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Investigation of COVID‑19 
comorbidities reveals genes 
and pathways coincident 
with the SARS‑CoV‑2 viral disease
Mary E. Dolan1,2*, David P. Hill1,2, Gaurab Mukherjee1, Monica S. McAndrews1, 
Elissa J. Chesler1 & Judith A. Blake1

The emergence of the SARS‑CoV‑2 virus and subsequent COVID‑19 pandemic initiated intense 
research into the mechanisms of action for this virus. It was quickly noted that COVID‑19 presents 
more seriously in conjunction with other human disease conditions such as hypertension, diabetes, 
and lung diseases. We conducted a bioinformatics analysis of COVID‑19 comorbidity‑associated 
gene sets, identifying genes and pathways shared among the comorbidities, and evaluated current 
knowledge about these genes and pathways as related to current information about SARS‑CoV‑2 
infection. We performed our analysis using GeneWeaver (GW), Reactome, and several biomedical 
ontologies to represent and compare common COVID‑19 comorbidities. Phenotypic analysis of shared 
genes revealed significant enrichment for immune system phenotypes and for cardiovascular‑related 
phenotypes, which might point to alleles and phenotypes in mouse models that could be evaluated 
for clues to COVID‑19 severity. Through pathway analysis, we identified enriched pathways shared by 
comorbidity datasets and datasets associated with SARS‑CoV‑2 infection.

COVID-19 emerged as a global pandemic through the �rst half of  20201. �e severity of the disease varies from 
asymptomatic to lethal with a case mortality rate in the 20 most a�ected countries ranging between 1 and 15.3% 
(https ://coron aviru s.jhu.edu/data/morta lity; retrieved 24 July 2020). Severe disease shows manifestations of both 
acute respiratory distress syndrome (ARDS) and cytokine release syndrome (CRS)2,3. In pediatric patients, a 
blood vessel in�ammatory pathology similar to Kawasaki disease is sometimes  present4. All of these presenta-
tions have common elements of abnormality of in�ammatory responses and manifestations of vascular defects 
such as thrombosis, which may be causally  related5–9.

Since the emergence and global transmission of the SARS-CoV-2 virus, many studies have reported that 
patients with certain underlying medical conditions have especially severe responses to the coronavirus 
 infection10. Some of the identi�ed comorbidities that lead to severe disease are Cardiovascular Disease, Diabe-
tes, Hepatitis, Lung Disease, and Kidney  Disease11–17.

Understanding what makes some patients su�er from severe COVID-19 is an ongoing puzzle that is being 
investigated from both the virus and host  perspectives18. We hypothesize that by exploring the underlying genetic 
basis of comorbidities associated with severe disease, we can identify putative host genes and pathways that are 
responsible for or contribute to the severity. Identi�cation of these genes and pathways can serve as a gateway 
for further investigation into understanding how the host responds to the virus and for potential therapeutic 
strategies to interfere with a severe outcome.

We interrogated gene sets that are associated with the �ve previously mentioned underlying comorbidities to 
determine gene products that are shared among them. We identi�ed several pathways and phenotypes in com-
mon, including those that are associated with severe COVID-19 pathology. All of the comorbid diseases have 
been and continue to be actively studied, now in the additional context of response to SARS-CoV-2  infection19–23. 
In particular, the laboratory mouse has been extensively utilized as an animal model to study these  conditions24. 
As a result, mouse strains carrying mutations in shared genes or genes in shared pathways, and engineered to 
be capable of being infected by the virus, can present useful starting points for investigating the biological basis 
of disease  severity25.
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We report here on investigations of the host genetics and genomics of a set of comorbidity conditions. We 
include data identifying the shared pathways and cellular mechanisms associated with these diseases and cor-
relate these data with recent studies of the genetic basis of COVID-19 to identify elements that are shared among 
comorbidities and the host response to the disease. Our results suggest speci�c directions of future study to 
understand the genetic foundation of severe COVID-19.

Materials and methods
Gene sets used for analysis. All gene sets used in our analysis are publicly available from the GeneWeaver 
resource (www.genew eaver .org)26. Genes associated with Cardiovascular Disease, Diabetes, Hepatitis, Lung Dis-
ease were derived from gene sets associated with MeSH terms that relate to these comorbidities. �e gene set for 
Kidney Disease was derived from the union of genes associated with Proteinuria Hematuria, Elevated Serum 
Creatinine, Increased Blood Urea Nitrogen and Decreased Glomerular Filtration Rate in the Human Phenotype 
Ontology (HPO)27. �e genes in the MeSH and HPO gene sets and associated metadata (indicating their associa-
tion with COVID-19 and citations supporting the association) were incorporated into GW and used for analysis. 
�e comorbidity-related gene sets are shown in Table 1.

