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Abstract

Advances in composite technology led to the substitution of conventional, metallic construction material by composites.
However, the more widespread application of composites is currently restricted by complex fracture mechanisms, which
are not well understood. One approach to overcome this challenge is structural health monitoring systems which pro-
vide a lot of information on the current system state as well as state of health in real time. In this context, reliability
assessment of structural health monitoring systems is currently an open issue. The reliability of conventional non-
destructive testing systems is evaluated, measured, and partly standardized using widely accepted methods such as the
probability of detection rate. Frequently, the a90|95 value, which is determined from the probability of detection curves,
is used as a performance measure indicating the minimum damage size that is detected with a probability of 90% and
95% confidence. In contrast to non-destructive testing, structural health monitoring involves additional data analysis
steps, that is, statistical pattern recognition, where the classification results are also subject to uncertainty. Because simi-
lar methods are not available, the reliability of structural health monitoring systems is usually not quantified. To investi-
gate the influences on the classification performance, experiments were conducted. In particular, the effect of variable
loading conditions and the evolution of damage over time are considered. To this end, acoustic emission measurements
were performed, while the specimens of the composite material were subjected to different cyclic loading patterns.
Here, acoustic emission refers to elastic stress waves in the ultrasound regime, which emerge from the structure on
damage initiation and propagation. Furthermore, a frequency-based damage classification scheme for acoustic emission
measurements is proposed. Time–frequency domain features are extracted from the measurement signals using short-
time Fourier transform. Classification is performed using support vector machine. Both choices serve as typical
examples to discuss the effects which apply equally to other approaches. Experimental results presented in this article
regarding fault diagnosis and discrimination of delamination, matrix crack, debonding, and fiber breakage in carbon-fiber-
reinforced polymer material show that good performance applying support vector machine could be achieved using 10-
fold cross validation. However, during model deployment, strong dependency of the classification reliability on loading
conditions can be clearly stated, which could not be seen from the previous evaluation. Concluding from these results, it
can be stated that the application of classifier-based structural health monitoring is more complex than generally
assumed. The relations between the classification approaches, testing conditions, measurement devices, and filters have
to be discussed with respect to the ability to provide reliable statements about the actual damage state.
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Introduction

The recent rise of composites is owed to their beneficial

properties, such as fatigue strength, impact resistance,

and lightweight, resulting from their sophisticated

structure. Today, the more widespread use of
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composites is restricted for several reasons. Compared

to metallic materials, composites lack the pronounced

ductile behavior.1 Furthermore, composites form a

complex system defined by the constituent materials’

properties, geometry, and distribution, whereas metals

are generally assumed to exhibit homogeneous mechan-

ical properties.2 Therefore, complex micro-mechanical

fracture mechanisms are observed.1 Structural health

monitoring (SHM) systems are proposed to overcome

these challenges and to ensure equal safety and reliabil-

ity of composite structures.3 This includes the fact that

the SHM system applied has to ensure reliable mea-

surements and conclusions regarding the actual system

state.

A definition of SHM is given by Farrar and

Worden4 as ‘‘the process of implementing a damage

identification strategy for aerospace, civil, and mechan-

ical engineering.’’ In general, the goal of such a strategy

is to establish a surveillance system that is capable of

continuously monitoring a technical system or struc-

ture. This enables advanced maintenance strategies,

that is, condition-based maintenance, which leads to an

increase in reliability of technical systems.5 In this con-

text, methods for non-destructive evaluation (NDE)

are employed. In particular, acoustic emission (AE)

technique, which is a passive, wave-propagation-based

NDE method, gained attention for in situ monitoring

recently. In general, AE refers to the phenomenon of

elastic waves generated in the ultrasound regime due to

the sudden release of energy. These elastic waves

emerge from distinct sources within a structure at fre-

quencies between 10 kHz and 1 MHz.6 In particular,

this occurs on the initiation and propagation of dam-

age or due to external impact loads. Consequently, AE

monitoring should be applied while the structure is

loaded.

Sources of AE are manifold. In composites, only dis-

tinct types of damage are observed as a result of the

underlying micro-mechanical fracture mechanisms. In

particular, these are delamination, matrix crack, fiber

breakage, and debonding.7 Whereas debonding merely

describes the loss of adhesion between fiber and matrix

material, delamination denotes the separation of layers

in laminated materials.3 The resulting AE waveforms

are characteristic to the particular source mechanism

and, hence, AE measurements can be utilized to iden-

tify the corresponding fracture mechanism, which has

already been shown in several case studies.3,8–11 For

this purpose, modal analysis and time- and frequency-

domain-based approaches are distinguished.

