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Abstract
Background

Obesity associated type 2 diabetes mellitus  is a metabolic disorder ; however, the etiology of obesity
associated type 2 diabetes mellitus  remains largely unknown. There is an urgent need to further broaden
the understanding of the development mechanism of obesity associated type 2 diabetes mellitus.  

Methods

To screen the differentially expressed genes (DEGs) that may play essential roles in obesity associated
type 2 diabetes mellitus, the public expression pro�ling by high throughput sequencing data
(GSE143319) were downloaded and screened for DEGs. Then, Gene Ontology (GO) function analysis and
REACTOME pathway analysis were performed. To screen hub and target genes, the protein–protein
interaction network, miRNA-target genes regulatory network and TF-target gene regulatory network were
constructed. The Receiver operating characteristic (ROC) curve analysis and RT- PCR analysis of hub
genes in obesity associated type 2 diabetes mellitus were also analyzed. Final molecular docking studies
performed for screening small drug molecules.

Results

There were 409 up regulated and 411 down regulated genes detected, and the biological processes of the
GO analysis were enriched in regulation of ion transmembrane transport, intrinsic component of plasma
membrane, transferase activity, transferring phosphorus-containing groups, cell adhesion, integral
component of plasma membrane and signaling receptor binding, whereas, the REACTOME pathway
analysis was enriched in integration of energy metabolism and extracellular matrix organization. The hub
genes CEBPD, TP73, ESR2, TAB1, MAP3K5, FN1, UBD, RUNX1, PIK3R2 and TNF, which might play a
essential role in obesity associated type 2 diabetes mellitus was further screened.

Conclusions

The present study could deepen the understanding of the molecular mechanism of obesity associated
type 2 diabetes mellitus, which could be useful in developing clinical treatments of obesity associated
type 2 diabetes mellitus.

Introduction
Obesity associated type 2 diabetes mellitus are a core challenge for metabolic disorder research around
the globe [1]. Type 2 diabetes mellitus is characterized by insulin de�ciency due to pancreatic β-cell
inactivation and insulin resistance [2]. Genetic factors, hyperinsulinemia, atherogenic dyslipidemia,
glucose intolerance, hypertension, prothrombic state, hyperuricemia, and polycystic ovary syndrome are
the risk factors linked with progression of type 2 diabetes mellitus [3]. Obesity associated type 2 diabetes
mellitus constitutes another main type of common and chronic disease that affects the vital organs such
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as heart [4], brain [5], kidney [6] and eye [7].  Do not fully resolve the etiology and advancement of obesity
associated type 2 diabetes mellitus. Therefore, the potential molecular mechanisms add to the
pathogenesis of type 2 diabetes mellitus remain to be precisely exhibit to �nd potential target genes for
the avoidance and treatment of obesity associated type 2 diabetes mellitus.

          Developing evidence has shown that genetic predisposition plays a key role in the advancement of
obesity associated type 2 diabetes mellitus [8]. Recently, several genes and pathways have been found to
participate in the occurrence and advancement of obesity associated type 2 diabetes mellitus [9],
including FGF21 [10], pro-opiomelanocortin (POMC) [11], PI3K/AKT pathway [12] and JAK/STAT pathway
[13]. However, the current knowledge is insu�cient to explain how these crucial genes are associated with
advancement of obesity associated type 2 diabetes mellitus. Therefore, there is a great need to �nd new
biomarkers and to advance novel techniques to enlighten the mechanism controlling obesity associated
type 2 diabetes mellitus.

