Investigation of Environmental Kuznets Curve for Ecological Footprint: The Role of Energy and Financial Development

Mehmet Akif Destek, Samuel Asumadu Sarkodie

Institutions: University of Gaziantep, Macquarie University

Published on: 10 Feb 2019 - Science of The Total Environment (Elsevier)

Topics: Kuznets curve, Ecological footprint, Sustainability and Sustainable development

Related papers:

- A simple panel unit root test in the presence of cross-section dependence
- Testing for error correction in panel data
- A reinvestigation of EKC model by ecological footprint measurement for high, middle and low income countries
- Testing for Granger Non-causality in Heterogeneous Panels
- Toward a sustainable environment: Nexus between CO2 emissions, resource rent, renewable and nonrenewable energy in 16-EU countries

Share this paper:

View more about this paper here: https://typeset.io/papers/investigation-of-environmental-kuznets-curve-for-ecological-footprint-ecological-footprint-ecological-footprint-ecological-footprint-2z2dpc5fkp
Investigation of Environmental Kuznets Curve for Ecological Footprint: The Role of Energy and Financial Development

Destek, Mehmet Akif and Sarkodie, Samuel Asumadu

Gaziantep University, Macquarie University

11 September 2018

Online at https://mpra.ub.uni-muenchen.de/106881/
MPRA Paper No. 106881, posted 31 Mar 2021 11:35 UTC
Investigation of Environmental Kuznets Curve for Ecological Footprint: The Role of Energy and Financial Development

1Mehmet Akif DESTEK
1Department of Economics, Gaziantep University, Gaziantep, Turkey
adestek@gantep.edu.tr

2Samuel Asumadu SARKODIE†
2†Department of Environmental Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109 Australia
asumadusarkodiesamuel@yahoo.com

ABSTRACT

Climate change has become a global phenomenon due to its threat to sustainable development. However, economic development plays a complementary role in both climate change and sustainability. Thus, the environmental Kuznets curve hypothesis is critical to climate change policy formulation and development strategies. Accordingly, this study aims to examine the validity of environmental Kuznets curve hypothesis by investigating the relationship between economic growth, energy consumption, financial development, and ecological footprint for the period from 1977 to 2013 in 11 newly industrialized countries. For this purpose, this study uses both augmented mean group (AMG) estimator and heterogeneous panel causality method which are suitable for dependent and heterogeneous panels. The results of the estimator show that there is an inverted U-shaped relationship between economic growth and ecological footprint. According to the causality test results, it is concluded that there is bi-directional causality between economic growth and ecological footprint.
Keywords: Economic growth; energy consumption; ecological footprint; dependency; heterogeneity

JEL Classifications: Q01; Q56; Q57

1. Introduction

In recent decades, increasing visible signs of climate change and global warming lead to raising awareness of environmental degradation (IPCC, 2014). Similarly, the effect of economic activities on environmental degradation has become one of the most attractive topics for researchers. In this regard, the environmental Kuznets curve hypothesis is the most examined hypothesis which explains the relationship between income level and environmental pollution. According to the EKC hypothesis, environmental degradation is increased with the first stages of economic growth to a certain point, and after turning point, the economic development leads to environmental improvements, thus, an inverted U-shaped relationship between economic growth and environmental degradation (Panayotou, 1993).

Most of the studies on the relationship between economic growth and pollution have focused on utilizing carbon dioxide emissions as an indicator of environmental degradation (Salahuddin et al., 2015; Wang et al., 2016). However, carbon dioxide emissions is a portion of environmental degradation. In recent years, the ecological footprint of Wackernagel and Rees (1998) is accepted as the more comprehensive indicator to determine the degree of environmental degradation because it considers cropland, grazing land, fishing grounds, forestland, carbon footprint, and built-up land. Based on the above reasons, the main aim of this study is to examine the effect of economic growth and other possible predictors (energy consumption and financial...
development) on the ecological footprint for the period 1977-2013 in 11 newly industrialized countries namely South Korea, Singapore, Brazil, China, Turkey, Thailand, Malaysia, Mexico, India, South Africa and Philippines. The developmental dynamics of the 11 newly industrialized countries make them viable candidates to be studied, to understand their role in ecological footprints and provide more insight into climate change mitigation. The contributions of this study to the existing literature are as follows; first, this is the first study to examine the relationship between economic growth and ecological footprint in newly industrialized countries. Second, as an estimation of a bivariate empirical model may lead to unreliable results, this study uses a multivariate empirical model using energy consumption and financial development as explanatory variables. Third, unlike previous studies, the methodologies used in this study consider the cross-sectional dependency and country-specific heterogeneity among countries. Moreover, the empirical findings of each country can be separated using a parameter estimator and causality procedure, therefore, the obtained results will be more policy-oriented.

