tested RT21 and the 

new RT27 were selected due to their phase change temperature ranges that could be 

useful for building applications. Given that these applications were of the most interest 

for this study as discussed in the introductory chapters the selection of RT21 and RT27 

was logical. These two materials have been commercially available for some time and 

form a part of various PCM objects sold by Rubitherm (Rubitherm GmbH, Berlin, 

Germany). Furthermore, other researchers (Kravvaritis et al., 2011) have tested these 

two materials. Hence it was concluded that the advanced T-history tests need to be 

performed on these materials to further validate the advanced T-history method. 

 

8.3.1 RT21 characterisation – results and discussion 

The T-history curves obtained from the measurement with the larger samples described 

in subsection 8.2.4 were used to represent the characterisation of RT21. The relevant T-

history curves (ENV – large sample, PCM – large sample, and H2O – large sample in 

Figure 8.10) are now given separately (ENV, PCM, and H2O in Figure 8.13).  
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Figure 8.13: Cooling (a) and heating (b) cycles in the advanced T-history 

characterisation of RT21 (ENV – environmental temperature, PCM – temperature of the 

PCM sample, H2O – temperature of the reference sample).  
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The reason these data were reused to properly represent the RT21 material is 

that the measurement with the larger samples described in subsection 8.2.4 represents 

an adequate measurement for PCM characterisation based on the advanced T-history 

method given the size of the samples and the reduced hysteresis between the cooling 

and heating data due to the appropriate insulation. 

According to the T-history curves from the cooling cycle (Figure 8.13a) the 

typical phase change temperature of RT21 is 21 °C. This is in a perfect agreement with 

the RT21 specifications given by the manufacturer (Table 7.6). In addition, a very 

small 0.1 °C degree of subcooling was observed between the typical phase change 

temperature of 21 °C and the nucleation temperature of 20.9 °C (PCM in Figure 8.13a). 

The manufacturer does not report any degree of subcooling for RT21 (Rubitherm 

GmbH, Berlin, Germany). This could be due to the reason that the degree of 

subcooling is negligible (0.1 °C) or due to the fact that the subcooling was only 

detected because the MA100BF103A sensors used in the advanced T-history method 

were small enough not to interfere with the natural course of the phase change process 

upon characterisation. As discussed in subsection 8.2.1 the size of the sensors used in 

T-history studies affects the subcooling phenomenon.  

Researchers usually give the PCM characterisation data obtained from 

measurements upon cooling. Arkar and Medved (2005) reported significant variation in 

the typical phase change temperature for the RT20 (former name of RT21) depending 

on the cooling rate used in their DSC tests. In the case of 1 K/min cooling rate (in the 

range of the cooling/heating rates used in the measurements presented here) the typical 

phase change temperature reported by Arkar and Medved (2005) was 19.7 °C. On the 

other hand, the same temperature reported by Kravvaritis et al. (2011) from their T-

history studies was around 21 °C. Since the 19.7 °C is much lower than 21 °C the 

conclusion was made that that the results of DSC tests significantly depend on the 

position of the temperature sensors inside the DSC instruments. As mentioned in 

chapter 5 the sensors in the DSC instruments are usually placed on the surface of the 

test crucibles. This could explain the reason for the lower phase change temperature of 

19.7 °C reported by Arkar and Medved (2005) given the observations discussed in 

subsection 8.2.2.  
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Furthermore, to achieve another aim of this research and as the result of the 

PCM characterisation based on the advanced T-history method, the results obtained 

upon heating (Figure 8.13b) are to be always presented with the results obtained from 

cooling (Figure 8.13a). According to the T-history curves from the heating cycle 

(Figure 8.13b) the phase change occurs in slightly wider temperature range ending at 

22.5 °C. This observation is in agreement with the melting/congealing range of RT21 

given by the manufacturer (Table 7.6).  

As discussed in chapters 5 and 6 one of the aims of the study was to represent 

the PCM characterisation data in the form of the heat released/stored in given 

temperature intervals upon both cooling and heating. Hence, the relevant heat 

released/stored data in given intervals (0.5 °C wide) (HR – large sample and HS – large 

sample in Figure 8.11) were also reused and given separately (HR and HS in Figure 

8.14). 

 

 

 

 

 

 

Figure 8.14: Heat released (stored) data obtained from the advanced T-history 

characterisation of RT21 (HR – heat released upon cooling, HS – heat stored upon 

heating). 
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the data given by the manufacturer for RT21 (Table 7.6). However in terms of the 

actual values of the heat data in the corresponding intervals the results between heat 

released and heat stored are rather close given the scales of y-axes (Figure 8.14). 

Relatively large heat values are present in the HR data and attributed to the intervals 

between 20 °C and 21 °C (Figure 8.14). However, this relatively high heat values are 

compensated in HS data by the heat values attributed to the intervals between 21 °C 

and 22.5 °C degrees (Figure 8.14). This results in wider phase change range upon 

heating for RT21 but similar heat content once the heat is evaluated in the temperature 

ranges wider than the phase change range. 

Furthermore, as the enthalpy-temperature curves are often necessary for the 

design and modeling of any TES systems based on PCMs these curves will also be 

presented as part of the characterisation data for each investigated PCM. Following 

this, the relevant enthalpy data upon cooling and heating (Cooling enthalpy – large 

sample and Heating enthalpy – large sample in Figure 8.12) were reused and given 

separately (Cooling enthalpy and Heating enthalpy in Figure 8.15). As explained is 

subsection 8.2.4 all enthalpy-temperature curves were normalised to 0 kJkg-1 at 15 °C 

and evaluated between 15 °C and 30 °C (Figure 8.15). The reason this was done is that 

the manufacturer provides the data for the heat capacity of the RT21 evaluated between 

15 °C and 30 °C (Table 7.6). Hence the same was done here. The difference 

(hysteresis) between the corresponding enthalpy curves (Cooling enthalpy and Heating 

enthalpy curves in Figure 8.15) is relatively small. It is mostly observed at the upper 

end temperatures of the phase change ranges (21 °C in the case of cooling and 22.5 °C 

in the case of heating enthalpy curve in Figure 8.15). 

As explained in subsection 8.2.4 the originally recorded T-history data in the 

measurement with the larger samples (10 cooling and 10 heating cycles) were 

standardly averaged and the mean data obtained by averaging and the corresponding 

evaluations were presented in Figures 8.10-8.12 and also in Figures 8.13-8.15. The 

mean value of the total heat released upon cooling between 15 °C and 30 °C was 

138 kJkg-1. This value showed a deviation of ±3 % from the expected value (134 kJkg-

1) for the total heat released/stored in the temperature range between the 15 °C and 

30 °C for the RT21 (Table 7.6). The mean value of the total heat stored upon heating 
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between 15 °C and 30 °C was 133 kJkg-1. This value showed a deviation of ±0.8 % 

from the expected value for RT21 (Table 7.6). Given that the deviation values were 

less than ±10 % it was concluded that the PCM characterisation based on the advanced 

T-history method results in accurate and reliable data. 

 

 

 

 

 

 

Figure 8.15: Enthalpy-temperature curves upon cooling and heating obtained from the 

advanced T-history characterisation of RT21 with the normalised enthalpy value 

of 0 kJkg
-1

at 15 °C. 

 

In addition, the T-history curves obtained in each separate cooling and heating 

cycle were evaluated by using the functions described in section 8.1 and the total heat 

released/stored in the temperature range between the 15 °C and 30 °C for the RT21 

calculated for each cycle. The results are shown in Figure 8.16. 

It was evident that the heat content values from the first cycle are always higher 

than the values from the consecutive cycles. Moreover, the heat values decline with the 

increasing cycle number. The possible explanation for this could be the fact that before 

the first cycle a clean sensor is placed inside the sample. After the first cycle, the sensor 

undergoes at least one solidification process within the sample and it appears to be 

acting as a nucleating seed in the consecutive cycles. This means that it should be 

presumed that the first cycle within each measurement reflects the most natural 
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behavior of the PCM sample. Hence, the data obtained from the first cycle should be 

taken as the most accurate. The value of the total heat released upon cooling between 

15 °C and 30 °C estimated from the data obtained in the first cooling cycle was 

140 kJkg-1 (Figure 8.16). This value showed a deviation of ±4.5 % from the expected 

value (134 kJkg-1) for the RT21 (Table 7.6). The value of the total heat stored upon 

heating between 15 °C and 30 °C estimated from the data obtained in the first heating 

cycle was 137 kJkg-1. This value showed a deviation of ±2.2 % from the expected value 

for RT21 (Table 7.6). Given these deviation values and the aforementioned explanation 

about the sensor acting as a nucleating seed it was concluded that the data from the first 

cycle should be used as the most accurate in all future PCM characterisation studies. It 

was decided that the PCMs in the future experiments will be subjected to the T-history 

program with 10 alternating cooling and heating cycles in order to test the stability of 

the investigated PCMs. However, only the data obtained in the first cycle should be 

taken as relevant for the most accurate PCM characterisation.  

 

 

 

 

 

 

Figure 8.16: The total heat released/stored between 15 °C and 30 °C estimated from 

the corresponding cycle data from the advanced T-history based characterisation 

measurement of RT21 (DS – heat data sheet value, HR – heat released upon cooling, 

and HS – heat stored upon heating). 
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Furthermore, as discussed in section 5.1 the calculated heat released/stored data 

are usually given as the heat released/stored per mass (Figure 8.16). Following the 

suggestions in the RAL procedure (RAL, 2010) it was decided that as part of the 

advanced T-history characterisation of PCMs these data should also be given in the 

form of the heat released/stored per volume. This could be done by multiplying the 

heat released/stored data per mass with the minimum PCM density in the temperature 

range of interest. Hence, the total heat released/stored per volume data are given for the 

investigated PCM RT21. The value of the total heat released per volume upon cooling 

between 15 °C and 30 °C was 107.8 kJl-1. The value of the total heat stored per volume 

upon heating between 15 °C and 30 °C was 105.5 kJl-1.  

Finally, in order to test the damage criteria regarding enthalpy, temperature, and 

mass changes as explained in section 5.1 two more T-history measurements of RT21 

were performed with the exactly same parameters as the measurement with large 

samples described in section 8.2.4. The data from different cycles were evaluated and 

the corresponding total heat released/stored values between 15 °C and 30 °C 

calculated. The calculated data showed the same trend as in Figure 8.15 confirming 

once more that the data obtained from the first cycle should be used as the most 

accurate. Moreover the changes in enthalpy, temperature and mass profiles of the PCM 

sample between measurements were estimated. Firstly, the maximum changes in the 

corresponding total enthalpies upon cooling and heating between 15 °C and 30 °C were 

±1.5 % (<±10 %). Secondly, the maximum change in temperature profiles was ±0.2 °C 

(<±1 °C). Thirdly, the maximum change in mass of the PCM samples was ±0.5 % 

(<±3 %). Once the damage criteria established in section 5.1 were satisfied the RT21 

characterisation was finally labeled as successful. 

 

8.3.2 RT27 characterisation – results and discussion 

The other material that was tested from Rubitherm’s RT series was RT27 (Rubitherm 

GmbH, Berlin, Germany). The material specifications for the RT27 are given in Table 

8.1. 
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Property Value 

Melting area 
Congealing area 
Typical phase change temperature 

25-28 °C 
28-25 °C 
27 °C 

Heat storage capacity (15 to 30 °C) 184 kJkg-1 
Specific heat capacity 2 kJkg-1K-1 
Density solid (at 15 °C) 
Density liquid (at 40 °C) 

0.88 kgl-1 
0.76 kgl-1 

Thermal conductivity 0.2 Wm-1K-1 
 

Table 8.1: Material properties of organic paraffin RT27. 

 

The characterisation measurement of RT27 using the advanced T-history 

method was performed with the almost identical parameters as in the RT21 

measurement with the larger samples described in section 8.2.4 except that different 

PCM (RT27) was investigated in this measurement. Once more the PCM and distilled 

water, placed in the 430 mm long test tubes insulated by 6 mm thick tape, were 

subjected to the alternating cooling and heating 6 h long cycles. Given the expected 

phase change range of the material the cycles were operated between 14 and 37 °C. 

The respective masses of the sample (mp) and reference (mw) were 39.2 g and 47.5 g. 

The sensors, their placement, and the instrumentation and data acquisition parameters 

were the same as in the MA100BF103A measurement described in subsection 8.2.1. 

As before, prior to the T-history measurement the proper calibration measurement with 

1 °C step temperature program from 10 °C to 39 °C inside the chamber was performed 

to assure the accuracy of the sensors used in the T-history measurement. The 

calibration data and the recorded voltage data from the T-history measurement were 

used as described in section 7.2.4.1 to obtain the relevant T-history curves (Figure 

8.17). The presented curves are from the first cooling and heating cycle due to the 

reasons explained in subsection 8.3.1. 

According to the T-history curves from the cooling cycle (Figure 8.17a) the 

typical phase change temperature of RT27 is 27 °C. This is in a perfect agreement with 

the RT27 specifications given by the manufacturer (Table 8.1) and the results reported 

by Kravvaritis et al. (2011) for the same material. In the case of RT27 no subcooling 

was detected (PCM in Figure 8.17a). The manufacturer also does not report any degree 

of subcooling for RT27 (Rubitherm GmbH, Berlin, Germany).   
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Figure 8.17: Cooling (a) and heating (b) cycles in the advanced T-history 

characterisation of RT27 (ENV – environmental temperature, PCM – temperature of the 

PCM sample, H2O – temperature of the reference sample).  
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As for the RT21, the results obtained upon heating are also presented (Figure 

8.17b). According to the relevant T-history curve from the heating cycle (PCM in 

Figure 8.17b) the typical phase change temperature observed upon heating was 

27.2 °C. 

As in the case of RT21 characterisation, the heat released/stored in given 

temperature intervals data for RT27 upon both cooling and heating are also presented. 

The T-history curves (Figure 8.17) were evaluated in the 15 °C to 30 °C range using 

the evaluation technique described in section 8.1 and the temperature evaluation 

interval of 0.5 °C to obtain the heat released/stored data in given temperature intervals 

upon both cooling and heating (Figure 8.18).  

The heat released upon cooling and heat stored upon heating values in given 

temperature intervals (HR and HS in Figure 8.18) were calculated from the respective 

ENV, PCM, and H2O T-history curves (Figure 8.17a and 8.17b). According to the HR 

data in Figure 8.18 the congealing area of RT27 is in the range from 25 °C to 27.5 °C. 

This is for a 0.5 °C smaller than the congealing range reported by the manufacturer 

(Table 8.1). However it was concluded that the observed congealing range could be 

more accurate given the precision and accuracy of the sensors as well as the precision 

of the data evaluation procedure used in the advanced T-history method. According to 

the HS data in Figure 8.18 the melting area of RT27 is in the slightly wider range from 

25 °C to 28 °C and in perfect agreement with the data reported by the manufacturer 

(Table 8.1). The HR and HS data show very similar behaviour in terms of the heat data 

values in the corresponding intervals given the scales of y-axes (Figure 8.18). The 

slightly higher values in HR data attributed to the intervals between 26 °C and 27 °C 

are compensated by the higher values in HS data attributed to the intervals between 

27 °C and 28 °C degrees (Figure 8.18)  

The aforementioned observations are due to the marginally wider phase change 

range upon heating for RT27. However, the total heat contents in the case of cooling 

and heating are expected to be very similar once the heat is evaluated in the 

temperature ranges wider than the phase change range. 
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Figure 8.18: Heat released (stored) data obtained from the advanced T-history 

characterisation of RT27 (HR – heat released upon cooling, HS – heat stored upon 

heating). 

