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ABSTRACT

End-to-end speech synthesis is a promising approach that

directly converts raw text to speech. Although it was shown that

Tacotron2 outperforms classical pipeline systems with regards to

naturalness in English, its applicability to other languages is still

unknown. Japanese could be one of the most difficult languages

for which to achieve end-to-end speech synthesis, largely due to

its character diversity and pitch accents. Therefore, state-of-the-

art systems are still based on a traditional pipeline framework that

requires a separate text analyzer and duration model. Towards end-

to-end Japanese speech synthesis, we extend Tacotron to systems

with self-attention to capture long-term dependencies related to

pitch accents and compare their audio quality with classical pipeline

systems under various conditions to show their pros and cons. In a

large-scale listening test, we investigated the impacts of the presence

of accentual-type labels, the use of force or predicted alignments,

and acoustic features used as local condition parameters of the

Wavenet vocoder. Our results reveal that although the proposed

systems still do not match the quality of a top-line pipeline system

for Japanese, we show important stepping stones towards end-to-end

Japanese speech synthesis.

Index Terms— speech synthesis, deep learning, Tacotron

1. INTRODUCTION

Tacotron [1] opened a novel path to end-to-end speech synthesis. It

enables us to directly convert input text to audio. Unlike traditional

pipeline methods that typically consist of separate text analyzer,

acoustic, and duration models, Tacotron handles everything as a

single model, which reduces laborious feature engineering and error

propagation across cascaded models. Indeed, Tacotron2, which is a

combination of the Tacotron system and WaveNet [2], successfully

generated audio signals that resulted in very high MOS scores

comparable to human speech [3].

The above achievements of Tacotron and Tacotron2 and similar

results reported for Clarinet [4], and Transformer based TTS [5]

are confirmed only for English, and there have been only a few

investigations into such architectures with other languages to the

best of our knowledge. This is partially or mainly because

additional challenges must be overcome for other languages. This

study focuses on the Japanese language, which is among the most

challenging languages.

∗This work was partially supported by JST CREST Grant Number
JPMJCR18A6, Japan and by MEXT KAKENHI Grant Numbers (16H06302,
17H04687, 18H04120, 18H04112, 18KT0051), Japan.

Japanese writing has three types of orthographical characters:

Hiragana, Katakana, and Kanji (Chinese). The diversity of

characters in Japanese causes a critical problem related to rare

characters. Moreover, Japanese is a pitch-accented language,

and accentual-types (accent nucleus positions) may change the

meanings of words. However, accentual-types are not explicitly

shown in Japanese characters. Moreover, due to the accent sandhi

phenomena, accent nucleus positions are context dependent, so

they change positions depending on adjacent words. Because of

these problems, state-of-the-art systems for Japanese are dominantly

pipeline systems that still rely on an external text analyzer including

hand-written dictionaries and rules of pitch accent types for each

word or word-to-accentual-type predictors trained on such external

resources [6]. An end-to-end approach may potentially simplify

these process in data driven way.

Towards the development of end-to-end Japanese TTS systems,

we apply the Tacotron system to the Japanese language. We first

propose enhanced systems with self-attention to capture long-term

dependency better. We then compare their audio quality with that

of classical pipeline systems under various conditions. Finally, we

conduct a large-scale listening test to investigate the impacts of the

presence of accentual-type labels, the use of force- or predicted

alignments, and acoustic features used as local condition parameters

of the Wavenet vocoder.

The remaining part of this paper is structured as follows. In

Section 2, we describe our Japanese Tacotron systems enhanced

with self-attention. Section 3 shows experimental conditions and

the results of a large-scale listening test. Section 4 concludes with

our findings and our future work.

2. PROPOSED ARCHITECTURES FOR JAPANESE TTS

2.1. Tacotron using phoneme and accentual type

In this section, we describe our slightly modified baseline Tacotron

[1] that can handle Japanese accentual-type labels. We refer to

this system as JA-Tacotron. Figure 1-A shows its architecture.