2. Literature Review

There are several studies on the EKC hypothesis in many developed, developing and least developed economies. However, there are different outcomes leading to different policy implications. This suggests the complexity of the EKC hypothesis based on methodologies, the period of the data, and the geographical dynamics. Two categories of previous research are discussed (Table 1).

[INSERT TABLE 1 HERE]

The first strand of studies examine environmental pollution, energy consumption, and macroeconomic nexus using both time series and panel data. Remuzgo and Sarabia
(2015) revealed a decline of global carbon dioxide emissions by 22% due to economic
development. Wang et al. (2016) revealed that shocks in carbon dioxide emissions have
a small effect on GDP and energy consumption. In China, energy intensity was revealed
as the main contributor of carbon dioxide emissions (Ouyang and Lin, 2015). In USA,
China, Japan and India, Azam et al. (2016) confirmed a positive relationship between
carbon dioxide emissions and economic growth. In Senegal, Sarkodie and Owusu (2017)
revealed an increase in carbon dioxide emissions from the effect of energy consumption,
financial development, and industrialization while urbanization and GDP reduce carbon
dioxide emissions in the long-term. In Nigeria, it was evident that industrialization had
no effect on carbon dioxide emission (Lin et al., 2015). In Sri Lanka, there was evidence
of a long-run equilibrium relationship, a bidirectional causality between industrialization
and energy consumption, and unidirectional causality from carbon dioxide emissions to
energy consumption (Sarkodie and Owusu, 2016). In Pakistan, Mohiuddin et al. (2016a)
showed evidence of long-run relationship and a unidirectional causality from energy
consumption to carbon dioxide emissions. In Malaysia, there was evidence of a
unidirectional causality from energy consumption to carbon dioxide emissions (Gul et al.,
2015). Jammazi and Aloui (2015) confirmed a bidirectional causality between electricity
consumption and economic growth and Salahuddin et al. (2015) a unidirectional causality
from electricity consumption to carbon dioxide emissions.

The second strand of studies investigates the environmental Kuznets curve hypothesis. For example, Saidi and Mbarek (2016) tested for the validity of EKC in 19
countries from 1990-2013 using ARDL method. Their study found no proof of EKC in the 19 emerging economies. Baek (2015) found no existence of the EKC hypothesis in the 12 nuclear energy intense countries, however, nuclear energy reduces carbon dioxide
emissions in the long-run. Apergis and Ozturk (2015) revealed the existence of EKC in the Asian countries while Osabuohien et al. (2014); Sarkodie (2018) validated the existence of EKC in Africa. Tiwari et al. (2013) confirmed the existence of EKC in both long run and short run equilibrium relationship in India. Shahbaz et al. (2012) confirmed the presence of EKC in a long run equilibrium relationship in Pakistan. Hamit-Haggar (2012) revealed the presence of EKC in a long run relationship and a unidirectional causality from energy consumption to greenhouse gas emissions. Pao and Tsai (2011) validated the EKC and found a bidirectional causality between foreign direct investment and carbon dioxide emissions. Nasir and Rehman (2011) revealed a positive effect of energy consumption and foreign trade on carbon dioxide emissions and confirmed the validity of the EKC. Acaravci and Ozturk (2010a) revealed a long-run equilibrium relationship running from energy consumption and economic growth on carbon dioxide emissions and validated the presence of EKC in Denmark and Italy.

It is important to note that all the above-mentioned literature employs a single environmental pollution indicator (carbon dioxide emissions) to examine the EKC hypothesis which is limited to consumption-based approach making it difficult to understand the dynamics of environmental pressures since available biocapacity is not considered. Significantly, the country's biocapacity affects the outcome of the EKC hypothesis. The analysis of the ecological footprint of emerging economies is critical to mitigating climate change and its impact.

3. Data and methodology
To examine the validity of environmental Kuznets curve (EKC) hypothesis, the annual data for the period 1977 to 2013 is investigated for 11 newly industrialized countries: Brazil, China, India, Malaysia, Mexico, Philippines, Singapore, South Africa, South Korea, Thailand, and Turkey. The 11 newly industrialized countries can be categorized under Very High Human Development, High Human Development and Medium Human Development based on the 2016 Human Development Index (HDI) report. Very High Human Development includes South Korea and Singapore, High Human Development includes Brazil, China, Turkey, Thailand, Malaysia and Mexico, and the Medium Human Development includes India, South Africa, and Philippines (UNDP, 2016b).