Regarding the modal properties of the AE wave-

forms, the corresponding fracture mechanisms can be

identified based on physical interpretation of the source

motion. In thin plates, these waveforms propagate as

guided waves, which can be described by means of

Lamb wave theory.11 Accordingly, two distinct wave

modes—flexural and extensional waves—exist. These

are promoted by either in-plane or out-of-plane source

motion, respectively.12 According to Prosser12 and

Gutkin et al.,13 the extensional wave mode is usually

observed at higher frequencies and exhibits faster pro-

pagation velocities than flexural waves. Furthermore,

this wave mode is symmetric and non-dispersive. In

contrast, flexural waves are antisymmetric, propagate

at lower velocities, and are highly dispersive. In general

agreement, several authors reported in-plane motion to

be associated with fiber breakage3,9 and matrix

crack.9,11 These damage mechanisms promote high-

frequency extensional waves. In contrast, delamination

is governed by out-of-plane motion and thus promotes

the flexural waves in the material generating low-

frequency signals.3,9,11

For the purpose of automated damage classification,

several statistical properties of the AE signals—referred

to as features or descriptors—that can be calculated

from both time and frequency domains, are frequently

used. Typically, time domain features are used for the

analysis of AE measurements.13–15 However, time

domain features are strongly dependent on the experi-

mental conditions, whereas the frequency content is

not affected. Particularly, the AE amplitude is subject

to variable attenuation depending on the propagation

path.11 Thus, the frequency spectrum of AE signals is

considered a more reliable descriptor of AE sources.9

To identify characteristic frequencies of distinct AE

source mechanisms, peak frequency analysis was

applied by several researchers.10,16,17 De Groot et al.16

identified damage-specific signatures of four different

micro-mechanical damage modes, namely, matrix crack

[90 kHz, 100 kHz], debonding [240 kHz, 310 kHz],

fiber breakage [.300 kHz], and fiber pull-out

[180 kHz, 240 kHz] in carbon-fiber-reinforced polymer

(CFRP) material in terms of peak frequencies.

Similarly, Hamdi et al.10 identified delamination

[30 kHz, 90 kHz], matrix crack [30 kHz, 170 kHz],

debonding [180 kHz, 290 kHz], and fiber breakage

[300 kHz, 420 kHz] as distinct classes of micro-

mechanical damage in composites using Hilbert–

Huang transform (HHT).

To identify characteristic peak frequencies and to

track damage accumulation under different experimen-

tal conditions, Bussiba et al.17 used short-time Fourier

transform (STFT). Based on their experimental results,

three characteristic frequencies were identified, which

correspond to the damage mechanisms matrix such as

crack (140 kHz), debonding (300 kHz), and fiber

breakage (405 kHz). Moreover, mechanical thresholds

for the onset of AE activity were determined, indicating

that no damage occurs below these threshold values.17
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Damage characterization task is most frequently

considered as the classification problem. Pattern recog-

nition algorithms are a suitable method to address this

type of problem.18 Here, statistical learning theory is

employed to determine the mapping between class

labels and input values. In the supervised case, a repre-

sentative set of training data are used to generate the

statistical model. The most frequently used classifier

algorithms are K-nearest neighbor (KNN), artificial

neural network (ANN), and support vector machine

(SVM). Das et al.19 stated that SVM is a suitable

method to identify damage modes in composites. Here,

joint time–frequency transformation was performed

prior to the classification to extract damage-specific

features.

A generic SHM system is composed of a measure-

ment chain, where principles of non-destructive testing

(NDT) are employed, and a signal processing chain.

According to the statistical pattern recognition para-

digm, damages are detected by means of classification.4

To realize SHM systems in practice, a suitable and

therefore well-defined reliability of the classification

must be achieved. This includes high detection rates as

well as low false alarm rates, so that the system can be

accepted. Furthermore, the surveillance system should

be robust against external disturbances.

The reliability of conventional NDT methods is fre-

quently assessed using probability of detection (POD)

as a probabilistic approach, which provides a measure

of the reliability of an NDT method.20 The POD curve

describes the likelihood that a certain flaw is detected as

a function of flaw characteristic a such as size or depth.