Bioinformatics analysis of expression pro�ling by high throughput sequencing has shown great promise
to discover potential key genes and signaling pathways with roles in metabolic disorder [14], to identify
new biomarkers and biological processes implicated in obesity associated type 2 diabetes mellitus. In
this investigation, using bioinformatics analysis, we aimed to investigate expression pro�ling by high
throughput sequencing data from dataset to determine differentially expressed genes (DEGs) and
signi�cant pathways in obesity associated type 2 diabetes mellitus. After searching the Gene Expression
Omnibus (GEO) database [15], we identi�ed dataset GSE143319 with RNA sequencing data of T2DM.
Subsequently, we performed Gene Ontology (GO) enrichment analysis of the signaling pathways
involved, and a protein‐protein interaction (PPI) network, miRNA-target genes regulatory network, TF-
target gene regulatory network constructed and analyzed,  and validation of hub genes were developed,
all of which will improve our understanding of the pathogenesis of obesity associated type 2 diabetes
mellitus. Final molecular docking studies performed for screening small drug molecules.

Materials And Methods
RNA sequencing data

The expression pro�ling by high throughput sequencing data for GSE143319 deposited by Ding et al [16]
into the GEO database were obtained on the GPL20301 platform (Illumina HiSeq 4000 (Homo sapiens)).
The expression pro�ling by high throughput sequencing is provided for 30 samples, including 15 samples
of a metabolically healthy obese and 15 samples of a metabolically unhealthy obese.

Identi�cation of DEGs

The limma [17] in R bioconductor package was utilized to screen differentially expressed genes (DEGs)
between metabolically healthy obese and metabolically unhealthy obese. These DEGs were identi�ed as
important genes that may play an important role in the development of T2DM with obesity. The cutoff
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criterion were ∣log fold change (FC)∣ > 0.2587 for up regulated genes, were ∣log fold change (FC)∣  < -0.2825
for down regulated genes and P < 0.05.

Gene ontology and pathway enrichment analyses

ToppGene (ToppFun)  (https://toppgene.cchmc.org/enrichment.jsp) [18]   which is a useful online
platform database that integrates biologic data and provides a comprehensive set of functional
annotation information of genes as well as proteins for users to analyze the functions or signaling
pathways. GO (http://geneontology.org/) [19] enrichment analysis (biologic processes [BPs], cellular
components [CCs], and molecular functions [MFs]) is a strong bioinformatics tool to analyze and
annotate genes. The REACTOME (https://reactome.org/) [20] is a pathway database resource for
understanding high-level gene functions and linking genomic information from large-scale molecular
data sets. To analyze the function of the diagnosed DEGs, biologic analyses were performed using GO
enrichment and REACTOME pathway analysis via ToppGene online database.

PPI network construction and module analysis

IMEX interactome (https://www.imexconsortium.org/) [21] online database was using to predicted the
PPI network information. Analyzing the interactions and functions between DEGs may provide
information about the mechanisms of generation and development of disease (PPI score > 0.4).
Cytoscape (version 3.8.2) (www.cytoscape.org) is a bioinformatics platform for constructing and
visualizing molecular interaction networks [22]. Therefore, the node degree [23], betweenness centrality
[24], stress centrality [25], closeness centrality [26] were statistically analyzed in networks using Network
Analyzer to obtain the signi�cant nodes or hub genes in the PPI network. Network Analyzer, a Java plugin
for Cytoscape, is capable of predicting key nodes in a given network by several topological algorithms.
The plug-in Molecular Complex Detection (MCODE) of Cytoscape was applied to detect densely
connected regions in PPI networks. The PPI networks were constructed using Cytoscape and the most
signi�cant module in the PPI networks was selected using PEWCC1
(http://apps.cytoscape.org/apps/PEWCC1) [27]. The criteria for selection were set as follows: Max depth
= 100, degree cut-off = 2, Node score cut-off = 0.2, PEWCC1 scores >5, and K-score = 2.

Target gene – miRNA genes regulatory network construction and analysis

T2DM with obesity relating miRNAs and experimentally validated target genes were extracted from
miRNet database (https://www.mirnet.ca/) [28]. T2DM with obesity relating miRNA-target gene pairs were
identi�ed through comparing the DEGs with the downloaded miRNA-target pairs. Then the target genes -
miRNA regulatory network was constructed using Cytoscape software.