Tacotron is a sequence-to-sequence architecture [7] that consists

of encoder and decoder networks. Unlike classical pipeline

systems with explicit duration models, Tacotron uses an attention

mechanism [8] that implicitly learns alignments between source

and target sequences. In this paper, we use phoneme and

accentual-type sequences as a source and mel-spectrogram as a

target as our first investigation towards end-to-end Japanese speech

synthesis. This baseline architecture is inspired from [9], which

applied Tacotron to the Chinese language. On the encoder side,

phoneme and accentual-type sequences are embedded to separate

embedding tables with different dimensions, and the embedding
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Fig. 1: Architectures of proposed systems with accentual-type

embedding. A: JA-Tacotron. B: SA-Tacotron, C: SA-Tacotron using

vocoder parameters.

vectors are bottle-necked by their corresponding pre-nets [1]. The

two inputs are then concatenated and encoded by Convolution

Banks, Highway networks, bidirectional-LSTM (CBH-LSTM) with

zoneout regularization [10].

At the decoder, encoded values are decoded with attention

based LSTM decoder. We use forward attention [9] instead of

additive attention [8] as an attention mechanism. As suggested in

[9], the forward attention accelerates the alignment learning speed

and provides distinct and robust alignment with less training time

than the original Tacotron. The decoder LSTM is regularized with

zoneout as well as the encoder since it is expected that the zoneout

regularization will reduce alignment errors. We set the reduction

factor to be two so that the decoder outputs two frames at each

time step. A predicted mel-spectrogram is converted to an audio

waveform with WaveNet [2]. We use a frame shift of 12.5 ms for the

mel-spectrogram to train the JA-Tacotron model as in [3]1

2.2. Extending Tacotron with self-attention

A pitch-accent language like Japanese uses lexical pitch accents

that involve F0 changes. Japanese is a ”mora-timed” pitch-accent

language: that means there is an accent nucleus position counted

in mora units within an accentual phrase. Pitch accents have

a large impact on the perceptual naturalness of speech because

incorrect pitch accents may be judged as incorrect “pronunciations“

by listeners even if they have correct phone realization. Moreover,

accentual phrases in Japanese normally have mora of varying

lengths. Since the length of an accentual phrase could be very

long, we hypothesize that long-term information plays a significantly

important role in TTS for pitch accent languages.

Therefore, we propose a modified architecture by introducing

”self-attention” after LSTM layers at the encoder and decoder as

illustrated in Figure 1-B. It is known that by directly connecting

distant states, self-attention relieves the high burden placed on

LSTM to learn long-term dependencies to sequentially propagate

information over long distances [11]. This extension is inspired

from a sequence-to-sequence neural machine translation architecture

proposed by [12]. We refer to this architecture as SA-Tacotron.

1Our WaveNet model for JA-Tacotron is trained by fine-tuning using a
ground truth mel-spectrogram with a frame shift of 12.5 ms starting with an
existing model trained with a mel-spectrogram with a frame shift of 5 ms in
order to make comparison with TTS systems using vocoder parameters fairer.
We use softmax distribution as an output layer of WaveNet.

The self-attention block consists of self-attention, followed by a

fully connected layer with tanh activation and residual connection.

We use multi-head dot product attention [12] as an implementation

of self-attention. This block is inserted after LSTM layers at the

encoder and decoder. At the encoder, the output of CBH-LSTM

layers is processed with the self-attention block. Since LSTM

can capture the sequential relationships of inputs, we do not use

positional encoding [5]. Both self-attended representation and the

original output of the CBH-LSTM layers are final outputs of the

encoder.

At the decoder, the two outputs from the encoder are attended

with a dual source attention mechanism [13]. We choose a different

attention mechanism for each source, forward attention for the

output of CBH-LSTM and additive attention for the self-attended

values. This is because we want to utilize the benefits of both:

forward attention accelerates alignment construction, and additive

attention provides flexibility to select long-term information from

any segment. In addition, we can visualize both alignments. Unlike

the encoder, self-attention works autoregressively at the decoder. At

each time step of decoding, the self-attention layer attends all past

frames of LSTM outputs and outputs only the latest frames as a

prediction output. The predicted frames are fed back as input for

the next time step.2

2.3. Tacotron using vocoder parameters

Explicitly modeling the fundamental frequency (F0) might be a

more appropriate choice for TTS systems for pitch-accent languages.