According to the HDI report, Singapore, a population of 5.6 million population is ranked 5th with HDI=0.925, exports and imports account for 326.1% of GDP, environmental sustainability stands at 9.4 tonnes of carbon dioxide emissions per capita, a Multidimensional Poverty Index (MPI) not applicable and an Income/Composition of Resources of $78,162 Gross national income (GNI) per capita (UNDP, 2016a). Singapore’s energy consumption was 47,513.8 GWh of electricity in 2015, comprising of 42.3% industrial related, 36.8% commerce and services, 15% household consumption, 5.1% transport and 0.6% others. Energy imports (173.7 Mtoe) in 2015 were 65.3% petroleum products, 28.5% crude oil, 6% natural gas, 0.4% coal and peat and 0.1% others. Energy exports (92 Mtoe) in 2015 were 98.8% petroleum products and 1.2% crude oil (Authority EM, 2016).

South Korea is ranked 18th (HDI=0.901), has a population of 50.3 million, exports and imports constitute 84.8% of GDP, environmental sustainability stands at 11.8 tonnes of carbon dioxide emissions per capita, an MPI not applicable and an Income/Composition of Resources of $34,541 GNI per capita (UNDP, 2016a). South Korea ranks seventh in
refined crude oil products production (141 Mt) and ranks tenth in electricity production (546 TWh) (Enerdata, 2017). South Korea’s electricity generation of 546 TWh comprises of 39% coal, 31% nuclear energy, 19% natural gas, 6% crude oil, 4% other renewable energy sources and 1% hydroelectric power. South Korea produced only 1.9 million short tonnes in 2015 compared to its 146 million short tonnes consumed thus, importation of coal has increased in the last few years to meet the demand deficit. Moreover, there was the importation of crude oil (2.8 million barrels/day) and liquefied petroleum gas (1.6 trillion cubic feet) in 2015 due to the growing demand (EIA, 2017).

Malaysia is ranked 59th (HDI=0.789), has a population of 30.3 million, exports and imports account for 134.4% of GDP, environmental sustainability stands at 8.0 tonnes of carbon dioxide emissions per capita, MPI not applicable and an Income/Composition of Resources of $24,620 GNI per capita (UNDP, 2016a). Malaysia ranks tenth in natural gas production (67 bcm) (Enerdata, 2017). Malaysia’s primary energy production comprises of 40,113 ktoe natural gas, 26,765 ktoe crude oil, 15,357 ktoe coal and coke, 6,699 ktoe petroleum products, 3,038 ktoe hydropower, 300 ktoe biodiesel, 181 ktoe biomass, 63 ktoe solar PV and 12 ktoe biogas (MEIH, 2014).

Turkey is ranked 71st (HDI=0.767), has a population of 78.7 million, exports and imports constitute 58.8% of GDP, environmental sustainability stands at 4.2 tonnes of carbon dioxide emissions per capita, MPI not applicable and an Income/Composition of Resources of $18,705 GNI per capita (UNDP, 2016a). Turkey’s electricity demand was 264 TWh in 2015 however, it is projected to reach 416 TWh in 2023. Currently, the primary energy demand is 125 Mtoe comprising of 35% natural gas, 28.5% coal energy, 27% oil, 7% hydropower generation and 2.5% from other renewable energy sources. The primary energy demand is projected to reach 218 Mtoe in 2023. Turkey’s 99% of natural
gas (48.4 bcm) and 86% of crude oil (25 million tonnes) consumed are imported (MFA, 2016).

Mexico is ranked 77th (HDI=0.762), has a population of 127.0 million, exports and imports account for 72.8% of GDP, environmental sustainability stands at 3.9 tonnes of carbon dioxide emissions per capita, MPI is 0.024 and an Income/Composition of Resources of $16,383 GNI per capita (UNDP, 2016a). Mexico ranks tenth in crude oil production (127 Mt) (Enerdata, 2017) and its primary energy portfolio (188 Mtoe) comprises of 51% crude oil, 32% natural gas, 7% coal, 5% bioenergy, 4% other renewable energy sources (geothermal, solar PV and wind energy) and 1% nuclear energy (IEA, 2016).

Brazil is ranked 79th (HDI=0.754), 207.8 million population, exports, and imports constitute 27.4% of GDP, environmental sustainability stands at 2.5 tonnes of carbon dioxide emissions per capita, MPI is 0.010 and an Income/Composition of Resources of $14,145 GNI per capita (UNDP, 2016a). Brazil ranks tenth in the global carbon dioxide emissions from fuel consumption (455 MtCO2) (Enerdata, 2017), ranks eighth in electricity production (586 TWh), eighth in refined crude oil products production (107 Mt), ninth in crude oil production (129 Mt) and third in the share of renewables in electricity production (73.5%) (Enerdata, 2017). Brazil’s renewables including biofuel consumption increased by 157%, consumption of hydropower increased by 43%, gas consumption increased by 44%, oil consumption increased by 21%, nuclear energy consumption increased by 113% and coal consumption decreased by 4% (BP, 2016).