Target gene – TF network regulatory construction and analysis

T2DM with obesity relating TFs and experimentally validated target genes were extracted from TFs
database NetworkAnalyst database (https://www.networkanalyst.ca/) [29]. T2DM with obesity relating

https://www.mirnet.ca/
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TF-target gene pairs were identi�ed through comparing the DEGs with the downloaded TF-target pairs.
Then the target genes -TF regulatory network was constructed using Cytoscape software.

Receiver operating characteristic (ROC) curve analysis

The ROC curve was used to calculate classi�ers in bioinformatics applications. To further assess the
predictive accuracy of the DEGs, ROC analysis was performed to discriminate metabolically healthy
obese from metabolically unhealthy obese. ROC curves for hub genes were generated using pROC in R
[30] based on the obtained DEGs and their expression pro�ling by high throughput sequencing data from
dataset. The area under the ROC curve (AUC) was evaluated and used to compare the diagnostic value of
hub genes.

Validation of the expression levels of candidate genes by RT-PCR

Quantitative RT-PCR was conducted to validate the expressions of these  hub genes in obesity with
T2DM. Total RNAs were extracted from Primary Subcutaneous Pre-adipocytes; Normal, Human (ATCC®
PCS-210-010™) and 3T3-L1 cells (ATCC® CL-173)  using TRI Reagent® (Sigma, USA) according to
instruction, followed by reverse transcription with Reverse transcription cDNA kit (Thermo Fisher
Scienti�c, Waltham, MA, USA)  and cDNA ampli�cation through 7 Flex real-time PCR system (Thermo
Fisher Scienti�c, Waltham, MA, USA). The expressions of these hub genes were normalized to against
beta-actin expression. The data were calculated by the 2−ΔΔCt method [31] . Primers used in the current
investigation were listed in Table 1.

Molecular docking studies

The Sur�ex-Docking docking studies for the designed molecules were performed using module SYBYL-X
2.0 perpetual software. Using ChemDraw Tools, the molecules were sketched and imported and saved
into sdf. Format using open free software from Babel. The co-crystallised protein structures of CEBPD,
TP73, ESR2, TAB1 and MAP3K5 of its PDB code 3L4W, 2XWC, 1U3Q, 5NZZ & 2CLQwas extracted from
Protein Data Bank 1262  [32-36]. Together with the TRIPOS force �eld, GasteigerHuckel (GH) charges
were added to all designed derivatives for the structure optimization process. Furthermore, energy
minimization was carried out using MMFF94s and MMFF94 algorithm process. The processing of protein
was accomplished after the incorporation of protein. The co-crystallized ligand and all water molecules
were expelled from the crystal structure; more hydrogen was added and the side chain was optimized.
TRIPOS force �eld was used to minimize complexity of structure. The interaction e�ciency of the
compounds with the receptor was expressed in kcal / mol units by the Sur�ex-Dock score. The best spot
between the protein and the ligand was inserted into the molecular region. The visualisation of ligand
interaction with receptor is done by using discovery studio visualizer.

Results
Identi�cation of DEGs
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As presented in the cluster heat map of Fig. 1, total 820 DEGs, comprising 409 up regulated and 411
down regulated genes, were identi�ed between metabolically healthy obese samples and metabolically
unhealthy obese samples. DEGs expressions were illustrated by volcano plot (Fig.2), and the top up
regulated and down regulated DEGs are listed in Table 2.

