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Investigation of Boundary Algorithms for
Multiresolution Analysis
Martin Peschke and Wolfgang Menzel, Fellow, IEEE

Abstract—An investigation on the multiresolution time-domain
(MRTD) method utilizing different wavelet levels in one mesh
is presented. Contrary to adaptive thresholding techniques,
only a rigid addition of higher order wavelets in certain critical
cells is considered. Their effect is discussed analytically and
verified by simulations of plain and dielectrically filled cavities
with Daubechies’ and Battle–Lemarie orthogonal, as well as
Cohen–Daubechies–Feauveau (CDF) biorthogonal wavelets,
showing their insufficiency unless used as a full set of expansion.
It is pointed out that improvements cannot be expected from these
fixed mesh refinements. Furthermore, an advanced treatment
concerning thin metallization layers in CDF algorithms is pre-
sented, leading to a reduction in cell number by a factor of three
per space dimension compared to conventional finite difference
time domain (FDTD), but limited to very special structures with
infinitely thin irises. All MRTD results are compared to those of
conventional FDTD approaches.

Index Terms—Boundary conditions, multiresolution analysis,
time-domain methods, wavelets.

I. INTRODUCTION

T
HE multiresolution time-domain (MRTD) method has

been under examination by various publications in the

past. This includes the wavelet Galerkin scheme based on

Battle–Lemarie [1], Haar [2], Daubechies orthogonal ([3],

slightly different algorithm) and Cohen–Daubechies–Feauveau

(CDF) biorthogonal wavelets [4]. In structures with mainly

harmonic spatial field distribution, it was shown analytically

and by several simulations that the new approach reduces

the numerical phase error drastically, allowing a reduced cell

number by up to two orders of magnitude.

Additionally, all prementioned authors claim that MRTD

achieves a natural mesh refinement such as introducing denser

discretization rates for field components with fast spatial

variation by adding wavelets of higher order. This feature is

expected to further reduce the numerical effort and to contribute

to an exact localization of different boundary conditions [5].

Thus far, the only publication dealing with an a priori mesh

refinement is [6], but results are compared only qualitatively to

those of finite difference time domain (FDTD) with a very high

discretization rate. If any, this paper’s analytical survey and

computational validation indicates that an advantage of such
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approaches cannot be expected in general. At last, dynamical

mesh adaption remains a possibility for enhancing MRTD’s

performance ([3], [7]).

Another often applied approach is the FDTD-like treatment

of dielectric boundaries by local sampling for Daubechies or

CDF wavelets in scaling functions only [8], neglecting the exact

material operator that has to actually be deployed. It will be

shown that, even with one-dimensional cavities, this simplified

algorithm yields worse results compared to conventional FDTD.

MRTD’s speed can be improved by pre-calculating boundary

field dependencies (Massachusetts Institute of Technology

(MIT), Cambridge, technique, [9]), but this approach does not

affect accurateness and is very memory expensive for large

calculation areas and arbitrary structures.

Finally, all but concave edges represent a problem for wavelet

schemes incorporating an image principle to model perfect elec-

tric boundaries, explaining their rare appearance in most publi-

cations thus far. This paper presents a new treatment for thin

metallic irises by CDF algorithms.

II. MRTD FORMULATION

The (biorthogonal) wavelet representation of propagating

fields, for simplicity in one dimension only, but for an arbitrary

order of expansion, is as follows:

(1)

(2)

is a dual-wavelet function of order displaced by

units , and is the zeroth-order rectangular Haar wavelet

shifted by units in time [4]. For orthogonal wavelet bases

like the Battle–Lemarie and Haar family, equals .

Extension to the three-dimensional case is straightforward,

replacing coefficients , by , , and all

components shifted according to the Yee scheme like in [1],

e.g.,

(3)

The letters , , and indicate the Yee cell number in three

dimensions, , , and the according wavelet level, respectively.
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TABLE I
CONNECTION COEFFICIENTS FOR HAAR WAVELETS

TABLE II
CONNECTION COEFFICIENTS FOR CDF(2; 2) WAVELETS

TABLE III
CONNECTION COEFFICIENTS FOR BATTLE–LEMARIE WAVELETS

Introducing the field expansion into Maxwell’s equations, the

update instructions for the one-dimensional case are derived by

testing with the nondual wavelet functions

(4)

(5)

with the connection coefficient

(6)

Numerical values up to the first order are given in Tables I–III

for recently used wavelet families with the symmetry relation-

ship , ,

, and .

