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manufactured Ti-6Al-4V alloys 
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ABSTRACT 

Selective laser melting (SLM) is a prevalent additive manufacturing (AM) technique for the fabrication of metallic 

components.  A modified GTN (Gurson-Tvergaard-Needleman) model was developed, based on the understanding of 

the SLM process and SLM-manufactured parts, in order to characterize void growth and void shear mechanism to 

predict the ductile fracture behavior of SLM-fabricated Ti6Al4V alloys under uniaxial stress states. The effect of the 

number of hidden layers and neurons, as a basic parameter of an artificial neural network (ANN), on predicting 

parameter relation accuracy was investigated. In this study resulted due to the complex relation among GTN fracture 

parameters and fracture displacement, defining more hidden layers in ANN improves the accuracy of predicting the 

damage and fracture behavior of SLM-fabricated Ti6Al4V alloys under uniaxial stress states; however, forecasting 

maximum force is achieved accurately by fewer hidden layers in comparison with fracture displacement needing to 

higher layers to predict precisely. Furthermore, the system R 2 -value reaches higher accuracy more than 0.99 for both 

maximum force and fracture displacement based on selected hidden layers and neurons. 

Keywords 

ANN, Machine learning, Additive manufacturing, Modified GTN Fracture 

 

Introduction 

Reducing design and manufacturing time is crucial in any manufacturing process, and it is more so in 

additive manufacturing (AM). Additive manufacturing is a powerful technique in digital-

manufacturing objects from three-dimensional (3D) models by depositing materials layer by layer. 

Complex structures that are difficult to be produced through traditional manufacturing processes can 

be easily fabricated by AM processes (1-4).  
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Among various AM processes, sintering laser melting (SLM) is common to produce metallic parts 

and manufacture final parts from powder. It has obtained attention from different industries, such as 

biomedical and aerospace. Among titanium alloys, Ti6Al4V is a common alloy for the SLM process 

owing to its high strength-to-weight ratio, low density, high fracture toughness, excellent corrosion 

resistance, and excellent biocompatibility(5-7).  

Regarding AM components applications, they are under exposure to complex stress and damage 

therefore investigation and evaluation of their fracture behavior is a controversial topic among 

scientists. Many researchers investigated these components' damage and fracture behavior and 

obtained different results in computational modeling and experimental analysis. They developed 

micromechanical models of complex ductile fracture and considered micro-void nucleation, growth, 

and coalescence (8-11). Gurson (12) achieved a micromechanical-based model to predict material 

behavior initiated by spherical cavities' growth. Then, Tvergaard and Needleman (13) modified Gurson 

model and considered void coalescence into a constitutive model via the dependence of the yield 

function on the void volume fraction (GTN modified model). Alexander et al. (14) studied the fracture 

behavior of SLM additively manufacture Ti-6AL-4V alloy in an experimental and computational 

modeling investigation and observed that combined triaxiality and load angle parameters have more 

accuracy in contrast to no stress state-dependence.  

In order to the GTN fracture model able to predict the fracture property precisely, there are some 

coefficients in the GTN fracture model that are necessary to be calibrated by experimental test, 

therefore it needs much time and equipment for trial and error. Recently, digital fabrication technology 

attracted more attention to optimize process parameters, address defects, and monitor quality. The 

artificial neural network model (ANN) is a good tool for information processing, learning, and adopting 

the environment to solve problems. It has a strong ability in predicting network boundaries and finding 

complex relations among parameters and consequently optimization of the process (15-18).  

Many scientists tried to use ANN in AM process to save time and train an ANN model to optimize 

parameters and achieve desired machine setting of fabrication. Wang et al (19) observed ANN is a 

good assistant for optimizing process parameters and defect monitoring.  Chinchanikar et al. (20) 

applied ANN to predict the surface roughness of fused deposition modeling parts based on process 

parameters and utilized machine learning algorithms to model ANN. Their results showed the two 

hidden layers with 150 neurons have better prediction accuracy in comparison to one hidden layer with 

250 neurons. Mehrpouya et al (21, 22) used ANN for the investigation of the effect of process 



parameters on mechanical properties, density, and temperature transformation and they found a 

prediction model for optimization of manufacturing parameters in AM of NiTi alloy. Kowen et al (23) 

studied the quality of printed parts in the  SLM process and utilized ANN to find laser power and its 

effect on crack and pore form. Also, Stathatos et al (16) applied ANN in laser-based AM process for 

prediction of temperature evolution and density of fabricated parts. Jimenez (24) applied ANN for 

analyzing the fatigue life of nodular cast iron and by synthetic data effectively increased ANN forecast 

as a complementary input data.  