 

As for the RT21, the relevant enthalpy data upon cooling and heating were 
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8.18) and presented in Figure 8.19. Since the manufacturer provides the data for the 

heat capacity of the RT27 evaluated between 15 °C and 30 °C (Table 8.1) the enthalpy-

temperature curves were normalised to 0 kJkg-1 at 15 °C and evaluated between 15 °C 

and 30 °C (Cooling enthalpy and Heating enthalpy in Figure 8.19). The difference 

(hysteresis) between the corresponding enthalpy curves (Cooling enthalpy and Heating 

enthalpy in Figure 8.15) is very small in terms of both temperature and enthalpy values 

labeling the RT27 as a good quality PCM with no effects like subcooling or hysteresis. 

The value of the total heat released upon cooling between 15 °C and 30 °C for the 

RT27 was 175 kJkg-1. This value showed a deviation of ±4.9 % from the expected 

value (184 kJkg-1) for the total heat released/stored in the temperature range between 

the 15 °C and 30 °C for the RT27 (Table 8.1). The value of the total heat stored upon 

heating between 15 °C and 30 °C was 179 kJkg-1. This value showed a deviation of 

±2.7 % from the expected value for RT27 (Table 8.1). Given that the deviation values 
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were less than ±10 % it was once more confirmed that the PCM characterisation based 

on the advanced T-history method results in accurate and reliable data. 

 

 

 

 

 

 

Figure 8.19: Enthalpy-temperature curves upon cooling and heating obtained from the 

advanced T-history characterisation of RT27 with the normalised enthalpy value 

of 0 kJkg
-1

at 15 °C. 

 

As in the case of RT21 the heat released/stored per volume data were also 

estimated for RT27. The value of the total heat released per volume upon cooling 

between 15 °C and 30 °C was 133 kJl-1. The value of the total heat stored per volume 

upon heating between 15 °C and 30 °C was 136 kJl-1.  

Finally, in order to test the damage criteria regarding enthalpy, temperature, and 

mass changes as explained in section 5.1 two additional T-history measurements of 

RT27 were performed with the exactly same parameters as in the measurement 

previously described in this subsection. The changes in enthalpy, temperature and mass 

profiles of the PCM sample between measurements were estimated. Firstly, the 

maximum changes in the corresponding total enthalpies upon cooling and heating 

between 15 °C and 30 °C were ±4.2 % (<±10 %). Secondly, the maximum change in 

temperature profiles was ±0.2 °C (<±1 °C). Thirdly, the maximum change in mass of 
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the PCM samples was ±0.3 % (<±3 %). Once the damage criteria established in section 

5.1 were satisfied the RT27 characterisation was labeled as successful. 

 

8.4 Investigation studies of PT bio-organic series 

Once the advanced T-history method was successfully validated in the PCM 

characterisation measurements of the well-known materials from the Rubitherm’s 

organic RT series (Rubitherm GmbH, Berlin, Germany), this method could also be 

used for testing of other relatively unknown PCMs. The decision was made to test the 

PCMs from the PT bio-organic series produced by Entropy Solutions (Entropy 

Solutions Inc., Plymouth, Minnesota). These materials are relatively new on the PCM 

market and untested by researchers. According to the manufacturer the biggest 

advantages of these materials is their natural vegetable based origin resulting in 100 % 

renewable PCMs with high latent heat contents (Entropy Solutions Inc., Plymouth, 

Minnesota) making them rather suitable for various PCM applications. It was decided 

that three bio-organic materials from the PT series (Entropy Solutions Inc., Plymouth, 

Minnesota) will be tested, PT20, PT27, and PT28. These materials were selected based 

on their expected phase change temperature ranges. Namely, these materials appeared 

to be very suitable for building applications which were, as mentioned in the 

introductory chapters, of the most interest for this research. 

 

8.4.1 PT20 characterisation – results and discussion 

The first material that was tested from the PT series was PT20 (Entropy Solutions Inc., 

Plymouth, Minnesota). The material specifications of PT20 are given in Table 8.2. 

Property Value 

Typical phase change temperature 20 °C 
Heat storage capacity 180 kJkg-1 
Specific heat capacity (solid) 
Specific heat capacity (liquid) 

2.59 kJkg-1K-1 
2.89 kJkg-1K-1 

Density 0.86 kgl-1 
 

Table 8.2: Material properties of bio-organic PCM PT20. 
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The characterisation measurement of PT20 using the advanced T-history 

method was performed with almost the same parameters as the RT21 and RT27 

characterisation measurements. The PCM and distilled water, placed in the 430 mm 

long test tubes insulated by 6 mm thick tape, were subjected to the alternating cooling 

and heating 6 h long cycles. Given the relative novelty of the PT series the cycles were 

operated in wider temperature range than in the case of RT PCMs. The operating 

temperature range was between 8 °C and 40 °C. The respective masses of the sample 

(mp) and reference (mw) were 42.6 g and 47.4 g. As before, prior to the T-history 

measurement, the proper calibration measurement was performed with 1 °C step 

temperature program but now from 6 °C to 41 °C since the operating range was 

between 8 °C and 40 °C. The calibration of sensors was performed as described in 

subsection 7.2.4.1. Given the width of the operating temperature range the variable 

NUMBER_OF_TEMP_POINTS in the calibration script (see APPENDIX A3) had 

greater value than in any previous experiment. This resulted in the slightly higher 

maximum absolute error of 0.46 °C for the temperature sensors than before (< 0.3 °C). 

However this value did not exceed the ±0.5 °C temperature validation criterion for the 

advanced T-history measurements. Hence, the calibration data could be used to obtain 

the T-history curves. Once this was performed, the difference between the cooling and 

heating T-history curves was evident. It was assumed that it was due to the temperature 

gradients formed inside the investigated PCM sample. Therefore another T-history 

characterisation measurement of PT20 was performed with the only difference that the 

10 mm thick insulating tape was used to wrap the test tubes. The obtained T-history 

results (Figure 8.20) were almost identical as in the 6 mm thick insulation case leading 

to the conclusion that the hysteresis between the cooling and heating T-history curves 

is the real property of the investigated PT20 PCM.  

According to the T-history curves from the cooling cycle (Figure 8.20a) the 

typical phase change temperature of PT20 is 18.9 °C. This value deviates from the 

expected value of 20 °C (Table 8.2). Subcooling was not observed for PT20 (PCM in 

Figure 8.20a). The manufacturer also does not report any degree of subcooling for 

PT20 (Entropy Solutions Inc., Plymouth, Minnesota). The results obtained upon 

heating are also presented (Figure 8.20b). According to the PCM T-history curve from 
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the heating cycle (Figure 8.20b) the typical phase change temperature is 19.9 °C which 

is in a good agreement with the value reported by the manufacturer (Table 8.2). Hence, 

it was presumed that the manufacturer reported the PT20 characterisation data obtained 

only upon heating. 

As in the case of RT series characterisation measurement, the heat 

released/stored in given temperature intervals data for PT20 upon both cooling and 

heating are also presented. The T-history curves (Figure 8.20) were evaluated in the 

15 °C to 30 °C range using the evaluation technique described in section 8.1 and the 

temperature evaluation interval of 0.5 °C to obtain the heat released/stored data in 

given temperature intervals upon both cooling and heating (Figure 8.21). The reason 

15 °C to 30 °C range was selected is that the same range was used in the case of RT 

series PCMs. The manufacturer does not provide any information regarding the 

temperature ranges used for the evaluation of heat capacity data of PT20 (Entropy 

Solutions Inc., Plymouth, Minnesota). Hence the same range as in the case of RT 

PCMs was used to enable some comparison between the respective PCMs. 

The heat released upon cooling and heat stored upon heating values in given 

temperature intervals (HR and HS in Figure 8.21) were calculated from the respective 

ENV, PCM, and H2O T-history curves (Figure 8.20a and 8.20b). According to the HR 

data in Figure 8.21 the congealing area of PT20 is in the range from 18 °C to 20 °C. 

The melting area of PT20 is marginally shifted in comparison to the congealing area 

towards the 18.5 °C to 20.5 °C (Figure 8.21). The HR and HS data show similar 

behaviour to a certain degree in terms of the heat data values in the corresponding 

intervals given the scales of y-axes (Figure 8.21). The heat value in the interval 

between 18.5 °C and 19 °C in HR data is evidently larger than in any interval in HS 

data (Figure 8.21). This confirms that the hysteresis between the cooling and heating 

data in the case of PT20 is small but still real and existent. 
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Figure 8.20: Cooling (a) and heating (b) cycles in the advanced T-history 

characterisation of PT20 (ENV – environmental temperature, PCM – temperature of the 

PCM sample, H2O – temperature of the reference sample).  
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Figure 8.21: Heat released (stored) data obtained from the advanced T-history 

characterisation of PT20 (HR – heat released upon cooling, HS – heat stored upon 

heating). 

 

As in the case of RT21 and RT27 characterisations, the relevant enthalpy data 

upon cooling and heating were evaluated from the heat released/stored data in given 

temperature intervals (Figure 8.21) and presented in Figure 8.22. The enthalpy-

temperature curves were normalised to 0 kJkg-1 at 15 °C and evaluated between 15 °C 

and 30 °C (Cooling enthalpy and Heating enthalpy in Figure 8.22). The difference 

(hysteresis) between the corresponding enthalpy curves (Cooling enthalpy and Heating 

enthalpy in Figure 8.22) is evident and mainly due to the difference in temperature 

values given the earlier observed differences in the congealing and melting ranges of 

PT20. The value of the total heat released upon cooling between 15 °C and 30 °C for 

the PT20 was 140 kJkg-1 while the value of the total heat stored upon heating in the 

same range was 138 kJkg-1.These values were not close to the value of 180 kJkg-1 

(Table 8.2). However since the manufacturer does not provide any information 

regarding the temperature ranges used for the evaluation of heat capacity data of PT20 

(Entropy Solutions Inc., Plymouth, Minnesota) those values cannot be compared. On 

the other hand the total heat released/stored data between 15 °C and 30 °C for the PT20 
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were almost identical to the same data reported for RT21. This showed that the PT20 

could be used as the concurrent material to the RT21 in terms of both heat content and 

phase change temperature range. The advantage of PT20 over RT21 would be its bio 

origin and 100 % renewability. 

 

 

 

 

 

 

Figure 8.22: Enthalpy-temperature curves upon cooling and heating obtained from the 

advanced T-history characterisation of PT20 with the normalised enthalpy value 

of 0 kJkg
-1

at 15 °C. 

 

As in the case of previous characterisation reports the heat released/stored per 

volume data were also estimated for PT20. The value of the total heat released per 

volume upon cooling between 15 °C and 30 °C was 120.4 kJl-1. The value of the total 

heat stored per volume upon heating between 15 °C and 30 °C was 118.7 kJl-1.  

Finally, in order to test the damage criteria regarding enthalpy, temperature, and 

mass changes two additional T-history measurements of PT20 with the insulation 

thickness of 10 mm were performed. The maximum changes in the corresponding total 

enthalpies upon cooling and heating between 15 °C and 30 °C were ±3 % (<±10 %). 

The maximum change in temperature profiles was ±0.3 °C (<±1 °C). Thirdly, the 
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maximum change in mass of the PCM samples was ±0.2 % (<±3 %). Once the damage 

criteria were checked the PT20 characterisation was completed. 

 

8.4.2 PT27 characterisation – results and discussion 

The second material that was tested from the PT series was PT27 (Entropy Solutions 

Inc., Plymouth, Minnesota). The material specifications of PT27 are given in Table 8.3. 

Property Value 

Typical phase change temperature 27 °C 
Heat storage capacity 200 kJkg-1 
Specific heat capacity (solid) 
Specific heat capacity (liquid) 

2.46 kJkg-1K-1 
2.63 kJkg-1K-1 

Density 0.86 kgl-1 
 

Table 8.3: Material properties of bio-organic PCM PT27. 

 

The characterisation measurement of PT27 using the advanced T-history 

method was performed with minor changes in regard to the PT20 characterisation. The 

PCM and distilled water, placed in the 430 mm long test tubes insulated by 10 mm 

thick tape, were subjected to the alternating cooling and heating 6 h long cycles 

between 8 °C and 40 °C. The respective masses of the sample (mp) and reference (mw) 

were 42.1 g and 47.4 g. As before, prior to the T-history measurement, the proper 

calibration measurement was performed with 1 °C step temperature program from 6 °C 

to 41 °C. Hence, the calibration data were used to obtain the T-history curves (Figure 

8.23). 

According to the T-history curves from the cooling cycle (Figure 8.23a) the 

typical phase change temperature of PT27 is 24 °C. This value deviates from the 

expected value of 27 °C (Table 8.2). Small degree of subcooling (0.5 °C) was also 

observed between the phase change temperature and the nucleation temperature 

(23.5 °C). The manufacturer does not report any degree of subcooling for PT27 

(Entropy Solutions Inc., Plymouth, Minnesota). According to the PCM T-history curve 

from the heating cycle (Figure 8.23b) the typical phase change temperature is 25.5 °C 

which is in a better agreement with the value of 27 °C (Table 8.2). Hence, it was once 

more presumed that the manufacturer reported the PT27 characterisation data obtained 

only upon heating. 
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Figure 8.23: Cooling (a) and heating (b) cycles in the advanced T-history 

characterisation of PT27 (ENV – environmental temperature, PCM – temperature of the 

PCM sample, H2O – temperature of the reference sample).  
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As in previous characterisation measurements, the heat released/stored in given 

temperature intervals data for PT27 upon both cooling and heating are also presented. 

The T-history curves (Figure 8.23) were evaluated in the 15 °C to 30 °C range with the 

temperature evaluation interval of 0.5 °C to obtain the heat released/stored data in 

given temperature intervals upon both cooling and heating (Figure 8.24).  

 

 

 

 

 

 

Figure 8.24: Heat released (stored) data obtained from the advanced T-history 

characterisation of PT27 (HR – heat released upon cooling, HS – heat stored upon 

heating). 

 

The heat released upon cooling and heat stored upon heating values in given 

temperature intervals (HR and HS in Figure 8.24) were calculated from the respective 

ENV, PCM, and H2O T-history curves (Figure 8.23a and 8.23b). According to the HR 

data in Figure 8.24 the congealing area of PT27 is in the range from 23.5 °C to 24.5 °C. 

The melting area of PT27 is wider and shifted towards the 24.5 °C to 27.5 °C range or 

even beyond that (Figure 8.24). These values show an evident and real hysteresis 

between the cooling and heating data in the case of PT27. The hysteresis is not reported 

by the manufacturer (Entropy Solutions Inc., Plymouth, Minnesota). This and the lack 

of the subcooling report confirmed that the manufacturer gave the PT27 data obtained 

only upon heating. As discussed in section 5.1 it is essential for the TES system 
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development that the PCM characterisation data upon both heating and cooling are 

reported along with any existing hysteresis between the data. 

The enthalpy data upon cooling and heating were evaluated from the heat 

released/stored data in given temperature intervals (Figure 8.24) and presented as 

Cooling enthalpy and Heating enthalpy in Figure 8.25.  