Recently, [6] presented a way of calculating the connection co-

efficients directly out of wavelet’s filter coefficients.

III. ANALYTICAL ANALYSIS

A. Homogeneous Formulations

Analytical investigations on MRTD’s dispersion properties

have been done by [4] and [10]. However, only homogeneous

expansions of zeroth or first order across the whole calculation

area have been considered, and spurious solutions are neglected.

According to the formulation in [10], first-order fields are ar-

ranged as follows:

(7)

(8)

(9)

(10)

denotes the numerical wavenumber in coeffi-

cient space, which differs from the real case for

a fixed angle frequency . By introducing (7)–(10) and after

some mathematical manipulations, the update (4) and (5) yield

an eigenvalue problem for the plane-wave amplitudes to

after some mathematical operations as follows:

(11)

(12)

(13)

(14)

(15)

The matrix elements are the connecting terms between

the orders and , is the Courant number,

is the ratio between real and numerical wavelength,

is the number of Yee cells per wavelength, and is

the free-space wave impedance. The dispersion relationship is

obtained from as follows:

(16)

This is almost the same result as in [4], where the factor 2 in

front of the forth term obviously has been forgotten.

Fig. 1 compares the implicit equation (16) in the form of

a wavelength error over discretization rate for

wavelets with the zeroth-order solution . Like for

the Battle–Lemarie family, a spurious branch is obtained in

addition to the improved curve.
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Fig. 1. Dispersion properties of complete zeroth- and first-order approaches
using CDF(2; 2) wavelets. The Courant number is q̂ = 0:25. The numerical
wavelength error is plotted versus the number of cells per wavelength for
wavelets of order 0 and 1.

Fig. 2. Dispersion properties of the multiresolution approach using
CDF(2;2) wavelets. The Courant number is q̂ = 0:25. As in Fig. 1, the
plot shows the numerical wavelength error versus the number of cells per
wavelength. The mixed approach shows the biggest wavelength error.

B. Multiresolution Formulations

The dispersion properties of a multiresolution approach will

now be examined. Consider a one-dimensional dielectric res-

onator that is filled with two different dielectrics. According to

Maxwell’s equations for inhomogeneous media, electric fields

are expected to be differentiable smooth on the surface in the

center of the cavity, while magnetic fields are not. This problem

would lead to a multiresolution algorithm with low order

only, but high order .

Choosing , the following pre-examinations

are performed. With all , the system matrix of the

eigenvalue problem can be written as

(17)

leading to the dispersion relationship

(18)

The mixed-order curves are expected to lie between the ho-

mogeneous ones. However, in fact, the results are worse than

those of zeroth order at any given resolution, as indicated in

Fig. 2.

With this prior research, it cannot be anticipated that a mul-

tiresolution formulation with higher order in the whole cal-

TABLE IV
MATERIAL OPERATOR [E ] FOR ZEROTH- AND

FIRST-ORDER CDF(2;2) WAVELETS

culation area or just at the surface between the two dielectrics

will provide better results than a simple zeroth-order one. Anal-

ogous graphs are obtained for Battle–Lemarie families.

IV. BOUNDARY ALGORITHMS

A. Dielectric Boundaries

As the stencil size of CDF wavelets exceeds one, exact treat-

ment of dielectric boundaries is only possible with the material

operator derived by [1]. For one-dimensional propagation and a

dielectric surface located at , this operator reads as

(19)

(20)

For wavelets, these integrals have to be calculated

numerically making use of the cascade algorithm provided by

[11]. For 20 iterations, the results are displayed in Table IV.

Note that rational fractions replaced the numerical values, being

identical in all correct digits. Perhaps they will be shown to be

exact by analytical investigations. These results are presented in

[6] as well, but their exact quantity is omitted.

Concerning the multiresolution approach, the following field

representation was chosen.

1) As the electric field is continuous and differentiable

smooth, only zeroth-order coefficients are applied.

2) As the magnetic field is continuous, but not differentiable,

one first-order wavelet is arranged in the boundary plane

to model the bump [see Fig. 3(a)].
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(a) (b)

Fig. 3. Modeling of special boundary field curves (top) including zeroth-
(thick lines) and first-order (thin lines) wavelets (bottom). (a) Modeling ofH ,
(b) Modeling of D . The interface between the two dielectric media lies at
y = 0 (see text for details).

Fig. 4. Tangential electric field in the plane of a thin metallic iris extended up
to y = 0. To ensure zero tangential field on the iris, wavelet coefficients up to
E must vanish.

