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SUMMARY  Audio-Visual Speech Recognition (AVSR) is one of tech-
niques to enhance robustness of speech recognizer in noisy or real environ-
ments. On the other hand, Deep Neural Networks (DNNs) have recently at-
tracted a lot of attentions of researchers in the speech recognition field, be-
cause we can drastically improve recognition performance by using DNNs.
There are two ways to employ DNN techniques for speech recognition: a
hybrid approach and a tandem approach; in the hybrid approach an emis-
sion probability on each Hidden Markov Model (HMM) state is computed
using a DNN, while in the tandem approach a DNN is composed into a fea-
ture extraction scheme. In this paper, we investigate and compare several
DNN-based AVSR methods to mainly clarify how we should incorporate
audio and visual modalities using DNNs. We carried out recognition exper-
iments using a corpus CENSREC-1-AV, and we discuss the results to find
out the best DNN-based AVSR modeling. Then it turns out that a tandem-
based method using audio Deep Bottle-Neck Features (DBNFs) and visual
ones with multi-stream HMM:s is the most suitable, followed by a hybrid
approach and another tandem scheme using audio-visual DBNFs.

key words: audio-visual speech recognition, deep neural network, Deep
Bottleneck Feature, multi-stream HMM

1. Introduction

Automatic Speech Recognition (ASR) has been developed
for many years, and nowadays ASR is widely used on many
devices such as cell phones and car navigation systems.
However, ASR has been still suffering from degradation of
recognition performance in noisy or real environments. To
overcome this issue, many techniques have been proposed
and used, achieving successful improvement; beam form-
ing is a signal processing technique to extract a target signal
using microphone arrays, which enables us to reduce back-
ground noises and obtain emphasized speech signals[1];
in acoustic feature extraction, Spectral Subtraction (SS) [2]
and Cepstral Mean Normalization (CMN) [3] are often em-
ployed to remove noise influence and channel distortion; ad-
justing recognition models according to test data is also ef-
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fective in ASR: e.g. Maximum A Posteriori (MAP) [4] and
Maximum Likelihood Linear Regression (MLLR) [5].

In addition to these techniques above, Audio-Visual
Speech Recognition (AVSR) also known as bimodal speech
recognition or multi-modal speech recognition, has been
investigated for this couple of decades[6]-[8]. Since lip
movement is not basically affected by acoustic noise, vi-
sual information can play a great role in the condition
where ASR performance severely decreases. There are sev-
eral research topics in terms of AVSR; making audio-visual
databases, e.g. [9]-[11], is essential as a first step of AVSR
researches; how to extract effective audio and visual fea-
tures is also important [12]-[16]; several works were de-
voted to investigate audio-visual integration, efficient recog-
nition modeling and adaptation, for example [17]; many
ASR systems use Voice Activity Detection (VAD) which ex-
tracts speech turns from acoustic signals, therefore, audio-
visual VAD has also been explored as well [18], [19]; in ad-
dition, we should develop real-time AVSR systems and ap-
plications on mobile devices like [20].

Recently, deep learning has attracted a lot of attentions
in signal processing and pattern recognition domains, in-
cluding computer vision and speech recognition fields. In
particular, a Deep Neural Network (DNN) is often employed
in these pattern recognition fields. There are two DNN-
based strategies for ASR: a hybrid approach [21] and a tan-
dem approach [22]. In the hybrid approach, an emission
probability on each Hidden Markov Model (HMM) state is
computed using a DNN. In the tandem approach, a DNN
is composed into a feature extraction scheme. Many works
related to DNNs have been dedicated for audio-only ASR,
showing both hybrid and tandem approaches are effective to
improve ASR accuracy. As one of the tandem approaches,
some of authors also have investigated a feature extraction
method using a DNN having a bottleneck layer [23]. In this
paper, we call such the feature vector Deep BottleNeck Fea-
ture (DBNF) [23].