To incorporate F0 into the proposed systems, we further developed

a variant of SA-Tacotron by using vocoder parameters as targets. We

use mel-generalized cepstrum coefficients (MGC) and discretized

logF0 as vocoder parameters, and we predict these parameters with

Tacotron. We choose 5 ms for the frame shift to extract MGC and

F0 as such fine-grained analysis conditions are typically required

for reliable speech analysis based on vocoderes. However, note

that this condition is not a natural choice for training Tacotron,

which typically uses coarse-grained condition, usually 12.5 ms

frame shifts and 50 ms frame lengths, to reduce input and output

mismatch. With a frame shift of 5 ms, the length of target vocoder

parameter sequences becomes 2.5 times longer than the normal

12.5 ms condition. In other words 2.5 times longer autoregressive

loop iteration is required to predict a target, so this task is much

more challenging. To alleviate the difficulty, we set the reduction

factor to be three in order to reduce the target length. This setting

results in 5/3 times longer target length compared to SA-Tacotron in

the previous section.3

Figure 1-C shows the modified architecture of the SA-Tacotron

using MGC and logF0 as targets. To handle the two types of vocoder

parameters, we introduce two pre-nets and three output layers at the

decoder. The output layers include a MGC prediction layer that

consists of two fully connected layers followed by tanh and linear

activations, a logF0 prediction layer which is a fully connected

layer followed by softmax activation, and a stop flag prediction layer,

which is a fully connected layer followed by sigmoid activation. We

2At training time, since all target frames are available, this computation
can be parallelized by applying a step mask. Since the decoder depends on
LSTM, the whole computation cannot be parallelized, but this optimization
decreases memory consumption because all past LSTM outputs do not need
to be preserved at each time step to calculate gradients on a backward path
in backpropagation algorithm. Thanks to this optimization, we can train the
extended architecture with a negligible increase in training time.

3We tried larger reduction factors, but the audio quality deteriorated as
the reduction factor increased.



represented discretized logF0 as one-hot labels at training time, but

feed back predicted probability values at inference time [14]. We use

L1 loss for MGC and cross entropy error for discretized logF0 and

stop flag, and we optimize the model by using the weighted sum of

the three losses. The cross entropy error of logF0 is scaled by 0.45

to adjust its order to the other two loss terms.

3. EXPERIMENTS

3.1. Experimental conditions

We used a Japanese speech corpus from the ATR Ximera dataset

[15]. This corpus contains 28,959 utterances from a female speaker

and is around 46.9 hours in duration. The linguistic features, such as

phoneme and accentual-type label, were manually annotated, and

the phoneme label had 58 classes, including silence, pause, and

short pause [16]. To train our proposed systems, we trimmed the

beginning and ending silence from the utterances, after which the

duration of the corpus was reduced to 33.5 hours. We used 27,999

utterances for training, 480 for validation, and 142 for testing.

For the experiment, we built several TTS systems as listed

in Table 1. The JA-Tacotron and SA-Tacotron with and without

accentual-type labels were built to show whether the investigated

architectures can learn lexical pitch accents in an unsupervised

manner. We also built a SA-Tacotron that uses vocoder parameters

instead of mel-spectrogram as the acoustic features. In addition,

we included JA-Tacotron with forced alignment instead of predicted

alignment to understand the accuracy of duration modeling better.

With forced alignment, alignments are calculated with teacher

forcing, and target acoustic parameters are predicted with the

alignments obtained with teacher forcing. Note that, in this setting,

even though forced alignments are calculated with teacher forcing,

acoustic parameter prediction itself does not use teacher forcing.

For JA-Tacotron and SA-Tacotron, we allocated 32 dimensions

for accentual-type embedding and 224 dimensions for phoneme

embedding. For the models without accentual-type embedding, 256

dimensions were allocated to phoneme embedding. We set the

reduction factor to be two for the models using mel-spectrogram as

a target and three for the models using vocoder parameters. All the

predicted frames of the acoustic features were fed back as the next

input. At inference time, the inference was stopped on the basis of

a binary stop flag as in [3]. The network was optimized with Adam

optimizer [17]. We used exponential learning decay with an initial

rate 0.0005 for the models using mel-spectrogram, and 0.002 for the

models using vocoder parameters. We implemented our proposed

systems using TensorFlow4.

For baseline systems, we included two classical pipeline systems

that use vocoder parameters and mel-spectrogram [16], [18], [19].