 

 

 

 

 

 

Figure 8.25: Enthalpy-temperature curves upon cooling and heating obtained from the 

advanced T-history characterisation of PT27 with the normalised enthalpy value 

of 0 kJkg
-1

at 15 °C. 

 

The difference (hysteresis) between the corresponding enthalpy curves (Cooling 

enthalpy and Heating enthalpy in Figure 8.25) is rather significant and mainly due to 

the difference in temperature values given the differences in the congealing and 

melting ranges of PT27. The value of the total heat released upon cooling between 

15 °C and 30 °C for the PT27 was 140 kJkg-1 while the value of the total heat stored 

upon heating in the same range was 141 kJkg-1.These values were not close to the value 

of 200 kJkg-1 (Table 8.3). However since the information regarding the temperature 

ranges used for the evaluation of the heat capacity data of PT27 are not provided (Table 

8.3) the heat values cannot be compared. The total heat data are only marginally higher 

than the ones reported for PT20. On the other hand, the total heat released/stored data 
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between 15 °C and 30 °C for the PT27 are smaller than in the case of the corresponding 

RT material (RT27) making RT27 the more competitive PCM. 

The heat released/stored per volume data were also estimated for PT27. The 

value of the total heat released per volume upon cooling between 15 °C and 30 °C was 

120.4 kJl-1. The value of the total heat stored per volume upon heating between 15 °C 

and 30 °C was 121.3 kJl-1.  

Finally, in order to test the damage criteria regarding enthalpy, temperature, and 

mass changes two additional T-history measurements of PT27 were performed. The 

maximum changes in the corresponding total enthalpies upon cooling and heating 

between 15 °C and 30 °C were ±3.4 % (<±10 %). The maximum change in temperature 

profiles was ±0.5 °C (<±1 °C). Thirdly, the maximum change in mass of the PCM 

samples was ±0.2 % (<±3 %). Once the damage criteria were checked the PT27 

characterisation was finished. 

 

8.4.3 PT28 characterisation – results and discussion 

The last material that was tested from the PT series was PT28 (Entropy Solutions Inc., 

Plymouth, Minnesota). The material specifications of PT28 are given in Table 8.4. 

Property Value 

Typical phase change temperature 29 °C 
Heat storage capacity 205 kJkg-1 
Specific heat capacity (solid) 
Specific heat capacity (liquid) 

2.34 kJkg-1K-1 
2.54 kJkg-1K-1 

Density 0.86 kgl-1 
 

Table 8.4: Material properties of bio-organic PCM PT28. 

 

The characterisation measurement of PT28 using the advanced T-history 

method was performed in the same manner as the PT27 characterisation. The PCM and 

distilled water, placed in the 430 mm long test tubes insulated by 10 mm thick tape, 

were subjected to the alternating cooling and heating 6 h long cycles between 8 °C and 

40 °C. The respective masses of the sample (mp) and reference (mw) were 42.2 g and 

47.4 g. As before, prior to the T-history measurement, the proper calibration 

measurement was performed with 1 °C step temperature program from 6 °C to 41 °C. 

Hence, the calibration data were used to obtain the T-history curves (Figure 8.26). 
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Figure 8.26: Cooling (a) and heating (b) cycles in the advanced T-history 

characterisation of PT28 (ENV – environmental temperature, PCM – temperature of the 

PCM sample, H2O – temperature of the reference sample).  
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According to the T-history curves from the cooling cycle (Figure 8.26a) the 

typical phase change temperature of PT28 is 27.3 °C. This value deviates from the 

expected value of 29 °C (Table 8.3). Small degree of subcooling (0.4 °C) was also 

observed between the phase change temperature and the nucleation temperature 

(26.9 °C). The manufacturer does not report any degree of subcooling for PT28 

(Entropy Solutions Inc., Plymouth, Minnesota). According to the PCM T-history curve 

from the heating cycle (Figure 8.26b) the typical phase change temperature is 28.5 °C 

which is close to the value of 29 °C (Table 8.3). Given these values it was again 

confirmed the manufacturer (Entropy Solutions Inc., Plymouth, Minnesota) reports 

only the PCM characterisation data obtained upon heating. 

The heat released/stored data in given temperature intervals for PT28 upon both 

cooling and heating are also presented. The T-history curves (Figure 8.26) were 

evaluated in the 15 °C to 30 °C range with the temperature evaluation interval of 0.5 °C 

to obtain the heat released/stored data in given temperature intervals upon both cooling 

and heating (Figure 8.27).  

 

 

 

 

 

 

Figure 8.27: Heat released (stored) data obtained from the advanced T-history 

characterisation of PT28 (HR – heat released upon cooling, HS – heat stored upon 

heating). 
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The heat released upon cooling and heat stored upon heating values in given 

temperature intervals (HR and HS in Figure 8.27) were calculated based on the ENV, 

PCM, and H2O T-history curves (Figure 8.26a and 8.26b). According to the HR data in 

Figure 8.27 the congealing area of PT28 is in the range from 26.5 °C to 28 °C. The 

melting area of PT28 is wider and shifted towards the 27.5 °C to 29.5 °C range 

(Figure 8.27). As in the case of PT27 the hysteresis between the cooling and heating 

data, although not reported by the manufacturer (Entropy Solutions Inc., Plymouth, 

Minnesota), is real.  

The enthalpy data upon cooling and heating were evaluated from the heat 

released/stored data in given temperature intervals (Figure 8.27) and presented as 

Cooling enthalpy and Heating enthalpy in Figure 8.28. 

 

 

 

 

 

 

Figure 8.28: Enthalpy-temperature curves upon cooling and heating obtained from the 

advanced T-history characterisation of PT28 with the normalised enthalpy value 

of 0 kJkg
-1

at 15 °C. 
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heating in the same range was 133 kJkg-1. These values were not close to the value of 

205 kJkg-1 (Table 8.3). However given the lack of information regarding the 

temperature ranges used for the evaluation of the heat capacity data of PT28 (Table 

8.3) the heat values cannot be compared. The total heat data are similar (±10%) to the 

values reported for PT20 and PT27. This indicates that the materials from the PT series 

show rather similar behaviour in terms of the heat capacity values regardless of their 

phase change ranges. Consequently, as in PT27 case the total heat released/stored data 

for the PT28 are smaller than the corresponding RT27 data. 

The heat released/stored per volume data were also estimated for PT28. The 

value of the total heat released per volume upon cooling between 15 °C and 30 °C was 

111.8 kJl-1. The value of the total heat stored per volume upon heating between 15 °C 

and 30 °C was 114.4 kJl-1.  

Finally, for the damage criteria tests regarding enthalpy, temperature, and mass 

changes two additional T-history measurements of PT28 were performed. The 

maximum changes in the corresponding total enthalpies upon cooling and heating 

between 15 °C and 30 °C were ±2.9 % (<±10 %). The maximum change in temperature 

profiles was ±0.4 °C (<±1 °C). Thirdly, the maximum change in mass of the PCM 

samples was ±0.2 % (<±3 %). Once the damage criteria were checked the PT28 

characterisation was completed. 

 

8.5 Summary 

The comprehensive studies of various organic PCMs were described in this chapter.  

The temperature history curves present only a part of the PCM characterisation. The 

temperature data need to be properly evaluated to determine the basic thermo-physical 

properties of investigated materials predominantly the phase change temperature 

(range) and the energy stored/released. Hence, the implementation of the technique 

used for the data evaluation of the T-history curves was described in this chapter. 

Additionally, considering the need to balance between various measurements’ 

parameters in PCM related experiments, as explained in section 5.1, thorough 

parametric studies had to be performed on the well-known organic PCM RT21. The 
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parametric studies, carried out by varying the parameters like the size and position of 

the sensors, the thickness of the insulating tape used to wrap the test tubes and the size 

of the samples used in measurements, were described in detail. 

Moreover the details of the in-depth characterisation of organic RT21 and RT27 

(Rubitherm GmbH, Berlin, Germany) as well as bio-organic PT20, PT27, and PT28 

PCMs (Entropy Solutions Inc., Plymouth, Minnesota) were also given in this chapter. 
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Chapter 9 

INVESTIGATION  

OF THERMO-PHYSICAL PROPERTIES 

OF INORGANIC PCMs 

 

In addition to the tests performed on the organic materials, the advanced T-history 

method was used to characterise some inorganic PCMs as well. As explained in 

chapter 8, the T-history measurements produce the temperature history curves which 

form only a part of the PCM characterisation. The temperature data need to be properly 

evaluated to determine the basic thermo-physical properties of investigated materials 

(phase change range and heat content). Given the distinguishable properties of the 

inorganic and organic PCMs especially in terms of the subcooling phenomenon the 

computational technique explained in section 8.1 had to be adapted to take the 

subcooling into the account and therefore enable proper characterisation of inorganic 

PCMs. The details regarding the adaptation procedure are described in this chapter. 

Once the data evaluation procedure was adjusted for the characterisation of 

inorganic materials and properly implemented, the in-depth characterisation studies of 

inorganic PCMs could be performed. Two inorganic PCMs from Rubitherm’s SP series 

(Rubitherm GmbH, Berlin, Germany) were investigated and their characterisation data 

presented in detail. 

In addition, given that the new evaluation procedure was developed to take the 

subcooling into the account the T-history data of PT27 and PT28 (see subsections 8.4.2 

and 8.4.3) from the Entropy Solutions’ PT series (Entropy Solutions Inc., Plymouth, 

Minnesota) were re-evaluated and the obtained results also presented. 
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9.1 Data evaluation technique 

The evaluation technique transforms the T-history measurement data into the 

meaningful PCM data in terms of phase change temperature (range) and associated 

heat capacity. As explained in section 8.1, the time delay technique developed by 

Marin et al. (2003) was selected as the most suitable and hence adapted for data 

processing in the advanced T-history method. The implementation of this technique 

was described in detail in section 8.1. However, given the distinguishable properties 

between the inorganic and organic PCMs predominantly in terms of the subcooling 

phenomenon the computational technique from section 8.1 had to be further modified. 

Namely, the computational procedure used for the calculation of PCM data had to take 

the degree of subcooling, observed in the cooling T-history curves, into consideration. 

As suggested in section 5.1, for the proper PCM characterisation the subcooling 

should be eliminated from the heat released/stored PCM data and given separately with 

reference to the sample mass (Mehling and Cabeza, 2008; RAL, 2010). Although this 

suggestion was given as early as in 2008 the reported PCM characterisation data are 

not generally presented in this form. Hence, one of the aims of this study was to 

determine and present the degree of subcooling and the data regarding the heat lost due 

to this phenomenon for all investigated PCM with the significant subcooling. The 

procedure for the elimination of the subcooling effect was suggested by Mehling and 

Cabeza (2008) (see Figure 5.1). Namely, according to them the effect of subcooling 

should be eliminated from the heat stored/released graphs and given separately as the 

degree of subcooling while the heat lost upon subcooling should be attributed to the 

solidification temperature. However, a slightly different approach was used here for the 

development of the time delay evaluation procedure that takes the subcooling into 

consideration. This approach is presented in Figure 9.1. 

The approach used at this point follows the main principles of the heat exchange during 

the solidification process. According to Mehling and Cabeza (2008) the heat lost upon 

subcooling is attributed to the entire section between the typical phase change 

temperature and the nucleation temperature (Figure 5.1). On the other hand, given the 

typical PCM T-history cooling curve and the heat exchange principles the heat 



 

223 
 

attributed to the interval between the typical phase change temperature (TPC in 

Figure 9.1) and the nucleation temperature (TN in Figure 9.1) is not lost due to 

subcooling as indicated in Figure 5.1 but rather normally released in the PCM cooling 

process. This portion of heat is labeled as the heat released between the TPC 

and TN (Figure 9.1). The heat that is truly lost upon subcooling is the heat attributed to 

the temperature interval between the TN and TPC (heat lost upon subcooling in 

Figure 9.1). This portion of heat is used to raise the temperature of the PCM from TN to 

TPC during cooling and therefore lost as the usable PCM heat content. Considering the 

earlier established format to represent the PCM data in the form of the heat 

released/stored in given temperature intervals upon cooling and heating it was decided 

that the heat released between TPC and TN (Figure 9.1) should be added to the heat 

released data attributed to the temperature intervals between the TN and TPC. Usually 

this heat will overlap with the higher heat content released in the phase change range 

(Figure 9.1). The heat lost upon subcooling (Figure 9.1) needs to be given separately 

and naturally attributed to temperature intervals between the TN and TPC. The degree of 

subcooling is easily estimated and given as the difference between the corresponding 

TPC and TN temperatures.  
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Figure 9.1: The procedure for the determination of the heat released/stored of PCMs 

in given temperature intervals and the degree of subcooling as well as the 

accompanying heat loss.  
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The time_delay function described in section 8.1 had to be adjusted to 

accommodate the aforementioned changes. For this, the new time_delay_sc function 

was implemented. The implementation details are given in APPENDIX A7. The 

changes to the previous time_delay function were made only for the evaluation of the 

cooling T-history data (to take the subcooling into the account). The evaluation of the 

heating T-history data was unchanged in the new function. 

Once the time_delay_sc function was implemented the advanced T-history 

method could be used for the characterisation of inorganic PCMs as described in the 

following section. 

 

9.2 Investigation studies of SP inorganic series 

Two inorganic materials from the Rubitherms’s SP series (Rubitherm GmbH, Berlin, 

Germany) were tested. The SP22 and SP25 were selected due to their phase change 

temperature ranges being suitable for building applications. As RT21 and RT27, these 

two materials are commercially available and form a part of various PCM objects sold 

by Rubitherm (Rubitherm GmbH, Berlin, Germany). 

 

9.2.1 SP22 characterisation – results and discussion 

The first material that was tested from the SP series was SP22 (Rubitherm GmbH, 

Berlin, Germany). The material specifications of SP22 are given in Table 9.1. 

Property Value 

Melting area 
Congealing area 
Typical phase change temperature 

22-23 °C 
21-20 °C 
22 °C 

Heat storage capacity (15 to 30 °C) 150 kJkg-1 
Specific heat capacity 2 kJkg-1K-1 
Density solid (at 15 °C) 
Density liquid (at 35 °C) 

1.5 kgl-1 
1.4 kgl-1 

Thermal conductivity 0.6 Wm-1K-1 
 

Table 9.1: Material properties of inorganic PCM SP22. 
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The characterisation of SP22 using the advanced T-history method was 

performed by in the same way as the characterisation measurements of PT27 and PT28 

described in section 8.4. The PCM and distilled water, placed in the 430 mm long test 

tubes insulated by 10 mm thick tape, were subjected to the alternating cooling and 

heating 6 h long cycles. The cycles were operated between 8 °C and 30 °C in this case. 

The respective masses of the sample (mp) and reference (mw) were 72.7 g and 47.3 g. 

The mass of the PCM sample was greater in this case because the density of the 

inorganic material is much larger than the density of the investigated organic PCMs. As 

before, prior to the T-history measurement, the proper calibration measurement was 

performed with 1 °C step temperature program from 6 °C to 36 °C. The calibration 

data were used to obtain the T-history curves (Figure 9.2). 