To create gene sets that are directly related to SARS-CoV-2 infection (COVID-19), we identi�ed several 
relevant  reports5,28,29 and captured gene sets available from these studies into the GeneWeaver environment. 
Details are shown in Table 2.

Gene set comparison. To identify genes that were shared by all �ve comorbidities or four out of �ve 
comorbidities, we used the GeneWeaver ‘Combine GeneSets’ tool. To visualize the intersection of comorbidity 
gene sets graphically, we used the GeneWeaver ‘HiSim graph’ tool. To create a hierarchical view of interleukin 
pathways and the genes that are shared among comorbidities we used the HiSim graph tool at the GeneWeaver 
resource with homology excluded.

Functional analysis of gene sets. To evaluate the shared biology of the common genes, we interrogated 
the genes that were shared among comorbidities in two ways: (1) we conducted a phenotype enrichment analysis 
using the VLAD enrichment  tool30 and (2) we conducted a pathway enrichment analysis using the Reactome 
Knowledgebase  resource31.

Mammalian phenotype enrichment analysis. To investigate details of the phenotypes associated with 
the shared genes, we took advantage of the mammalian phenotype data available from the Mouse Genome Infor-
matics site (www.infor matic s.jax.org). �e Mouse Genome Database (MGD) group captures phenotypic data 
using the Mammalian Phenotype Ontology (MP), a computable ontological structure, that can be queried and 
used for phenotypic enrichment  analysis32. MGD also integrates these murine data into the context of human 
disease data based on orthology and gene  expression24,32. �is integrated resource allowed us to exploit the asso-
ciations of mouse genes and their phenotypes for enrichment purposes using VLAD, and gives us an entry into 
identi�cation of potential mouse models for future  study33.

Mouse orthologs for the shared human genes were identi�ed using data available from the Alliance of Genome 
Resources (Alliance) (www.allia ncege nome.org/)34 using the Alliance release 3.1 stringent mouse-human orthol-
ogy set. If a human gene symbol matched more than one mouse marker, that gene was not included in the 
analysis. �is resulted in the following fourteen human genes being excluded from the analysis: AGTR1, CCL2, 
CFH, CYP2D6, CYP3A4, GSTM1, GSTP1, HAMP, HLA-B, HLA-DRB1, IFNA1, MMP1, SERPINA1, and TIMP2. 
We did not identify mouse orthologs for two human genes (CXCL8, HLA-DQB1). Excluding these 16 from the 
initial 123 genes that were shared among four of �ve comorbidities, le� us with 107 remaining mouse orthologs 

Table 1.  SARS-CoV-2 (COVID-19) comorbidity-related gene sets.

Gene set
Identi�er Gene count

Gene set
Title

Gene set
Description/metadata

GS380453 219 Kidney Disease
�e Boolean Algebra tool was used to �nd the Union of 5 sets: GS380448, GS380449, GS380450, 
GS380451, GS380452. Kidney disease has been reported as a comorbidity factor in the disease (COVID-
19) caused by SARS-CoV-2 infection: PMID:32247631, PMID:32233161, PMID:32232218

GS380473 267 Hepatitis- MeSH:D006505
�is gene set represents the genes in GS237945 queried on April 16, 2020 which was derived from the gen-
e2mesh procedure. GS237945 was updated on 2019-01-07. Liver disease has been reported as a comorbid-
ity factor in the disease (COVID-19) caused by SARS-CoV-2 infection: PMID: 32179124, PMID:32233161

GS380478 2550 Cardiovascular Diseases- MeSH:D002318

�is gene set represents the genes in GS235830 queried on April 17, 2020 which was derived from the 
gene2mesh procedure. GS235830 was updated on 2019-01-07. Cardiovascular disease has been reported 
as a comorbidity factor in the disease (COVID-19) caused by SARS-CoV-2 infection: PMID: 32179124, 
PMID:32267833, PMID:32232218, PMID:32217556

GS380470 1003 Diabetes Mellitus, type 2- MeSH:D003924

�is gene set represents the genes in GS242930 queried on April 16, 2020 which was derived from the 
gene2mesh procedure. GS242930 was updated on 2019-01-07. Diabetes has been reported as a comorbidity 
factor in the disease (COVID-19) caused by SARS-CoV-2 infection: PMID: 32179124, PMID:32233161, 
PMID:32267833, PMID:32232218, PMID:32217650, PMID:32345579

GS380479 1927 Lung Diseases- MeSH:D008171

�is gene set represents the genes in GS245016 queried on April 16, 2020 which was derived from 
the gene2mesh procedure. GS245016 was updated on 2019-01-07. Lung (pulmonological) disease has 
been reported as a comorbidity factor in the disease (COVID-19) caused by SARS-CoV-2 infection: 
PMID:32233161

http://www.geneweaver.org
http://www.informatics.jax.org
http://www.alliancegenome.org/
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which we used in the VLAD analysis. All but one of the 107 mouse genes (H2-Ea, a polymorphic pseudogene; 
i.e. a coding gene in some strains and a pseudogene in others) had annotations to MP. �e VLAD phenotype 
analysis was run on 20 August 2020 using annotation data from 20 August 2020, ontology data from 9 July 2020 
and default parameters.