Gene ontology and pathway enrichment analyses

DEGs were divided into up regulated genes and down regulated genes. GO categories and REACTOME
pathway enrichment analysis were conducted for these genes. Results of GO categories were presented
by functional groups, which were group BP, CC, and MF and are listed in Table 3. In group BP, up regulated
genes were signi�cantly enriched in regulation of ion transmembrane transport and oxoacid metabolic
process, while the down regulated genes were mainly enriched in cell adhesion and response to
endogenous stimulus. For group CC, up regulated genes mainly enriched in intrinsic component of
plasma membrane and mitochondrion, and down regulated genes mainly enriched in integral component
of plasma membrane and supra molecular �ber. In addition, GO results of group MF showed that up
regulated genes mainly enriched in transferase activity, transferring phosphorus-containing groups and
transporter activity and down regulated genes mainly enriched in signaling receptor binding and
molecular transducer activity. Several signi�cant enriched pathways were acquired through REACTOME
pathway analysis (Table 4). The  enriched pathways for up regulated genes included integration of
energy metabolism and neuronal system. Meanwhile, down regulated genes strikingly enriched in
extracellular matrix organization and GPCR ligand binding.

PPI network construction and module analysis

PPI network complex consisted of 3648 nodes and 6305 edges, wherein node and edge represented gene
and interaction between 2 genes (Fig. 3A). Moreover, CEBPD, TP73, ESR2, TAB1, MAP3K5, FN1, UBD,
RUNX1, PIK3R2 and TNF were identi�ed as central genes and are listed in Table 5.  In addition, module
analysis was conducted to detect the highly connected regions of PPI network, and two signi�cant
modules were obtained (Fig.3B and Fig.3C).   Further GO and pathway enrichment analysis revealed that
genes in these modules were mostly implicated in regulation of ion transmembrane transport, oxoacid
metabolic process, intrinsic component of plasma membrane, extracellular matrix organization and supra
molecular �ber.

Target gene – miRNA regulatory network construction and analysis

The target genes - miRNA regulatory network was constructed, including 1982 miRNAs and 245 target
genes. As shown in the integrated target genes - miRNA regulatory network (Fig. 4), FASN targeted 147
miRNAs (ex, hsa-mir-4314), SREBF1 targeted 81 miRNAs (ex, hsa-mir-5688), CKB targeted 72 miRNAs (ex,
hsa-mir-583), CACNA1A targeted 69 miRNAs  (ex, hsa-mir-632), ESR2 targeted 61 miRNAs  (ex, hsa-mir-
3176), MAP1B targeted 249 miRNAs  (ex, hsa-mir-1299), RUNX1 targeted 125 miRNAs  (ex, hsa-mir-4530),
PRNP targeted 106 miRNAs  (ex, hsa-mir-4477a), FN1 targeted 105 miRNAs  (ex, hsa-mir-606) and DAB2
targeted 75 miRNAs  (ex, hsa-mir-1343-3p6) and are listed in Table 6.
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Target gene-TF s regulatory network construction and analysis

The target genes -TF regulatory network was constructed, including 333 TFs and 204 target genes. As
shown in the integrated target genes -TF regulatory network (Fig. 5), SREBF1 targeted 94 TFs (ex, ATF4),
FASN targeted 71 TFs (ex, CUX1), SLC9A3R1 targeted 63 TFs (ex, MBD2), CKB targeted 50 TFs (ex, IRF4),
TGM2 targeted 50 TFs (ex, SIN3A), PIK3R2 targeted 73 TFs (ex, ZNF143), FLNC targeted 53 TFs (ex,
SMARCE1), RUNX1 targeted 53 TFs (ex, ZBTB7A), FN1 targeted 45 TFs (ex, CREB1) and TRIM63 targeted
22 TFs (ex, RELA) and are listed in Table 6.

Receiver operating characteristic (ROC) curve analysis

The ROC curve was used to assess the predictive accuracy of hub genes. AUC was determined and used
to prefer the most appropriate cut-off gene expression levels. ROC curves and AUC values are presented
in Fig. 6. All AUC values exceeded 0.72, while the up regulated genes CEBPD, TP73, ESR2, TAB1 and
MAP3K5, and down regulated genes FN1, UBD, RUNX1, PIK3R2 and TNF had AUC values > 0.75.