Unlike the architecture of our proposed systems, these pipeline

systems used full context labels as linguistic features and needed

to have duration prediction models. To test how the accuracy of

duration prediction affects the naturalness of synthetic speech, we

compared phone duration predicted by a hidden semi-Markov model

(HSMM) with oracle alignments obtained by force alignments.

Finally, as a reference for how much listeners are sensitive to

incorrect lexical pitch accents, a baseline with slightly corrupted

accentual labels was also included.5

Two types of WaveNet models were trained for the experiment,

one taking the mel-spectrograms as the input and the other using the

4The source codes is availabe at https://github.com/nii-yamagishilab/self-
attention-tacotron

5This system is named MOC in [16].
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Fig. 2: Alignment obtained by dual source attention in SATMAP.

Top figure shows alignment between output of encoder’s LSTM

layer and target mel-spectrogram (forward attention). Bottom figure

shows alignment between output of encoder’s self-attention block

and target mel-spectrogram (additive attention). Vertical white lines

indicate accentual phrase boundaries obtained by forward attention.

MGC and F0 (vocoder parameters). These two WaveNets had the

same network structure as that in our previous study [19].

3.2. Objective evaluation

What does self-attention learn?: Figure 2 shows a visualization

of the attention layers of SA-Tacotron learned on the Japanese

corpus. The first figure from the top shows the alignment of an

encoder LSTM source and mel-spectrogram target for dual source

attention. We can clearly see a sharp monotonic alignment formed

by the forward attention. The second figure from the top shows the

alignment of an encoder self-attention source and mel-spectrogram

target. It seems to be related to accentual phrase segments and phrase

breaks divided by pauses.

What is the effect of accentual-type labels?: Figure 3 shows

predicted mel-spectrograms from SA-Tacotron with and without

accentual-type labels. Accentual phrase boundaries predicted by the

attention mechanism are also shown in the figure. From this figure,

through comparison with a natural spectrogram, we see that the

predicted spectrogram from SA-Tacotron without labels has wrong

accentual positions and harmonics, whereas that from SA-Tacotron

with labels does not. From informal listening, we also noticed that

SA-Tacotron without labels had incorrect accent nucleus positions.

Comparison of mel-spectrogram and vocoder parameters:

The alignment between source phoneme and target spectrogram

frames should monotonically increase. Non-monotonic alignment

may result in mispronunciation, some phonemes being skipped,

repetition, the same phoneme continuing, and intermediate

termination. We therefore manually counted abnormal alignment

errors included in the test set. We observed no alignment errors

for JA-Tacotron and SA-Tacotron using mel-spectrograms as a

target. However, alignment errors were found for SA-Tacotron using

vocoder parameters due to the longer length than the corresponding

mel-spectrogram. We found 19 alignment errors out of 142 test

utterances.

3.3. Subjective evaluation

We recruited 236 native Japanese speakers as listeners by

crowdsourcing. The listeners evaluated 32 samples from 16 systems

in a single test set. This includes natural speech and analysis by

synthesis (copy synthesis). One listener can evaluated at most 10

test sets. One sample was evaluated 20 times and we got 45,440

data points in total. Figure 4 shows five-point mean opinion scores



Fig. 3: Natural mel-spectrogram (top figure), mel-spectrogram

predicted from SA-Tacotron with accentual-type labels (middle

figure), and mel-spectrogram predicted from SA-Tacotron without

labels (bottom figure). Black arrow in the bottom figure points

wrong harmonics that results in wrong accent. White lines show

accentual phrase boundaries acquired from attention’s output.

Table 1: TTS systems used for our analysis. Notations are V:

vocoder parameters, M: mel spectrogram, A: accentual type label, N:

no accentual type label, P: predicted alignment, F: forced alignment.
System Architecture Acoustic feature Accent label Alignment

SATVAP

SA-Tacotron
MGC & F0 X predicted

SATMAP Mel-spec. 12.5 ms X predicted
SATMNP Mel-spec. 12.5 ms N/A predicted

TACMAP

JA-Tacotron Mel-spec. 12.5 ms

X predicted
TACMAF X force-aligned
TACMNP N/A predicted
TACMNF N/A force-aligned

PIPVAF

Pipeline
[16, 19]

MGC & F0 X force-aligned
PIPVAP MGC & F0 X predicted
PIPVCF MGC & F0 corrupted force-aligned
PIPMAF Mel-spec. 5 ms X force-aligned
PIPMAP Mel-spec. 5 ms X predicted

of the proposed and baseline systems for the listening test results.

