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Background
Cellular immunotherapy is a new and effective treatment for tumor diseases. The repre-
sentative cellular immunotherapy is chimeric antigen receptor T-cell (CAR-T) therapy. 
CAR-T therapy combines tumor associated antigen binding domain (usually a single-
chain variable fragment, scFv) with the killing mechanism of T cells through gene con-
duction technique [1]. The produced CAR-T cells are then infused back into the patient’s 
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body to exert their immune function and eliminate tumor cells. The therapy has shown 
excellent clinical effects in the treatment of refractory B-cell leukemia and other diseases 
[2].

However, implementation of CAR-T therapy can be associated with serious or even 
fatal side effects, collectively termed cytokine release syndrome (CRS). CRS is the direct 
result of excessive production of inflammatory cytokines caused by immune system 
activation beyond the physiological level. When CAR-T cells make contact with a tar-
get antigen, their intracellular structure and co-stimulatory molecules CD28/CD137 are 
activated. CAR-T cells proliferate and rapidly become activated within a short period of 
time to secrete large numbers of cytokines including interleukins, tumor necrosis factor, 
and interferons [3, 4]. At the same time, macrophages, monocytes, dendritic cells, natu-
ral killer (NK) cells, and other cells are activated through stimulation by the cytokines 
secreted from CAR-T cells. The further release of inflammatory cytokines by these acti-
vated cells can be directly or indirectly involved in the immune response. However, once 
the severe immune response is excessive, the body’s normal tissues and blood vessel 
epithelial cells are destroyed and the organs of patients can become damaged and even 
threaten their life [5].

Specifically, CAR-T cells can induce a systemic inflammatory response in  vivo and 
cause CRS [6]. The activated T cells release cytokines and chemokines (including IL-2, 
soluble IL-2Rα, IFN-γ [IFNG], IL-6, soluble IL-6R, and GM-CSF), as do bystander 
immune cells like monocytes and/or macrophages (secreting IL-1RA, IL-10, IL-6, IL-8, 
CXCL10 [IP-10], CXCL9 [MIG], IFN-α, CCL3 [MIP-1α], CCL4 [MIP-1β], and soluble 
IL-6R), dendritic cells, and other cells [7, 8]. Teachey et al. [8] investigated the cytokine 
profiles of 51 patients with refractory B-cell leukemia, comprising 39 children and 12 
adults. Among the 24 cytokines examined, the peak levels of IL-6, IL-8, IL-6R, MCP-
1, and IFN-γ in patients with grade 4–5 CRS were significantly higher than those in 
patients with grade 0–3 CRS. Furthermore, the levels of IL-6 and IFN-γ in patients with 
grade 4–5 CRS were significantly higher than those in patients with grade 0–3 CRS [8, 
9]. Hay et al. [10] analyzed 133 adult patients with ALL, NHL, and CLL who received 
CAR-T therapy. Within 36  h after infusion, the concentrations of IFN-γ, IL-6, IL-8, 
IL-10, IL-15, MCP-1, TNFRP55, and MIP-1R was higher in grade 4 CRS patients than 
in other grade CRS patients. However, because of the complexity of the human immune 
system, the conclusions of these studies were not sufficiently comprehensive.

Given the large number of cytokines involved in the immune response to CAR-T ther-
apy and the occurrence of CRS, it is necessary to comprehensively predict the cytokines 
associated with CRS in the human body to understand the mechanism of CRS. Based 
on the known CRS-associated cytokines in CAR-T therapy, we used a semi-supervised 
meta-learning graph neural network model to comprehensively predict the CRS-asso-
ciated cytokines based on big data for human protein interactions and the similarity of 
protein interactions. The clinical data of 119 patients who received CAR-T therapy were 
then used to verify the rationality of the analysis results. Finally, through protein interac-
tion network analysis, functional enrichment analysis, and pathway crosstalk analysis, 
we systematically explored the roles of the predicted cytokines in the occurrence of CRS. 
The results show great significance for understanding the mechanism of CRS in CAR-T 
therapy and designing targeted blocking measures.
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Methods
Meta‑learning graph neural network

Meta-learning has made great progress in the field of image and text processing [11]. 
The present study used meta-learning to analyze non-Euclidean graphic data. It was 
reported that a graph neural network was also suitable for analysis of graphic data 
[12]. In this study, the meta-learning graph neural network architecture Meta-GNN 
was used to construct a semi-supervised classification model [13]. Through learning 
a small number of known CRS-associated cytokines, we aimed to achieve a compre-
hensive prediction of CRS-associated cytokines.