Several studies using DNNs in AVSR have been al-
ready done as introduced in the following section. However,
there are few researches investigating DBNFs to improve
recognition performance of AVSR not only in clean but also
noisy environments. Furthermore, we should compare an
AVSR method using DBNFs with an AVSR scheme em-
ploying the hybrid strategy. Therefore, we mainly focus on
how to incorporate audio and visual modalities in AVSR that
uses DNNs. Particularly, in this work we investigate which
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method is suitable for DBNFs, and when integrating audio
and visual modalities either before or after applying DNNS.
Moreover, we also clarify which scheme is better for AVSR,
a hybrid approach or a tandem approach with multi-stream
HMMs. We built several AVSR methods, some of which
were based on the tandem approach and the other was based
on the hybrid approach. We then tested these methods us-
ing an audio-visual corpus CENSREC-1-AV [9], to find out
which method is suitable for AVSR.

The rest of this paper is organized as follows. Section 2
briefly describes related works. DNN-based modeling and
feature extraction investigated in this paper are introduced
in Sect. 3. Section 4 shows experimental setup, result and
discussion. Finally Sect. 5 concludes this paper.

2. Related Works

First, related works using DNNs in ASR are briefly intro-
duced. As mentioned, in general there are two approaches:
a hybrid method [21] and a tandem strategy [22]. A conven-
tional HMM employs a Gaussian Mixture Model (GMM)
on each state, to calculate an emission probability for a
given feature vector. This kind of HMM is nowadays called
GMM-HMM. In the hybrid approach, emission probabili-
ties are obtained as posteriori probabilities instead, which
are based on output scores of DNN. This approach is often
called DNN-HMM. On the other hand, in the tandem ap-
proach, a DNN is exploited to extract feature vectors. Using
this strategy, we can build an extracted feature set accord-
ing to training data. There are two ways to obtain feature
vectors in the tandem approach; output values of DNN are
straightforwardly chosen; alternatively, a DNN is designed
to include a certain hidden layer having relatively few per-
ceptrons, often called a bottleneck layer, and output values
of the layer are composed as a feature vector. This paper
focuses on the second scheme, e.g. [23].

There are many researches related to AVSR. As men-
tioned in Sect. 1, several researchers have tried to develop
DNN-aided AVSR schemes; a bimodal deep audoencoder
was proposed to obtain multi-modal feature vectors [24]; a
deep belief network was also utilized performing middle-
level feature combination[25]; another research used a
DNN to check audio-visual synchrony when combining au-
dio and visual features [26]; in terms of recognition mod-
els, multi-stream HMMs, that are often employed in AVSR,
were built using features obtained by deep denoising autoen-
coder [27].

We aim at investigating DNN-based AVSR mainly
from the viewpoint of audio and visual integration. This
paper firstly focuses on audio-visual feature extraction re-
lated to the previous works [24]-[26]. We have proposed
an AVSR scheme to use DBNFs, achieving significant im-
provement [28], [29]. In general, there are two architectures
to extract audio-visual features; audio features are computed
using DNNs from basic audio ones, simultaneously visual
features are obtained as well, before both features are com-
bined; alternatively, basic audio and visual features are con-
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catenated followed by applying DNNs to calculate audio-
visual features. However, according to our knowledge, there
is no work to compare these approaches. Secondly, we
compare a hybrid-based scheme and tandem-based AVSR
methods that particularly using multi-stream HMMs. Both
methods respectively have advantages and disadvantages for
ASR; the hybrid approach can usually achieve higher perfor-
mance, however, it is difficult to apply conventional model
adaptation that is much effective in real environments; in
the tandem approach, we can easily employ conventional
techniques including multi-stream HMMs for AVSR. Be-
cause there is no prior knowledge about these approaches
for AVSR, this paper also tries to find out which strategy is
better.

3. DNN-Based AVSR

We investigate several DNN-based modeling and feature ex-
traction schemes for AVSR. In this section, these methods
proposed in this paper are respectively introduced in addi-
tion to baseline systems without DNNs. Figure 1 summa-
rizes all the methods.