Validation of the expression levels of candidate genes by RT-PCR

To further verify the expression level of hub genes in obese samples, RT-qPCR was performed to calculate
the mRNA levels of the ten hub genes identi�ed in the present study (CEBPD, TP73, ESR2, TAB1, MAP3K5,
FN1, UBD, RUNX1, PIK3R2 and TNF) in obese samples. As illustrated in Fig. 7, the expression of CEBPD,
TP73, ESR2, TAB1, MAP3K5 were signi�cantly up regulated in obese samples compared with normal
control tissues, while FN1, UBD, RUNX1, PIK3R2 and TNF were signi�cantly down regulated in obese
samples compared with normal control tissues. The present RT-PCR results were in line with the prior
bioinformatics analysis, suggesting that these essential genes might be associated to the molecular
mechanism underlying obesity associated type 2 diabetes mellitus.

Molecular docking studies

In the current research, the docking simulation was conducted to recognize the active site conformation
and major interactions responsible for complex stability with the binding sites receptor. Drug design
software Sybyl X 2.1 was used to perform docking experiments on novel molecules containing
thiazolidindioneheterocyclic ring. Molecules containing the heterocyclic ring of thiazolidinedione are
constructed based on the pioglitazone structure and are most widely used alone or in conjunction with
other anti-diabetic drugs. Obesity associated type 2 diabetes mellitus is a chronic disorder that prevents
insulin from being used by the body the way it should. It's said that people with obesity associated type 2
diabetes mellitus have insulin resistance, oral hypoglycaemic agents are used either alone or in
combination of two or more drugs. Pioglitazone (Glitazones) are commonly used either alone or in
combination in obesity associated type 2 diabetes mellitus. The one protein in each over expressed genes
in obesity associated type 2 diabetes mellitus are selected for docking studies. The X-RAY
crystallographic structure of one protein from each over-expressed genes of CEBPD (CCAAT enhancer
binding protein delta), TP73 (tumour protein P73), ESR2 (Estrogen receptor 2), TAB1 (TGF-beta activated
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kinase 1 MAP3K7 binding protein 1) and MAP3K5 (Mitogen activated protein kinase kinasekinase 5) and
their co-crystallized PDB code of 4LY9, 2XWC, 2IOG, 5NZZ and 5UP3 respectively were selected for
docking. The examination of the designed molecules were performed to recognize the potential molecule.
The foremost of the designed molecules obtained C-score greater than 6 and are said to be active. A total
of 24 designed molecules few molecules have excellent good binding energy (C-score) greater than 8
respectively . Few of the designed molecules obtained good binding scores such as molecule TZP20,
TZPS8, TZP22, TZPS10 (Fig.8) obtained binding core of 12.212, 11.489, 11.013 and 10.851 with 5UP3
and molecule TZP22, TZPS8, TZPS10 obtained binding score of 9.482, 9.329 and 9.252 with 2XWC and
molecule TZP20, TZPS10 obtained binding score 7.359 and 6.848 with 5NZZ and molecule TZP22,
TZP21, TZPS9 obtained binding score 11.053, 10.716 and 10.669 with 2IOG respectively. The molecule
TZP23, TZPS5, TZPS2 obtained bind score 4.336 to 4.319 with 5NZZ and molecule TZPS10 of binding
core 4.633 with 2IOG respectively. The binding score of the predicted molecules are compared with that
of the standard Pioglitaone obtained bind score of10.1314, 9.834, 9.8244, 9.8284 and 7.4321 with 2IOG,
2XWC, 4LY9, 5UP3 and 5NZZ, the values are depicted in Table 7. The molecule TZP22 obtained good
binding score with all proteins and hydrogen bonding and other bonding interactions with amino acids
with protein code 2IOG are depicted by 3D (Fig Fig.9)  and 2D �gures (Fig.10).

