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H. Şirin

Department of Physics, Faculty of Science, Ege University
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Department of Physics, Institute of Science and Technology,

Dumlupınar University Kütahya, 43100, TURKEY
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In this paper, charging and discharging processes of different capacitors in electrical RC circuit are considered theoretically and experimen-

tally. The non-local behaviors in these processes, arising from the time fractality, are investigated via fractional calculus. In this context, the

time fractional differential equation related to electrical RC circuit is proposed by making use of Caputo fractional derivative. The result-

ing solution exhibits a feature in between power law and exponential law forms, and is obtained in terms of Mittag-Leffler function which

describes physical systems with memory. The order of fractional derivative characterizes the fractality of time and being considered in the

interval 0 < α ≤ 1. The traditional conclusions are recovered for α = 1, where time becomes homogenous and system has Markovian

nature. By using time fractional approach, the discrepancies between the experimentally measured data and the theoretical calculations have

been removed.
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1. Introduction

A series combination of a resistance and a capacitor is the

simplest RC circuit and shown in Fig. 1. The initially un-

charged capacitor begins to charge when the switch is closed.

V (t) is the time dependent voltage (potential difference)

across the capacitor and can be found by using Kirchhoff’s

current law. These results are in the following differential

equation which is linear and first order

RC
dV (t)

dt
+ V (t) = ε. (1)

The solution of Eq.(1) yields the following formula

V (t) = ε
[
1 − e−

1
RC

t
]
. (2)

As can be seen in Fig. 2, if the circuit consists of only an

initially charged capacitor and a resistance, the capacitor be-

gins to discharge its stored energy through the resistance over

time. The differential equation written by using Kirchhoff’s

current law is as follows,

RC
dV (t)

dt
+ V (t) = 0. (3)

By solving this equation, it can be seen that the time de-

pendent voltage across the capacitor yields the formula for

exponential decay:

V (t) =
Q

C
e−

t
RC , (4)

where, Q is the capacitor charge at time t = 0 [1].

Almost all of the physical processes have a non-

conservative feature, since they involve irreversible dissipa-

tive effects such as friction. As a result of these dissipative ef-

fects, time-reversal symmetry fails for non-conservative sys-

tems. Therefore, the equations which determine the non-

conservative systems should be non-local in time. But, the

well known equations used in standard calculations are lo-

cal in time, and inadequate to take into account the non-

conservative nature of physical processes. Hence, the exper-

imental results do not comply with standard theoretical cal-

culations. As an example, the dissipative effects caused by

electrical resistance or Ohmic friction are also found in the

electrical circuits [2,3]. In the literature, there exist numerous

studies with the aim of placing these dissipation effects on to

a relevant theoretical basis. With this purpose, the fractional

calculus is applied to a variety of electrical circuit problems
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FIGURE 1. Charging a capacitor in RC circuit.

FIGURE 2. Discharging a capacitor in RC circuit.

as a useful mathematical tool. The best known of these stud-

ies is Podlubny’s applications [4–6]. Another study on this

subject was carried out by Rousan et al. In that study, the

differential equations related to RC and RL circuits were

merged in a single equation [7]. In addition to these studies,

singular fractional linear systems and positivity, and reach-

ability of fractional electrical circuits were studied by Kac-

zorek [8, 9]. Applications of integer and fractional models

in electrochemical systems, the simple free running multivi-

brator built around a single fractional capacitor and evolu-

tion of a current in a resistor were examined by Jesus and

Machado [10], Maundy et al. [11] and Obeidat et al. [12],

respectively. A new and simple algorithm was proposed to

obtain analytical solution of the time fractional Fokker–Plank

equation which arises in circuit theory by Kumar [13].

The purpose of this study is to provide a mathematical

formalism in order to compensate the incompatibility be-

tween theoretical and experimental results. It is an interest-

ing contradiction that Eq. (1) and Eq. (3) are linear and lo-

cal in time, while the realistic behavior of the RC electric

circuit is non-linear and non-local in time due to ohmic fric-

tion and temperature. It could be said that linear approach

is only an idealization of the description of the RCelectrical

circuit. According to us, the non-locality arising from time

fractality and the non-linear behavior of RC electrical cir-

cuit can be described in a realistic manner with the help of

fractional derivatives. In the previous studies for this pur-

pose, linear equation, namely Eq. (1), is considered with

fractional derivatives, but these equations are not acceptable

physically due to the dimensional incompatibility of the so-

lutions [14–16].