3.1 Baseline(l): GMM-HMM Using MFCC and PCA

A baseline system having conventional modeling and fea-
ture extraction schemes is prepared. A conventional 39-
dimensional Mel-Frequency Cepstral Coefficient (MFCC)
vector is employed as an audio feature f,, where ¢ is a frame
index. A visual feature vector consists of 10-dimensional
eigenlip parameters [12] as well as their A and AA coef-
ficients. Eigenlip feature extraction is based on Principal
Component Analysis (PCA). Let us denote a raster-scan
vector from a lip image by r; = (v,,) having intensity val-
ues vy, of every pixels (x,y) in a ¢-th image. A covari-
ance matrix of training feature vectors is decomposed to
orthogonal vectors (eigenvectors) with corresponding vari-
ances (eigenvalues). A transformation matrix A is then ob-
tained by choosing eigenvectors that have larger eigenvalues
over a certain threshold. Now we can compute a static visual
feature vector s, from an input feature in Eq. (1):

si=A-r (D

followed by computing time derivatives of s, to generate a
visual feature vector f,,. An audio-visual feature vector
S, is finally generated by concatenating audio and visual
feature vectors as Eq. (2):

fav,z = (fu,th fu,t—r)—r 2

where T indicates transpose. Note that before the above
process, audio and visual frame rates must be consistent. In
most cases, a visual frame rate is lower then an audio one.
Thus in our work, visual feature vectors are interpolated us-
ing a spline function so that both feature vectors could be
synchronized. This synchronization is based on the original
baseline scheme in CENSREC-1-AV [9].
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Fig. 1

Model training is simply carried out as follows. At
first, audio GMM-HMMs are built using embedded training
with the Maximum Likelihood (ML) criterion. Next, time-
aligned labels are obtained using the audio HMMs and clean
audio training data. Visual GMM-HMMs are subsequently
estimated using ML-based bootstrap training with the time-
aligned labels. Finally, both HMMs are simply combined
into audio-visual HMMs so that audio and visual modalities
have equal influence. This training method is also based on
CENSREC-1-AV. When recognizing test data, the Viterbi
algorithm is applied for audio-visual features.

3.2 Baseline(m):
MFCC and PCA

Multi-Stream GMM-HMM  Using

Another baseline system is also considered in this work.
The same feature extraction method is employed as the last
baseline scheme, while a recognition model is modified. In
AVSR, a multi-stream HMM is often employed which can
adjust contributions of audio and visual modalities. Let us
denote log likelihoods obtained from audio and visual mod-
els by b.(f,,) and b,(f,,), respectively. A log likelihood
ba(f 4, for an audio-visual feature vector f,,, in a multi-
stream HMM is then formulated as Eq. (3):

bav (fau,t) = /laba(fa,t) + /lvbv(fu,z) (3)

where A, and A, are stream weight factors for audio and vi-
sual streams, respectively. By controlling these factors prop-
erly, we can improve recognition performance of AVSR.

AVSR methods using DNNs (numbers in brackets indicate feature dimensions).

Note that model training is almost the same as Base-
line(l), except introducing multi-stream HMMs in the last
step. Therefore, stream weights do not affect model train-
ing, and are only in effect when recognizing test data.

3.3 Hybrid: DNN-HMM Using Conventional Features

Instead of GMM-HMM, this hybrid method employs a
DNN-HMM. At a #-th frame, a concatenated vector ¢, is
prepared as Eq. (4), by combining consecutive audio-visual
features:

T
T T T
Cavt = (fav,t—T ’fau,t—T+1 [ fau,H—T ) (4)

The concatenated vector corresponds to an input layer of
DNN. Each perceptron on an output layer generates an emis-
sion probability for an HMM state. As mentioned later, this
paper employs 11 HMMs each having 16 states and one
HMM including three states. Thus the number of states is
179 in total, meaning the output layer has 179 units. Fig-
ure 2 depicts a DNN structure for the hybrid approach. DNN
training consists of two stages: pre-training and fine-tuning;
unsupervised pre-training is conducted in a layer-wise man-
ner [30], before all parameters are fine-tuned [31].

3.4 Tandem(i): GMM-HMM Using DBAVF
In this method, a conventional GMM-HMM is adopted

while feature extraction is based on deep learning. From an
audio-visual feature vector c,,; consisting of MFCCs and
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Fig.3 A DNN for a tandem approach.

eigenlip parameters, a DBNF vector d,,;, is obtained us-
ing a DNN. We call this DBNF vector derived from an ini-
tially combined feature Deep Bottleneck Audio-Visual Fea-
ture (DBAVF). Similar to the hybrid approach, a DNN is
built where an input layer corresponds to ¢, and an out-
put layer corresponds to HMM states. The difference from
the hybrid approach is that, the DNN has a bottleneck layer.
Using the bottleneck layer, we can obtain DBAVF. Figure 3
illustrates a structure of DNN. Once DBAVFs are obtained,
model training and recognition can be conducted in the same
manner as the baseline schemes; audio-visual HMMs are
built applying ML-based embedded training using DBAVFs
in a training data set. In this work, two methods (i40) and
(180) are prepared to investigate influence of dimensionality.