Discussion
Obesity associated type 2 diabetes mellitus is the most common aggressive metabolic disorder [37].
However, the most key challenge in treating obesity associated type 2 diabetes mellitus is the presence of
complexity [38]. Although previous investigations have reported various potential molecular markers
linked with the advancement of obesity associated type 2 diabetes mellitus, the potential molecular
mechanism underlying its pathogenesis has not been generally studied [39]. In the present investigation,
a total of 820 DEGs were identi�ed, containing 409 up regulated genes and 411 down regulated genes.
SULT1C2 [40] and UBD (ubiquitin D) [41] were responsible for progression of kidney diseases, but these
genes might be liable for advancement of obesity associated T2DM. HLA-DQA1 was associated with
progression of T2DM [42]. SPX (spexin hormone) [43] and APOB (apolipoprotein B) [44] are a critical
proteins plays an important role in obesity associated type 2 diabetes mellitus.

The GO and pathway enrichment analysis of DEG are closely related to obesity associated type 2
diabetes mellitus genes and advancement. KCNE5 [45], SHANK3 [46], CASQ2 [47], EDNRA (endothelin
receptor type A) [48], EPHB4 [49], ALPK3 [50], WNT11 [51], IRAK2 [52], FBN1 [53], SFRP2 [54], CLCA2 [55],
NEXN (nexilin F-actin binding protein) [56], PALLD (palladin, cytoskeletal associated protein) [57], DAB2
[58], NRP2 [59], THBS2 [60], CSF1R [61], KCNA2 [62], CACNA1C [63], F2R [64], UCHL1 [65], CCL18 [66],
ITGB1BP2 [67] and FMOD (�bromodulin) [68] were reportedly involved in cardio vascular diseases, but
these genes might be key for progression of obesity associated type 2 diabetes mellitus. Hu et al. [69], Liu
et al. [70], Eltokhi et al. [71], Cai et al. [72], Pfeiffer et al. [73], Lin et al. [74], Royer-Zemmour et al. [75],
Pastor et al. [76],  Goodspeed et al. [77],  Zhang et al. [78], Rogers et al. [79],  Su et al. [80]  and Foale et al.
[81] reported that NRXN1, CRHR1, SHANK2, PSEN2, CKB (creatine kinase B), CD200R1, SRPX2, PTPRZ1,
SLC6A1, GABRB2, KCNA1, ASAH1 and LINGO1 were linked with progression of neuropsychiatric
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disorders, but these genes might be involved in advancement of obesity associated type 2 diabetes
mellitus. Reports indicate that SPHK2 [82], NPC1L1 [83], CNTFR (ciliaryneurotrophic factor receptor) [84],
SLC2A4 [85], EDA (ectodysplasin A)  [86], TGM2 [87], GCK (glucokinase) [88], FASN (fatty acid synthase)
 [89], FAP (�broblast activation protein alpha) [90], PRNP (prion protein) [91], LYVE1 [92], SERPINE1 [93],
TNF (tumor necrosis factor) [94], FASLG (Fas ligand) [95], HGF (hepatocyte growth factor)  [96], FNDC5
[97], LBP (lipopolysaccharide binding protein)  [98] and LOX (lysyl oxidase)  [99] were found in obesity
associated T2DM. Hirai et al  [100], Vuori et al  [101],  Porta et al  [102], Nomoto et al  [103] and Blindbæk
et al  [104] demonstrates that VAMP2, CACNB2, SLC19A3, PFKFB3 and MFAP4  are essential for
progression of type 1 diabetes, but these genes might be key for advancement of obesity associated type
2 diabetes mellitus. CACNA1A [105], ALK (ALK receptor tyrosine kinase) [106], SLC4A4 [107], STOX1 [108],
COL3A1 [109], VNN1 [110], SLC4A7 [111], BDKRB2 [112], DRD1 [113] and LPAR1 [114] have reported
signi�cantly linked with hypertension, but these genes might be crucial for progression of obesity
associated type 2 diabetes mellitus. KCNE2 [115], DLL1 [116], ACVR1C [117], RGS3 [118], MLXIPL (MLX
interacting protein like)  [119], PAG1 [120], SLC2A10 [121] and GRB14 [122] play important role in type 2
diabetes mellitus progression. A recent investigation has indicated that GPIHBP1 [123], FGFRL1 [124],
DAPK2 [125], MAP3K5 [126], ANKK1 [127], GK (glycerol kinase) [128], SPHK1 [129], GNG3 [130], FSTL3
[131], SLIT2 [132], CCDC80 [133], RND3 [134], PTGER4 [135], RUNX1 [136], ADAM12 [137], OLR1 [138],
THBS1 [139], CD28 [140], TRPV4 [141], ATRN (attractin) [142], MRC1 [143], SEMA3C [144], HTR2B [145],
NOX4 [146], TACR1 [147], BAMBI [148], PDGFD (platelet derived growth factor D) [149], APLN (apelin)
[150], MFAP5 [151] and LUM (lumican) [152] are associated with a development of obesity. A previous
investigation found that DDR1 [153], TAB1 [154], NEK8 [155], SERPINE2 [156], FCGR2B [157], ANGPT2
[158], FN1 [159], SOCS5 [158], SMOC2 [160], CD2 [161] and SCN9A [162] expression were associated with
a kidney diseases, but these genes might be responsible for advancement of obesity associated type 2
diabetes mellitus.