According to the T-history curves from the cooling cycle (Figure 9.2a) the 

typical phase change temperature of SP22 is 19.9 °C. This value is different from the 

expected typical value of 22 °C but deviates only by a small margin (0.1 °C) from the 

lower boundary temperature of the expected congealing range (Table 9.1). In addition, 

significant degree of subcooling of 5.9 °C was observed between the phase change 

temperature and the nucleation temperature of 14 °C. The manufacturer does not report 

any degree of subcooling for SP22 (Rubitherm GmbH, Berlin, Germany). However, 

even when the data given in Figure 9.2a represent the T-history curves from the first 

cooling cycle of SP22 (due to the reasons explained in subsection 9.3.1) the subcooling 

was detected in all consecutive cooling cycles although to a marginally smaller degree. 

This observation confirmed that after the first solidification cycle the sensor within the 

PCM sample acts as a nucleating seed and therefore reduces the subcooling in the 

subsequent cycles. However, given the fact that subcooling was observed in all cooling 

cycles the theoretical PCM T-history curve (Ideal PCM in Figure 9.2a) made by 

excluding the subcooling from the real PCM cooling curve (PCM in Figure 9.2a) was 

also given. This curve was used later to evaluate the data regarding the heat release 

without taking the subcooling into the account. According to the PCM T-history curve 

from the heating cycle (Figure 9.2b) the typical phase change temperature is 22.6 °C 

which is in agreement with the expected typical value of 22 °C and the melting area 

data (Table 9.1).   
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Figure 9.2: Cooling (a) and heating (b) cycles in the advanced T-history 

characterisation of SP22 (ENV – environmental temperature, PCM – temperature of the 

PCM sample, Ideal PCM – temperature of the PCM sample upon cooling if subcooling 

is neglected, H2O – temperature of the reference sample).  
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The T-history data (Figure 9.2) and the evaluation technique described in 

section 9.1 were used to determine the heat released/stored in given temperature 

intervals data for SP22. In the case of cooling the ENV, Ideal PCM, and H2O T-history 

curves (Figure 9.2a) were used to calculate the heat released data without taking the 

subcooling into the account (HR in Figure 9.3a). The corresponding ENV, PCM, and 

H2O T-history curves (Figure 9.2a) were used to calculate the heat released data and 

the heat lost upon subcooling (HR and SC in Figure 9.3b). The heat stored data (HS) in 

both cases (HS in Figure 9.3a and 9.3b) have been calculated based on the T-history 

heating curves (Figure 9.2b). The T-history curves (Figure 9.2) were evaluated in the 

15 °C to 30 °C range with the temperature evaluation interval of 0.5 °C to obtain the 

heat released/stored data in given temperature intervals (Figure 9.3).  

According to the HR data in Figure 9.3a the congealing area of SP22 is in the 

range from 19 °C to 20.5 °C which is slightly shifted and wider in comparison to the 

expected 20 °C to 21 °C range (Table 9.1). According to the HR data in Figure 9.3b the 

congealing area of SP22 is in the range from 19 °C to 20 °C which is slightly shifted in 

comparison to the expected 20 °C to 21 °C range (Table 9.1) but 1 °C wide as 

expected. Furthermore, according to the SC data in Figure 9.3b non-negligible portion 

of heat (19 kJkg-1) is lost upon subcooling between 20 °C and 14 °C. The melting area 

of SP22 is wider than the congealing area and shifted towards the 22 °C to 23.5 °C 

range (Figure 9.3). This range is 0.5 °C wider than the melting area reported by the 

manufacturer (Table 9.1). Given the data presented in Figure 9.3 it was concluded that 

the hysteresis between the cooling and heating data in the case of SP22 especially when 

subcooling is taken into account is real and significant.  

The enthalpy data upon cooling and heating (Figure 9.4) were evaluated from 

the data given in Figure 9.3. The cooling enthalpy curve was calculated with taking the 

subcooling into the account (Cooling enthalpy WSC and Cooling enthalpy WSC in 

Figure 9.4). The Cooling enthalpy WOSC data (Figure 9.4) were calculated from the 

HR data in Figure 9.3a, while the Cooling enthalpy WSC data (Figure 9.4) were 

calculated from the HR and SC data in Figure 9.3b. 
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Figure 9.3: Heat released (stored) data obtained from the advanced T-history 

characterisation of SP22. a) Case when subcooling is neglected. b) Case when 

subcooling is taken into account (HR – heat released upon cooling, HS – heat stored 

upon heating, SC – heat lost upon subcooling).  
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Figure 9.4: Enthalpy-temperature curves upon cooling and heating obtained from the 

advanced T-history characterisation of SP22 with the normalised enthalpy value 

of 0 kJkg
-1

at 15 °C (Cooling enthalpy WOSC – enthalpy curve upon cooling in the case 

when subcooling is neglected, Heating enthalpy – enthalpy curve upon heating, 

Cooling enthalpy WSC – enthalpy curve upon cooling in the case when subcooling is 

taken into account). 
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released/stored data for the SP22 are equal (cooling case) or larger (heating) than the 

respective RT21 data. This makes SP22 marginally more competitive material once the 

information regarding the subcooling and hysteresis are taken into account. Only then 

the usage of SP22 can result in the development of successful and reliable PCM based 

TES systems. 

The heat released/stored per volume data were also estimated for SP22. The 

value of the total heat released per volume upon cooling (subcooling considered) 

between 15 °C and 30 °C was 196 kJl-1. The value of the total heat stored per volume 

upon heating between 15 °C and 30 °C was 226.8 kJl-1. Given the larger densities of 

inorganic materials these values are much larger than in the case of organic PCMs. 

Finally, for the damage criteria tests regarding enthalpy, temperature, and mass 

changes two additional T-history measurements of SP22 were performed. The 

maximum changes in the corresponding total enthalpies upon cooling and heating 

between 15 °C and 30 °C were ±8.3 % (<±10 %). The maximum change in temperature 

profiles was ±0.6 °C (<±1 °C). Thirdly, the maximum change in mass of the PCM 

samples was ±1.2 % (<±3 %). Once the damage criteria were checked the SP22 

characterisation was completed. 

 

9.2.2 SP25 characterisation – results and discussion 

The second material that was tested from the SP series was SP25 (Rubitherm GmbH, 

Berlin, Germany). The material specifications of SP25 are given in Table 9.2. 

Property Value 

Melting area 
Congealing area 
Typical phase change temperature 

24-26 °C 
24-23 °C 
24 °C 

Heat storage capacity (15 to 30 °C) 180 kJkg-1 
Specific heat capacity 2 kJkg-1K-1 
Density solid (at 15 °C) 
Density liquid (at 30 °C) 

1.5 kgl-1 
1.4 kgl-1 

Thermal conductivity 0.6 Wm-1K-1 
 

Table 9.2: Material properties of inorganic PCM SP25. 

 

The characterisation of SP25 using the advanced T-history method was 

performed by in the same way as the characterisation measurement of SP22. The PCM 
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and distilled water, placed in the 430 mm long test tubes insulated by 10 mm thick 

tape, were subjected to the alternating cooling and heating 6 h long cycles. The cycles 

were operated between 6 °C and 40 °C in this case. The respective masses of the 

sample (mp) and reference (mw) were 71.2 g and 47.3 g. As before, prior to the T-

history measurement, the proper calibration measurement was performed with 1 °C 

step temperature program from 6 °C to 36 °C. The calibration data were used to obtain 

the T-history curves (Figure 9.5). 

According to the T-history curves from the cooling cycle (Figure 9.5a) the 

typical phase change temperature of SP25 is 24.6 °C. This value is marginally different 

from the expected typical value of 24 °C and the expected congealing range 

(Table 9.2). The observed degree of subcooling between the phase change temperature 

and the nucleation temperature of 9 °C is rather large (15.6 °C). As in SP22 case, the 

manufacturer does not report any degree of subcooling for SP25 (Rubitherm GmbH, 

Berlin, Germany). However, the subcooling was detected in the first and all 

consecutive cooling cycles. Hence, the theoretical PCM T-history curve (Ideal PCM in 

Figure 9.5a) made by excluding the subcooling from the real PCM cooling curve (PCM 

in Figure 9.5a) was presented as in the previous subsection. This curve was used to 

evaluate the heat release data without taking the subcooling into the account. 

According to the PCM T-history curve from the heating cycle (Figure 9.5b) the typical 

phase change temperature is 26.7 °C which is 0.7 °C higher than the upper boundary 

temperature of the expected melting area (Table 9.2). 

The T-history data (Figure 9.5) and the evaluation technique described in 

section 9.1 were used to determine the heat released/stored in given temperature 

intervals data for SP25. As in SP22 case, the ENV, Ideal PCM, and H2O T-history 

curves (Figure 9.5a) were used to calculate the heat released data without taking the 

subcooling into the account (HR in Figure 9.6a). The corresponding ENV, PCM, and 

H2O T-history curves (Figure 9.5a) were used to calculate the heat released data and 

the heat lost upon subcooling (HR and SC in Figure 9.6b).  
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Figure 9.5: Cooling (a) and heating (b) cycles in the advanced T-history 

characterisation of SP25 (ENV – environmental temperature, PCM – temperature of the 

PCM sample, Ideal PCM – temperature of the PCM sample upon cooling if subcooling 

is neglected, H2O – temperature of the reference sample).  
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The heat stored data (HS) in both cases (HS in Figure 9.6a and 9.6b) have been 

calculated based on the T-history heating curves (Figure 9.5b). Given the detected 

degree of subcooling and the nucleation temperature, the evaluation of the T-history 

curves (Figure 9.5) was done in the 9 °C to 30 °C range. The temperature evaluation 

interval was 0.5 °C. 

According to the HR data in Figure 9.6a the congealing area of SP25 is in the 

range from 24.5 °C to 26 °C which is shifted towards higher temperatures in 

comparison to the expected 23 °C to 24 °C range (Table 9.2). However this was 

expected given that the HR data in Figure 9.6a were estimated using the Ideal PCM T-

history curve in Figure 9.5a. According to the HR data in Figure 9.6b the congealing 

area of SP25 is in the range from 23.5 °C to 25 °C which is wider but in a better 

agreement with the expected 23 °C to 24 °C range (Table 9.2). Furthermore, according 

to the SC data in Figure 9.6b large portion of heat (22 kJkg-1) is lost upon subcooling 

between 24.5 °C and 9 °C. The melting area of SP25 is wider than the congealing area 

and shifted towards the 24 °C to 27 °C range (Figure 9.6). This range is 1 °C wider 

than the melting area reported by the manufacturer (Table 9.2). As in the SP22 case, 

the hysteresis between the cooling and heating SP25 data especially when subcooling is 

taken into account is real.  

The enthalpy data upon cooling and heating (Figure 9.7) were evaluated from 

the data given in Figure 9.6. The cooling enthalpy curves were estimated in both cases 

without and with taking the subcooling into the account (Cooling enthalpy WOSC and 

Cooling enthalpy WSC in Figure 9.7). As explained in the previous subsection, the 

Cooling enthalpy WOSC data (Figure 9.7) were calculated from the HR data in Figure 

9.6a, while the Cooling enthalpy WSC data (Figure 9.7) were calculated from the HR 

and SC data in Figure 9.6b. 
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Figure 9.6: Heat released (stored) data obtained from the advanced T-history 

characterisation of SP25. a) Case when subcooling is neglected. b) Case when 

subcooling is taken into account (HR – heat released upon cooling, HS – heat stored 

upon heating, SC – heat lost upon subcooling).  
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Figure 9.7: Enthalpy-temperature curves upon cooling and heating obtained from the 

advanced T-history characterisation of SP25 with the normalised enthalpy value 

of 0 kJkg
-1

at 15 °C (Cooling enthalpy WOSC – enthalpy curve upon cooling in the case 

when subcooling is neglected, Heating enthalpy – enthalpy curve upon heating, 

Cooling enthalpy WSC – enthalpy curve upon cooling in the case when subcooling is 

taken into account). 

 

The difference (hysteresis) between the cooling and heating enthalpy curves is 

evident especially in the case when subcooling is taken into the account (Figure 9.7) 
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arguments presented in section 5.1, the information regarding the subcooling and 

hysteresis needs to be provided for the reliable utilisation of SP25. 

The heat released/stored per volume data were also estimated for SP25. The 

value of the total heat released per volume upon cooling (subcooling considered) 

between 9 °C and 30 °C was 238 kJl-1. The value of the total heat stored per volume 

upon heating between 9 °C and 30 °C was 268.8 kJl-1. These values are much larger 

than in the case of organic PCMs due to difference in densities between organic and 

inorganic PCMs. 

Finally, for the damage criteria tests regarding enthalpy, temperature, and mass 

changes two additional T-history measurements of SP25 were performed. The 

maximum changes in the corresponding total enthalpies upon cooling and heating 

between 9 °C and 30 °C were ±6.8 % (<±10 %). The maximum change in temperature 

profiles was ±0.6 °C (<±1 °C). Thirdly, the maximum change in mass of the PCM 

samples was ±0.8 % (<±3 %). Once the damage criteria were checked the SP25 

characterisation was completed. 

 

9.3 Re-evaluation studies of PT bio-organic series 

Given that some degree of subcooling was observed in the case of PT27 and PT28 

PCMs from the PT bio-organic series (Entropy Solutions Inc., Plymouth, Minnesota) it 

was decided that the T-history curves obtained in the characterisation measurements of 

PT27 and PT28 (Figure 8.22 and 8.25) were re-evaluated using the data evaluation 

technique described in section 9.1. This was done in order to check if the relatively low 

degree of subcooling as observed in the case of PT27 and PT28 affects the heat 

capacity of these materials to the relevant extent. The results of the re-evaluation are 

presented in the following subsections. 

 

9.3.1 PT27 re-evaluation – results and discussion 

Given that the observed degree of subcooling between the phase change temperature 

(24 °C) and the nucleation temperature (23.5 °C) for PT27 was 0.5 °C the temperature 

interval used in the re-evaluation procedure was 0.3 °C. The T-history curves 
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(Figure 8.22) were evaluated in the 15 °C to 30 °C range with the temperature 

evaluation interval of 0.3 °C to obtain the heat released/stored data in given 

temperature intervals (Figure 9.8).  

 

 

 

 

 

 

Figure 9.8: Heat released (stored) data obtained from the re-evaluation of PT27 (HR – 

heat released upon cooling, HS – heat stored upon heating, SC – heat lost upon 

subcooling). 
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enthalpy from Figure 8.24 is presented as the Cooling enthalpy WOSC while the 

Heating enthalpy from Figure 8.24 is presented as the Heating enthalpy in Figure 9.9.  

 

 

 

 

 

 

Figure 9.9: Enthalpy-temperature curves upon cooling and heating obtained from the 

re-evaluation of PT27 with the normalised enthalpy value of 0 kJkg
-1

at 15 °C (Cooling 

enthalpy WOSC – enthalpy curve upon cooling in the case when subcooling is 

neglected, Heating enthalpy – enthalpy curve upon heating, Cooling enthalpy WSC – 

enthalpy curve upon cooling in the case when subcooling is taken into account). 