Gomez et al. have proposed a fractional differential

equation for mechanical oscillations of a simple system [17],

transmission line model [18], RLC circuit [19] and RC cir-

cuit [20–22]. To keep the dimensionality of the differential

equations a new parameter σ was introduced. The existence

of fractional structures in the system was characterized by the

parameter σ. They defined a relation between the fractional

derivative order (α) and this new parameter (σ).

Different from the aforementioned studies, in the present

study, Planck units are used to preserve the dimensional com-

patibility in Eq. (1). Thus, both sides of the fractional form

of the Eq. (1) have same dimension. The Planck time in

our calculations corresponds to the σ parameter introduced

by Gomez et al. [17–20]. The empirical relationship between

α and σ was defined as α = σ/RC in [20]. The σ parameter,

characterizing the fractional structures in system, is changed

with respect to the fractional derivative order α. However,

Planck time tp used in this study is constant.

The present paper is organized as follows. In Sec. 2, a

brief overview of fractional calculus is presented. In Sec. 3,

Eq. (1) is fractionalized by using a Caputo fractional deriva-

tive operator, and the solution of fractional equation is ob-

tained in terms of Mitag-Leffler function. In Sec. 4, by mak-

ing use of different capacitors and resistances, the numerical

calculations have been performed for charging and discharg-

ing RC circuits, and the non-linear behavior of RC electrical

circuit is investigated with the help of graphical representa-

tions. Finally, conclusions are summarized in the last section.

2. Mathematical Preliminary

Fractional calculus is a field of mathematical analysis where

integral and derivative operators of non-integer order take

place. More realistic description of the physical systems has

been proposed by making use of the derivatives of fractional

order. Some fundamental definitions used in the literature are

the Riemann-Liouville, the Grünwald-Letnikov, the Weyl and

the Caputo fractional derivatives [4, 23–28]. In the previous

section, we will prefer to use Caputo fractional derivative to

formulate the initial value problems related to RC electrical

circuit. The reason of this choice is that the initial conditions

of the problems taken into account by using Caputo fractional

derivative are physically acceptable. On the other hand, when

the Riemann-Liouville fractional derivative is used, one en-

counters physically unacceptable initial conditions [4].
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In the Riemann-Liouville formalism, the fractional inte-

gral of order α is given by

Jαf(t) =
1

Γ(α)

t∫

0

(t − τ)α−1f(τ)dτ, (5)

where, α is any positive real number and Γ(α) is Gamma

function. By using the Riemann-Liouville fractional integral,

Caputo’s fractional derivative is defined as follows:

Dα
c f(t) = Jm−αDmf(t), (6)

Dα
c f(t) : =





1
Γ(m−α)

t∫
0

f(m)(τ)
(t−τ)α+1−m dτ, m−1 < α ≤ m,

dmf(t)
dtm α = m,

(7)

where, α > 0 is the order of fractional derivative and m is

the smallest integer greater than α, namely m− 1 < α ≤ m.
The Laplace transform of the Caputo’s fractional derivative

is formulated as follows:

L(Dα
c f(t)) = sαF (s) −

m−1∑

k=0

sα−k−1(D(k)f(t) |t=0), (8)

where, F (s) is the Laplace transform of the function f(t),
and s is the Laplace transform parameter. Before concluding

this section, it is useful to briefly introduce the Mittag-Leffler

function which plays an important role in the theory of frac-

tional differential equations. This function is defined by the

series expansion

Eα(x) =

∞∑

n=0

xn

Γ(nα + 1)
, (9)

and is a generalization of the exponential function, i.e.,

E1(x) = exp(x) [23-26].

3. Fractional Calculus Analysis of Electrical

RC Circuit

For analyzing the physical processes by using the related dif-

ferential equations, Planck units have a special importance

since they describe the mathematical expressions of physi-

cal laws in a non-dimensional form. In this context, Eq. (1)

which represents the charging RC circuit given in Fig. 1, can

be rewritten in a non-dimensional form by using Planck time

unit as follows:

tp
dV (t)

dt
+ tp

1

RC
V (t) = tp

ε

RC
(10)

where, tp =
√

~G/c5 is Planck time, ~, G and c are reduced

Planck constant, gravitational constant and speed of light, re-

spectively. In Eq. (10), the first order time derivative can be

changed to a fractional time derivative of order α. Thus, the

time-fractional differential equation of electrical RC circuit

is given by

tαp Dα
c V (t) + tp

1

RC
V (t) = tp

ε

RC
(11)

where, Dα
c denotes the Caputo fractional derivative. The

Planck time tp in Eq. (11) varies with power α in order to

preserve the units of V (t) [24]. For α = 1, Eq. (11) reduces

to the standard one. This situation is acceptable physically

since the both sides of the Eq. (11) have same dimensions,

namely volt.