First, a human protein interaction knowledge map is constructed based on human 
protein interaction big data, and the knowledge map information is expressed as 
G = (V, E, A, X), where V is the set of nodes in the map, E is the edge set of the rela-
tionship between nodes, A is the adjacency matrix,  aij is the weight of the connection 
edge  eij of node  Vi and node  Vj (the weight of 0 indicates no connection), X is the fea-
ture matrix, and  Xi represents the characteristics of node  Vi.

The Meta-GNN model includes two parts sharing the same GNN architecture: 
‘meta-learner’ and ‘base-learner’. First, the meta-learner learns and optimizes the 
initial training parameters of the GNN model by a ‘learning to learn’ strategy, to 
ensure that the model has a good generalization ability. The final GNN model is then 
obtained through ‘base-learner’ training.

The GNN model utilized in this study is a second-order GCN model. Each target 
node aggregates the node information of the second-order neighborhood. The main 
process is shown in Fig. 1. The red arrow indicates use of the Adam method for gradi-
ent descent to optimize the model parameters, θ′ and θ represent the parameters after 
one and all meta-updates, respectively, and M is the number of meta-learning tasks.

The training set Dtrain is constructed based on a few nodes (X, Y) with labels. The 
meta-learning includes two steps: model training and model testing.

In the model training stage, several nodes are randomly sampled from each class of 
the training set Dtrain and set as Si. The remaining nodes in the training set are then 
set as query set Qi. The meta-learning task Ti = Si + Qi is constructed. The above steps 
are repeated M times to generate M meta-learning tasks.

Fig. 1 Meta-GNN is composed of two modules. a Meta-learner module can optimize the initial training 
parameters of the model. b Base-learner module is GCN model
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Let θ be the model parameter (including weight W and deviation b of the neural net-
work). In the implementation of the meta-learning task Ti, the objective function is the 
cross-entropy function with a known label node prediction value.

where xis is the input vector of node vis with label yis in Si. The parameters are then opti-
mized as:

where p(T) is the set of meta-learning tasks and α is the learning rate.
In the model testing stage, Qi data are used to test the model performance for the 

trained model parameters to avoid overfitting problems.
The GCN model is trained after optimization. The GCN model uses graph convolu-

tion to aggregate the information of neighbor nodes. The essential purpose of the GCN 
model is to extract the spatial characteristics of the topological graph:

Among them, Ã = A +IN , where A is the adjacency matrix of the input graph and IN is 
the identity matrix, D = Σj Ãij , W(l) is the trainable weight, and σ(·) is the activation func-
tion. H(l) ∈ RN×D is the hidden-layer embedding of nodes on an l-th layer, initially H(0) = X 
denoting the feature matrix of nodes.

The overall forward propagation formula of the GCN model is described as:

where Z denotes the output of the network, X is the feature matrix of nodes, A is the 
adjacency matrix, W(0) and W(1) are trainable weight matrices, and ReLU and Softmax 
are used as activation functions.

In the training process, the cross-entropy function shown in Eq. (1) is also used as the 
objective function. The specific training methods are the gradient descent method and 
the error backpropagation method.

After training, the GCN model can be used to predict the unknown class nodes in the 
knowledge map.

Cytokine prediction

Human cytokine data were obtained from the NCBI website (https:// www. ncbi. nlm. 
nih. gov/). These data include cytokines, chemokines, and soluble receptors (collec-
tively referred to as “cytokines”), with a total of 1769 samples. The interaction data 
for these cytokines were then obtained from the String database (https:// string- 
db. org/), involving 62,576 interaction data for 1615 cytokines.  We also provide a 
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supplementary document (Additional files 1, 2) with full implementation details. 
Based on this, a topology map is constructed to form an adjacency matrix represent-
ing the interactions between cytokine nodes. Here, the characteristic matrix of the 
cytokine nodes is set as the identity matrix.

Through literature mining, we obtained 20 positive data for cytokines confirmed to 
be associated with CRS, namely CXCL8/IL-8, IL-17A, CXCL10/IP-10, CXCL9/MIG, 
CCL4/MIP-1B, CCL3/MIP-1A, CCL2/MCP-1, IL-1A, IL-1B, TNF-α, IL-2, CSF2/GM-
CSF, IL-2RA, IL-5, IL-15, TNFRSF1A, IL-4, IL-13, IL-23A, and ANGPT2/ANG2. In 
addition to the positive data, we selected 100 cytokines as negative data whose nodes 
in the topology map are the farthest from the positive ones. Since more cytokines are 
not associated with CRS compared to those associated with CRS, more negative data 
were chosen to reduce false-positives.