3.5 Tandem(l): GMM-HMM Using DBAF and DBVF

This scheme also chooses GMM-HMMs and DBNFs. In
contrast to the last method, a DBNF vector is computed
in each modality before both DBNFs are fused in the /ate
stage. To obtain an audio DBNF d,,, consecutive MFCC
vectors are incorporated into one vector Cqy AS:

.
Car = (fa,t—TT7fa,t—T+1T’ T ’fa,HTT) &)

2447

Fig.4  Anexample of lip image.

before the vector is converted to a DBNF using an audio
DNN. A visual DBNF d,, is computed from a concatenated
visual vector ¢,, as well. We call the audio feature Deep
Bottleneck Audio Feature (DBAF), and the visual feature
Deep Bottleneck Visual Feature (DBVF). An audio-visual
feature vector d;), is then composed as:

dacys = (do," 40,7 (©)

Note that DNN training, model training and recognition are
the same as the previous methods.

3.6 Tandem(m): Multi-Stream GMM-HMM Using DBAF
and DBVF

We also prepare a tandem-based approach employing multi-
stream HMMs. Using log likelihoods in audio and visual
modalities b,(d,,) and b,(d,,), an audio-visual log likeli-
hood b,,(d 4),) for an audio-visual feature vector d, ), can
be obtained as Eq. (7):

by (dav(l),l) = /laba(da,t) + /lvbv(du,t) (7

4. Experiment

In order to compare AVSR methods in Sect. 3, we conducted
recognition experiments using an audio-visual corpus. In
this section, database and experimental setup are introduced,
followed by experimental result and discussion.

4.1 Database

In this paper, a Japanese audio-visual corpus CENSREC-1-
AV was used [9]. CENSREC-1-AV is designed to evaluate
AVSR, providing training and test data. Each utterance in
this database consists of 1-7 connected digit(s). The training
data set includes 3,234 utterances spoken by 20 female and
22 male subjects. There are 1,963 utterances in the test set,
made by 26 female and 25 male speakers. All the speech
data were recorded at the sampling rate of 16kHz. Assuming
that we would apply AVSR to in-car environments where
illumination condition is drastically changed, infrared gray-
scale mouth images were chosen, of which size is 81 x55. A
sample image is shown in Fig. 4. In order to obtain eigenlip
features, all mouth images were resized into 40 x 27 gray-
scale ones. Note that the cumulative contribution ratio for
10-dimensional eigenlip features was 76%.
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Table1  Specification of training and test data sets.
(a) Summary
Training set Test set

# of speakers 42 51
# of utterances | 3,234 1,963

. clean speech, clean speech,
Audio 15 noisy speeches® 30 noisy speeches®
Visual infrared infrared

(b) Noise condition for training data set

SNR 20dB 15dB 10dB 5dB 0dB —-5dB
Cityroad X X X X X
Expressway X X X X X

Music X X X X X
Music+Cityroad

Music+Expressway

(c) Noise condition for test data set

SNR 20dB 15dB 10dB 5dB 0dB —-5dB
Cityroad X X X X X X
Expressway X X X X X X
Music X X X X X X
Music+Cityroad X X X X X X
Music+Expressway X X X X X X

To train DNNSs and recognition models, and to evaluate
AVSR in different noise conditions, not only clean data but
also noisy data were prepared. Interior car noises recorded
on cityroads and expressways provided in CENSREC-1-
AV (Cityroad and Expressway), as well as musical wave-
forms (Music) were respectively added to clean speech data
at several SNR levels (20dB, 15dB, 10dB, 5dB, OdB and
—5dB). In addition, two kinds of noisy speech data were
also prepared; cityroad noise and musical sound were si-
multaneously added to speech data (Music+Cityroad), and
similarly, expressway noise and musical sound were over-
lapped to speech waveforms (Music+Expressway). As
a result, clean speech data and 30 kinds of noisy speech
data were prepared. All the kinds of speech data were
included in the test set, while the training data set con-
sisted of clean speech data as well as cityroad-, expressway-,
and music-overlapped (Cityroad, Expressway, and Music)
noisy speeches, excluding —5dB data. Both data sets are
summarized in Table 1.