 

The difference (hysteresis) between the cooling and heating enthalpy curves is 

increased in the case when subcooling is taken into the account (Figure 9.9) The former 

value of the total heat released upon cooling between 15 °C and 30 °C for the PT27 of 

140 kJkg-1 was reduced to 134 kJkg-1 once the heat lost upon subcooling was taken into 

account. The heat lost upon subcooling in the case of PT27 (6 kJkg-1) represents a 

small fraction (4.2 %) of the heat stored upon heating (141 kJkg-1). Given that the 

degree of subcooling was only 0.5 °C and the fraction of heat lost less than 5% it was 

concluded that the subcooling can be neglected in PT27 case. Nevertheless, it is always 

better to estimate the subcooling for the investigated PCM and then decide whether it 

should be neglected or not.  
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9.3.2 PT28 re-evaluation – results and discussion 

Given that the observed degree of subcooling between the phase change temperature 

(27.3 °C) and the nucleation temperature (26.9 °C) for PT28 was 0.4 °C the 

temperature interval used in the re-evaluation procedure was 0.3 °C. The T-history 

curves (Figure 8.25) were evaluated in the 15 °C to 30 °C range with the temperature 

evaluation interval of 0.3 °C to obtain the heat released/stored data in given 

temperature intervals (Figure 9.10).  

 

 

 

 

 

 

Figure 9.10: Heat released (stored) data obtained from the re-evaluation of PT28 

(HR – heat released upon cooling, HS – heat stored upon heating, SC – heat lost upon 

subcooling). 

 

As in the case of PT27 described in the subsection 9.3.1 the temperature 

evaluation interval of 0.3 °C resulted in more precise heat released/stored in given 

temperature intervals (HR and HS in Figure 9.10) than the corresponding HR and HS 

data presented in Figure 8.26. Additionally, the heat lost upon subcooling was also 

determined (SC in Figure 9.10). According to the SC data in Figure 9.10 small portion 

of heat (6 kJkg-1) is lost upon subcooling between 27 °C and 27.3 °C.  
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The enthalpy data upon cooling with taking subcooling into account (Cooling 

enthalpy WSC in Figure 9.11) were evaluated from the HR and SC data given in 

Figure 9.10.  

 

 

 

 

 

 

Figure 9.11: Enthalpy-temperature curves upon cooling and heating obtained from the 

re-evaluation of PT28 with the normalised enthalpy value of 0 kJkg
-1

at 15 °C (Cooling 

enthalpy WOSC – enthalpy curve upon cooling in the case when subcooling is 

neglected, Heating enthalpy – enthalpy curve upon heating, Cooling enthalpy WSC – 

enthalpy curve upon cooling in the case when subcooling is taken into account). 

 

The calculated cooling enthalpy curve with taking the subcooling into the 

account (Cooling enthalpy WSC in Figure 9.11) was compared with the respective 

enthalpy data obtained without considering subcooling (Figure 8.27). The Cooling 

enthalpy from Figure 8.27 is presented as the Cooling enthalpy WOSC while the 

Heating enthalpy from Figure 8.27 is presented as the Heating enthalpy in Figure 9.11. 

As in the PT27 case, the difference (hysteresis) between the cooling and heating 

enthalpy curves is increased in the case when subcooling is taken into the account 

(Figure 9.11) The former value of the total heat released upon cooling between 15 °C 

and 30 °C for the PT28 of 130 kJkg-1 was reduced to 124 kJkg-1 once the heat lost upon 

subcooling was taken into account. The heat lost upon subcooling in the case of 

PT28 (6 kJkg-1) represents a small fraction (4.5 %) of the heat stored upon heating 
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(133 kJkg-1). Given that the degree of subcooling was only 0.4 °C and the fraction of 

heat lost less than 5% it was concluded that the subcooling can also be neglected in the 

PT28 case.  

 

9.4 Summary 

The comprehensive studies of inorganic PCMs from the Rubitherm’s SP series 

(Rubitherm GmbH, Berlin, Germany) were described in this chapter.  

Given the relatively large degree of subcooling, expected in the case 

characterisation studies of inorganic PCMs, the data evaluation technique that takes the 

subcooling into the account and therefore enables proper characterisation of inorganic 

PCMs had to be developed. The details regarding the implementation of the 

appropriate technique were described in this chapter. 

Furthermore, the details regarding the in-depth characterisation of inorganic 

SP22 and SP25 (Rubitherm GmbH, Berlin, Germany) were given in this chapter. 

Finally, given the development of the new data evaluation technique the re-

evalution of the organic PT27 and PT28 PCMs was performed. This was done because 

the investigation of these two materials in the previous chapter 8 resulted in the 

detection of small degree of subcooling. The results of the re-evaluation were also 

presented in this chapter.  
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Chapter 10 

INVESTIGATION  

OF OPTICAL TRANSMITTANCE 

PROPERTIES OF PCMs 

 

As explained in chapter 3 a rather challenging type of PCM based TES applications are 

solar applications. In these applications the PCMs are integrated with different glazing 

systems or used as window curtains in order to reduce the solar gain in buildings. 

Namely, the growing architectural trend to design buildings with the extensive glass 

areas has led to the issues regarding the low thermal masses of the building envelopes. 

The high thermal mass values are desirable to reduce the temperature fluctuations and 

hence increase the thermal comfort within buildings. Moreover, the reduction in 

temperature fluctuations is directly related with the reduced energy consumption.  

One of the ways to achieve higher thermal mass in buildings with large glazed 

areas is through the utilisation of PCMs incorporated into the cavities of the glazing 

systems. The latent energy released/stored in the phase change process improves the 

storage potential of the glazing units and hence enhances the thermal mass of such 

systems. As mentioned in chapter 3 some of the pioneering works in this field were 

reported by Ismail and Henriquez (2001) and Weinläder et al. (2005). Furthermore, the 

company Greenlite Glass Systems (Greenlite Glass Systems, Port Coquitlam, British 

Columbia) recently commercialised the PCM enhanced glass façade system, called 

GLASS X. However, there is a lack of in-depth knowledge/information on the real-

time performance of the PCM glazing solutions. One of the main problems associated 

with the PCM enhanced glazing systems is the change in the material’s transparency 

accompanying the phase change. Generally, the transparency of the solid PCMs is 

lower than that of the liquid materials (Weinläder et al., 2005). Therefore the 

comprehensive knowledge of optical properties of PCMs is necessary. For this reason 
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pilot optical tests to determine the transmittance properties of PCMs in different phases 

were performed on two materials from the Rubitherm’s RT series (Rubitherm GmbH, 

Berlin, Germany), the RT27 and RT21. 

The details of the performed optical tests are given in the following sections. 

 

10.1 Optical investigation studies of RT organic 

series 

The optical PCM data published in literature usually include the transmittance values in 

VISible (VIS) part of the electromagnetic spectrum in the case of fully solid or fully 

liquid PCM (Weinläder et al., 2005). The assumption was made in this study that a 

more comprehensive optical investigation of PCMs should enable better and more 

reliable utilisation of these materials in glazing systems. Therefore it was decided that 

optical characterisation measurements of the PCM should provide data in terms of the 

transmittance values in a wider wavelength range from 280 and 700 nm to include the 

part of the Ultra-Violet (UV) and the entire visible electromagnetic spectrum. 

Moreover, the data should be provided for the range of temperatures in order to 

investigate the particular PCM applicability for solar glazing in three cases: PCM in its 

liquid form, PCM in its solid form and PCM going through the phase change i.e. the 

mushy form.  

The high performance PerkinElmer LAMBDA 1050 spectrophotometer 

(PerkinElmer, Cambridge, UK) was used to measure the transmittance spectra of the 

PCMs. The specifications of the device are given in Table 10.1.  

This device was selected due to its high sensitivity and wide spectral range 

available for the transmittance measurements. The spectrophotometer does not provide 

temperature control of the investigated samples upon transmittance measurements. This 

represented an issue given that the objective of the optical study was to provide the 

transmittance spectra at different temperatures for the investigated PCMs. Hence a 

proper experimental protocol had to be implemented in order to obtain information 

regarding the optical behaviour of PCMs at different temperatures.  
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Parameter Value 

Wavelength range 175-3300 nm 
Wavelength resolution 0.2 nm 
Package details 

 

 

 
 

Table 10.1: Specifications of the PerkinElmer LAMBDA 1050 spectrophotometer. 

 

Namely, prior to any transmittance measurement, the PCM sample placed in a 

glass cuvette with the volumetric capacity of 10 ml was maintained inside the 

environmental chamber for 2 h. It was presumed that this time was long enough for the 

sample to reach full thermal equilibrium at the specified temperature inside the 

chamber given the size of the testing cuvettes (10 ml). The temperature maintained 

inside the chamber was also the initial temperature at which the transmittance 

measurement was to start. After the 2 h inside chamber the sample was placed inside 

the spectrophotometer and continuous transmittance scans were performed until a 

moment labelled as the stable spectrum was obtained. The stable spectrum moment 

was the time when the difference in spectral data between the consecutive scans 

became negligible. Given the previously established wavelength range from 280 to 

700 nm each scan inside the spectrophotometer lasted for about 5 min. As previously 

mentioned the PCM temperature could not be controlled within the spectrophotometer. 

Nevertheless, the air temperature inside the spectrophotometer was measured in every 

test (set of transmittance scans from the moment the sample at certain initial 

temperature was placed inside the spectrophotometer to the moment labelled as the 

stable spectrum) to enable the correct interpretation of the obtained results. 
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10.1.1 RT27 optical characterisation – results and 

discussion 

The first investigated material was RT27. The material properties are given in 

Table 8.1. The recorded optical behaviour of RT27 at different temperatures and 

consequently in different states is shown in Figure 10.1.  

 

 

 

 

 

 

Figure 10.1: Transmittance – wavelength dependency for RT27 for different initial 

temperatures of the PCM sample; iT 26 – initial PCM temperature at 26 °C; iT 30 – 

initial PCM temperature at 30 °C; iT 40 1st – initial PCM temperature at 40 °C, 1
st
 

scan; iT 40 4th – initial PCM temperature at 40 °C, 4
th

 scan; iT 40 7th – initial PCM 

temperature at 40 °C, 7
th

 scan; iT 40 14th – initial PCM temperature at 40 °C, 14
th

 

scan (amended from Gowreesunker et al.,2013, p. 3). 

 

The obtained data were used as part of the experimental and numerical study of 

the optical and thermal aspects of a PCM-glazed unit and published in paper reported 

by Gowreesunker et al. (2013). 

The first test was performed with the RT27 at the initial temperature of 26 °C. 

Once the sample was taken out from the chamber it was checked and the visual 

inspection showed that the PCM started to change its phase from liquid to solid. The 
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sample was then placed inside the spectrophotometer. The air temperature inside the 

instrument was 25 ±1 °C as recorded by a standard mercury thermometer. Three 

transmittance scans were performed resulting in very similar spectral data. The data 

from all three scans were averaged and presented as curve iT 26 in Figure 10.1. Given 

the experimental conditions in this test and the thermal RT27 data presented in 

subsection 8.3.2, curve iT 26 in Figure 10.1 corresponds to the mushy region of the 

RT27. In the second test, the fully liquid PCM with the initial temperature of 30 °C was 

placed inside the spectrometer with the inside air temperature of 27 ± 1 °C. Five 

consecutive scans were performed resulting again in similar transmittance values. The 

data from five scans were averaged and represented by curve iT 30 in Figure 10.1. This 

curve represents the transparency data of the liquid PCM sample. The third test was 

performed with the investigated material at an initial temperature of 40 °C. The sample 

was taken out of the chamber and placed inside the spectrophotometer with the inside 

air temperature of 23 ±1 °C. Initial scans resulted in very unstable spectral data. Hence, 

in total, fourteen scans were performed until the moment a stable spectrum was 

obtained. To have better visibility, only the 1st, 4th, 7th and 14th scan data were shown in 

Figure 10.1 as curves iT 40 1st, iT 40 4th, iT 40 7th, and iT 40 14th, respectively. The 

curve iT 40 14th in Figure 10.1 corresponds to the stable transmittance spectrum in the 

third test when, upon visual inspection performed after the test, the sample was in solid 

phase. Based on different measurements at various temperatures, it was concluded that 

the spectral data were very unstable during transitional processes inside the 

investigated material i.e. when the large differences between the initial temperature of 

the PCM and the air temperature inside the spectrophotometer were present. 

Furthermore, another observation was made. Namely, as the transmittance values 

change for the RT27 in different phases the spectral distribution over the entire 

spectrum (i.e. the shape of the transmittance spectra) stays relatively constant 

(Figure 10.1).  

The transmittance of the liquid RT27 in the visible region was around 90 % (iT 

30 in Figure 10.1). On the other hand, the respective transmittance of the RT27 

corresponding to the mushy and solid states were 60 % and 38 % (iT 26 and iT 40 14th 

in Figure 10.1). The results obtained for the solid (38 %) and liquid (90 %) phases, 
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shown in Figure 10.1, are in a relatively good agreement with the solid (50 %) and 

liquid (90 %) transmittance values provided by Weinläder et al. (2005) for similar 

material RT25. The difference between the transmittance values in solid and liquid 

phases is evident in both cases. However, given the thermal properties of the 

investigated RT27 material presented in subsection 8.3.2 and the minimal transmittance 

value of 38 % it was concluded that the RT27 could be used in a carefully designed 

glazing systems. 

Additionally, the obtained optical RT27 data (Figure 10.1) were used and 

observed from a different perspective (Figure 10.2). 

 

 

 

 

 

 

Figure 10.2: Transmittance – UV wavelength dependency for RT27 for different initial 

temperatures of the PCM sample; iT 26 – initial PCM temperature at 26 °C; iT 30 – 

initial PCM temperature at 30 °C; iT 40 1st – initial PCM temperature at 40 °C, 1
st
 

scan; iT 40 4th – initial PCM temperature at 40 °C, 4
th

 scan; iT 40 7th – initial PCM 

temperature at 40 °C, 7
th

 scan; iT 40 14th – initial PCM temperature at 40 °C, 14
th

 

scan. 

 

Namely, it is widely accepted that the protection from the UV radiation is an 

ongoing problem given the health damaging effects imposed by UV radiation. Glass 

envelopes represent the first line of defence against the UV radiation of the indoor 
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environments exposed to sunlight. However, the strength of this type of protection 

remains questionable given that glass is able to absorb only a portion of the UV 

radiation. Therefore an additional aim of this study was to check if the utilisation of 

PCMs in glazing units could be beneficial in terms of protection from the UV radiation. 

For this reason the RT27 optical data (Figure 10.1) were zoomed-in to display 

the relevant transmittance data in the upper UV range from 280 nm to 400 nm 

(Figure 10.2). The RT27 transmittance data were compared to the corresponding data 

obtained from the measurement of the pure glass sample at room temperature 

(Figure 10.3). The comparison was performed to investigate the potential benefits of 

the RT27. 

 

 

 

 

 

Figure 10.3: Transmittance – UV wavelength dependency for pure glass at room 

temperature. 

 

According to the Figure 10.3 pure glass absorbs 20 % of the UV radiation in the 

upper Ultra-Violet A range (UVA) between 340 and 400 nm. The absorbed portion in 

the lower UVA range between 315 and 340 nm is between 40 and 20 %. The glass is 

much more absorbent (between 100 and 40 %) in the Ultra-Violet B (UVB) range 

between 280 and 315 nm. It becomes fully absorbent for UV radiation at wavelengths 
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below 290 nm (Figure 10.3). The RT27 in liquid form behaves similarly to pure glass 

(curve iT 30 in Figure 10.2). However, the RT27 in solid and mushy states (curves iT 

40 14th and iT 26 in Figure 10.2) offers better UV protection than glass alone (around 

40 % in the entire UVB region and between 100 and 50 % in the UVA range). The 

successful application of PCMs in the glazing units requires the materials to undergo 

through a phase change to release/store latent energy. Hence it is expected that the 

materials will be in solid and especially in mushy form for a significantly long time 

periods. Given this and the optical properties of the RT27 in the UV range it was 

concluded that the protection from the UV radiation could be an additional beneficial 

factor of PCM utilisation in glazing systems. 