The adjacency matrix, characteristic matrix (identity matrix), and positive and neg-
ative label data were put into Meta-GNN for model training. After training the model, 
we can obtain the probabilities for all nodes associated with CRS. Keeping the posi-
tive label data unchanged, the negative label data are conducted to the last 100 data 
with the minimum prediction probability, and the model training is conducted again 
until the prediction results converge.

To avoid any influence of the initial data selection on the prediction results, 100 neg-
ative label data are randomly selected and the above prediction process is repeated. 
This process is repeated 1000 times. Finally, the prediction results are arranged from 
large to small according to the prediction probabilities associated with CRS, and the 
median value of the 1000 prediction results is taken as the final prediction result for 
each cytokine. The prediction results are shown in Fig. 2. A total of 128 cytokines and 

Fig. 2 Probability histogram of the predicted results, the horizontal axis represents the value range of the 
prediction probability, and the vertical axis represents the number of cytokines in a certain time interval. We 
selected 128 cytokines with a probability greater than 0.95 at the far right as the result
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related molecules with probability values above 0.95 were selected as the cytokines 
associated with CRS.

XGBoost validation

The clinical data for 119 patients with B-ALL who received CAR-T therapy were 
collected, and the details of data were described in Table 2. The data were grouped 
according to CRS levels.

XGBoost [14] algorithm was always used for classification analysis. We evaluated 
the contribution of each type of data to CRS with it.

Functional enrichment analysis

We carried out KEGG pathway enrichment analysis and GO enrichment analysis on 
the predicted cytokines, collectively referred to as functional enrichment analysis 
[15, 16]. Through functional enrichment analysis, we not only found out the path-
ways such as MAPK, NF-KB, JAK-STAT3 and mTOR which were found in previous 
authoritative studies [17], but also explained the combination of other pathways, such 
as VEGF pathway and NOD-like receptor pathway. Through the analysis of these 
pathways, we tried to explore how CRS happened, which makes people more clearly 
understand what the mechanism of CRS happened. Cytokines with high frequency in 
these pathways also indicate the importance of influencing CRS, such as IFN-γ, IL1B, 
IL6 and TNF-α mentioned above. These factors echo with vascular inflammatory fac-
tors ICAM-1, VCAM-1 and VEGFA in VEGF pathway, and jointly promote the pro-
gress of CRS.

Pathway crosstalk analysis

Based on the enrichment analysis of CRS-related cytokines, the crosstalk of CRS-related 
cytokines was analyzed. The analysis is based on the assumption that two pathways shar-
ing a certain proportion of cytokines are considered to have crosstalk [9, 18].

To describe the degree of crosstalk between a pair of pathways, two measurements 
can be calculated, namely the Jaccard coefficient (JC)=

∣∣∣A∩BA∪B

∣∣∣ and the overlap coeffi-

cient (OC)= |A∩B|
min (|A|,|B|) , where A and B are the lists of cytokines contained in the two 

pathways.
The specific steps are as follows:

(1) For selection of a pair of enrichment pathways, the FDR value of each enrichment 
pathway should be less than 0.05 and the pathways should contain more than 5 
enriched cytokines, because too few cytokines may lack sufficient biological infor-
mation.

(2) The number of associated cytokines shared between the two pathways is calculated. 
Any pathway pair with less than 4 shared cytokines is removed.

(3) For all eligible pathway pairs, the mean value of the sum of the JC coefficient and 
the OC coefficient is calculated.
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(4) To reduce false-positives, pathways with a mean value above 0.3 are selected for 
analysis.

(5) Visual screening of the pathway pairs is performed, with intuitive display of their 
crosstalk [19, 20].

Results
Prediction results

The results predicted by the Meta-GNN model are expressed in the form of prob-
abilities. High probability means more similarity to the positive label data, indicating 
a closer relationship to CRS. The predicted results were shown in Table 1. Altogether, 
128 proteins were found to be closely associated with CRS in CAR-T therapy.

Clinical data validation

The clinical data collected from 119 patients includes four categories: cytokine 
expression data, coagulation test data, biochemical test data, and blood routine test 
data (Table  2). Before contribution analysis with XGBoost, three cytokines closely 
related to CRS(IL10, IL6 and IFN-γ) were taken out, which were not regarded as posi-
tive data. According to the analysis results, these three cytokines are all top ranked in 
the list, indicating the reliability of the prediction results.

In the process, we calculated mean values of all data from day 0 of CAR-T therapy 
to the last day of records which is about 7 days to analyze the relationship with the 
CRS levels of the patients.