Reactome pathway enrichment analysis. For pathway enrichment, we submitted the gene lists to the 
Reactome ‘Analyze Gene List’ enrichment tool (https ://react ome.org/Pathw ayBro wser/#TOOL=AT) based on 
Reactome version 72. �e analysis was performed on 18 May 2020. Results were downloaded using the ‘Pathway 
Analysis Results’ and ‘Analysis Report’ functionality at Reactome.

Pathway enrichment analysis was also performed for six COVID-19-related gene sets shown in Table 2. We 
selected up-regulated  (log2 fold change >  = 2) genes in host transcriptional response to SARS-CoV-2 in three 
cell cultures: human A549 lung alveolar cells (102 genes), Calu3 human lung adenocarcinoma epithelial cells 
(333 genes), normal human bronchial epithelium (NHBE) cells (14 genes); genes that are up-regulated in post-
mortem lung samples from COVID-19-positive patients relative to biopsied healthy lung tissue from uninfected 
individuals (586 genes)28; immune-response and angiogenesis-related genes that are up-regulated in lungs from 
patients who died from COVID-19 (114 genes)5; genes that are overexpressed in severe compared to mild cases 
of COVID-19 (4 genes)29. We corrected for any symbols that were out of date and again used the Reactome 
Pathway analysis tool. �e analysis was performed on 10 August 2020.

Results
COVID‑19 comorbidities share associated genes. To test our hypothesis that comorbidities associ-
ated with COVID-19 severity have common underlying molecular bases, we chose �ve comorbidities that have 
been reported in the literature as closely associated with poorer disease outcome: Kidney Disease, Liver Disease, 
Diabetes, Lung Disease and Cardiovascular Disease. We searched the GeneWeaver Data repository for gene sets 
associated with these comorbidities and identi�ed gene sets from MeSH and HPO that we used in our analyses 
(Table 1).

To identify genes that were shared among the �ve comorbidity gene sets, we used the ‘Combine GeneSets’ 
tool to create a matrix of genes and sets in which they were contained. We tabulated the number of gene sets that 

Table 2.  SARS-CoV-2 (COVID-19) Gene Sets.

Gene Set Identi�er
Gene
Count

Gene Set
Title

Gene Set
Description/metadata

GS398329 119
Up regulated angiogenesis and in�ammation genes in lungs from 
patients who died from COVID-19

�is gene set describes genes that are up-regulated in lungs from 
patients who died from COVID-19. COVID-19 is the disease caused by 
SARS-CoV-2 virus. Note that this expression analysis includes only the 
angiogenesis-associated and in�ammation-associated genes available on 
NanoString panels. �e authors de�ne up-regulated as those genes that 
show a (FDR) of <  = 0.05. �ese data are from the publication (angiogen-
esis) and supplementary (in�ammation) materials associated with the 
publication. PMID:32437596

GS398539 102
Up regulated genes in host transcriptional response to SARS-CoV-2 in 
Human adenocarcinomic alveolar basal epithelial (A549) cells

�is gene set describes genes that are up-regulated by the host transcrip-
tional response to SARS-CoV-2 infection in human adenocarcinomic 
alveolar basal epithelial (A549) cells. COVID-19 is the disease caused 
by SARS-CoV-2 virus. We de�ne up-regulated as those genes that show 
a (log twofold change) of >  = 2. �ese data are from the supplementary 
materials associated with the publication
PMID:32416070

GS398534 333
Up regulated genes in host transcriptional response to SARS-CoV-2 in 
Human lung adenocarcinoma epithelial (Calu3) cells

�is gene set describes genes that are up-regulated by the host transcrip-
tional response to SARS-CoV-2 infection in human lung adenocarci-
noma epithelial cells derived from pleural e�usion (Calu3). COVID-19 
is the disease caused by SARS-CoV-2 virus. We de�ne up-regulated as 
those genes that show a (log twofold change) of >  = 2. �ese data are from 
the supplementary materials associated with the publication
PMID:32416070

GS398533 14
Up regulated genes in host transcriptional response to SARS-CoV-2 in 
normal human bronchial epithelium (NHBE) cells