 

10.1.2 RT21 optical characterisation – results and 

discussion 

Given the successful optical characterisation of RT27, it was decided to perform the 

optical investigations of another material from the Rubitherm’s RT series, RT21 

(Rubitherm GmbH, Berlin, Germany). The material properties are given in Table 7.6. 

The recorded optical behavior of RT21 at different temperatures is shown in 

Figure 10.4. 

The first test was performed with the investigated material at an initial 

temperature of 18 °C. The sample was taken out of the chamber. Upon visual 

inspection the sample looked fully solid as expected (Table 7.6). It was placed inside 

the spectrophotometer with the inside air temperature of 26 ±1 °C. As in the case of 

RT27, several consecutive scans were performed but rapid changes between the 

subsequent scans were rather evident. The stable spectrum was obtained after the 4th 

scan (curve iT 18 4th in Figure 10.4). This could be explained by the fact that a fully 

solid sample was placed in the spectrophotometer with the inside air temperature at 

least 4 °C higher than the typical phase change temperature of the investigated RT21 

sample (Table 7.6). Given the size of the sample (10 ml cuvette) the relatively high 

temperature driving range (between 18 and 26 °C) led to the rapid phase change 

process of the investigated sample. Hence, it was concluded that the data from the 1st, 
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2nd, 3rd and 4th scan (curves iT 18 1st, iT 18 2nd, iT 18 3rd, and iT18 4th in Figure 

10.4) could be attributed to the solid, mushy, and fully liquid state of the RT21.  

 

 

 

 

 

 

Figure 10.4: Transmittance – wavelength dependency for RT21 for different initial 

temperatures of the PCM sample; iT 18 1st – initial PCM temperature at 18 °C, 1
st
 

scan; iT 18 2nd – initial PCM temperature at 18 °C, 2
nd

 scan; iT 18 3rd – initial PCM 

temperature at 18 °C, 3
rd

 scan; iT 18 4th – initial PCM temperature at 18 °C, 4
th

 scan; 

iT 25 – initial PCM temperature at 25 °C; iT 40 1st – initial PCM temperature at 

40 °C, 1
st
 scan; iT 40 5th – initial PCM temperature at 40 °C, 5

th
 scan. 

 

Two more tests were performed to verify this observation. The second test was 

performed with the RT21 at the initial temperature of 25 °C. Once the sample was 

taken out from the chamber it was checked and the visual inspection showed that the 

PCM was fully liquid. The sample was then placed inside the spectrophotometer with 

air temperature inside the instrument of 25 ±1 °C. Three consecutive transmittance 

scans were performed resulting in stable, almost identical spectral data. Given that the 

initial temperature of the PCM and the air temperature inside the spectrophotometer 

were same the observed behaviour was completely expected. The data from all three 

scans were averaged and presented as curve iT 25 in Figure 10.4. This curve was very 

similar to the curve iT 18 4th in Figure 10.4 confirming the earlier made observation 

that the curve iT 18 4th in Figure 10.4 should be attributed to the liquid form of RT21. 
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The third test was performed with the investigated material at the initial temperature of 

40 °C. The fully liquid sample was taken out of the chamber and placed inside the 

spectrophotometer with the inside air temperature of 25 ±1 °C. Initial scans resulted in 

very unstable spectral data. This could be attributed to the large temperature difference 

between 40 and 25 °C. As in the case of RT27 measurements the temperature 

difference between the initial temperature of PCM and the air temperature inside the 

spectrophotometer resulted in cooling process of the PCM. The cooling process 

included the unstable temperature conditions within the PCM leading to the unstable 

spectral data regardless of the fully liquid form of the material at both the beginning 

and the end of the test. The stable spectrum was obtained after the 5th scan (iT 40 5th in 

Figure 10.4). To have better visibility, only the 1st and 5th scan data were shown in 

Figure 10.4 as curves iT 40 1st and iT 40 5th, respectively. The curve iT 40 5th 

corresponds to the PCM in equilibrium state and fully liquid form. Its similarity with 

the curves iT 18 4th in Figure 10.4 once more confirmed that curve iT 18 4th should be 

attributed to the PCM in liquid form. Given the PCM behaviour in the third test it was 

once more concluded that the spectral data have a tendency to be very unstable during 

both phase change and any temperature transitional processes inside the investigated 

material i.e. when the large differences between the initial temperature of the PCM and 

the air temperature inside the spectrophotometer are present. On the other hand and 

similarly to the RT27 case, as the transmittance values of RT21 change due to the 

phase changes the spectral distribution over the entire spectrum (i.e. the shape of the 

transmittance spectra) stays relatively constant (Figure 10.4). 

The transmittance of the liquid RT21 in the visible region was between 100 and 

90 % (curves iT 18 4th, iT 25 and iT 40 5th in Figure 10.1). On the other hand, the 

transmittance of the RT21 corresponding to the mushy state was between 60 and 40 % 

(curve iT 18 3rd in Figure 10.4). The solid state transmittance in the visible region was 

rather low 10 % (iT 18 1st in Figure 10.1). The results obtained for the liquid phase are 

in a very good agreement with the liquid transmittance values (90 %) of RT27 

presented in the previous subsection and RT25 provided by Weinläder et al. (2005). 

However, the difference between the transmittance values in solid and liquid phases in 

the case of RT21 is rather large (around 80 %). Hence, it was concluded that the RT21 
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is not a good material to be used in PCM glazing units. Nevertheless, the obtained 

optical RT21 data (Figure 10.4) were used and zoomed-in to display the relevant 

transmittance data in the upper UV range from 280 nm to 400 nm (Figure 10.5). 

 

 

 

 

 

 

Figure 10.5: Transmittance – UV wavelength dependency for RT21 for different initial 

temperatures of the PCM sample; iT 18 1st – initial PCM temperature at 18 °C, 1
st
 

scan; iT 18 2nd – initial PCM temperature at 18 °C, 2
nd

 scan; iT 18 3rd – initial PCM 

temperature at 18 °C, 3
rd

 scan; iT 18 4th – initial PCM temperature at 18 °C, 4
th

 scan; 

iT 25 – initial PCM temperature at 25 °C; iT 40 1st – initial PCM temperature at 

40 °C, 1
st
 scan; iT 40 5th – initial PCM temperature at 40 °C, 5

th
 scan. 

 

As in the case of RT27, the RT27 in liquid form behaves similarly to pure glass 

(Figure 10.3 and 10.5). The solid RT21 offers much better UV protection than glass 

being 70 % more absorbent. However, given its low transmittance in the visible region 

the benefits of RT21 utilisation in glazing systems are impractical. 

 

10.2 Summary 

As explained in chapter 3 solar applications implemented with PCMs incorporated into 

the glazing units represent a rather challenging application type. The PCMs are used 

due to their high latent energy potential to enhance the thermal mass of the building 
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envelopes in such applications. However, despite the commercialised solutions and 

those reported in research papers (Greenlite Glass Systems, Port Coquitlam, British 

Columbia; Ismail and Henriquez, 2001; Weinläder et al., 2005) the main problems 

associated with the PCM enhanced glazing systems remains in the change of the 

material’s transparency during the phase change process. Therefore the knowledge of 

optical properties of PCMs in terms of the transmittance values over a range of 

temperature is necessary to reflect the behaviour of PCMs in different phases. 

Moreover this knowledge appears to be essential in the investigation of the particular 

PCM’s applicability for the development of glazing systems used in solar applications.  

To investigate this hypothesis, the preliminary optical tests to investigate the 

transmittance properties of the organic materials from the Rubitherm’s RT series 

(Rubitherm GmbH, Berlin, Germany) were performed in this study. Two materials, 

RT27 and RT21 were investigated and the obtained optical results in conjunction with 

the details regarding the investigation procedure were presented in this chapter. Finally, 

the optical investigation studies showed that the phase change temperature is one of the 

most determinative factors of material’s applicability in PCM enhanced glazing units 

used in solar applications. 
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Chapter 11 

CONCLUSIONS AND DISCUSSION 

 

One of the major limiting factors for both modelling and implementation of efficient 

PCM based TES systems as well as for the prediction of long-term behaviour of such 

systems is the inaccuracy/lack of the experimentally determined material data 

especially in terms of phase change temperature and enthalpy. This represents a serious 

problem since in addition to the benefits regarding the development of efficient PCM 

based TES systems the accurate knowledge of thermo-physical properties of existing 

materials is essential for the understanding of their limitations and hence for the 

development of new PCMs. The existing PCM thermal investigation methods have 

significant drawbacks and limitations as thoroughly explained in chapter 5. The aim of 

this research was to overcome at least some of the shortcomings of the existing PCM 

thermal investigation procedures. Hence an advanced PCM characterisation 

methodology based on the T-history method (Zhang et al., 1999) was developed and 

extensively used to verify the hypothesis that a better planned PCM experimental tests 

in terms of more accurate and precise sensing and control modalities should provide 

more comprehensive and reliable results than those described in the literature so far. 

At the very early stage of the research project, a parametric test based on the 

simulations implemented using the Stefan’s solution (one of the earliest phase change 

problem analytical solutions) was performed. The test was implemented to verify 

which PCM properties mostly affect the PCM behavior and founded on the notion that 

the influence of certain PCM parameters should reflect similarly in the highly complex 

TES systems as in simple solutions like Stefan’s. The results of the early parametric 

study showed that the phase change temperature and the phase change enthalpy are the 

most important and dominant PCM properties. Once these two thermo-physical 

properties were validated as the most significant PCM properties the research was 



 

255 
 

continued towards the development of the advanced thermal PCM characterisation 

methodology.  

The design strategy for the implementation of the advanced T-history method 

was developed (see section 6.1). The integral part of the design strategy was the 

development of the design rules which represented a set of input parameters to be taken 

into consideration prior to the development of the advanced T-history setup. These 

parameters included the basic measurement premises presented in chapter 5. Since 

PCM characterisation could be considered successful only if the size of the investigated 

sample was representative, its temperature and heat stored/released correctly 

determined and the thermal equilibrium maintained within the sample upon 

measurements these requirements had to be and were taken into the account as the 

design rules. This was done so the development of the entire advanced T-history setup 

could be continuously bound by the main criteria that need to be satisfied in any PCM 

measurement. An additional design rule to keep the Biot number below 0.1 was 

adopted to satisfy the requirement imposed by the original T-history method (Zhang et 

al., 1999). After the design rules were established the experimental setup of the 

advanced T-history was developed (see section 6.2). The development of the 

experimental setup included the investigation and selection of the control and sensing 

modalities and design and development of the testing containers. The BINDER KMF 

115 (Binder GmbH, Tuttlingen, Germany) environmental chamber was selected as the 

control modality after the careful considerations of the T-history setups reported in 

literature and the established design rules. The chamber was selected primarily due to 

its temperature accuracy of ±0.2 °C. This was the first time the accuracy of the T-

history control facility could be guaranteed to that degree. The selection of the sensing 

modalities was also done based on the design rules and the T-history studies reported in 

literature. It was decided that both thermocouples and thermistors will be used in the 

advanced T-history method. Considering the design rule regarding the sample size 

another objective of this research to test the PCM samples larger than those reported in 

literature was established. To achieve this, the testing containers were properly 

designed and custom built. It was determined that the height of the testing tubes was 

essential in enabling the measurements of larger samples. Hence the developed test 
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tubes were 300 mm and 430 mm long. Two different sizes were selected to enable the 

measurements of different size samples. The development of the test tubes was also 

based on the previously adopted design rules. 

Once the advanced T-history setup was assembled the proper instrumentation 

system to enable the correct temperature measurements of the PCM samples was 

developed. Following the previously established design rules the value of ±0.5 °C was 

set as the desired temperature accuracy in the PCM related measurements and adopted 

as the validation criterion in the instrumentation development.  

The instrumentation system 1 was developed for the thermocouple temperature 

measurements (see section 7.1). The development of the instrumentation system 

included the sensor selection (an RS 621-2158 type K thermocouple was selected due 

to its small 0.2 mm probe diameter) and the design and implementation of the 

linearisation/signal conditioning and data acquisition systems. A new LabView virtual 

instrument PCM_DAQ.vi was developed to allow the continuous acquisition of T-

history signals. The measurement prototype based on the instrumentation system 1 was 

built and used to perform the first PCM measurement using the advanced T-history 

setup. The measurement was performed on the well-known organic RT21 PCM from 

the Rubitherm’s RT series (Rubitherm GmbH, Berlin, Germany). The raw voltage 

results obtained in the measurement were subjected to some post-processing in order to 

obtain the temperature data. The post-processing of signals included filtering and 

calibration. The low pass generalised Butterworth filter based on the maxflat function 

was implemented in MATLAB and was used to clean the raw voltage signals. The 

temperature deviations of the obtained T-history curves (max ±1.9 °C) by far exceeded 

the validation value of ±0.5 °C. Hence the conclusion was made that the 

instrumentation system 1 was not accurate enough to be used in the advanced T-history 

method. Moreover, the measurement results confirmed that despite the usage reports in 

the literature the thermocouples were not suitable for high-accuracy T-history 

temperature measurements due to their accuracy and noise related issues. Following 

these observations a different type of temperature sensors was considered for the 

successful implementation of the advanced T-history method.  



 

257 
 

The instrumentation system 2 was developed for the thermistor based 

temperature measurements (see section 7.2). The selected sensors were 

MA100BF103A NTC thermistors due to their high sensitivity of 5 %°C-1 and small 

0.762 mm diameter probes. Given the thermistor high nonlinearities the Wheatstone 

Bridge (WB) based linearisation and signal conditioning circuit was developed. For the 

optimal development of the linearisation circuit a proper linearisation model was 

implemented in MATLAB. The measurement prototype based on the instrumentation 

system 2 was built and used to perform the T-history measurement of RT21. This 

appears to be the first time, apart from the studies reported as parts of this project 

(Stankovic and Kyriacou, 2012; Stankovic and Kyriacou, 2013), thermistors were used 

as the sensing modality in the T-history based measurements. The raw voltage results 

obtained in the measurement were subjected to proper filtering using the previously 

developed digital low-pass filter. The calibration measurements were performed and 

processed using the calibration script developed in MATLAB to obtain the temperature 

data from the raw T-history data. The temperature deviations of the obtained T-history 

curves (greater than ±1.3 °C) also exceeded the validation value of ±0.5 °C. The results 

showed that the instrumentation system 2 could not be used in PCM measurements. 

Nevertheless, the general quality of the obtained results showed the promising results 

that thermistors were suitable to be used as sensing modalities in the advanced T-

history method. 

The instrumentation system 3 was developed to achieve more accurate 

thermistor based temperature measurements (see section 7.3). New linearisation and 

signal conditioning circuit based on the Serial-Parallel Resistor (SPR) connection was 

developed using the new linearisation model implemented in MATLAB. The 

measurement prototype based on the instrumentation system 3 was built and used to for 

the T-history measurement of RT21. The raw voltage results obtained in the 

measurement were subjected to proper filtering and calibration procedures to determine 

the T-history curves. The obtained temperature deviations (lower than ±0.3 °C) were 

well below the validation value of ±0.5 °C. The results showed that the validation 

process was finally successful. This appears to be the first time, apart from the studies 

reported as parts of this project (Stankovic and Kyriacou, 2012; Stankovic and 
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Kyriacou, 2013), high temperature accuracy was successfully demonstrated in the T-

history related measurements partially supporting the hypothesis that better planned 

PCM studies in terms of control and sensing modalities lead to more reliable data. 