In addition, an investigation reported that hub genes serve an essential role in maintaining the entire PPI
network and its modules are indispensable. Investigation has demonstrated that CEBPD (CCAAT
enhancer binding protein delta) is one of the most important genes involved in obesity [163]. An
investigation by Domingues-Montanari et al. [164] demonstrated that ESR2 is key for progression of
cardio vascular disease, but this gene might be responsible for progression of obesity associated type 2
diabetes mellitus.  TP73, PIK3R2, SLC9A3R1, KRT5, KRT14 and TFAP2C are novel biomarkers for
pathogenesis of obesity associated type 2 diabetes mellitus.

The miRNA-target gene regulatory network and TF-target gene regulatory network highlighted in the
current investigation provides new theoretical guidance for further exploring the mechanism of obesity
associated type 2 diabetes mellitus and provides a new perspective for understanding the underlying
biological processes of obesity associated type 2 diabetes mellitus, and miRNA and TF targeted therapy.
Eberlé et al [165], Cheng et al [166],  Cavallari et al [167], Qi et al [168]  and Yan et al [169]  indicated that
SREBF1, MBD2, IRF4, CREB1 and RELA (Nuclear factor-kB) were responsible for advancement of obesity
associated type 2 diabetes mellitus. Matsha et al [170] and Ding et al [171] demonstrated that hsa-mir-
1299 and hsa-mir-4530 were liable for progression of type 2 diabetes mellitus. Hall et al [172] and
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Salazar-Mendiguchía et al [173] reported that FLNC (�lamin C) and TRIM63were involved in progression
of cardio vascular disease, but these genes might be essential for development of obesity associated
type 2 diabetes mellitus. Xiao et al [174], Stratigopoulos et al [175] and  Zhou et al [176] noted that ATF4,
CUX1 and ZBTB7A were responsible for advancement of obesity.  MAP1B, hsa-mir-4314, hsa-mir-5688,
hsa-mir-583, hsa-mir-632, hsa-mir-3176, hsa-mir-4477a, hsa-mir-606, hsa-mir-1343-3p6, SIN3A, ZNF143
and SMARCE1 are the novel biomarkers for pathogenesis of obesity associated type 2 diabetes mellitus.