�is gene set describes genes that are up-regulated by the host 
transcriptional response to SARS-CoV-2 infection in normal human 
bronchial epithelium cells (NHBE). COVID-19 is the disease caused by 
SARS-CoV-2 virus. We de�ne up-regulated as those genes that show a 
(log twofold change) of >  = 2. �ese data are from the supplementary 
materials associated with the publication
PMID:32416070

GS398334 587
Up regulated genes in post-mortem lung samples from COVID-19-pos-
itive patients

�is gene set describes genes that are up-regulated in post-mortem lung 
samples from COVID-19-positive patients relative to biopsied healthy 
lung tissue from uninfected individuals. COVID-19 is the disease caused 
by SARS-CoV-2 virus. We de�ne up-regulated as those genes that show 
a (log twofold change) of >  = 2. �ese data are from the supplementary 
materials associated with the publication. Note: the following HGNC id is 
part of this data set but was not recognized HGNC:13378
PMID:32416070

GS398287 4
Genes that are overexpressed in severe compared to mild cases of Covid-
19

People with severe cases of Covid-19 express these proteins at signi�-
cantly higher levels than people with mild cases of Covid-19. Data from 
Fig. 2 of the paper: plasma cytokine levels in patients with COVID-19
PMID:32,217,835

https://reactome.org/PathwayBrowser/#TOOL=AT
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contained each gene and determined that eight genes were present in all �ve sets: APOA1, APOE, B2M, CTLA4, 
F2, F5, HMOX1 and STAT3; 123 genes were common to at least four out of �ve comorbidity sets (Table 3).

Genes shared among COVID‑19 comorbidities are enriched for phenotypes corresponding to 
immune system processes and circulatory system biology. We tested the functional signi�cance 
of the genes shared among the �ve comorbidities by performing two di�erent kinds of enrichment analysis 
on our gene sets. First, we identi�ed the mouse orthologs of the human genes and performed a phenotype 
enrichment using the VisuaL Annotation Display tool (VLAD) (http://proto .infor matic s.jax.org/proto types /
vlad/). For genes shared among all �ve comorbidities, VLAD enrichment analysis identi�ed 762 signi�cantly 
enriched (p =  < 0.05) mammalian phenotypes (Supplemental Table 1). �e most signi�cantly enriched terms 
fall into three general categories: T-cell related phenotypes, in�ammation or infection related phenotypes, and 
cardiovascular phenotypes including blood clotting. Table 4 shows that of the eight shared genes, several were 
annotated to each of the signi�cantly enriched phenotypes.

We repeated our phenotype enrichment analysis using genes that are co-annotated to four of the �ve comor-
bidities associated with COVID-19. When we examined the shared genes among comorbidity sets, we found that 
123 genes were shared among four out of �ve comorbidities. Phenotype enrichment analysis performed with the 
107 one-to-one mouse orthologs of these human genes was consistent with our analysis of the eight genes that 
were conserved in all �ve comorbidities. �e increase in gene number resulted in an increase in the number of 

Table 3.  Genes shared by COVID-19 comorbidities. �is table shows the genes that were annotated to four 
out of �ve comorbidities that are associated with COVID-19 severity. Genes in bold are annotated to all �ve 
comorbidities.

ACE CHI3L1 FGA IL10 MIF SERPINA1 VDR

ADIPOQ CTGF FN1 IL12A MMP1 SLC6A4 VEGFA

AGT CTLA4 FOXC2 IL12B MMP2 SOCS1 XRCC1

AGTR1 CTNNB1 GSTM1 IL15 MMP3 SOCS3

AKT1 CX3CL1 GSTP1 IL18 MMP9 SOD2

APOA1 CXCL10 HAMP IL1A MPO SPP1

APOE CXCL12 HFE IL1B MTHFR STAT3

AR CXCL8 HGF IL1RN MTOR TERT

ARG1 CYP2D6 HLA-B IL2 NFE2L2 TGFB1

B2M CYP2E1 HLA-DQA1 IL4 NFKB1 THBD

BCL2 CYP3A4 HLA-DQB1 IL4R NOS2 TIMP1

C3 EGF HLA-DRA IL6 NOS3 TIMP2

CCL2 EGFR HLA-DRB1 IRS1 NOTCH2 TLR2

CCL5 ENG HMOX1 ITGB3 NPPB TLR4

CCR2 EPO HSPA5 LCAT PIK3CA TLR9

CCR5 ESR1 ICAM1 LDLR PON1 TNF

CD40 F2 IFNA1 LEP PRKDC TNFRSF10B

CDKN1A F5 IFNG LTA PTGS2 TNFRSF1A

CDKN2A FAS IGF1 MAPK1 PTPN22 TNFRSF1B

CFH FASLG IGF2 MBL2 SCARB1 TP53

Table 4.  Signi�cantly enriched phenotype categories. Top signi�cantly enriched phenotype categories 
identi�ed by VLAD analysis, showing how many of the eight genes shared among all �ve comorbidities are 
annotated to each phenotype category. T Cell related phenotypes included ‘increased CD-4 positive, alpha 
beta T cell number’ (p = 3.9 × 10e−8) and ‘increased T-helper Cell number’ (p = 1.6 × 10e−06). (Complete list of 
enriched phenotypes available Supplemental Table 1).