Consequently, the instrumentation system 3 was adopted as the instrumentation system 

of the advanced T-history method. 

The successful outcome of the validation process led to a set of comprehensive 

studies of organic PCMs using the advanced T-history method. At this stage of 

research the computational data evaluation technique was implemented to determine 

the basic thermo-physical PCM properties predominantly the phase change temperature 

(range) and the energy stored/released based on the measured T-history data. For this 

purpose, the time delay data evaluation procedure developed by Marin et al. (2003) 

was adapted to enable the calculation of heat released/stored in given temperature 

intervals upon cooling and heating of PCMs and implemented using MATLAB.  

Following the successful implementation of the data evaluation procedure, a set 

of parametric studies of the well-known RT21 PCM were performed to discover which 

parameters mostly influence the PCM characterisation and to what extent. The first 

parametric study was carried out to investigate how the size of the sensors used in T-

history based measurements affects the PCM characterisation results. The data from 

two different measurements of RT21, one with the smaller 0.762 mm diameter probe 

sensors and the other with the larger 2 mm diameter probe sensors were compared. The 

results showed that the sensor size indeed affects the degree of subcooling in the 

investigated PCM samples. Regardless of the speculations that the degree of 

subcooling could be dependent on the sample size, this appears to be the first 

experimental demonstration that the sensor if used inside the PCM sample during T-

history characterisation measurement acts as a nucleating agent and therefore 

suppresses the naturally existing subcooling phenomenon. Consequently, it was 

concluded that sensors used in the T-history studies need to be as small as possible. 

The second parametric study was performed to investigate how the position of the 

sensors used in T-history based measurements influences the PCM characterisation. 

Thus, the data from the internal and surface temperature measurements of RT21 were 

compared. The results showed that the T-history surface measurements result in the 
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misleading PCM characterisation data in terms of both temperature and heat 

release/storage capacity. This also appears to be the first experimental demonstration of 

the observed behaviour. It was concluded that the measurements with the sensors 

placed on the surface of the test tubes cannot be used in the advanced T-history 

measurements. The third parametric study was performed to determine the effects the 

insulation of the test tubes has on the PCM characterisation given the potential 

temperature gradients that could be created in PCM samples due to the high 

cooling/heating rates (see section 5.1). Hence, the data from the RT21 measurements 

with varying insulation thicknesses used on the test tubes were compared. The results 

evidently showed, for the first time, that insulation thickness extensively affects the 

PCM characterisation results especially in terms of the heat release/storage capacities 

and the observed hysteresis between cooling and heating data. The 6 mm insulation 

thickness was identified as the optimal value to be used in the advanced T-history 

measurements. It was concluded that proper insulation of the test tubes is necessary to 

avoid the creation of thermal gradients inside PCM samples. Given that one of the 

objectives of this project was to perform the measurements of the larger PCM samples 

than those reported in literature so far, the effects of the sample’s mass were examined 

in the fourth parametric test. The results from the characterisation measurements of 

RT21 with sample masses of 19.5 and 41.4 g were compared and it was concluded that 

the sample mass does not affect the PCM characterisation results when advanced T-

history method is used. Moreover, this was the first successful measurement of the 

larger PCM sample than those reported in literature thus enabling the future 

characterisation of PCMs in the same size margin.  

The parametric tests enabled the usage of the advanced T-history method for 

the characterisation of various organic PCMs. Firstly, the well-known materials RT21 

and RT27 were tested. The results including the details regarding the material’s 

behaviour upon both cooling and heating, the heat release/storage in given 0.5 °C wide 

temperature intervals, the respective enthalpy-temperature curves, and the total heat 

released/stored with respect to mass and volume evaluated in the temperature interval 

between 15 and 30 °C were presented for both materials (see section 8.2). This appears 

to be the first time such comprehensive presentation of the PCM characterisation data 
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and moreover with the alike precision was given. The obtained results showed very 

good agreement with the PCM data provided by the manufacturer in terms of both 

temperature (within the ±1 °C margin) and heat release/storage content (within the 

±10 % margin) proving the validity of the advanced T-history method developed in this 

study. Moreover, the results supported the original hypothesis regarding the better 

planned PCM experimental tests. Another significant observation regarding the 

constant decline in heat capacity values in the consecutive cooling and heating cycles 

of RT21 was made. This once more supported the claims that the sensor inside PCM 

samples acts as a nucleating seed and hence needs to be as small as possible to avoid 

the interference with the natural course of the phase change process. 

The encouraging results obtained from the measurement of the materials from 

the RT organic series led to the characterisation of the corresponding materials from 

the less investigated organic PT series. Three materials PT20, PT27, and PT28 were 

successfully tested and the comprehensive characterisation data presented for the first 

time (see section 8.4). The results showed that the materials from the PT series 

(particularly PT20 given the registered subcooling and hysteresis margins in the case of 

PT27 and PT28) are able to offer a competitive performance in terms of both heat 

content and phase change temperatures with the assertive advantages being the bio 

origin and 100 % renewability. 

Following the successful characterisation of organic PCMs the advanced T-

history method was used for the characterisation of inorganic materials as well. Given 

the distinguishable properties of the inorganic and organic PCMs especially in terms of 

the subcooling phenomenon the new computational technique was developed and 

implemented in MATLAB to take the subcooling into account and therefore enable 

proper characterisation of inorganic PCMs. Despite the existing suggestions and 

speculations (Mehling and Cabeza, 2008) this was the first implementation of the T-

history data evaluation technique considering subcooling.  

The comprehensive characterisation data were presented for two inorganic 

materials, SP22 and SP25 (see section 9.2). Here, in addition to the respective data 

given as in the case of organic PCMs, the degree of subcooling and the data regarding 

the heat lost upon it were also presented. The results showed that the non-negligible 
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portion of the total heat stored upon PCM heating (around 12 %) gets lost due to 

subcooling upon the PCM cooling process and hence needs to be adequately presented. 

This appears to be the first time, apart from the study reported as part of this project 

(Stankovic and Kyriacou, 2013), the subcooling was properly addressed in any PCM 

related measurement. These investigations showed that inorganic materials, even upon 

subcooling, appear to offer more competitive performance especially in terms of 

volumetric heat capacities than their organic counterparts. 

Additionally, the PT27 and PT28 materials were re-evaluated using the newly 

developed data evaluation technique but it was concluded that the subcooling in the 

case of this materials can be neglected considering the observed degree of subcooling 

(0.5 °C) and heat lost (below 5 %) margins (see section 9.3). 

Finally, pilot optical studies of RT27 and RT21 were performed to determine 

the respective transmittance values in a wide wavelength range (from 280 and 700 nm) 

at different temperatures. These tests were performed to investigate the potential of 

these materials for the utilisation in PCM enhanced glazing units, given the emerging 

popularity of PCM solar applications. Another objective was to verify the PCMs’ 

potential for UV protection. Consequently, the transmittance spectra were presented for 

both PCMs in their respective liquid, mushy, and solid phases for the first time, apart 

from the study reported as part of this project (Gowreesunker et al., 2013). The results 

showed that the transmittance values decline as the sample undergoes the change from 

liquid to solid phase. The transmittance values (predominantly in the visible part of 

spectrum) in the solid phase are the deciding factor of the PCM’s applicability for solar 

glazing. It was concluded that these values are also dependant on the PCM’s phase 

change temperature (38 % in the case of RT27 versus 10 % in the case of RT21) 

resulting in the phase change temperature being one of the determinative factors of 

PCM’s applicability in glazing units. In addition, it was concluded that PCMs in 

general provide better UV protection than glazing systems alone. However, the benefits 

of this highly depend on the applicability of the particular PCM given its transmittance 

properties in the visible part of the spectrum. 
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11.1 Future work 

More PCM characterisation studies should be performed on different organic 

and inorganic materials to further validate the advanced T-history method. In an 

attempt to obtain more accurate and precise data than those presented in this study the 

goal of further efforts should be the minimisation of contact between the sensors and 

samples given that the sensor size was identified as one of the most influential 

parameters in T-history based investigations, as confirmed by several observations 

made in this study. This could be achieved in two ways. Either smaller sensors should 

be used or some reliable non-contact temperature measurements with high accuracy 

(±0.5 °C) provided. Regarding the utilisation of smaller sensors, the thermocouples 

appear to offer the smallest solutions in the case of conventional temperature sensors. 

However, the measurement results in this study showed that thermocouples were not 

suitable for high-accuracy T-history temperature measurements due to their accuracy 

and noise related issues. Given the importance of the reduction of sensor size the 

thermocouples could be further investigated. Smaller size thermistors than the 

0.762 mm diameter probe ones, used in this study, would be an even a better solution. 

The best solution however would be the implementation of the high accuracy non-

contact temperature measurement system. One observation that could be exploited in 

the future development of such measurement system was made in this study. Namely, 

upon the optical investigations the large temperature differences between the initial 

temperature of the investigated PCM and the air temperature inside the 

spectrophotometer always resulted in unstable and rapidly changing spectral data. An 

effort towards the discovery of potential correlations between the changes of the 

spectral transmittance data and evident changes of temperature inside PCM could be 

made in the future investigations. 

To summarise, the advanced T-history method was developed and validated in 

a series of characterisation studies of both organic and inorganic phase change 

materials. In addition to experimental confirmation of various speculations regarding 

the parameters influencing the PCM characterisation, the utilisation of the advanced 

method proved that more accurate and precise PCM experimental tests provide more 
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comprehensive and reliable results than those described in the literature so far and 

hence enable the development of more efficient PCM based TES systems.  
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APPENDIX A Code listings of the MATLAB 

based scripts and functions 

 

 

A.1 The digital low pass filter function 
% A digital low pass filter function 
% Copyright S Stankovic 
  
% *** function body *** % 
  
function [filtered_data,fig_counter]=... 
    filterData_LF_TF_MF(Input_Data,Sampling_Rate,... 
    Cut_Off, Figure_Counter) 
  
% input data processing 
  
format long; 
number_of_channels=size(Input_Data,2); 
t=0:1/Sampling_Rate:(length(Input_Data)-1)/Sampling_Rate; 
fig_counter=Figure_Counter+1; 
figure(fig_counter); 
plot (t, Input_Data'); 
title('Input data'); 
  
% Max flat filter design 
  
n = 20; 
Wn = Cut_Off*2/(Sampling_Rate); 
m = 2; 
[b,a]=maxflat(n,m,Wn); 
fig_counter=fig_counter+1; 
figure(fig_counter); 
freqz(b,a,1000,Sampling_Rate); 
title('TF MaxFlat filter response') 
  
% data filtering 
  
filtered_data=filtfilt(b,a,Input_Data); 
  
% comparison of raw and filtered data 
  
fig_counter=fig_counter+1; 
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figure(fig_counter); 
plot(filtered_data); 
title('Filtered data'); 
fig_counter=fig_counter+1; 
figure(fig_counter); 
plot(Input_Data-filtered_data); 
title('Noise'); 
for i=1:number_of_channels 
    fig_counter=fig_counter+1; 
    figure(fig_counter); 
    plot(0:length(Input_Data)-1,Input_Data(:,i), 
0:length(Input_Data)-1,filtered_data(:,i)); 
    title('Raw vs. Filtered data'); 
end 
end 
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A.2 The WB linearisation model  
% The WB linearisation model script 
% Copyright S Stankovic 
  
% memory cleaning 
  
clear all; close all; clc; 
 
% thermistor temperature-resistance dependency definition 
  
format long; 
T=10:39; % temperature values [Celsius] - linearising range 
TK=T+273.15; % temperature [K] 
Rtt=[32650.5 31032.1 29499.9 28052.4 26684.6 25391.2 ... 
24168.2 23011.2 21916.3 20879.8 19898.3 18968.6 18087.6 ... 
17252.6 16460.9 15710 14997.7 14321.6 13679.8 13070.4 ... 
12491.6 11941.6 11418.9 10922 10449.5 10000 9572.32 ... 
9165.29 8777.79 8408.68 8057.31 7722.43 7403.29 7098.42 ... 
6808.36 6531.31 6265.75 6016.47 5776.05 5546.53 5327.34 ... 
5117.97 4917.94 4726.77 4543.91 4369.33 4200.84 4040.81 ... 
3889.51 3743.17 3603.1]; % Resistance values 
Rt=Rtt(11:40); 
RtMin=Rt(length(Rt)) 
  
% linerisation procedure 
  
C=2.5*10^-3; % dissipation constant [W/Celsius] 
deltaT=0.05; % max dissipation error 
IMaxDesign=sqrt(deltaT*C/RtMin)*10^3 % [mA] 
Vin=5; 
R3Min=Vin/(IMaxDesign*10^-3)-RtMin; 
R3=R3Min:20:100000; 
R2=1:20:50000; 
R3Design=-1; ResMin=10^6; 
k=1; 
for l=1:length(R3) 
    VoutRt=Vin*Rt./(R3(l)+Rt); 
    [p,SS]=polyfit(VoutRt',T',1); 
    if (SS.normr<ResMin) 
        ResMin=SS.normr; 
        R3Design=R3(l); 
        VDesign=Vin*Rt./(R3Design+Rt); 
    end 
    V=VoutRt'; 
end 
k=k+1; 
figure(k); 
plot(VDesign,T); 
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A.3 The thermistor calibration script 
% The thermistor calibration script 
% Copyright S Stankovic 
  
% memory cleaning 
  
clear all; close all; clc; 
  
% initialising the time counter 
  
tStart=tic; 
  
% setting of input paramters 
  
FILE_PATH='C:\Eksperimenti\Calibration\'; 
INPUT_FILE_NAME='Calibration'; 
EXTENSION='.lvm'; 
HEADERLINES=23; 
DELIMITER='\t'; % tab 
END_OF_LINE='\n'; % end of line 
CONVERSION='%f'; 
NUMBER_OF_CHANNELS=3; 
SAMPLING_RATE=10; % Hz 
GAIN=1; % circuit gain 
NEGATIVE_GAIN=0; 
LAST_TEMP=39; 
START_TEMP=10; 
NUMBER_OF_TEMP_POINTS=LAST_TEMP-START_TEMP+1; % 
TIME_STEP_MIN=5; % in minutes 
INITIAL_TIME_STEP_MIN=3.5; % in minutes 
AVG_TIME_STEP_MIN=1; % in minutes 
CUT_OFF_TIME_MIN=15-4.95; %in minutes 
TIME_STEP=TIME_STEP_MIN*60*SAMPLING_RATE; % in seconds 
INITIAL_TIME_STEP=INITIAL_TIME_STEP_MIN*60*SAMPLING_RATE; 
AVG_TIME_STEP=AVG_TIME_STEP_MIN*60*SAMPLING_RATE; % in seconds 
CUT_OFF_TIME=CUT_OFF_TIME_MIN*60*SAMPLING_RATE %in seconds 
 