Statistical significance was analyzed using the two-sided Mann-

Whitney statistical test.

What is the effect of accentual-type labels?: All proposed systems

without accentual-type labels got significantly lower scores than

the corresponding systems with labels; for example, JA-Tacotron

without labels had a score of 2.63 ± 0.03 whereas JA-Tacotron

with labels got 3.46 ± 0.03. This means that the architectures

of the proposed systems cannot learn lexical pitch accents in an

unsupervised fashion and require additional inputs. The pipeline

system with corrupted labels also showed a significant drop with a

score of 3.27 ± 0.03. This shows that incorrect accents affected

listener’s judgments towards the naturalness of the synthetic speech.

Does self-attention help?: SA-Tacotron had better scores than JA-

analysis by synthesis pipeline proposed systems

(5 ms)(12.5 ms)

Fig. 4: Box plots of MOS scores of each system regarding

naturalness of synthetic speech. Red circles represent average

values. NAT indicates natural speech. Refer to Table 1 for notations.

Tacotron for each condition with or without accentual-type labels.

This indicates that self-attention layers have a positive effect on the

naturalness. Among our proposed systems, SA-Tacotron with labels

(SATMAP) got the highest score of 3.60± 0.03.

Comparison of mel-spectrogram and vocoder parameters: SA-

Tacotron using vocoder parameters got a relatively low score, 2.99±

0.03, even if it used accentual-type labels and self-attention layers.

This is because this system generated alignment errors due to the

prediction of longer sequences as we described in the previous

section. Among the baseline systems, the systems using MGC and

F0 had higher scores than the systems using mel-spectrogram under

both the forced and predicted alignment conditions.

Comparison of predicted and forced alignment: Interestingly,

JA-Tacotron using forced alignment got lower scores than that

using predicted alignment under both conditions with and without

accentual-type labels. This result is surprising because, in traditional

pipelines, forced alignment is used as an oracle alignment and

normally leads to better perceptual quality than that of the predicted

case. Since Tacotron learns both spectrograms and alignments

simultaneously, it seems to produce the best spectrograms when

it infers both of them. Among the baseline pipeline systems, as

expected, a forced alignment gave higher scores than predicted

alignment for both systems using vocoder parameters and mel-

spectrogram. In the case of predicted alignment, the score has a

long tail variance towards the low score region.

Comparison of pipeline and Tacotron systems: The best proposed

system still does not match the quality of the best pipeline system.

SA-Tacotron with accentual-type labels and the pipeline system

using mel-spectrogram and predicted alignment had 3.60±0.03 and

3.90 ± 0.03, respectively. These are not the same results as for the

English experiments reported in [3]. One major difference of our

proposed systems from pipeline systems other than architecture is

input linguistic features; our proposed systems use phoneme and

accentual-type labels only, but the baseline pipeline systems use

various linguistic labels including word-level information such as

inflected forms, conjugation types, and part-of-speech tags. In

particular, an investigation on the same Japanese corpus found

that the conjugation type of the next word is quite useful for F0

prediction [20].

4. CONCLUSION

In this paper, we applied Tacotron to Japanese to extend it to a

pitch-accent language. We proposed phone-based Tacotrons with

and without accentual-type labels, one with self-attention layers

to capture long term information better, and one using vocoder

parameters including fundamental frequency. We conducted

objective and subjective evaluations. Among the proposed systems,

Tacotron with the self-attention extension outperformed that without

self-attention both with and without labels. However, we revealed

that, unlike experiments reported for English, the quality of

traditional pipeline systems is better than the proposed systems

for Japanese. We also found that choosing vocoder parameters is

beneficial to pipeline systems, but this is completely opposite for the

case of Tacotron.

One major difference of our proposed systems from the pipeline

systems is the absence of word level information in linguistic

features, so incorporating this information may improve the quality

of the proposed systems and bring them up to the pipeline system’s

level. Our next step towards end-to-end speech synthesis in various

languages is to incorporate word-level information such as Kanji.
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