4.2 Experimental Setup

Feature extraction setup for MFCC and eigenlip was the
same as those used in CENSREC-1-AV; in this work, we
did not apply noise reduction techniques such as SS and
CMN. A current feature vector in addition to previous five
and incoming five feature vectors were concatenated (7' = 5)
to make an input feature vector of DNN, when computing
DNN-HMM, DBAVF, DBAF and DBVF, respectively. We
have investigated some DBAFs, and found 40-dimensional
one can achieve good performance. In order to easily dis-
cuss and compare DBNFs, we chose the same dimension
for DBVFs and DBAVFs, except 80-dimensional ones.
Experimental setup of DNN is shown in Table 2. A sig-
moid function was basically chosen as an activation func-
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Table 2

(a) The number of units on each layer.

Experimental setup for DNNs.

Input Hidden Bottleneck  Output
DNN-HMM 759 2,048 - 179
DBAVF(80) 759 2,048 80 179
DBAVF(40) 759 2,048 40 179
DBAF(40) 429 2,048 40 179
DBVF(40) 330 2,048 40 179

(b) Pre-training and fine-tuning settings.

Pre-training  Fine-tuning
# of epochs 10 50
Minibatch size 256 256
Learning ratio 0.004 0.006
Momentum 0.9 0.0

tion. A DNN used in the hybrid method had three hid-
den layers, while DNNs used for the tandem methods had
five hidden layers when training. When computing DBNFs,
a bottleneck layer is located as a fourth hidden layer, just
as Fig.3. Therefore, the number of layers from the input
layer to the output (hybrid) or bottleneck (tandem) layer was
the same. We simply adopted the number of hidden layers
based on the conventional setting that has been used in most
speech recognition. For an audio DNN, we have tested a
couple of conditions in our past works and found this condi-
tion is the best. Regarding DBAVFs and a hybrid approach,
we assumed that the same architecture would be suitable be-
cause the number of training data samples was the same. It
is actually true that input feature dimensions were differ-
ent, however, only hidden layers next to input layers was
changed and might be strongly affected. Finally, in the vi-
sual modality, the amount of training data for a visual DNN
was much less which might be insufficient to investigate the
optimal condition. Thus in this work, we chose the same
unified condition. We consequently believe influence of em-
ploying the same architecture among these DNNss is limited
in this work, even though we should explore the best DNN
setting for each method.

In terms of modeling, a left-to-right HMM was pre-
pared for each word (digit) and silence. A digit HMM
consisted of 16 states, while a silence HMM had 3 states.
For GMM-HMMs, each state in the digit HMM contained
20 Gaussian components, while there were 36 compo-
nents on each state in the silence HMM. Note that there
were 11 digit HMMs (one, two, ---, nine, zero and oh)
in the following experiments. Model adaptation such as
MAP and MLLR was not applied. In this paper, we
set stream weight factors empirically; we tested 11 pairs
(A4, Ay) = (1.0,0.0),(0.9,0.1),---,(0.0,1.0) and chose the
weights that achieved the best recognition performance for
all test data. Optimizing stream weights according to test
condition is of course important, however, is also one of cru-
cial challenges in AVSR. Because we would like to separate
the issues, in this paper we kept stream weights for all test
conditions.
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Fig.5 Digit recognition accuracy for unimodal methods.

4.3 Experimental Result and Discussion

We evaluated each recognition method by digit recognition
accuracy for all the test data. Figure 5 shows recognition
results of audio-only and visual-only recognition schemes.
From Fig. 5, it is obvious that using DBNFs (DBAF and
DBVF) can improve recognition accuracy. Particularly in
the audio modality, approximately 40% relative error re-
duction was observed, showing effectiveness of DBNF in
speech recognition.