The solution of Eq. (11) can be obtained by performing

the Laplace transform to Eq. (11) which leads to

Ṽ (s) =
t1−α
p ε

RC

1

sα+1

(
sα

sα +
t
1−α
p

RC

)
(12)

where, Ṽ (s) is the Laplace transform of the V (t). By follow-

ing the way introduced in [24], Eq. (12) can be expressed as

a series expansion

Ṽ (s) = −ε

∞∑

n=1

(−1)n
(

t1−α
p

RC

)n

snα+1
. (13)

Then performing the inverse Laplace transform to each terms

of Eq. (13) leads to the following results;

V (t) = ε


1 −

∞∑

n=0

(
−

t1−α
p

RC
tα

)n

Γ(nα + 1)


 , (14)

V (t) = ε

[
1 − Eα

(
−

t1−α
p

RC
tα

)]
, (15)

where, Eα

(
−

t1−α
p

RC
tα

)
represents the Mittag-Leffler func-

tion.

4. Results and Discussion

During the charging capacitor, experimental values and cal-

culated results obtained from Eq. (2) are not exactly equiv-

alent. To eliminate this inconsistency, Eq. (1) has been re-

defined by using Planck time unit and Caputo definition of

fractional derivative as Eq. (11), and the solution of this new

equation has been obtained as Eq. (15).

The laboratory experiments have been performed in Elec-

tronic Laboratory of Physics Department in Dumlupınar Uni-

versity. Eq. (2) and Eq. (15) have been used for comparison

of the standard and fractional calculations with experimental

results respectively.

To obtain the measurement data, the RC circuit in Fig. 1

has been set up by making use of ε = 1 V, R = 10 kΩ and

different capacitors such as C = 0.047 F, C = 0.0423 F,

C = 0.0376 F, C = 0.0329 and C = 0.0282 F. In calcula-

tions, the value of internal resistance of battery is included in

the R value of resistance. In Fig. 3, for the aforementioned
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FIGURE 3. During charging a capacitor, the changing of volt-

age of capacitor in the course of time for ε = 1 V, R = 10 kΩ

and different capacitors which are C = 0.047 F, C = 0.0423 F,

C = 0.0376 F, C = 0.0329 and C = 0.0282 F. (The error bars

have been shown with yellow).

five different capacitors, experimental results have been com-

pared with the standard and fractional calculations respec-

tively. In fractional calculations, the values of fractional

derivative order are taken as α ≈ 0.998. As can be seen in

Fig. 3, the experimental values are smaller than the standard

ones. However, for the fractional derivative order α ≈ 0.998,

the fractionally calculated results are almost equivalent to the

experimental values.

For the values of ε = 1 V, C = 0.047 F and five differ-

ent resistance such as R = 1 kΩ, R = 2 kΩ, R = 3 kΩ,
R = 4 kΩ and R = 5 kΩ the comparisons of standard and

fractionally obtained results with the experimental data are

shown in Fig. 4. As can be seen in Fig. 4, the voltage val-

ues obtained from standard calculations are bigger than the

experimental ones, whereas the fractionally obtained results

are consistent with the experimental data for the α ≈ 0.998
value.

This discrepancy between the experimental data and the

results obtained from standard calculations means that, some

losses are not taken into account in the standard approach.

We think that, the resistances caused by circuit components

lead to these losses. The standard mathematical approach

FIGURE 4. During charging a capacitor, the changing of voltage

of capacitor in the course of time for ε = 1 V, C = 0.047 F and

different resistances which are R = 1 kΩ, R = 2 kΩ, R = 3 kΩ,

R = 4 kΩ and R = 5 kΩ. (The error bars have been shown with

yellow).

presumes this event as a linear process, and recommends us-

ing a linear differential equation i.e., Eq. (1). Whereas the

physical process observed in electrical RC circuit is nonlinear

and non-local in time. Hence, using a linear differential equa-

tion is not an appropriate mathematical tool for description of

this process. The realistic manner of the process is that, the

resistance value (R) of circuit elements is not a constant pa-

rameter, and typically increases with increasing temperature.