The XGBoost algorithm was used for classification analysis, and the contribution of 
each type of data to the highest level of CRS prediction was analyzed. A fivefold cross-
validation was used in the research, and the results are represented by the importance 
of features, as shown in Fig.  3. A high probability indicates the corresponding data 
contribute greatly to CRS prediction (Additional file 1).

As shown in Fig.  3, IL-2, IL-6, IL-10, TNF-α, IFN-γ, and IL-17A all contribute to 
prediction of the highest CRS level, except for IL-4. Among them, IL-6 contributed 
the most to the results, IL10 and IFN-γ had a significant contribution. This indi-
cates that three cytokines are positively correlated with CRS. Although they are not 
regarded as positive label data, they rank higher in the prediction results of the neural 
graph networks, thereby proving the rationality of the prediction results (Additional 
file 2).

We also included some enzymes in the results. The enzymes are associated with 
organ damage. For example, high levels of LDH are often found in patients with grade 
3–4 neurotoxic lymphoma and are negatively correlated with progression-free sur-
vival [21]. These findings are consistent with the symptoms of CRS.

Function analysis

First, we performed a network analysis on 128 selected cytokines and related mole-
cules. Subsequently, a pathway analysis and GO enrichment analysis were performed. 
Fisher’s exact test was used to show the overlapping significance between pathways 
and input genes. In the analysis results, FDR values less than 0.05 were considered to 
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indicate significant enrichment. The results showed the main pathways and biological 
functions of the cytokines. Finally, the cytokine pathways were extracted for crosstalk 
analysis and further explanation of how CRS occurs from an intuitive perspective.

Table 1 Prediction results

Name Scores Name Scores Name Scores

IL10 0.999 ITGAX 0.989 CCL17 0.975

IL4 0.999 VCAM1 0.989 TLR5 0.975

IL17A 0.999 IL1RN 0.989 STAT3 0.975

CSF2 0.999 IL6R 0.988 MYD88 0.975

IL13 0.999 CCR6 0.988 PTPRC 0.974

IFNG 0.999 TLR2 0.988 TLR6 0.974

IL5 0.999 FOXP3 0.987 IL12RB1 0.973

CSF3 0.998 IL22 0.987 CX3CR1 0.973

IL15 0.998 IL17F 0.987 IL17RA 0.973

CXCL10 0.998 CXCL5 0.986 PRF1 0.972

CXCL8 0.998 CTLA4 0.985 CCL4L1 0.972

CCL2 0.998 SELL 0.985 CRP 0.972

IL2 0.997 IL33 0.985 CX3CL1 0.971

IL7 0.997 CCL11 0.985 TNFRSF1A 0.97

CCL3 0.997 TLR9 0.985 IFNB1 0.969

IL18 0.996 CXCL12 0.985 MMP9 0.969

CXCL9 0.996 OSM 0.985 CCL27 0.968

TNF 0.996 CD28 0.984 CCL22 0.968

IL1B 0.996 CXCR4 0.984 SELP 0.967

CCL4 0.996 LTA 0.983 IL3RA 0.967

CCL5 0.995 TSLP 0.983 CD274 0.966

IL1A 0.995 IFNA1 0.983 STAT5A 0.965

CXCL1 0.995 STAT1 0.983 TLR10 0.965

CD40 0.994 TLR7 0.983 IL2RB 0.964

ICAM1 0.994 CXCL13 0.982 JAK1 0.964

CCL20 0.994 IL23A 0.981 CCL8 0.963

CXCL2 0.994 CCR1 0.981 IL12B 0.962

CCR2 0.993 TLR8 0.981 CSF1 0.962

IL2RA 0.993 IL11 0.98 CCL21 0.96

IL9 0.993 TLR4 0.98 IL1R2 0.96

IL1R1 0.993 IL21 0.979 IL7R 0.958

CD86 0.992 IL23R 0.979 IDO1 0.958

IL3 0.992 TLR1 0.979 IL2RG 0.958

CD80 0.992 CXCL11 0.979 GZMB 0.958

CCR7 0.991 TBX21 0.978 CD1C 0.957

CD40LG 0.991 TNFRSF1B 0.978 TNFRSF4 0.956

IL6 0.991 TLR3 0.978 CD83 0.956

IL10RA 0.991 IL16 0.978 STAT6 0.955

CCR5 0.99 CXCR5 0.977 TNFSF13B 0.955

IL4R 0.99 CCL19 0.977 CCR9 0.953

ITGAM 0.99 CD19 0.976 CXCR1 0.953

CXCR3 0.99 CXCR2 0.976 JAK2 0.952

SELE 0.989 CCL7 0.976
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Protein interaction network analysis

A network interaction diagram of the 128 cytokines and related molecules was 
drawn using Cytoscape (Fig. 4). As shown in Fig. 4a, the interaction diagram can be 
roughly divided into left and right modules. The left module is mainly composed of 
chemokines, and the right module is primarily composed of interleukins and soluble 
receptors.