Next, we compared audio-only, visual-only, and AVSR
methods. Figure 6 indicates recognition results of AVSR
approaches. It is interestingly found that some bimodal
results were slightly degraded from the unimodal results,
in particular from the audio ones: for example, MFCC
(39.7%) vs Baseline(l) (38.8%), and, DBAF (63.9%) vs Tan-
dem(l) (60.7%). Since the visual performance was lower
than the audio one, the visual modality could not contribute
to performance improvement as long as simply concatenat-
ing both features and using conventional GMM-HMMs. In
other words, in order to improve recognition performance
by adopting AVSR, a certain framework to effectively in-
corporate audio and visual modalities, or to balance audio
and visual contributions in a recognition model is essential.

Here, we investigated audio-visual integration frame-
works. Firstly, two DBAVFs (i40) and (i80) were com-
pared. It is observed that the former approach (i40) is su-
perior to the latter one (i80). This means that we can effi-
ciently compact audio-visual information by using the fea-
ture (i40). Secondly, we discussed tandem(i40) and tan-
dem(l) schemes. Compared with the tandem(i40) method,
the tandem(l) approach was a little worse. When training a
feature extraction scheme for the tandem(i40) method, au-
dio and visual information were simultaneously and com-
plementarily used. This means audio information affected
the visual modality and vice versa. When building a GMM-
HMM in the tandem(l) method, however, audio informa-
tion was only used for audio model parameters, and visual
data also affected visual model parameters only. This might
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Fig.6  Digit recognition accuracy for AVSR methods.

cause such the difference. Thirdly, we compared the tan-
dem(i40) method that was the best method so far, with the
hybrid scheme. As a result, recognition performance of the
hybrid method was higher. The difference between both
methods is how to use DNN outputs; in the hybrid method
DNN outputs were used as emission probabilities directly,
whereas in the tandem(i40) approach outputs on a bottle-
neck layer were composed as a feature vector for GMM-
HMMs. This indicates using DNN-HMMs can strongly en-
hance the performance of AVSR.

It is finally observed that the tandem(m) method can
significantly improve recognition performance compared
to the other AVSR approaches including the hybrid ap-
proach. It is difficult to employ audio-visual balancing
frameworks like multi-stream HMMs in the hybrid and tan-
dem(i) schemes. This means that it is the best for AVSR
to use DNNs for feature extraction and to employ a multi-
stream framework. In terms of stream weights, the best
recognition performance in the tandem(m) approach was
obtained when using 4, = 0.6 ~ 0.7 and 4, = 03 ~
0.4. We also found visual information can contribute even
in the clean condition. These facts indicate that the vi-
sual stream always improves the performance. In terms of
noises, we found that the best stream weight pair depends
more strongly on SNRs than noise type.

To briefly conclude, incorporating audio and visual
modalities after applying DNNs and adopting multi-stream
HMMs to balance both contributions are quite effective in
AVSR. However, combing both modalities before applying
DNNs is also useful to some extent. If we have numerous
training data, such the balancing architecture can be also in-
cluded in DNNS, and thus there is still a potential to employ
a hybrid method in AVSR.

5. Conclusion

This paper investigated several kinds of AVSR methods us-
ing DNNs, mainly focusing on how to incorporate audio
and visual modalities in AVSR that uses DNNs. We pre-
pared two baseline methods using conventional features.
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A hybrid-based AVSR scheme as well as four tandem-
based AVSR approaches exploiting DBNFs were also built.
Evaluation experiments were conducted using CENSREC-
1-AV. Recognition results tell us integrating audio and vi-
sual modalities after obtaining DBNFs from DNNs with a
balancing framework i.e. multi-stream HMMs is the most
suitable. A hybrid approach and a tandem method using
DBAVFs may be also useful if we can get more audio-visual
data.

Finally as our future work, further investigating DNN-
based AVSR frameworks using a large-scale audio-visual
database will be held to verify the potential of the hybrid and
DBAVF methods and to determine the optimal condition of
DNNs. We will also apply our scheme to the other tasks
such as Large Vocabulary Continuous Speech Recognition
(LVCSR). In addition, involving better audio and visual fea-
tures for DNNGs like [29] is also expected.
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