% calibration data pre processing 
  
format long; 
full_input_file_name=strcat(FILE_PATH,INPUT_FILE_NAME, ... 
EXTENSION); 
input_data=importdata(full_input_file_name,DELIMITER, ... 
HEADERLINES); 
v_input=input_data; 
if (HEADERLINES~=0) 
    v_sorted_input=zeros(length(v_input.data),0); 
    for i=1:NUMBER_OF_CHANNELS 
        v_sorted_input=[v_sorted_input v_input.data(:,i+1)]; 
    end 
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else 
    v_sorted_input=v_input; 
end 
if (NEGATIVE_GAIN==1) 
    v_input_sorted=v_sorted_input*(-1); 
else 
    v_input_sorted=v_sorted_input; 
end 
t=0:1/SAMPLING_RATE:(length(v_input_sorted)-1)/SAMPLING_RATE; 
kk=1; 
kk=kk+1; figure (kk); 
axis([0 (length(v_input_sorted)-1)/SAMPLING_RATE 0 5]); 
hold on; 
plot (t, v_input_sorted'); % V vs t 
title('Input voltage data'); 
data_length=length(v_input_sorted);% in seconds 
fs=SAMPLING_RATE; 
v_filtered=filterData_LF_TF_MF(v_input_sorted,fs,0.025, kk); 
v_out_cut=v_filtered(CUT_OFF_TIME:length(v_filtered), ... 
    1:NUMBER_OF_CHANNELS); % cut first T step in time 
kk=kk+1;figure(kk); 
plot( v_out_cut); 
ylabel('Cut voltage data'); 
data_length=length(v_out_cut); % in seconds 
title('Filtered and cut voltage data'); 
t=0:(data_length-1); % time data 
start=START_TEMP; 
final=LAST_TEMP; 
 
% calibration data fitting 
 
v_out_avg_for_fitting=[]; 
T_out_lin_avg_for_fitting=[]; 
T=(start:final)'; 
T_channels=zeros(0,NUMBER_OF_CHANNELS); 
for i=1:NUMBER_OF_CHANNELS 
    T_channels=[T_channels T]; 
end 
for i=1:(final-start+1) 
    v_out_avg_for_fitting(i,1:NUMBER_OF_CHANNELS)= ... 
        mean(v_out_cut(INITIAL_TIME_STEP+ ... 
        TIME_STEP*(i-1):INITIAL_TIME_STEP+TIME_STEP*(i-1)+ ... 
        AVG_TIME_STEP,1:NUMBER_OF_CHANNELS)); 
end 
v_out_avg_for_fitting= ... 
    v_out_avg_for_fitting(1:length(v_out_avg_for_fitting) ... 
    -(LAST_TEMP-final),1:NUMBER_OF_CHANNELS); % 10 to 39 
kk=kk+1; figure(kk); 
plot(v_out_avg_for_fitting); 
ylabel('Voltage data for fitting'); 
title('Data for fitting'); 
for i=1:NUMBER_OF_CHANNELS 
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    p_lin(:,i)=polyfit(v_out_avg_for_fitting(:,i),T,1); 
    T_calc_lin(:,i)=polyval( p_lin(:,i), ... 
        v_out_avg_for_fitting(:,i)); 
end 
T_real=T; 
T_real_Ch=T_channels; 
V_real=v_out_avg_for_fitting; 
table_lin=[V_real T_real T_calc_lin abs(T_real_Ch-T_calc_lin)]; 
for i=1:NUMBER_OF_CHANNELS 
    max_lin_fit_error(:,i)= ... 
max(table_lin(1:length(table_lin)-1,2*NUMBER_OF_CHANNELS+1+i)); 
max_lin_fit_error_real(:,i)= 
...max(table_lin(:,2*NUMBER_OF_CHANNELS+1+i)); 
    T_lin_fit(:,i)=polyval( p_lin(:,i),v_out_cut(:,i)); 
end 
kk=kk+1; figure(kk); 
plot(T_lin_fit); 
ylabel('Linear fit temperature'); 
kk=kk+1; figure(kk); 
plot(T_real_Ch,abs(T_real_Ch-T_calc_lin)); 
ylabel('Absolute error for practical linear fit'); 
xlabel('Temperature'); 
  
tElapsed=toc(tStart); 
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A.4 The SPR linearisation model  
% The SPR linearisation model script 
% Copyright S Stankovic 
  
% memory cleaning 
  
clear all; close all; clc; 
  
% initialising the time counter 
  
tStart=tic; 
  
% thermistor temperature-resistance dependency definition 
  
format long; 
T=10:39; % temperature values [Celsius] - linearising range 
TK=T+273.15; % temperature [K] 
Rtt=[32650.5 31032.1 29499.9 28052.4 26684.6 25391.2 ... 
24168.2 23011.2 21916.3 20879.8 19898.3 18968.6 18087.6 ... 
17252.6 16460.9 15710 14997.7 14321.6 13679.8 13070.4 ... 
12491.6 11941.6 11418.9 10922 10449.5 10000 9572.32 ... 
9165.29 8777.79 8408.68 8057.31 7722.43 7403.29 7098.42 ... 
6808.36 6531.31 6265.75 6016.47 5776.05 5546.53 5327.34 ... 
5117.97 4917.94 4726.77 4543.91 4369.33 4200.84 4040.81 ... 
3889.51 3743.17 3603.1]; % Resistance values 
Rt=Rtt(11:40); 
RtMin=Rt(length(Rt)); 
  
% linerisation procedure 
  
C=2.5*10^-3; % dissipation constant [W/Celsius] 
deltaT=0.05; % max dissipation error 
IMaxDesign=sqrt(deltaT*C/Rt(length(Rt)))*10^3 % [mA] 
R1=1:20:100000; 
R2=1:20:50000; 
Vin=5; 
R1Design=-1; R2Design=-1; ResMin=10^6; 
k=1; 
for l=1:length(R1) 
    for m=1:length(R2) 
        Rpar(m,:)=R2(m)*Rt./(R2(m)+Rt); 
        VoutRt=Vin*Rpar./(R1(l)+Rpar); 
        [p,SS]=polyfit(VoutRt(m,:)',T',1); 
        if (SS.normr<ResMin) 
            ResMin=SS.normr; 
            R1Design=R1(l); 
            R2Design=R2(m); 
            RparDesign=R2Design*Rt./(R2Design+Rt); 
            VDesign=Vin*RparDesign./(R1Design+RparDesign); 
        end 
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    end 
    V=VoutRt'; 
  
% visualisation 
  
    figure(k); k=k+1; 
    mesh(V); % 3D view 
    colormap('Jet'); 
    colorbar; 
    shading interp; 
    figure(gcf); 
    hold on; 
end 
k=k+1; 
figure(k); 
plot(VDesign,T); 
  
tElapsed=toc(tStart); 
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A.5 The time delay evaluation function 
% Time delay evaluation function 
% Copyright S Stankovic 
  
% *** function body *** % 
  
function [T_avg1, heat1, fig_counter]=time_delay(Mode,... 
    Input_T,Input_High_T, Input_Low_T, Input_Delta_T,... 
    Input_Sensitivity, M, N, Figure_Counter) 
 
fig_counter=Figure_Counter; 
T_avg1=0; 
heat1=0; 
T1=Input_T+273.15; 
  
% heat released/stored evaluation 
 
j=0; k=0; i=1; DELTA_tm=1;  
if (Mode=='c') 
    while (i+DELTA_tm<length(T1)) 
        if( ((T1(i,2)-273.15)<Input_High_T) &&... 
                ((T1(i+DELTA_tm,2)-273.15)>Input_Low_T) &&... 
                ((T1(i,3)-T1(i,1))>Input_Sensitivity) &&... 
                ((T1(i+DELTA_tm,3)-... 
                T1(i+DELTA_tm,1))>Input_Sensitivity)) 
            if( abs((T1(i+DELTA_tm,2)-T1(i,2)))... 
                >=Input_Delta_T) 
                tr_i=find(abs(T1(:,3)-... 
                T1(i,2))<=Input_Sensitivity,1); 
                tr_ip1=find(abs(T1(:,3)-T1(i+DELTA_tm,2))... 
                <=Input_Sensitivity,1); 
                tm_i=i; 
                tm_ip1=DELTA_tm+i; 
                j=j+1; 
                heat1(j,1)=(M*DELTA_tm)/(tr_ip1-tr_i)-N; 
                T_avg1(j,1)= (T1(i,2)+T1(i+DELTA_tm,2))/2; 
                i=i+DELTA_tm; 
                DELTA_tm=1; 
            else 
                DELTA_tm=DELTA_tm+1; 
            end 
        else 
            i=i+1; 
            DELTA_tm=1; 
        end 
    end 
else 
    while (i+DELTA_tm<length(T1)) 
        if( ((T1(i+DELTA_tm,2)-273.15)<Input_High_T)... 
                && ((T1(i,2)-273.15)>Input_Low_T) &&... 
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                ((T1(i,1)-T1(i,3))>Input_Sensitivity)... 
                && ((T1(i+DELTA_tm,1)-... 
                T1(i+DELTA_tm,3))>Input_Sensitivity)) 
            if( abs((T1(i+DELTA_tm,2)-T1(i,2)))>=Input_Delta_T) 
                j=j+1; 
                tr_i=find(abs(T1(:,3)-... 
                T1(i,2))<=Input_Sensitivity,1); 
                tr_ip1=find(abs(T1(:,3)-T1(i+DELTA_tm,2))... 
                    <=Input_Sensitivity,1); 
                tm_i=i; 
                tm_ip1=DELTA_tm+i; 
                heat1(j,1)=(M*DELTA_tm)/(tr_ip1-tr_i)-N; 
                T_avg1(j,1)= (T1(i,2)+T1(i+DELTA_tm,2))/2; 
                i=i+DELTA_tm; 
                DELTA_tm=1; 
            else 
                DELTA_tm=DELTA_tm+1; 
            end 
        else 
            i=i+1; 
            DELTA_tm=1; 
        end 
    end 
end 
T_avg1=T_avg1-273.15; 
heat1=heat1.*Input_Delta_T; 
end 
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A.6 The enthalpy calculation function 
% Enthalpy calculation function 
% Copyright S Stankovic 
  
% *** function body *** % 
  
function [calc_enthalpy, fig_counter]=... 
    calc_enthalpy(Heat,Input_Delta_T,... 
    Output_File_Path,Output_File_Name, Figure_Counter) 
 
j=1; e_last_step=Heat(1,2); 
e_calc(1,1)=Heat(1,2); 
T_calc(1,1)=Heat(1,1); 
  
% enthalpy evaluation 
  
for i=1:length(cp_eff_calc)-1 
    if (cp_eff_calc(i+1,1)-cp_eff_calc(i,1)>=Input_Delta_T) 
        j=j+1; 
        e_calc(j,1)=e_last_step+cp_eff_calc(i+1,2); 
        e_last_step=e_calc(j,1); 
        T_calc(j,1)=cp_eff_calc(i+1,1); 
    else 
        e_calc(j,1)=e_last_step+cp_eff_calc(i+1,2); 
        e_last_step=e_calc(j,1); 
    end 
end 
e_calculated=[T_calc e_calc]; 
fig_counter=Figure_Counter; 
fig_counter=fig_counter+1; 
figure(fig_counter); 
plot(e_calculated(:,1),e_calculated(:,2),e_calculated(:,1),... 
    e_calculated(:,2),'o'); 
title(Output_File_Name); 
saveInto_Lvm_File([e_calculated(:,1) e_calculated(:,2)],... 
    Output_File_Path, Output_File_Name); 
calc_enthalpy=e_calculated; 
end 
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A.7 The time delay with subcooling evaluation function 
% Time delay with subcooling evaluation function 
% Copyright S Stankovic 
  
% *** function body *** % 
  
function [T_avg1, heat1, fig_counter]=time_delay_sc(Mode,... 
    Input_T,Input_High_T, Input_Low_T, Input_Delta_T,... 
    Input_Sensitivity, M, N, Figure_Counter) 
  
fig_counter=Figure_Counter; 
T_avg1=0; 
heat1=0; 
T1=Input_T+273.15; 
  
% heat released/stored evaluation 
  
j=0; k=0; i=1; DELTA_tm=1; 
if (Mode=='c') 
    while (i+DELTA_tm<length(T1)) 
        if( ((T1(i,2)-273.15)<Input_High_T) &&... 
                ((T1(i+DELTA_tm,2)-273.15)>Input_Low_T) &&... 
                ((T1(i,3)-T1(i,1))>Input_Sensitivity) &&... 
                ((T1(i+DELTA_tm,3)-... 
                T1(i+DELTA_tm,1))>Input_Sensitivity)) 
            if( abs((T1(i+DELTA_tm,2)-T1(i,2)))... 
                    >=Input_Delta_T) 
                tr_i=find(abs(T1(:,3)-... 
                    T1(i,2))<=Input_Sensitivity,1); 
                tr_ip1=find(abs(T1(:,3)-T1(i+DELTA_tm,2))... 
                    <=Input_Sensitivity,1); 
                tm_i=i; 
                tm_ip1=DELTA_tm+i; 
                j=j+1; 
                heat1(j,1)=(M*DELTA_tm)/(tr_ip1-tr_i)-N; 
                T_avg1(j,1)= (T1(i,2)+T1(i+DELTA_tm,2))/2; 
                i=i+DELTA_tm; 
                DELTA_tm=1; 
            else 
                DELTA_tm=DELTA_tm+1; 
            end 
        else 
            i=i+1; 
            DELTA_tm=1; 
        end 
    end 
    T_avg1=T_avg1-273.15; 
    sorted_data=sortDoubleColumnData([T_avg1 heat1]); 
    SC=0; 
    k=0;j=0; 
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    for i=1:length(sorted_data) 
        if(sorted_data(i,2)<0) 
            k=k+1; 
            SC(k,1)=sorted_data(i,1); 
            SC(k,2)=sorted_data(i,2); 
        else 
            j=j+1; 
            HR(j,1)=sorted_data(i,1); 
            HR(j,2)=sorted_data(i,2); 
        end 
    end 
    if(SC~=0) 
        TN=SC(1,1) 
        TPC=SC(size(SC,1),1) 
        clear heat1; 
        heat1=[HR.*Input_Delta_T SC.*Input_Delta_T]; 
    end 
else 
    while (i+DELTA_tm<length(T1)) 
        if( ((T1(i+DELTA_tm,2)-273.15)<Input_High_T)... 
                && ((T1(i,2)-273.15)>Input_Low_T) a&&... 
                ((T1(i,1)-T1(i,3))>Input_Sensitivity)... 
                && ((T1(i+DELTA_tm,1)-... 
                T1(i+DELTA_tm,3))>Input_Sensitivity)) 
            if( abs((T1(i+DELTA_tm,2)-T1(i,2)))>=Input_Delta_T) 
                j=j+1; 
                tr_i=find(abs(T1(:,3)-... 
                    T1(i,2))<=Input_Sensitivity,1); 
                tr_ip1=find(abs(T1(:,3)-T1(i+DELTA_tm,2))... 
                    <=Input_Sensitivity,1); 
                tm_i=i; 
                tm_ip1=DELTA_tm+i; 
                heat1(j,1)=(M*DELTA_tm)/(tr_ip1-tr_i)-N; 
                T_avg1(j,1)= (T1(i,2)+T1(i+DELTA_tm,2))/2; 
                i=i+DELTA_tm; 
                DELTA_tm=1; 
            else 
                DELTA_tm=DELTA_tm+1; 
            end 
        else 
            i=i+1; 
            DELTA_tm=1; 
        end 
    end 
    T_avg1=T_avg1-273.15; 
    heat1=heat1.*Input_Delta_T; 
end 
end 
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