These POD curves can be computed directly from the

experimental data, where two approaches are distin-

guished. In the case of binary response of the inspection

system, hit/miss analysis is employed, whereas â vs a

approach can be used if the continuous output â of the

inspection system is available.20 Commonly, the a90j95
value is determined from the POD curve as a perfor-

mance measure of the inspection system.21

The performance evaluation of a classifier is usually

based on a set of test data with known class labels.

Here, the classifier output and true class labels are com-

pared by means of a confusion matrix. From the confu-

sion matrix, different scores, such as accuracy,

sensitivity, and specificity, are extracted to assess the

performance of classification algorithms.22 Here, sensi-

tivity denotes the detection rate, whereas false alarm

rate is the complement of the specificity of a classifier.

In general, improved detection rates can only be

achieved at the cost of increasing false alarm rates. The

principle relationship between the detection and false

alarm rates is described by receiver operating character-

istic (ROC) curve,23 which compares the detection and

false alarm rates of a classifier. In the context of

classification algorithms, the POD is understood as the

true-positive rate, which is also known as the sensitivity

of a classifier.22,24 However, these measures only pro-

vide quantification of model performance with respect

to a specific set of testing data.

Due to conceptual differences between SHM and

NDE, reliability of SHM systems is usually not quanti-

fied. In order to determine the POD curve of an NDE

inspection technique, the fixed decision threshold of the

sensor response â is determined using model (calibra-

tion) specimens under controlled laboratory condi-

tions.25 Due to the in-service application of SHM,

damages evolve over time and exclusion of disturbances

is generally not possible.26 Consequently, the sensor

output is compared to a baseline signal for damage

detection, where deviations cannot be readily attributed

to damage due to in situ effects and hence require

appropriate interpretation.25 Influencing factors of

NDE systems are, for instance, reported as testing

equipment and procedures, material and geometry of

test specimens, and properties of the particular defect.20

In contrast to this, SHM systems are reportedly affected

by loading conditions,26 temperature,25 and sensor

degradation.25 For instance, Gagar et al.27 reported a

strong dependence of AE activity on the particular

loading conditions using aluminum specimens under

cyclic loading patterns. Furthermore, Schubert Kabban

et al.21 mentioned that the assumption of independent

observations is not feasible in case of SHM systems,

because measurements are performed at high acquisi-

tion rates to determine the current state of health in real

time leading to several dependent observations.

In this work, an experimental study regarding the

impact of different loading conditions on the reliability

of supervised classifiers is presented. Due to practical

relevance, diagnosis of a composite structure was cho-

sen to showcase SHM implementation. A mechanical

test rig was used to simulate a load-bearing structure of

composite material, while AE measurements are per-

formed. Furthermore, a statistical pattern recognition

approach using STFT-based feature extraction and

SVM-based classification of the measurement results is

proposed as an example. The performance of the classi-

fier is evaluated using 10-fold cross validation, which is

a widely accepted approach in the field of machine

learning for evaluating classifiers. Finally, the reliability

of the classification results obtained from the deployed

model is evaluated with respect to damage evolution

and variable loading conditions using probability esti-

mation. This result is new and could not be detected

from previous publications. In the following sections,

the experimental procedure is introduced, the measur-

ing chain and the employed signal processing tech-

niques are described. In the following, the experimental

results of the proposed procedure are presented and
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discussed with respect to reliability considerations of

SHM applications. Finally, the main conclusions from

the experimental results are summarized.

Experiments

In the context of this work, experiments were per-

formed to investigate the effect of loading conditions

and damage evolution on the reliability of automatic

damage classification. To this end, a test rig is used to

subject specimens of composite material to cyclic load-

ing patterns, while AE measurements are performed

for diagnostic purposes. In this section, the mechanical

test rig, data acquisition hardware, and methods used

for signal processing are briefly described.

Mechanical test rig

In order to simulate an in-service, load-bearing struc-

ture, a mechanical test rig was developed, which is used

to subject specimens of composite material to cyclic

loading patterns. The major components of the test rig

are presented in Figure 1.

The frame construction of the test rig consists of alu-

minum profiles, having a vise attached to fixate the spe-

cimen during testing. Furthermore, a slider–crank

mechanism, which converts the rotational motion of

the motor into linear displacement, is used to apply

bending load by deflecting the specimen tip. For actua-

tion of the test rig, a servo-controlled brushless direct

current (BLDC) motor manufactured by Maxon

motors is mounted on the aluminum frame. The BLDC

motor is driven by a servo-amplifier of the type Maxon

4-Q-EC, providing control of the motor current.