The cytokines contained in each part are closely related and closely linked. Fig-
ure 4b shows the part involving chemokines. Chemokines are types of cytokines that 
promote various immune cell functions, including leukocyte recruitment and trans-
portation. Transport disorder in the inflammatory process is related to an excessive 
inflammatory response. Figure 4c mainly includes IL-2Rα/IL-2RA, IFN-γ/IFNG, IL-6, 
IL-6R, and GM-CSF/CSF2 [8]. This module corresponds to many cytokines involved 
in the CRS response. Soluble IL-6 binds to IL-6R to form IL-6 and IL-6R complexes 
that bind to gp130, and subsequently initiate signal transduction through the intra-
cellular domain. Signal transduction is mediated by the JAK-STAT3, PI3K-AKT, and 
MAPK pathways [17]. Figure  4d shows Toll-like receptors (TLRs). The interactions 
between TLRs and their ligands induce cascade activation through the TIR domain 
and various mediators, such as myeloid differentiation protein 88 (MyD88), TIR 

Table 2 Clinical data of patients with acute lymphoblastic leukemia

Cell factor IL‑2、IL‑4、IL‑6、IL‑10、TNF‑α、IFN‑γ、IL‑17A

Coagulation Plasma prothrombin time, activated partial thromboplastin time, fibrinogen

Biochemistry Gamma-glutamyl transpeptidase, lactate dehydrogenase, creatinine, 
C-reactive protein, ferritin, sodium, potassium, chlorine, calcium, uric acid, 
glucose, triglyceride, albumin, alanine aminotransferase, aspartate ami-
notransferase, alkaline phosphatase

Routine blood test White blood cells, hemoglobin, red blood cells, neutrophil percentage, 
hemoglobin count, neutrophil count, lymphocyte percentage, blood 
routine items, red blood cell count, lymphocyte count, platelet, monocyte 
percentage, monocyte count

Fig. 3 The XGBoost algorithm ranks the features importance of the features data used to predict CRS
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domain-containing protein (TIRAP), TIR receptor-induced interferon (TRIF), TRIF-
related molecule (TRAM), and some tyrosine kinases. Because of these signaling cas-
cades, transcription factors like NF-κB can induce inflammatory cytokine production 
[22]. Figure 4e, f show modules connected by JAK1 and JAK2. Among them, IL-23, 
which is closely related to CRS, comprises IL-23A and IL-12B shared with IL-12. 
IL-23 is related to Crohn’s disease, rheumatoid arthritis, psoriasis, and other immune-
mediated inflammatory diseases [23]. TNF is an effective multi-functional proinflam-
matory cytokine belonging to the superfamily comprising TNF and its receptors such 
as TNFRSF1A and TNFRSF1B. In addition to inducing fever, enhancing systemic 
inflammation, and activating antimicrobial responses (such as IL-6 production), 
TNF can also induce apoptosis and regulate immunity. TNF and other cytokines in 

Fig. 4 Cytokine interaction network. a Network interaction of cytokines. b Chemokine network. c Interleukin 
and its receptors and signal transduction factors. d Toll-like receptors. e JAK1 connected module. f JAK2 
connected module. g IL-1 and its receptor
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the TNF and TNF receptor superfamily are effective inducers of NF-κB, which leads 
to the expression of a variety of pro-inflammatory genes [17]. Figure 4g shows IL-1 
and its receptors. RNAseq data for myeloid cell types collected at the onset of CRS 
revealed that IL-1R1 was up-regulated in tumor-associated myeloid cells, while only 
IL-1R2 was detected in spleen myeloid cells [9]. Blockade of IL-1 can reduce CRS and 
neurotoxicity [24].

These six modules are not isolated from one another. Instead, they are closely 
related to a large module through certain cytokines.

Functional enrichment analysis

The pathways and major biological processes involving the cytokines were enriched. 
In the pathway analysis, a total of 49 pathways were enriched. Forty-seven important 
pathways with FDR values below 0.05 were selected, as shown in Fig. 5a. Among the 
biological processes, we chose the first 40, as shown in Fig. 5b. Colors corresponding 
to low FDR values tend toward blue, while colors corresponding to high FDR values 
tend toward red. The circle sizes indicate the numbers of cytokines contained. The 
selected pathways and biological processes provide important information for under-
standing the mechanism of CRS.