Phenotype Category Gene Count P-value range

T Cell Related 5 1.6 × 10e−06 to 3.9 × 10e−08

Autoimmune Response 5 1.7 × 10e−6

Interferon gamma secretion 4 3.7 × 10e−6

Lung In�ammation 4 1.7 × 10e−6

Susceptibility to infection 5 8.9 × 10e−7

Blood Coagulation 5 5.8 × 10e−8

Cardiovascular physiology 7 1.6 × 10e−6

http://proto.informatics.jax.org/prototypes/vlad/
http://proto.informatics.jax.org/prototypes/vlad/
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signi�cantly enriched mammalian phenotype terms (p =  < 0.05) with 3232 terms included in the enrichment 
analysis  (Supplemental Table 2). VLAD analysis showed that the major areas of the ontology with the most highly 
signi�cant enrichment were, as in the analysis for the eight genes shared by all the comorbidities, in in�amma-
tory response and infection, leukocyte biology and blood vessel morphology. Abnormal blood coagulation was 
no longer in the most highly signi�cant group of phenotypes, but was signi�cantly enriched (p = 1.52 × 10e-11).

Similar to our results for the eight genes shared among all �ve comorbidities, the mouse orthologs of the 123 
genes shared in four out of �ve comorbidities showed many genes associated with each of the most signi�cant 
phenotypes (Table 5).

Pathway analysis enrichment includes cytokine signaling pathways, blood coagulation and 
plasma lipoprotein metabolism. In addition to our phenotype analysis, we were also interested in 
investigating whether the genes shared among comorbidities were enriched for speci�c biological pathways. To 
answer this question, we used our human gene sets and the Reactome Knowledgebase in an enrichment analysis 
for biological pathways. Reactome is a manually curated resource that captures information about reactions, 
their relationships and the genes and chemicals that play a role in those  reactions35.

We interrogated the Reactome Knowledgebase using the eight genes that were shared among all �ve comor-
bidities and identi�ed 103 pathways/subpathways that were signi�cantly enriched (FDR =  < 0.05, Supplemental 
Table 5). Reactome pathways are organized into a hierarchical format where grouping pathways are subcatego-
rized into more speci�c pathways which in turn are eventually represented by individual reactions. Reactome 
captures information about not only the genes and molecules that act in a pathway but also those that are acted 
upon, thus casting a wide net for genes that are included in an analysis. �e 25 most signi�cantly enriched 
pathways grouped under several parent pathways are shown in Fig. 1. Two genes, APOA1 and APOE, are shared 
among several plasma lipoprotein assembly, remodeling and clearance pathways. �ree genes, APOA1, F2 and 
F5, are found in the hemostasis pathway, all are included in platelet activation and the latter two in blood clot-
ting. Five of the eight genes shared among the comorbidities were involved in immune system pathways: B2M, 
HMOX1, CTLA4, STAT3 and F2. Of these �ve genes, three are included in cytokine signaling: B2M, HMOX1 
and STAT3. Other informative pathways showed that APOA1, APOE, F2 are in GPCR downstream signaling, 
and F5, APOA1, APOE are in vesicle-mediated transport.

We repeated the pathway enrichment analysis with the 123 genes that were shared by four out of �ve comor-
bidities. We identi�ed 172 pathways that were signi�cantly enriched (FDR =  < 0.05, Supplemental table 6). �ese 
results supported and con�rmed the results we obtained with the eight genes that were shared among all �ve 
comorbidities. Although with lower signi�cance, enriched pathways include ‘common pathway of �brin clot for-
mation’ (FDR = 5.9 × 10e−3; four genes), ‘platelet degranulation’ (FDR = 6.0 × 10e−6; thirteen genes) and ‘plasma 
lipoprotein assembly remodeling and clearance’ (FDR = 0.034; �ve genes). Immune signaling pathways and 
particularly interleukin signaling pathways were frequent in our enrichment results (Fig. 2). �e downstream 
GPCR signaling pathway and the retinoid/vitamin pathways were no longer signi�cantly enriched.