Setpoint values for the motor current are read from

analog input in the range of 0–5 V. Moreover, a laser

proximity sensor of the type ODSL9 by Leuze is used

for contactless displacement measurement. The sensor

provides a maximum resolution of 0.1 mm in the maxi-

mum measuring range of 50–650 mm of distance. Here,

the measuring range was configured to an interval of

65 mm. The motion control algorithm is implemented

using LabView and a National Instruments USB I/O

board of the type NI USB 6229, featuring 32 analog

input and 4 analog output ports of 16 bit resolution.

To drive the actuator, output values are computed by

the control algorithm according to the actual displace-

ment of the tip, which is captured by the laser proxim-

ity sensor.

Data acquisition

The AE technique relies on the measurement of surface

waves, such as Rayleigh and Lamb waves.28 Therefore,

small surface displacements need to be detected to

record AE. Consequently, signals obtained from AE

measurements are characterized by high frequency con-

tent and low amplitudes. Hence, high sensitivity of the

measuring system and high acquisition rates are cru-

cial.12 For instance, Al-Jumaili et al.29 used a sampling

rate of 5 MHz for AE monitoring.

A generic measuring chain for AE applications con-

sists of sensors, amplifiers, and data acquisition hard-

ware.6 To record surface waves generated by AE, a

surface-mounted, piezoelectric acceleration sensor is

employed, because it is a robust and well-established

technology in the field of AE. It consists of a disk-

shaped piezoceramic element of 0.55 mm thickness and

Ø10 mm in diameter featuring a resonant frequency of

3.6 MHz. As the bonding agent, cyanoacrylic glue was

used to attach the sensor to the specimen. This couplant

was reported to provide good reproducibility compared

with other couplants.30 Furthermore, the stiff bonding

improves transmission properties of in-plane wave

modes and provides permanent bonding of the sensor

to the structure.31 To capture the low-power sensor

response produced by the piezoelectric element, the sen-

sor is connected to a pre-amplification device which

drives the A/D conversion hardware. For data acquisi-

tion, a field-programmable gate array (FPGA) board

offering 16 bit resolution at a maximum sampling rate

of 25 MHz is used. A sampling rate of 4 MHz was cho-

sen as the suitable trade-off between resolution and

technical requirements. The waveforms were acquired

continuously.

Examples of the acquired waveforms are presented

in Figures 2 and 3, respectively. Here, the time series

data as well as joint time–frequency domain representa-

tion using continuous wavelet decomposition are pre-

sented. The event shown in Figure 2 is considered

as representative of delamination. The source motion

of this fracture mechanism is mainly characterized byFigure 1. Components of the mechanical test rig, SRS U DuE.

1210 Structural Health Monitoring 18(4)



out-of-plane displacement. According to the literature,

AE events of high amplitude exhibiting a dominant

flexural wave mode are presumably associated with

delamination.3,9,11 Furthermore, these waveforms are

highly dispersive and show long durations.12 In general

agreement, the frequency content of delamination is

reported in the lower frequency band of the ultrasonic

regime at the frequencies of [50 kHz, 150 kHz] accord-

ing to Gutkin et al.,13 whereas Hamdi et al.10 reported

lower frequencies of delamination events in the range

of [30 kHz, 90 kHz]. In contrast to this, the AE wave-

form presented in Figure 3 is attributed to the class of

fiber breakage. This type of damage occurs, if the maxi-

mum strain of the fiber is exceeded due to excessive

deformation of the matrix material. Here, the rapid

redistribution of stress due to the reinforcement failure

primarily activates in-plane source motion. Therefore,

high-frequency extensional modes featuring short rise

time and duration are associated with fiber breakage.3,9

According to the literature, the peak frequency is loca-

lized at frequencies above 300 kHz. The maximum

frequency range of fiber breakage was reported by

Bohse32 at frequencies in the range of [350 kHz,

700 kHz], whereas the lowest interval was reported as

[300 kHz, 400 kHz] by Suzuki et al.33

Time–frequency analysis

The physical meaning, and hence interpretability of a

measurement signal, is closely linked to the actual rep-

resentation. Usually, damage information is not readily

available from the time domain representation of a sig-

nal.34 Therefore, feature extraction is performed and

damage-specific signatures are identified for diagnostic

purposes. Furthermore, it can provide compression of

the acquired data. Signal transforms, such as STFT,

wavelet transform (WT), and HHT are mathematical

methods which can be used to study AE signals in the

frequency domain.10

In the context of this work, frequency domain fea-

tures of transient AE bursts are determined by means

of STFT, which provides acceptable data compression

rates due to windowing. However, this method is lim-

ited by the trade-off between time and frequency resolu-

tion, which is related to the uncertainty principle. Here,

the lower bound of time and frequency resolution is

given as

Dt � Dw �
1

2

where Dt and Dw denote the time and frequency reso-

lution, respectively.35 Increased window sizes lead to

improvement in frequency resolution and decrease in

time resolution. Furthermore, considering a particular

window size, the time–frequency resolution is fixed.