As shown in Fig.  5a, most of the selected pathways are related to the inflammatory 
response and related diseases, and several of them are particularly prominent. For 
example, “cytokine receptor interaction pathway” is the most important, and reflects an 
essential pathway in life activities. This pathway is closely related to cancers, autoim-
mune diseases, metabolic disorders, and other diseases [25]. The JAK-STAT signaling 
pathway, which is connected with the first pathway, is an essential cytokine signal trans-
duction pathway. It is activated by various cytokines, growth factors, and receptors and 
participates in cell proliferation, differentiation, apoptosis, angiogenesis, and immune 
regulation [18, 20]. Other inflammatory disease-related pathways were also selected.

Fig. 5 Functional enrichment analysis of bubble diagram. a Represent the pathway enrichment analysis, the 
horizontal axis represents the FDR value after logarithm base 10, and the vertical axis represents the pathway 
name. b Denotes GO enrichment analysis, the horizontal axis also denotes FDR value after logarithm base 10, 
and the vertical axis denotes the biological process of enrichment
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In Fig.  5b, many terms related to the human inflammatory response are selected, 
including positive regulation of chemokine response, immune response, and cell 
response to lipopolysaccharide. These findings are consistent with the fact that CRS is an 
inflammatory response.

Pathway crosstalk analysis

To further highlight the details of the pathway enrichment and understand the interac-
tions between pathways, we conducted pathway crosstalk analysis among the 47 path-
ways with significant enrichment. Among these, 45 pathways met the crosstalk analysis 
standard. Specifically, each pathway shared at least four genes with one or more other 
pathways, and had an FDR value less than 0.05. To reduce the false-positive rate, we 
selected the pathway pairs with mean JC and OC values above 0.3. A total of 306 path-
way pairs were reserved from the 45 pathways.

Based on their crosstalk, the pathways can be divided into left and right modules. Each 
module contains more interactions than other modules, indicating that they may partici-
pate in the same or similar biological processes. In Fig. 6a, the width and thickness of the 
figure lines are related to the degree of interaction between the pathways. A high level of 
interaction corresponds to a thick line, while a low level of interaction corresponds to a 
thin line [26–28]. The right module is mainly related to inflammatory response and dis-
ease pathways, such as PI3K-AKT signal transduction, Toll-like receptors signal trans-
duction, NF-κB signal transduction, JAK-STAT signal pathway, inflammatory bowel 
disease, and hepatitis C. The left module is mainly related to immune response path-
ways, such as systemic lupus erythematosus, autoimmune thyroid disease, and intestinal 
immune network for IgA production. These findings are consistent with the side effects 
of CAR-T therapy. The top 20 cytokines with the highest frequencies and their involved 

Fig. 6 Pathway crosstalk studies of pathways and cytokines. a Interactions of 45 channels in channel 
crosstalk. b The top 20 cytokines with the highest frequency appeared in this pathway. c Sankey diagram, 
which shows the pathways of the top 20 cytokines in frequency
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pathways are shown in Fig.  6b, c. The high frequencies of the cytokines suggest their 
importance.

Discussion
In the past few years, through the acquisition of clinical symptoms and monitoring data 
for patients, researchers have understood the pathogenesis of CRS produced by CAR-T 
therapy. With the development of high-throughput technology, certain cytokines have 
been gradually identified as being related to the disease. However, the biological process 
for comprehensive understanding of CRS pathogenesis at the molecular level has not 
been established. Some related cytokines have not been found. Therefore, it is necessary 
to explore CRS pathogenesis and related cytokines at the system biology level [29, 30].

The system analysis method described in our study has significant advantages. First, 
we collected a comprehensive set of human cytokines, providing a valuable source 
for further analysis. In addition, we used Meta-GNN as a neural graph network. This 
method was suitable for small sample size prediction in the study, because it can predict 
some cytokines that may be closely related to CRS based on known cytokines closely 
related to CRS as positive markers. Subsequently, we obtained data for 119 patients with 
B-lymphoblastic leukemia who received CAR-T therapy to allow feature screening. We 
applied the XGBoost algorithm to rank the importance of the measured features in our 
experimental data and verified the accuracy of the prediction results. Finally, we selected 
the positive labels and predicted the cytokines that may be closely related to CRS for 
subsequent analysis. We have provided a comprehensive and systematic framework 
to describe the biological processes and functional features of CRS produced during 
CAR-T therapy.