We compared our pathway enrichment results with our phenotype enrichment results for the eight genes 
conserved among all �ve comorbidities to determine if there was consistency between the results obtained from 
independently curated resources: MGI phenotype and Reactome. Like the pathway analysis, our phenotype 
enrichment analysis also revealed lipoprotein phenotypes for signi�cant enrichment, for example ‘abnormal 
circulating lipoprotein level’ (p = 1.81 × 10e−2). Phenotype analysis also revealed ‘abnormal blood coagulation’ 
and ‘decreased platelet aggregation’ (p = 5.81 × 10e−8 and p = 2.64 × 10e−2 respectively) in common with the 
pathway analysis. Our results from the analyses of the 123 genes conserved in four out of �ve comorbidities were 
also consistent. �e pathway analysis revealed that the 25 most signi�cant pathways were pathways related to the 
immune system, in particular there was concordance with the results from the eight genes, identifying pathways 

Table 5.  Signi�cantly enriched phenotype categories. Top signi�cantly enriched phenotype categories 
identi�ed by VLAD analysis, showing the number of genes from the set of 107 mouse orthologs shared among 
four out of �ve comorbidities annotated to each phenotype category. (Complete list of enriched phenotypes 
available Supplemental Table 2).

Phenotype Category Gene Count P-value range

Innate immunity 49 3.1 × 10e-43

In�ammatory response 66 7.0 × 10e-43

Leukocyte Physiology 65 5.7 × 10e-42

Cytokine levels 43 1.9 × 10e-41

Susceptibility to infection 48 9.3 × 10e-40

Mononuclear cell morphology 68 1.1 × 10-e39

Phagocyte morphology 52 3.8 × 10-e39

Leukocyte number 69 2.0 × 10e-40

Leukocyte physiology 66 8.2 × 10e-39

Injury response 54 2.3 × 10e−49

Blood vessel morphology 60 1.4 × 10e−39

Professional antigen presenting cell morphology 50 4.5 × 10e−40
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related to in�ammatory responses, interferon and interleukin signaling. In total, the results of all of our analyses 
show that �ve comorbidities associated with severe COVID-19 share common physiological aspects including 
cytokine signaling, blood clotting, and plasma lipoprotein biochemistry.

STAT3 is shared among interleukin signaling pathways that are enriched in COVID‑19 comor‑
bidities. To further investigate whether there is a common molecular basis for the interleukin signaling path-
way enrichment we examined the Reactome enrichment results using the 123 genes conserved in four out of 
�ve comorbidities for interleukin signaling pathways (Supplemental Table 3). We created gene sets of the shared 
genes that were in Reactome interleukin pathways that are signi�cantly enriched (FDR < 0.05). We used the 
HiSim graph tool in the GeneWeaver resource to create a graphical view of the genes that are found in the sets. 
�e gene conserved among the largest number of sets is STAT3 which is found in nine of the eleven signi�cantly 
enriched interleukin signaling pathways. IL12B is shared among four signaling pathways (data not shown).

Genes associated with SARS‑CoV‑2 infection response and genes shared among COVID‑19 
comorbidities identify common cytokine signaling pathways and hemostasis. Since we had 
identi�ed pathways that were common to COVID-19-associated comorbidities, we investigated whether these 
pathways were also associated with COVID-19 itself. To answer this question, we created gene sets directly asso-
ciated with SARS-CoV-2 infection from published literature (Table 2). GeneWeaver Gene Set GS398287, rep-
resents four plasma cytokines that are signi�cantly elevated in patients with severe disease versus patients with 
mild  disease29. GS398329 represents 114 genes associated with angiogenesis or in�ammation that were upregu-
lated in COVID-19 postmortem  samples5. Two gene sets, GS398539 and GS398534, of 119 and 333 genes respec-
tively represent genes that are upregulated in two distinct lung adenocarcinoma epithelial cells infected with 
SARS-CoV-2; GS398533 with 14 genes represents genes that are upregulated in normal human bronchial epithe-
lium cells infected with SARS-CoV-2; GS398334 represents 587 genes upregulated in post-mortem COVID-19 
 samples28. We ran Reactome pathway enrichment analysis on each of these sets and determined the enriched 
pathways that were shared with those identi�ed in the comorbidity analyses (Supplemental tables 7–12). Unsur-
prisingly, GS398329 and GS398287, which were preselected for genes involved in the immune response, were 
enriched for immune response pathways. GS398329, preselected to be associated with angiogenesis, also showed 
signi�cant enrichment for the comorbidity pathways associated with platelet biology. All of the data sets showed 
signi�cant enrichment for signaling mediated by interleukin-4, -10 and -13 (Table 6).