Pattern recognition

The SVM is a supervised classification algorithm, which

has emerged from the original research of Vapnik in the

late 1970s. Due to its high accuracy and good generali-

zation performance,36 SVM is widely used in various

pattern recognition tasks such as image classification,37

data mining,38 and classification of faults in rotating

machinery.39 In this work, LIBSVM library is used for

classification of AE waveforms.40

The goal of the training algorithm is to determine an

optimal decision function in terms of a separating

hyperplane, which geometrically separates different

classes according to the training data. These data

points, which are located closest to the separating

hyperplane—referred to as support vectors—are of sig-

nificant importance, because they ‘‘contain all the

information to design the classifier.’’41 To obtain a

solution for training data, where different classes are

Figure 2. Time and time–frequency representation of
delamination events.

Figure 3. Time and time–frequency representation of fiber
breakage events.
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not linearly separable, kernel functions are employed to

perform a linear transformation of the feature space.36

From a practical point of view, Lin et al. advise using a

radial basis function (RBF) kernel as the first choice.

The stated reason is that there are fewer numerical dif-

ficulties to be faced compared to other kernel func-

tions.42 In addition to class predictions, probability

estimates are computed to assess the reliability of the

results obtained from the deployed model using the

implementation described by Chang and Lin.40 By

default, the SVM provides only predictions of the class

label based on the decision value f̂ computed from the

feature vector x. To obtain class conditional probabil-

ities pi =P(y= ijx), i= 1, . . . , k, in a classification

problem with k classes, pairwise class probabilities

P(y= ijy= iorj, x) are estimated as

rij’
1

1+ eAf̂ +B

where A and B are determined according to training

data.40 Finally, by solving the optimization problem

min
p

1

2

Pk

i= 1

P

j:j 6¼i

(rjipi � rijpj)
2

subject to pi � 0, 8i,
Pk

i= 1

pi = 1

class conditional probabilities pi are obtained.
40

Results

In this work, experiments were conducted to investigate

the performance of the proposed classification scheme

and related dependencies with respect to the load

applied. To this end, AE measurements were conducted

on multiple specimens, while they were subjected to

cyclic loading patterns. Here, the loading of the struc-

ture promotes micro-mechanical fracture of the mate-

rial as a result of damage propagation and, hence,

activates characteristic AE source mechanisms.

Statistical pattern recognition is employed to determine

the underlying fracture mechanisms from the acquired

AE waveforms. However, AE is an in situ inspection

technique, that is, damage detection will only be possi-

ble on the initiation or propagation and is therefore

non-deterministic.43 Moreover, considering structures

under load, additional variability of the classification

results may be related to the evolution of individual

defects. Furthermore, loading conditions reportedly

affect the activation of AE source mechanisms in alu-

minum specimens, which has already been found by

Gagar et al.27 Therefore, measurements are performed

at different points in time, while keeping the excitation

motion constant to study the spread of classification

performance over time due to statistical scattering and

damage evolution. Moreover, measurements are per-

formed using variable loading conditions as well as to

investigate the impact of loading conditions on the clas-

sification performance.

A labeled dataset containing true class labels is con-

structed based on the results from several fracture

tests. In particular, three-point bending as well as

indentation flexure tests were employed. During each

experiment, a large number of different AE signals

can be detected, which are related to the fracture of

the specimen. Reportedly, each of the damage modes

can be identified in connection with three-point bend-

ing,10 whereas indentation flexure tests promote pri-

marily delamination.29 From these experiments,

several characteristic peak frequencies could be identi-

fied. The lowest characteristic frequency was assigned

to delamination exhibiting peak frequencies in the

spectrogram at approximately 45 kHz, which is in

accordance with the findings of several authors.10,13

Furthermore, matrix crack is attributed to the peak

frequencies of 95 kHz, which is in line with multiple

reports from the literature.7,10,16,44 Moreover, debond-

ing is presumably associated to the frequencies of

approximately 245 kHz, which is in accordance with

the literature.7,10,13,16 Finally, the maximum frequency

of 300 kHz is assigned to fiber breakage, which is

located at the lower end of frequencies being report-

edly related to fiber breakage.10,16,44 From each of the

four classes, namely, (1) delamination, (2) matrix

crack, (3) debonding, and (4) fiber breakage, 60 repre-

sentative samples of AE were selected from a set of 13

fracture tests to construct a dataset for SVM training.