The cytokine analysis mainly showed modules that are closely related to the cytokines, 
such as chemokines, Toll-like receptors, and interleukins. These cytokines play an 
important role in the development of CRS.

The GO analysis mainly enriched the biological processes related to CRS, among which 
the inflammatory response was the most prominent. Examples included cytokines, 
chemokine-mediated responses, and cellular responses to LPS. Members of the interleu-
kin family and chemokine family can increase the proliferation and activation of CAR-T 
cells, providing positive feedback for the inflammatory response. Lipopolysaccharide is 
considered a crucial inflammatory marker in CRS induced by CAR-T therapy [29, 30]. 
Besides, there is positive regulation of T cell proliferation. CAR-T therapy maintains the 
tumor-killing ability through T cell proliferation. A large increase in T cells is related to a 
high risk of CRS, consistent with previous findings.

The pathway analysis showed that the JAK-STAT signaling pathway, chemokine sign-
aling pathway, TNF signaling pathway, Toll-like receptors pathway, and NF-κB signal-
ing pathway were enriched. These pathways related to inflammation were enriched, 
and their FDR values were low. The findings suggest that many cytokines are involved 
in CRS, consistent with its situation in pathological development. Some disease-related 
pathways may contribute to the early stage of CRS, such as inflammatory bowel dis-
ease, hepatitis B, hepatitis C, and rheumatoid arthritis. The pathway interaction module 
is mainly divided into two modules. One module is primarily related to inflammatory 
response and disease pathways, and the other module is mostly related to immune 
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response pathways and diseases caused by these pathways. Activation of a series of 
inflammatory and immune signaling pathways can regulate various physiological pro-
cesses in the human body and cause damage to patients.

When CAR-T cells enter the human body, they directly cause the tumor cells to burn 
out, so that ATP, the energy molecule in the cells, is released in large quantities, and 
ATP can strongly activate macrophages [31]. Macrophages promote assembly of signal-
ing complexes by inducing activation of TCR adjacent to tyrosine kinases, thereby acti-
vating downstream signaling pathways such as MAPK, PKC, and calcium ions. All of 
these promote the activity of the transcription factor NF-κB and regulate the expression 
of effector protein molecules, thus enhancing the lethality of T cells to the tumors and 
leading to the release of more cytokines [32]. The released cytokines activate the JAK-
STAT pathway, which acts as an inflammatory signal pathway for stress, and has a rapid 
response. This pathway involves the IL-6ST (gp130) receptor family. IL-6 binding causes 
dimerization of the receptor and activates its binding of JAK protein. The activated JAK 
protein phosphorylates both the receptor and itself. These phosphorylation sites are the 
binding sites of STAT proteins and adaptor proteins with an SH2 structure. Adaptor 
proteins connect the receptors with MAPK, PI3K-AKT, and other pathways [33–35].

Subsequently, Toll-like receptors and NOD-like receptor (NLRs) play important roles 
in inflammation as extracellular and intracellular pattern recognition receptors, respec-
tively. The TLR signal transduction pathway is activated by the Toll/IL-1R (TIR) domain, 
which activates the transcription factor NF-κB and MAPK pathway through MyD88. 
When CAR-T cells attack tumor cells, they cause the tumor cells to die and release anti-
gens. When Toll-like receptors recognize pathogen-related molecular patterns (PAMPs), 
they activate NF-κB to initiate inflammatory reactions. Moreover, when inflammation 
occurs, LPS released by the inflammatory response induces a series of gene expressions 
through TLR4. The expression of antiviral cytokines such as CD80, CD86, and IFN-β 
is influenced by the MyD88-independent pathway, which participates in inflamma-
tion and the immune response. After the NOD1 and NOD2 proteins in the NOD-like 
receptor pathway bind to their ligands, they interact with RIP2 to phosphorylate IKB, 
thus activating the transcription factor NF-κB to mediate the expression of inflamma-
tory mediators [36]. Activation of the NF-κB pathway regulates the expression of a series 
of genes, including ICAM-1, VCAM-1, SELE, TNF-α, IL-1β, IL-2, IL-6, MCP-1, IL-8, 
IL-12, and IFN-β, as well as some receptor molecules such as IL-2R and T cell receptor α 
and β chains [37–39]. TNF-α, IL-1, and other inflammatory mediators activate different 
MAPK pathways and mediate the inflammatory response [40, 41].