3) As the electric flux jumps, two first order functions are

selected to the left and right of the dielectric interface, as

shown in Fig. 3(b).

At last, the simplified local sampling approach for

wavelets will be observed in the simulations part. Similar to

FDTD, this one only uses the main diagonal elements of the

first Table IV. Note the equality to zeroth-order Daubechies’

wavelets with local sampling, employing the same connection

coefficients.

B. Improved Algorithm for Thin Perfect Electric

Conductors (PECs)

As for other MRTD formulations, PECs have to be modeled

in algorithms utilizing the image principle. This ap-

plies well for enclosed concave cavities, but yields certain prob-

lems when applied to convex edges or thin metallic irises. Espe-

cially for the latter, it is easy to improve the performance with a

simple change in geometry.

Consider Fig. 4, which shows the -component of the electric

field in a plane parallel to the -surface that is half occupied

by a thin iris extended up to , but with no limits in the

-direction. For this setup, lies tangential to the PEC and

should vanish in the left half-space

. This is usually achieved by adding uneven images in the

columns occupied by the iris while processing the

update equations.

For , it is not sufficient to apply the image principle

only to the negative columns. As Fig. 4 indicates, this proce-

dure leaves the wavelet coefficient untouched, producing

nonzero fields on the metallization. A simple extension of the

iris by one cell can solve this problem, producing a linear rising

(a) (b)

Fig. 5. Two one-dimensional resonators under investigation. (a) Air filled.
(b) With dielectric charge.

Fig. 6. First-order simulation with spurious modes. Comparison of simulation
results and analytically derived wavelength error graphs of Fig. 1.

in front of the edge. Since this evaluation is not straight-

forward for other field components or wavelet types, it is only

possible to talk about an effective aperture height in the MRTD

domain, which is supposed to be one cell size larger than the

actual geometry in the CDF-MRTD case.

V. SIMULATIONS

A. Simulation of Dielectric Boundaries

At first, the air-filled resonator in Fig. 5(a) was analyzed in

order to verify the results of Section III. The Courant number

was chosen to be for FDTD and for MRTD.

The cells per real wavelength were calculated by resonant

order and spatial discretization length for each of the first

three resonances, as well as the spurious modes at six and ten

overall grid points. Errors in the resonant frequency compared

to the trivial analytic case were recalculated to numerical wave-

length errors. The results are displayed in Figs. 6 and 7 together

with the dispersion graphs.

A good match can be observed for both diagrams. Additional

errors are addressed to nonideal boundary positions in the sim-

ulation, which cannot be taken into account by the analytical

investigation of free-space plane waves.

These results do not encourage higher order attempts.

Complete first-order expansions suffer under spurious solu-

tions, what is not bearable for -parameter extraction. Mixed

approaches are worse than one of a complete lower order even

in this trivial case so they cannot be expected to be better

in general. In [6], results are compared only qualitatively to

FDTD with a very high resolution, which does not justify the

emphasis of their superiority.
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Fig. 7. Mixed-order simulations. Comparison of simulation results and
analytically derived wavelength error graphs of Fig. 2.

TABLE V
NUMERICAL RESULTS FOR THE CHARGED RESONATOR. THE ANALYTIC

RESONANT FREQUENCY OF THE DOMINANT MODE IS 59.82 MHz

The next study dealt with a dielectrically charged resonator

utilizing different boundary algorithms for wavelets.

Having maximum fields in the middle of the cavity close to the

boundary, the basic resonant mode is the most interesting one.

Simulation parameters were as before, and the step in the dielec-

tric permittivity was chosen to be in order

to obtain spatially strong varying fields at the interface. Results

for the dominant mode are displayed in Table V.

The most striking aspect are the poor results for the multires-

olution column. They are far worse than those of any other tech-

nique and improve only by adding wavelets of higher order to

each field component in every cell. This strongly supports the

idea of partially higher order approaches yielding worse results

compared to uniform lower order ones because of the truncated

field expansion that was put up in the analytic examination in

Section III.

Even the local sampling approach used in many publications

so far (e.g., [3], [5] and [8]) cannot hold against FDTD of the

same resolution. Note that the algorithm for wavelets

in zero order with local sampling is identical to the one with

compactly supported Daubechies’ wavelets.

Only the accurate treatment using the material operator in its

complete form can justify a cell reduction compared to FDTD

by a factor of 1.5 to 2.