Identification of potential mouse models to study comorbidities and COVID‑19 severities. �e 
results of our phenotype analysis using mouse orthologs of shared human genes shows that phenotypic enrich-
ment is consistent with the pathway enrichment using the human genes and is also consistent with pathologies 
associated with severe COVID-19: blood coagulation, in�ammation and cardiovascular  pathologies36–41. Since 
mice provide an attractive genetic system for disease modeling, we investigated the phenotypes associated with 
each of these genes in further detail. Figure 3 shows each of the eight genes shared by all �ve comorbidities 
and the phenotype categories that were enriched in this set. Yellow highlighting indicates that mutations in the 
mouse gene have been annotated to a phenotype of a category that is enriched in the eight shared genes. For 
example homozygous mice of the genotype Ctla4tm1Shr/Ctla4tm1Shr display multiple phenotypes that are shared 
with severe COVID-19: abnormal lung in�ammation, abnormal cytokine secretion (interferon secretion) and 
autoimmune  response42. Hmox1tm1Mlee/Hmox1tm1Mleemice are another example with cardiovascular, immune and 
liver system phenotypes (http://www.infor matic s.jax.org/allel e/MGI:24297 84).

Discussion and summary
COVID-19 is a global health concern. �e disease is complex and varies in severity from asymptomatic to  lethal43. 
As our understanding of the disease has progressed, a number of comorbidities associated with the disease have 
been identi�ed that lead to greater severity. �e goal of our work is to identify underlying genetic factors that 
might explain the mechanism of why certain comorbidities lead to more severe disease. To this end, we studied 
genetic features of �ve comorbidities that are associated with severe COVID-19: Cardiovascular Disease, Dia-
betes, Hepatitis, Lung Disease, and Kidney Disease. We identi�ed common genes that were associated with each 
of the comorbidities and the pathways and phenotypes with which they are associated. We compared the results 
of the comorbidity analysis with genes that were directly associated with SARS-CoV-2 and showed that they 
shared common pathways involved in the immune response and platelet biology. Our results are encouraging 
in that these areas of physiology have also been correlated with severe disease. Here we discuss our results in 
the context of COVID-19 severity.

Our analysis of genes shared among both comorbidities and SARS-CoV-2 infection identi�ed several inter-
leukin signaling pathways that were enriched in both categories. Interleukin-4/-13 and interleukin-10 signaling 
shared enrichment among the largest number of gene sets we examined, and interleukin-6, interleukin-12 and 
interleukin-2 shared enrichment between at least one comorbidity set and a set of genes upregulated in patients 
who died from COVID-19. STAT3 positively regulates the transcription of IL-6, which controls  in�ammation44 
and is a downstream signaling player in the IL-6 pathway through the IL6ST  protein45,46. IL-12 is produced in 
response to infection and signals through the JAK-STAT pathway, including STAT3, to induce the proliferation 
of NK cells and T cells. �ese cells in turn trigger cytokine signaling including interferon  gamma47.

One mechanism proposed for the severity of COVID-19 is the coincidence of severe acute respiratory distress 
triggered by a cytokine related syndrome triggered by the angiotensin signaling  pathway48. An interesting aspect 
of this proposal is its action through STAT3, one of the genes that we also found conserved in the comorbidities 
we studied. Targeting the JAK-STAT pathway has been proposed as a therapeutic approach to COVID-192. Our 

http://www.informatics.jax.org/allele/MGI:2429784
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results show that STAT3 is conserved in all �ve comorbidities we analyzed. �is supports the hypothesis that a 
promising therapeutic strategy to combat severe COVID-19 compounded by preexisting comorbidities may be 
to target common JAK-STAT pathways.

In addition to immune signaling pathways, we also saw shared enrichment for pathways involved in platelet 
biology. Platelets are the cells that are responsible for blood  clotting49. Abnormal clotting has been observed in 
severe COVID-19 patients and it has been suggested as a complication that leads to more severe  disease50,51. 
Magro et al. reported that the abnormal clotting observed in severe COVID-19 patients correlated with activation 
of the complement  pathway52. Our results show that HMOX1, APOA1, APOE and two members of the coagula-
tion cascade, F2 and F5, are shared among all �ve comorbidities we examined. In mice, Hmox1 de�ciency leads 
to coagulation defects and results in arterial damage due to oxidative  stress53. APOA1 is released during platelet 
degranulation as part of the platelet secretory  granule54 (Reactome:R-HSA-482770). APOA1 levels have also 
been shown to be signi�cantly decreased in severe COVID-19  patients55. APOE is a gene that encodes a lipid 
binding protein involved in cholesterol  metabolism56. Preliminary evidence suggests that the e4 allele of APOE 
may lead to a higher risk of deep vein thrombosis and the same allele also predicts severe COVID-1957,58. F2 and 
F5 are both involved in the formation of a �brin clot (Reactome:R-HSA-140877). �e complement pathway and 
coagulation cascade have been shown to interact, tying together in�ammation and  hemostasis59. Additionally 
in a proteomic study of proteins di�erentially expressed in the serum of 28 severe COVID-19 patients compared 
with non-severe COVID-19 patients, Shen et al. report that 50 of 93 di�erentially regulated proteins fall into 
three categories one of which is platelet  degranulation55. �ese results suggest that one of the factors contributing 
to severe disease in patients with any of the �ve comorbidities may be due to an underlying genetic mechanism 
that acts through the hemostatic pathway.