In ANN the neurons and hidden layers number as training parameters for solving the problem affect 

the accuracy of the prediction model(25, 26). In this study, NN was trained by different hidden layers 

and neurons tried to investigate the effect of the number of neurons and layers on the accuracy of 

forecasting of GTN fracture model parameters. Moreover, the ANN is used to predict the complex 

relations among input and output data in GTN fracture model of SLM-fabricated parts of Ti6Al4V 

alloy.  

 

Preparing specimen 

The experimental test the Ti–6Al–4V alloy specimens were fabricated by SLM AM process 

According to ASTM F2924 standard (27). Fig. 1 shows the printed specimens that took place in an 

Argon environment for 3 hours at 650 ℃ for the heat treatment process. 

 

 

 

 

 

  

 

Fig 1. SLM Ti–6Al–4V alloy (a) Manufacturing process (b) Uniaxial test specimen  

 

(a) (b) 



 

Tension test 

In order to analyze the mechanical behavior of SLM printed Ti–6Al–4V alloys parts, the tensile 

tests were conducted by the SANTAM STM150 machine test and the loading speed was at about 

0.3 mm/min in tests (Fig2).  Table 1 shows the mechanical property of additive-manufactured 

Ti–6Al–4V alloys extracted from the uniaxial tension test. The mechanical test has been 

conducted to extract the elastic-plastic property of the material. The Voce hardening law was 

considered to describe the hardening behavior of the material as follows (28): 

 𝜎𝑓 = 𝐵 − (𝐵 − 𝐴). 𝑒−𝑚∗(𝜀0+𝜀𝑝) 
 

                         (1) 

Where A, B, m, and  𝜀0are Voce hardening law coefficient. 

 

Table 1. Mechanical properties of Ti–6Al–4V AM sheets. 

PROPERTY VALUE 

)3DENSITY (KG/M 4800 

YOUNG'S MODULUS (MPA) 105000 

POISSON'S RATIO 0.342 

INITIAL YIELD STRESS 

(MPA) 

920 

UTS (MPA) 987 

A 985 

B -30 

M 302 𝜺𝟎  0.009 

 



 

Fig 2.  Machine setup for the tensile test(29). 

 

Finite element simulation 

In this study, FE commercial software (Abaqus) is utilized for finite element simulation and 

calibration of GTN fracture model (30).  In this case, the Python script in Abaqus is linked with 

MATLAB software, and the GTN parameters were developed(31). The VUMAT subroutine is 

used to simulate the damage behavior of a property. Also, eight nodes with reduced integration 

of 3D solid elements(C3D8R) are chosen for the finite element simulation model. When damage 

value (D) is equal to one the element will be eliminated. 

 

 

 

Fig 3. Finite element simulation models uniaxial test   

  

 The GTN fracture model was initially introduced by Gurson, then it was modified by Tvergaard 

and Needleman which is common in ductile and plasticity mechanics to define damage and fracture 



behavior of metallic materials (12, 28, 32, 33). But this model is unable to consider the void shear 

failure in low and negative-stress triaxiality. Nashon and Hutchison modified GTN fracture model 

and imposed void coalescence, void nucleation, and shear damage as a coefficient to the model.  𝛷 = 𝑞2𝜎𝑦2 + 2𝑞1𝑓∗ cosh (− 3𝑞2𝑃2𝜎𝑦 ) − (1 + (𝑞3𝑓∗)2) = 0                               (2)                                 

In Nahshon and Hutchinson's shear damage equations 𝜎𝑦is the yield stress, q is the von misses 

equivalent stress, p is the hydrostatic pressure, f * is the effective void volume fraction and q1 to 

q3 are constants and dependent on the material's properties: 