In conclusion, with the integrated bioinformatics analysis for expression pro�ling by high throughput
sequencing  in obesity associated type 2 diabetes mellitus, Ten hub genes associated with the
pathogenesis and prognosis of obesity associated type 2 diabetes, including CEBPD, TP73, ESR2, TAB1,
MAP3K5, FN1, UBD, RUNX1, PIK3R2 and TNF. These hub genes were all unregulated in obesity associated
type 2 diabetes mellitus and �rst �ve (CEBPD, TP73, ESR2, TAB1 and MAP3K5) of them might be linked
with targeted therapy. These hub genes may be regarded as new diagnostic and prognostic biomarkers
for obesity associated type 2 diabetes mellitus. However, further in-depth investigation (in vivo and in
vitro experiment) is necessary to elucidate the biological function of these genes in obesity associated
type 2 diabetes mellitus.
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Figures

Figure 1

Heat map of differentially expressed genes. Legend on the top left indicate log fold change of genes. (A1
– A15 = metabolically healthy obese samples; B1 – B15 = metabolically unhealthy obese samples)
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Figure 1

Heat map of differentially expressed genes. Legend on the top left indicate log fold change of genes. (A1
– A15 = metabolically healthy obese samples; B1 – B15 = metabolically unhealthy obese samples)

Figure 2
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Volcano plot of differentially expressed genes. Genes with a signi�cant change of more than two-fold
were selected. Green dot represented up regulated signi�cant genes and red dot represented down
regulated signi�cant genes.

Figure 2

Volcano plot of differentially expressed genes. Genes with a signi�cant change of more than two-fold
were selected. Green dot represented up regulated signi�cant genes and red dot represented down
regulated signi�cant genes.
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Figure 3

PPI network and the most signi�cant modules of DEGs. (A) The PPI network of DEGs was constructed
using Cytoscape (B) The most signi�cant module was obtained from PPI network with 4 nodes and 6
edges for up regulated genes (C) The most signi�cant module was obtained from PPI network with 6
nodes and 10 edges for down regulated genes. Up regulated genes are marked in green; down regulated
genes are marked in red

Figure 3
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PPI network and the most signi�cant modules of DEGs. (A) The PPI network of DEGs was constructed
using Cytoscape (B) The most signi�cant module was obtained from PPI network with 4 nodes and 6
edges for up regulated genes (C) The most signi�cant module was obtained from PPI network with 6
nodes and 10 edges for down regulated genes. Up regulated genes are marked in green; down regulated
genes are marked in red

Figure 4

Target gene - miRNA regulatory network between target genes. The blue color diamond nodes represent
the key miRNAs; up regulated genes are marked in green; down regulated genes are marked in red.

Figure 4
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Target gene - miRNA regulatory network between target genes. The blue color diamond nodes represent
the key miRNAs; up regulated genes are marked in green; down regulated genes are marked in red.

Figure 5

Target gene - TF regulatory network between target genes. The gray color triangle nodes represent the key
TFs; up regulated genes are marked in green; down regulated genes are marked in red.

Figure 5
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Target gene - TF regulatory network between target genes. The gray color triangle nodes represent the key
TFs; up regulated genes are marked in green; down regulated genes are marked in red.

Figure 6

ROC curve analyses of hub genes. A) CEBPD B) TP73C) ESR2 D) TAB1 E) MAP3K5 F) FN1 G) UBD H)
RUNX1 I) PIK3R2 J) TNF
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Figure 7

RT-PCR analyses of hub genes. A) CEBPD B) TP73C) ESR2 D) TAB1 E) MAP3K5 F) FN1 G) UBD H)
RUNX1 I) PIK3R2 J) TNF

Figure 7

RT-PCR analyses of hub genes. A) CEBPD B) TP73C) ESR2 D) TAB1 E) MAP3K5 F) FN1 G) UBD H)
RUNX1 I) PIK3R2 J) TNF
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Figure 8

Structures of designed molecules

Figure 8

Structures of designed molecules
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Figure 9

3D Binding of molecule TZP22with 2IOG
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Figure 9

3D Binding of molecule TZP22with 2IOG
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Figure 10

2D Binding of molecule TZP22with 2IOG
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Figure 10

2D Binding of molecule TZP22with 2IOG
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