Our results show that genes that are shared among �ve comorbidities associated with severe COVID-19 
identify pathways that are consistent with the pathologies associated with the disease. In our analysis we excluded 
mouse orthologs that did not correlate 1:1 with human genes to avoid potential skewing of the enrichment 
analysis by having multiple paralogs over-represented. Despite this, and the exclusion of several potentially 
important immune system genes such as some histocompatibility genes, our results show that analysis using 

Figure 1.  �e top 25 most signi�cantly enriched pathways involving the eight genes shared among all �ve 
comorbidities. Pathways that are similar or directly related in the Reactome knowledgebase are color coded. 
Yellow: lipoprotein-related processes; peach: scavenger receptor pathways; blue: blood clotting; green; retinoid-
related pathways; grey; signaling through STAT3.
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mouse orthologs of the shared genes also identi�es phenotypes that are consistent with disease pathology. �e 
laboratory mouse provides a tractable system to study the e�ects of genetic foundations of the comorbidities 
and severe disease. As mentioned above mice carrying Ctla4tm1Shr/Ctla4tm1Shr and Hmox1tm1Mlee/Hmox1tm1Mlee 
homozygous mutations display multiple phenotypes consistent with severe COVID-19 pathology. Mice engi-
neered for mutations in these genes crossed with mice engineered to carry the human ACE-2 SARS-CoV-2 viral 
receptor, ICR-Tg(Ace2-ACE2)1Cqin/J, would be a starting point to explore the underlying genetic variants 
related to comorbidities that interact with viral  infection60. Humanized mice, like the Apoetm3(APOE*4)Mae strain, 
which carries the human E3 variant mentioned above as being implicated in both severe disease and an underly-
ing thrombosis pathology, could be used in conjunction with ICR-Tg(Ace2-ACE2)1Cqin/J to study the e�ects 
of the human variant on viral infection. A comprehensive resource for using the mouse as a model system for 
COVID-19 research is maintained by the Mouse Genome Informatics Group [http://www.infor matic s.jax.org/
mgiho me/other /coron aviru s.shtml ].

In this study we have used a bioinformatics approach to interrogate genes associated with �ve COVID-19 
comorbidities that correlate with severe disease. Using genes that have been annotated to these comorbidities in 
the MeSH or HPO resource we have shown that genes are shared among the comorbidities and that shared genes 
are enriched for pathways that could be the genetic basis for the pathologies observed with severe COVID-19, 
speci�cally our results suggest that the interrelated pathways of hemostasis and in�ammation may be key players 
in understanding the severity of comorbidities with COVID-1961,62. Our studies provide a gateway to understand 
how host genetics interacts with and in�uences the consequences of viral infection. Note that this work will be 
limited by the sample types used in the original experimental analyses: Our analysis of samples isolated from 
speci�c tissues or cell types will be limited to pathways that are relevant to those tissues. For example, samples 

Figure 2.  �e top 25 most signi�cantly enriched pathways involving the 123 genes shared among four out of 
�ve comorbidities. Pathways that are similar or directly related in the Reactome knowledgebase are color coded. 
Yellow: adaptive immune system pathways; blue: interleukin signaling pathways; green; interferon signaling 
pathways.

http://www.informatics.jax.org/mgihome/other/coronavirus.shtml
http://www.informatics.jax.org/mgihome/other/coronavirus.shtml
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from blood may identify pathways active in blood cell types but miss pathways that are signi�cant in cardiac 
or lung tissue. Our knowledge about COVID-19 continues to grow at a rapid rate and future work will entail 
the examination of additional comorbidities, more speci�c comorbidities, a wider survey of genes beyond our 
initial seed set from MeSH and HPO. As more expression data become available from a larger number of sam-
ples, we may be able to better discern which pathways are common to all tissues and which are a�ected only in 
some tissues but not others. As we learn more about correlations between individual comorbidities and disease 
pathologies, we may be able to identify speci�c pathway/comorbidity combinations that can be used to inform us 
about treatment decisions. Our work also provides an entry point into an experimental system using the labora-
tory mouse to manipulate host genetics and to study its subsequent e�ect on the pathology of viral infection.

Data availability
All gene sets generated during and analyzed during the current study are based on data published in peer-
reviewed papers, are available in the public GeneWeaver repository [www.genew eaver .org] and are accessible 
using the gene set identi�ers given in the text (e.g. GS398287). Results data generated during this study are 
included in this published article and its supplementary �les.
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