                  

𝑓∗(𝑓) = { 𝑓                              𝑓 ≤ 𝑓𝑐𝑓𝑐 + 1/𝑞1−𝑓𝑐𝑓𝑓−𝑓𝑐 (𝑓 − 𝑓𝑐)      𝑓𝑐 < 𝑓                                                            (3) 

 𝑓𝑠̇ = 𝑘𝜔 𝑓 𝜔(𝛔𝒊𝒋) 𝑆𝑖𝑗 𝜀̇𝑖𝑗𝑝𝑞                                                                                              (4) 

𝑓𝑔̇ = (1 − 𝑓)𝜀̇𝑝                                                                                                             (5)           

𝑓𝑛̇ = 𝐴 𝑆𝑖𝑗 𝜀̇𝑖𝑗𝑝𝑞                                                                                                         (6) 

𝐴 = {      𝑓𝑁𝑠𝑁√2𝜋 exp [− 12 ( 𝜀̅𝑚𝑝 −𝜀𝑁𝑠𝑁 )2]              𝑃 ≤ 0                                  0                                                        𝑃 > 0                                          (7) 

𝑓̇ = 𝑓̇𝑔 + 𝑓̇𝑛 + 𝑓̇𝑠                                                                                                           (8) 

Where 𝑘𝜔 is introduced as a new material parameter for the void nucleation rate of damage in pure 

shear conditions, and 𝜔(𝛔) is the stress- function used by Nahshon and Hutchinson, S is the 

deviatoric stress tensor and 𝜀̇𝑝 plastic strain rate tensor, 𝑓𝑐  is the critical volume fraction of voids 

and 𝑓𝑓 is the volume fraction of the void at the fractured moment This function is between the zero 

and one value, which for the axial stress state is zero and for the shear stress condition is one. Also, 𝑓 ̇ is rate of change in the voids volume fraction, 𝑓̇𝑔 is the void growth, 𝑓̇𝑛 the nucleation rate, 𝑓̇𝑠 is 

the shear rate of the voids.  



According to table 2 the effect of nine modified GTN parameter variations on maximum force and 

fracture displacement by FE simulations in 36 samples used as input data for ANN modeling. The 

nine parameters in the constitutive equation of modified GTN are utilized in the ANN algorithm. 

These parameters include constitutive parameter (q1, q2), initial void volume fraction (f0), critical 

void volume fraction (fc), void volume fraction at failure (ff), the void volume fraction of nucleated 

voids (Fn), the standard deviation of the distribution (Sn), and the mean value of the nucleation 

strain (En), and shear coefficient (kW). 

Table 2. The modified GTN parameter, maximum force, and fracture displacement data to train NN(29).  

 Inputs Outputs 

NO q 1 q 2 f 0 f c f f S n f n E n K w Fmax FD 

1 1 0.75 0 0.005 0.01 0.1 0.01 0.1 0 5796.624 0.656477 

2 1.5 0.75 0 0.005 0.01 0.1 0.01 0.1 0 5795.857 0.646894 

3 1 1 0 0.005 0.01 0.1 0.01 0.1 0 5796.553 0.650822 

4 1 0.75 0.005 0.005 0.01 0.1 0.01 0.1 0 5557.266 0.280373 

5 1 0.75 0 0.005 0.25 0.1 0.01 0.1 0 5796.624 1.22118 

6 1 0.75 0 0.005 0.01 0.2 0.01 0.1 0 5797.075 0.760963 

7 1 0.75 0 0.005 0.01 0.1 0.1 0.1 0 5783.165 0.490098 

8 1 0.75 0 0.005 0.01 0.1 0.01 0.3 0 5798.241 0.801735 

9 1 0.75 0 0.005 0.01 0.1 0.01 0.1 50 5796.63 0.618433 

10 1.5 1 0.005 0.1 0.25 0.2 0.1 0.3 50 5742.734 0.773149 

11 1 0.812967 0.000826 0.005 0.011732 0.136897 0.1 0.1 0 5779.344 0.484892 

12 1 0.917722 0.00346 0.005 0.062686 0.133368 0.068302 0.169017 44.25426 5770.09 0.501218 