The temperature dependence of resistance is usually defined

in the following equation

R = R0 [1 + a (T − T0)] (16)

where, a is called the temperature coefficient of resistance,

T0 is a reference temperature (room temperature), and R0

is the resistance at temperature T0. Here, a is a fitting pa-

rameter obtained from measurement data, and varies with the

reference temperature. Therefore, Eq. (16) is only a linear

approximation, and assuming the temperature coefficient of

resistance a as a constant parameter is an idealization for de-

scription the physical process [25]. It is concluded from this

fact that, the parameter a is not a constant, and the temper-

ature dependence of the resistance has a nonlinear form in

a realistic manner. Since the values of resistance increase
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FIGURE 5. During discharging a capacitor, the changing of volt-

age of capacitor in the course of time for R = 10 kΩ and different

capacitors which are C = 0.047 F, C = 0.0423 F, C = 0.0376 F,

C = 0.0329 and C = 0.0282 F.

nonlinearly with increasing temperature, the voltage value of

capacitor leads to a lower value than the predicted value by

Eq. (2). This loss of voltage due to the temperature is taken

into account by using fractional calculus approach. As seen

in Figs. 3 and 4, fractional calculus approach places the ex-

perimental results on a more realistic theoretical basis, and

defines the nonlinear behavior of the physical process more

close to reality. From these results, it could be said that there

is a close relationship between temperature and fractional

derivative order alpha. From microscopic point of view, it is

well known that temperature could be considered as a mea-

sure of energy. According to Heisenberg uncertainty princi-

ple, energy and time are closely related to each other. So,

it is plausible to think that a similar relation could be found

between temperature and time. According to our opinion, in-

creasing temperature of the resistance gives rise to fraction-

alization of time. In fractional formalism, this fractality of

time is measured by fractional derivative order alpha, and the

non-locality behavior of the physical process in time can be

determined by Eq. (11). Since the temperature coefficient of

resistance a depends on the reference temperature, a similar

relationship may also be exist between the a coefficient and

the fractional derivative order α. Consequently, fractional

derivative order α can be accepted as a measure of nonlinear-

ity of the physical process and non-locality behavior in time.

The case of α = 1 corresponds to linear situation (ideal case

or local behavior in time) where the resistance values (R)
are considered as a constant parameter, and the temperature

(energy) and time are not conjugate to each other, whereas

the case of α 6= 1 corresponds to nonlinear situation of the

physical process (realistic behavior that is non-local in time).

For the circuit shown in Fig. 2, it is seen from Fig. 5

that the experimental data are equivalent to the results ob-

tained from the solution of Eq. (3). In this case, since there

is no power supply in circuit, the effect of temperature could

be omitted. Hence there is no need to make time-fractional

approach (α = 1).

5. Conclusion

In this study, different from the Refs. 17 to 20, the Planck-

time has been used to preserve the dimensional compatibility

in equations. Hence, fractional differential equation of the

electrical RC circuit is determined as Eq. (11). Dimension of

each side of this equation is equal to each other.

As can be seen in Figs. 3 and 4, the traditional (standard)

results are bigger than the experimental results for both dif-

ferent capacitors and resistances. This situation shows that

there are some dissipative effects which are not considered

in the standard theoretical calculations. These dissipative ef-

fects, which occur due to the ohmic friction and temperature,

make the behavior of the electrical RC circuit be nonlinear

and non-local in time. Consequently, instead of the standard

calculations, Eq. (11) is more useful to describe the nonlin-

ear behavior of the electrical RC circuit in a more realistic

manner. In this context, the measured experimental results

could be exactly obtained within the fractional calculus ap-

proach for the order α ≈ 0.998 of the fractional derivative.

For the case of α = 1, the fractionally obtained solutions

which emerge in the scope of the study recover the solutions

of the traditional calculations.

In the microscopic level, energy and time cannot be han-

dled independently from each other. From thermostatistics

point of view, energy and temperature are also closely re-

lated to each other. Hence, it is plausible to say that temper-

ature and time are conjugate to each other, and the change

of temperature gives rise to fractionalization of time. Con-

sequently, the energy losses, caused by dissipative effects

such as ohmic friction (or temperature dependent electrical

resistance), could be taken into account by time fractional

approach.
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