The TLR/NF-κB pathway is the critical link for the induction of inflammation. When 
LPS stimulates human umbilical vein endothelial cells, TLR4 expression is up-regulated, 
leading to increased TLR4 activity. The NF-κB component RELA plays an important role 
in the regulation. NF-κB1 also had a vital role in the TLR/NF-κB pathway. LPS activates 
NF-κB1 through TLR4 and subsequently produces a series of inflammatory mediators, 
leading to an inflammatory reaction that damages tissues and cells [37–39]. These obser-
vations demonstrate that there is a close relationship between CRS and this pathway.

From the perspective of vascular endothelial cells, ICAM-1, VCAM-1, and SELE bind 
to ligands on the surface of leukocytes to mediate leukocyte adhesion, and further induce 
leukocyte aggregation and infiltration. This causes local inflammation and microvascular 
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endothelial cell injury, and subsequently promotes expression of VWF. After vascular 
injury, NO free radicals are released. Abnormal NO production causes vasodilation and 
hypotension, as common clinical features of CRS [9, 19, 20, 42]. a previous study fur-
ther found that during severe CRS, endothelial cell activation leads to increased levels 
of biomarkers including VWF and Ang2, consistent with the manifestations of vascular 
instability, capillary leakage, and consumptive coagulation disorder in severe CRS [18]. 
Activated endothelial cells are a critical source of IL-6 in CRS. Biomarkers for activated 
vascular endothelial cells can help to determine which patients are at the greatest risk for 
CRS and neurotoxicity. In general, expression of ICAM-1 and VCAM-1 in normal blood 
vessels cannot be detected by standard immunohistochemical methods. However, under 
conditions of vascular injury or inflammatory factor stimulation, ICAM-1 and VCAM-1 
are not only expressed on VECs in a time-dependent manner, but also mediate mono-
cyte adhesion to endothelial cells and promote the development of inflammation [43]. 
It was reported that endothelial cells in the inflammatory reaction stage secrete vascu-
lar endothelial growth factor (VEGFA) to mediate the activation of NF-κB, thereby pro-
moting the expression of ICAM-1 and VCAM-1. Some researchers further confirmed a 
regulatory effect of NF-κB on the expression of ICAM-1 and VCAM-1 and found that 
activation and regression of NF-κB preceded the activation and regression of ICAM-1 
and VCAM-1. These observations suggest that ICAM-1, VCAM-1 and VEGFA are key 
factors for predicting CRS.

Regarding cell apoptosis, apoptosis of vascular endothelial cells is inhibited during the 
occurrence of CRS. Specifically, activation of the PI3K-AKT signal transduction pathway 
inhibits cell apoptosis, which has an important role in the pathogenesis and apoptosis 
mechanism underlying inflammation, tumor development, metabolism, and other dis-
eases. When the PI3K-AKT signal transduction pathway becomes activated, activated 
Akt increases the content of NF-κB and activates the NF-κB pathway. The PI3K-AKT 
signal transduction pathway upregulates the transcription levels of TNF-α and other 
genes through a series of reactions. TNF-α promotes the production and release of 
other cytokines and finally leads to the formation of a cytokine network that expands 
the inflammatory chain reaction. The apoptosis induced by TNF-α, IFN-γ, and other 
cytokines depends on the PI3K-AKT pathway. Apoptosis plays an important role in the 
regression of CRS. The PI3K-AKT signal transduction pathway inhibits apoptosis of T 
cells and vascular endothelial cells and promotes continuation of an inflammatory state, 
providing powerful insights into the persistence of CRS [44].

The cascade reaction in CRS is one of the main reasons for the occurrence of CRS. We 
analyzed some of the major inflammatory pathways involved in CRS and pointed out 
certain cytokines and proteins that closely related to CRS. We also discussed their roles 
in CRS occurrence, providing important insights and assistance for studies on blocking 
and weakening CRS in the future.

Conclusions
The development of CRS during CAR-T therapy is complex and related to many fac-
tors. In the present study, we applied a meta-graph neural network framework, machine 
learning algorithm, and system biology analysis to determine the cause of CRS and 
identify cytokines with a probability exceeding 0.95 in the predicted results. Through 
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PPI analysis, functional enrichment analysis, and pathway crosstalk analysis, we identi-
fied the biological processes and pathway modules related to CRS to explain the cause 
of CRS. Our prediction results provide meaningful inferences for CRS and have the 
value of identifying potentially related cytokines. The results suggest great promise for 
analysis of the CRS mechanism at the system biology level. With the development of 
high-throughput technology and increase in medical experimentation, the actual useful 
cytokines by experimental results will inevitably appear in the results of our prediction 
and analysis.
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