Here, using a window size of 1024 data points, a set of

119 STFT coefficients between 40 and 500 kHz are

used as input to the classifier. The corresponding

dataset is illustrated in Figure 4.

The classification performance of the SVM algo-

rithm was evaluated using 10-fold cross validation.

Here, an RBF kernel was used as proposed by Lin

et al.,42 where the optimal classifier parameters C and g

were determined with respect to cross validation accu-

racy using grid search. Performance measures are sum-

marized in Table 1. In general, good classification

performance is achieved on this dataset.

During the cyclic loading experiments, coupon-

shaped specimens with the dimensions 75 mm 3 175

mm 3 1.8 mm were used. The specimens were manu-

factured from carbon fiber/epoxy composite material

consisting of three layers of ½908=08=908� unidirectional
layup patterns and two woven carbon/epoxy prepregs.

Furthermore, similar initial damage was introduced to

each specimen by means of three-point bending,

because a strain threshold must be exerted to initiate

AE activity in bending tests.17 Using carbon fiber/

1212 Structural Health Monitoring 18(4)



polymer composites, a significant fraction of the break-

ing load needs to be applied to give rise to micro-

mechanical fracture due to the high bending elasticity

of the material. According to Hamstad,45 only low AE

activity is detected at 90% of breaking load if unda-

maged composite material is subjected to cyclic bend-

ing load. Therefore, split crack was introduced as

initial damage prior to cyclic bending experiments.

Constant excitation

To investigate the spread of the classification results

over time, the excitation motion was kept constant and

several measurements were performed at different points

in time. Each series of measurements covers 20 min of

time, while data acquisition was initiated every 5 min

for a duration of 2 s. Accordingly, five datasets were

recorded per test series. The results of two measurement

series subjecting a single specimen to two different exci-

tation motions of (1) [8 mm, 4 Hz] and (2) [18 mm,

5 Hz] are presented. Three classes (delamination, matrix

crack, and debonding) are considered. To assess the

reliability of the classification results, the mean values of

the probability estimation are considered.

In Figure 5, results of the probability estimation

which are related to excitation motion (1) are pre-

sented. This loading pattern is characterized by small

amplitudes and intermediate frequency of cyclic load.

In this example, probability estimates between 80%

and 90% are achieved in most of the cases. The lowest

probability estimates are obtained for matrix crack.

The highest values of the probability estimation are fre-

quently related to debonding. Furthermore, no signifi-

cant changes in the probability estimates are apparent

over the duration of the experiment.

Similar results were obtained using controlled excita-

tion motion (2), which provides increased load inten-

sity. The results are presented in Figure 6. Again,

significant changes in the probability estimation could

not be detected during the experiment. However, com-

pared to the results of excitation (1), the overall classifi-

cation performance could be improved using increased

intensity of the loading pattern. This is especially

noticeable in case of matrix crack. Furthermore, the

highest probability estimation is now obtained for dela-

mination in most of the cases, whereas the best results

were usually obtained for debonding using lower load

intensity (see Figure 5).

The main conclusion to be drawn from these experi-

ments is that the results obtained remain constant over

Figure 4. Visualization of the dataset used to build the
classifier.

Table 1. Cross validation performance.

Class Accuracy Specificity Sensitivity

Delamination 0.94 0.85 0.96
Matrix crack 0.95 0.90 0.96
Debonding 0.94 0.87 0.96
Fiber breakage 0.97 0.93 0.98

Figure 5. Mean values of probability estimation over time (1).

Wirtz et al. 1213



time. Only low scattering of the classification perfor-

mance is observed among different points in time indi-

cating that during operation and test time fundamental

changes to the initial damage pattern due to, for exam-

ple, crack development are not observed. This is impor-

tant, because it excludes the related effects for the

further experiment series to be reported in the sequel.