13 1 1 0.004626 0.005 0.043408 0.100122 0.062846 0.196965 18.63707 5759.842 0.437288 

14 1 0.917722 0.00346 0.005 0.062686 0.133368 0.068302 0.169017 44.25426 5770.09 0.501218 

15 1 0.971539 0.002251 0.007041 0.01 0.1 0.086423 0.142982 21.52688 5775.257 0.510772 

16 1 0.894113 0.003257 0.005 0.01 0.184493 0.081619 0.183241 37.7882 5770.585 0.489313 

17 1 0.934298 0.001474 0.005 0.108756 0.1 0.1 0.1 0 5773.152 0.481938 

18 1 0.774382 0.005 0.005 0.068589 0.156589 0.024984 0.136766 11.32583 5725.286 0.475001 

19 1 0.841393 0.00391 0.005 0.011554 0.132524 0.068759 0.182259 26.52156 5768.415 0.47945 

20 1 1 0.005 0.005 0.034 0.1 0.093053 0.298693 36.46328 5745.015 0.493335 

21 1 0.978156 0.004814 0.005 0.058813 0.1 0.089623 0.223808 18.22531 5749.232 0.451586 

22 1 0.945697 0.005 0.005 0.01 0.143263 0.014558 0.200277 0 5572.037 0.278147 

23 1 0.939513 0.004121 0.005 0.046009 0.1 0.065897 0.174042 18.85946 5767.749 0.499801 

24 1 0.887675 0.00262 0.005 0.058807 0.140833 0.058419 0.18712 20.83491 5777.094 0.539225 

25 1 0.901614 0.005 0.005 0.09984 0.101499 0.060116 0.155947 11.87717 5718.09 0.447309 

26 1 0.950558 0.003989 0.005 0.064809 0.100246 0.053865 0.223759 8.772346 5771.276 0.58074 

27 1 0.829491 0.004345 0.005 0.034783 0.135541 0.050991 0.167512 20.29329 5758.697 0.419001 

28 1 0.821593 0.004653 0.005 0.066102 0.128977 0.054604 0.16716 16.80624 5735.14 0.419052 

29 1 0.872989 0.004365 0.005 0.030576 0.12662 0.054683 0.22514 21.27534 5768.202 0.50447 

30 1 0.861285 0.004401 0.005 0.021042 0.138414 0.037399 0.163228 17.92148 5764.118 0.441014 



31 1 0.8835 0.004442 0.005 0.018634 0.138551 0.036252 0.161086 32.37898 5760.947 0.428442 

32 1 0.945575 0.004152 0.005 0.034314 0.100029 0.048001 0.190853 29.14383 5769.354 0.533541 

33 1 0.866755 0.004422 0.005 0.036293 0.147873 0.059633 0.172271 31.22699 5742.753 0.382974 

34 1 0.932651 0.004269 0.005 0.019845 0.138969 0.059868 0.140231 18.87184 5735.889 0.366438 

35 1 0.896648 0.004499 0.005 0.051262 0.134238 0.046769 0.176476 22.52134 5756.132 0.424102 

36 1 0.918501 0.004384 0.005 0.026097 0.1336 0.039757 0.166472 12.12199 5763.917 0.444408 

 

 ANN Modelling 

 ANN stems from a collection of artificial neurons that are trained by the environment and initial 

data. It is used as an effective tool for network classification with combining of numbers hidden 

layer neurons and training function. In this study, the ANN was trained by the Levenberg-

Marquardt (34) algorithm to compute the outputs of the neurons and an activation function 

operates the summation of input data and weight of the neurons. Hyperbolic tangent activation 

function was applied to neurons of the hidden layer, and linear activation function was utilized to 

neurons of the output layer. The sample data was split into three sections randomly, about 70% of 

the samples were selected for the training of the net, 15% of samples for testing the net and the 

rest 15% were chosen for validation of data. Fig. 4 shows the design of the N-layer network which 

contains different hidden layers from 1 to 3 including variable neurons from 1 to 22 and each 

hidden layer is investigated individually. As mentioned before the input samples were randomly 

split, so the accuracy of the net and the results change when the net is trained by different data, to 

approach a better net to predict the phenomena in each case several different sets are trained to 

obtain the best net results. In other words, initially, one hidden layer with a different number of 

neurons is assessed then in each step by specific neurons numbers, several sets of training data is 

being tested and the best net results are chosen as the predicted net model, next this process is 

repeated for next two hidden layers include different neurons in each layer and several training 

sets, finally, the similar process is performed for 3 hidden layers. 