B. Simulation of PECs

In order to test the modeling of PECs, different resonating

three-dimensional cavities have been studied with MRTD and

compared to the results of conventional FDTD. The Courant

numbers were chosen to be at the stability limit for

FDTD and for MRTD simulations.

The ordinary rectangular resonator in Fig. 8(a) has been the

target of several successful examinations with MRTD in the past

(a) (b)

(c)

Fig. 8. Different resonating cavities bounded by PECs. (a) Rectangular.
(b) With thin iris. (c) L-shaped.

TABLE VI
DOMINANT RESONANT FREQUENCY OF CAVITY 8(a).

THE ANALYTICAL VALUE IS 124.91 MHz

(e.g., [1], [2], and [4]). Its results in Table VI were added here

just for the sake of completeness.

Even with very low discretization rates, smooth MRTD ap-

proaches are capable of modeling the exclusively harmonic spa-

tial field distributions with negligible phase error, as predicted

in all analytical investigations.

The next cavity under investigation has a thin iris located at

its center in order to test the modified PEC algorithm of Sec-

tion IV-B with the proposed effective aperture height. Again,

the basic resonant mode is of primary interest due to high field

amplitudes in the iris’ plane and, thus, a strong dependence on

the metallization height. Modes with central nodes are not af-

fected by the iris’ dimensions and, therefore, error magnitudes

are in line with those of the rectangular cavity for all schemes.

Results for this dominant resonant frequency are given in

Table VII for three different discretization rates.

Again, a reduction of nodes per wavelength by a factor of

three or more is possible. Note that the first CDF value has not

converged yet and that no edge corrections have been applied to

conventional FDTD.

Unfortunately, this geometry adjustment cannot be extended

to arbitrary forms, leading to poor results for MRTD schemes

on outer edges. A simple but striking example is the L-shaped

cavity in Fig. 8(c). The basic mode was chosen for examination

according to the same argumentation as before, with the results

displayed in Table VIII.
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TABLE VII
DOMINANT RESONANT FREQUENCY OF CAVITY 8(c). THE MODE-MATCHING

TECHNIQUE AND SPECTRAL-DOMAIN APPROACH VALUE IS 137.90 MHz

TABLE VIII
DOMINANT RESONANT FREQUENCY OF CAVITY 8(c).

THE MMT VALUE IS 76.04 MHz

Due to the systematic error of the image principle in front

of the edge, MRTD failures even exceed those of conventional

FDTD with the same discretization rates.

VI. CONCLUSION

In the first part of this paper, MRTD schemes with local ad-

dition of higher order wavelets have been investigated. Reasons

against these multiresolution approaches were found in analyt-

ical studies, as well as in simulations on resonant structures. In

both cases, they lead to less accurate results. All acquired points

contradicting the fixed use of different wavelet orders in one

mesh are as follows.

1) Partially higher order approaches seem to yield worse re-

sults than a uniform lower order one due to truncated field

expansion.

2) As in FDTD, it is not possible to formulate a general sta-

bility criterion for multigrid approaches since MRTD’s

maximum Courant number strongly depends on the

wavelet level [4].

3) Above the zeroth-order scheme, spurious solutions must

be expected.

4) According to [12], the shift of dual subgrids for - and

-fields is a function of the wavelet level in homoge-

neous schemes in order to obtain minimal dispersion. This

is not possible for spatially varying field expansions.

5) Haar wavelets do not allow multiresolution at all since

different levels do not couple (see Table I and [13]).

Therefore, an a priori multiresolution approach is not thought

to be of any advantage over zeroth-order calculations. Future

work should concentrate on dynamic scale adaption [7].

Additionally, it was shown that CDF or Daubechies’ wavelets

with a local sampling technique to model dielectric boundaries

are inferior to conventional FDTD formulations with the same

resolution even at simple one-dimensional structures. This ef-

fect is expected to increase in the three-dimensional case with

jumping normal field components, as their approximation with

smooth wavelets is worse compared to hard jumping FDTD

rectangles.

In the second part of this paper, studies focused on infinitely

thin perfect electric walls. Due to the noncompact triangular

form of CDF dual wavelets, these thin metallizations can be

modeled more precisely by simply enlarging the iris length by

one cell. Unfortunately, this proceeding cannot be transferred to

any edge form.

Both conclusions show that CDF-MRTD algorithms seem to

be superior over FDTD only for certain geometries such as ideal

microstrip lines with infinitely thin metallizations and uncom-

plicated dielectric arrangements. Since these compositions are

candidates for spectral-domain methods, MRTD must be com-

pared to those for propositions about computational time and

memory.
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