However, an effect of the load intensity on the prob-

ability estimates is apparent. Generally, a slight

improvement in the probability estimation of the classi-

fication results using higher load amplitude and fre-

quency is evident. Also, the class with the highest

probability estimation is different depending on the

load intensity indicating the dependence of classifica-

tion reliability on loading conditions. Therefore, a

detailed investigation of the effect of loading conditions

on the classification performance is presented.

Variable excitations

The evaluation of the classification performance pre-

sented in Table 1 is agnostic of environmental influ-

ences such as loading conditions, since they work on a

finite set of example data. To investigate from a princi-

ple point of view the dependence of the classification

reliability on the loading conditions, several specimens

of composite material were subjected to different cyclic

loading patterns. Each of the specimens is treated iden-

tically. Prior to the experiments, a split crack is intro-

duced, so that mode I crack opening occurs as a result

of bending load. To show that the reliability of the clas-

sification results typically varies depending on the load-

ing conditions, three specimens S-I to S-III are selected.

During the experiments, AE measurements were

performed while subjecting each of the specimens to

any pair of the frequencies [2 Hz, 3 Hz, 4 Hz, 5 Hz,

6 Hz] and amplitudes [6 mm, 9 mm, 12 mm, 15 mm,

18 mm]. Hence, 25 datasets were acquired per speci-

men. During each measurement, data were acquired

for 1.25 s. Furthermore, each series of measurements

follows the identical sequence. The first measurement

was carried out using the lowest excitation amplitude

and frequency of [6 mm, 2 Hz]. Hereafter, the fre-

quency of the excitation motion was increased stepwise

up to 6 Hz prior to increasing the excitation amplitude.

The classification results of each series of measure-

ment performed on specimens S-I to S-III are summar-

ized in Table 2. Similar to the previous experiments, the

mean values of the probability estimation are computed

from each dataset. From these results, contour plots are

rendered to illustrate the dependence of probability esti-

mation on the excitation motion. Here, the probability

estimation is plotted on a color scale, while the x- and

y-axes denote the amplitude and frequency of the exci-

tation motion, respectively. Damage detection with a

high probability estimate is denoted by red shade. In

case if no damage was detected, the probability estima-

tion was set to 0, which corresponds to dark blue shade.

Good results are generally achieved in connection

with delamination. This damage mode is detected at

any of the excitations. In many cases, high probability

estimation is achieved. However, regions of excitation

conditions (frequency, amplitude) leading to the best

probability estimates differ among the specimens.

Regarding matrix crack, a strong dependency

between loading patterns and classification results is

apparent. Especially regarding specimen S-I, matrix

crack could not be detected in several cases depending

on the excitation. Considering specimens S-II and S-

III, improvement of the probability estimates related

to the classification results is observed on increasing

load amplitudes. In contrast, using specimen S-I

matrix crack is most frequently detected at small load

amplitudes.

Considering debonding, the effect of excitation

motion on the classification performance is more pro-

nounced. Using each of the specimens, damage was not

detected depending on the loading pattern. Especially

in the case of S-I, debonding could only be detected

during a single measurement. Similarly, improved dam-

age detectability is observed on increasing load ampli-

tudes. Considering specimens S-II and S-III, it is

noticeable that the regions related to the best classifica-

tion results are different among the specimens.

Fiber breakage could also be detected throughout

each loading pattern. Analyzing the related probabil-

ity estimations, improved results are frequently

obtained for larger load amplitudes. However, using

specimen S-III improved results at high frequency of

the loading pattern. In contrast, improved probability

estimation is obtained at low excitation frequencies in

the case of S-I.

According to the experimental results presented in

this section, strong dependences of (1) damage detect-

ability and (2) the reliability of the classification result

on excitation motion become evident. Whereas

Figure 6. Mean values of probability estimation over time (2).

1214 Structural Health Monitoring 18(4)
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delamination and fiber breakage appear to be less sen-

sitive to variable excitations, the classification results of

matrix crack and debonding strongly vary with excita-

tion motion. Due to a high degree of variability among

the specimens and classes, a direct relationship between

excitation motion and classification reliability could

not be established. Nevertheless, cumulative trends are

apparent. Frequently, increased load amplitudes lead

to improvements in the detectability of damage and the

corresponding probability estimate of the classification

result. Also an increase in the frequency of the cyclic

loading pattern leads to improved probability estimates

in several cases. Similar findings are reported by the

results of Gagar et al.,27 in which influences on the acti-

vation of AE source mechanisms are investigated using

different aluminum specimens under cyclic loading con-

ditions. Here, large scattering of the AE waveform fea-

tures under identical test conditions was observed.