 The net performance and results are analyzed by calculating R-squared correlation (R2) 

parameters; therefore, the net predicts the equations more accurately whenever R2 is closer to 1. 

The nine GTN parameters are chosen as input parameters to predict the complex effect of this 

parameter on the fracture behavior of materials. Moreover, the maximum force (Fmax) and 

fracture displacement (FD) are achieved as the output parameters of ANN and are verified by 

experimental results. 



 

Fig. 4. Designed N-layer network 

Results and discussion 

To investigate the effect of the number of neurons on the prediction accuracy of the relationship 

between parameters, NN is trained by three different hidden layers by the number of neurons 1 to 

22 in each layer, Figs. 5, 6, and 7 show the results in each hidden layer for two output results. 

According to the obtained results, three hidden layers have the most suitable and accurate 

prediction near the experimental test. It shows that fewer neurons are enough for maximum force 

and there are simple relations among parameters to predict the best results. 

Although adding a hidden layer causes better accuracy of predicted results, it cannot result from 

such a conclusion for the number of the hidden layer; because the maximum force needs fewer 

neurons to predict the results. 

 



  

(b) 

 

(a) 

 

Fig 5. (a) Fracture displacement (b) Maximum force one layer 

 

 

 

  

 

Fig 6. Maximum force two-layers 

 



 

Fig 7. Fracture displacement two-layers  

 

 
Fig 8. maximum force three-layers (First layer 4, second layer 17) 

 



 

Fig 9. Fracture displacement three-layers (First layer 16, second layer 14) 

 According to Figs. 4 - 8, the best maximum force prediction is 0.99539 in one layer by seven 

neurons, 0.99947 in two layers by nineteen neurons at the first layer and six neurons at the second 

layer, as well as 0.999678 in three layers by four neurons at the first layer, seventeen neurons at 

the second layer, and three neurons at third layer. Moreover, the best fracture displacement 

prediction is 0.98087 by nineteen neurons, 0.99125 in two layers by nine neurons at the first layer 

and twelve neurons at the second layer, and 0.995895 in three layers by sixteen neurons at the first 

layer, fourteen neurons at the second layer, and twelve neurons a third layer. Fig 10 shows the 

results became better by increasing the hidden layer; however, the optimization time increased 

significantly. So, predicting the maximum force using a less hidden layer is logical, but fracture 

displacement prediction due to the complexity of its relations concerning GTN parameters, usage 

of a more hidden layer results better to reach suitable R2 net performance.  



 

Fig 10. Effect of the number of layers on R2 -value accuracy. 

Conclusions 

In this work, the effect of the number of layers and neurons on the accuracy of ANN to predict of 

fracture behavior of Ti6Al4V alloys in the SLM process was investigated. Furthermore, the relation 

between the GTN fracture model coefficient, maximum force, and displacement was evaluated.  

The survey shows ANN is a proper method for obtaining the GTN fracture model coefficient and 

the number of hidden layers and training function in building a neural network as basic parameters 

of network classification have a large effect on the accuracy of the results, While the optimization 

time raises considerably. Therefore, concerning GTN parameters and the complexity of its results 

predicting the fracture displacement needs more hidden layers to achieve an accuracy of more than 

99 %. The results demonstrate, due to more complexity of the relation for predicting fracture 

displacement higher layers achieve more accurate results, while for maximum force a less hidden 

layer results in acceptable accuracy as well as higher layers. It is suggested an ANN with higher 

layers and neurons can be employed for forecasting fracture displacement, while for maximum 

force, lower layers and neurons result in as same the higher one approximately.  
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