Furthermore, these results indicate cumulative trends

in AE source activation with respect to loading

conditions.

Discussion

Viewing the results considering the reliability of SHM

systems, the question of which method can be used to

evaluate the reliability of SHM systems rises. In the

past, several ideas have been reported which address

different aspects to adopt POD philosophy to SHM

applications. For instance, in contrast to conventional

NDT the results of SHM systems are statistically not

independent due to high acquisition rates.21 In this con-

text, Schubert Kabban et al.21 proposed a new metho-

dology to adopt POD procedures to provide

compatibility with dependent measurement data, which

are obtained from SHM systems. Furthermore, multi-

ple approaches developed to assess the reliability of

SHM systems are summarized by Mandache et al.25 In

particular, time-based POD is proposed to address the

effect of damage evolution.25 It is suggested to find a

formulation of the POD, which enables stating the

probability of detecting specific defect growth within a

given time interval. Multi-dimensional POD is pro-

posed to take the effect of several in situ effects, that is,

loading conditions, on SHM reliability into account.25

This includes the computation of POD with respect to

each influencing factor to determine the actual reliabil-

ity of the SHM system in particular situations.

However, the approach requires availability of quanti-

tative information on each influencing factor.

Furthermore, quantitative knowledge regarding the

impact of in situ effects on the reliability is necessary.

In order to minimize the experimental effort required

to determine POD, model-assisted approaches can be

used.20 Cobb et al.26 proposed a model-assisted

approach for determining POD of crack detection in

aluminum specimens using an in situ ultrasonic inspec-

tion technique. Moreover, Eckstein et al.46 proposed a

methodology to quantify SHM performance using

cumulative distribution functions to establish a prob-

abilistic relationship between the detected and real

damage size. From this representation, multiple metrics

of SHM performance, such as minimum detectable

damage size to define a lower bound of POD as accu-

racy of the inspection method, and the probability of

false alarm are derived. However, identification of the

underlying distribution functions is—particularly in the

context of in situ inspection techniques, where a poster-

iori verification of real damage size is usually not

possible—still an open issue.

From the aforementioned approaches to SHM relia-

bility assessment, it is noticeable that the common weak

point is characterized by missing detailed knowledge

about the impact of different factors on SHM-related

reliability properties. In this context, the experimentally

shown results from the previous section state that the

loading (which is unknown in practice) strongly affects

the detectability of defects as well as the distinguishabil-

ity of different damages. However, large scattering of

the results prevents the establishment of a direct rela-

tionship, which strongly aggravates the online monitor-

ing as well as the verification of healthy states.

Summary and outlook

Reliability assessment of the supervised SHM systems

is an open issue which has to be solved before SHM

comes into practice, especially regarding composite

materials, which provide several advantages in many

engineering applications. Currently, the more extensive

use of composite material is restricted because safety

and reliability requirements cannot be met due to com-

plex damage modes. Due to its practical relevance,

diagnosis regarding detection and discrimination of

four different fracture mechanisms leading to failure

composite material was chosen in this work as a show-

case of SHM. The experimental results using a damage

classification scheme were discussed with respect to

their reliability.

To investigate influences on the classification relia-

bility of deployed models, a mechanical test rig is used

to subject specimens of composite material to various

cyclic loading patterns. During loading of the speci-

mens, AE measurements are performed. Furthermore,

STFT and SVM are chosen as an example for the

extraction of time–frequency domain features from

time series data and classification of the measurement

results. Two different types of experiments were

1216 Structural Health Monitoring 18(4)



performed. At first, constant excitations were used to

assess the reproducibility of the classification results.

Significant effects of damage evolution could not be

detected, leading to the assumption that the test condi-

tions are constant for the duration of the following

experiments. Hereafter, a second series of experiments

were performed using variable excitation motions.

From the experimental results, it becomes evident that

the performance of the classifier strongly depends on

the excitation motion. However, a direct relationship

could not be established due to large spreading of the

classification results among multiple specimens of iden-

tical structure, partly leading to contradicting observa-

tions. Based on the chosen example related to fault

detection and damage discrimination in CFRP mate-

rial, the large scattering of the classification reliability

under identical testing conditions is identified as a new

scientific challenge in the context of reliability assess-

ment of SHM systems.
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