Thailand is ranked 87th (HDI=0.740), 68.0 million population, exports, and imports account for 131.9% of GDP, environmental sustainability stands at 4.5 tonnes carbon dioxide emissions per capita, MPI is 0.004 and an Income/Composition of Resources of
$14,519 GNI per capita (UNDP, 2016a). Thailand’s installed capacity as of December 2015 was 38,815 MW comprising 67% from natural gas, 5% from renewables and 28% from other sources. Consumption of imported coal amounted to 21.9 million tonnes thus, 5% increases compared to previous years due to the expansion of industrial sector consumption for production. Natural gas consumption increased by 2% thus, 4,746 million cubic feet/day (EPPO, 2016).

China is ranked 90th (HDI=0.738), 1,376.0 million population, exports, and imports constitute 41.2% of GDP, environmental sustainability stands at 7.6 tonnes carbon dioxide emissions per capita, MPI is 0.023 and an Income/Composition of Resources of $13,345 GNI per capita (UNDP, 2016a). China is classified as the first of the top 5 emitters of global greenhouse gas emissions (CDIAC, 2017), ranks first in electricity production (5,682 TWh), ranks first in the global carbon dioxide emissions from fuel consumption (8,948 MtCO2), second in refined crude oil products production (512 Mt), first in coal and lignite production (3,538 Mt), ranks fourth in crude oil production (216 Mt) and has the highest energy consumption of 3,101 Mtoe (Enerdata, 2017).

Philippines is ranked 116th (HDI=0.682), 100.7 million population, exports, and imports account for 60.8% of GDP, 1.0 tonnes carbon dioxide emissions per capita, MPI is 0.033 and an Income/Composition of Resources of $8,395 GNI per capita (UNDP, 2016a). Philippines economy has shifted from agrarian to industrialization with the last decade. Its primary energy demand comes from non-renewable energy sources such as oil and gas and renewable energy sources like geothermal, biomass, hydropower, wind, solar and biofuel. As at 2011, energy consumption constituted 31% oil, 22% from geothermal, 20% from coal, 12% from biomass, 6% from hydropower and 1% from wind, solar and biofuel (Energypedia, 2016).
South Africa is ranked 119th (HDI=0.666), 207.8 million population, exports and imports constitute 62.8% of GDP, 8.9 tonnes carbon dioxide emissions per capita, MPI is 0.041 and an Income/Composition of Resources of $12,087 GNI per capita (UNDP, 2016a). South Africa has an installed capacity of 44,175 MW from which coal-fired plants constitute 92.6%, 5.7% nuclear energy, 1.2% pumped, 0.5% hydroelectric power and 0.1% from gas turbine generation. Electricity consumption comprises of industrial activities (40.9%), residential use (36.8%), commercial use (11.4%), Transportation (2.7%) and others (8.1%). Renewable energy is projected to contribute 18.2 GW to the gross energy production (8.4 GW wind, 8.4 GW solar, 1 GW concentrated solar power and 0.4 biomass) (USEA, 2017). South Africa ranks seventh in the global coal and lignite production (248 Mt) and the highest in Africa (Enerdata, 2017).

India is ranked 131st (HDI=0.624), 1,311.1 million population, exports, and imports account for 48.8% of GDP, 1.6 tonnes carbon dioxide emissions per capita, MPI is 0.282 and an Income/Composition of Resources of $5,663 GNI per capita (UNDP, 2016a). India is one of the top emitters of global greenhouse gas emissions (CDIAC, 2017), ranks third in electricity production (1,368 TWh), ranks fourth in refined crude oil products production (239 Mt), third in coal and lignite production (764 Mt) and ranks third in the global carbon dioxide emissions from fuel consumption (2,166 MtCO2) (Enerdata, 2017). India has an installed capacity of 329,204.53 MW from which 194,402.88 MW comes from coal, 25,329.38 MW from gas, 837.63 MW from diesel-fired plants, 6,780 MW is from nuclear energy, hydropower constitutes 44,594.42 MW, and 57,260.23 MW are from newly exploited renewable energy technologies (4,379.86 MW from small hydropower, 32,279.77 MW from wind energy, 8,188.70 MW from biomass...
cogeneration, 130.08 MW from waste to energy and 12,288.83 MW from solar energy) (CEA, 2017).

Following the studies of Halicioglu (2009), Tamazian and Rao (2010), environmental pollution is described as a function of real GDP, the square of real GDP, energy consumption and financial development. The panel version of the empirical model can be written as follows;

$$\ln EF_{it} = \varphi_0 + \varphi_1 \ln Y_{it} + \varphi_2 \ln Y_{it}^2 + \varphi_3 \ln EC_{it} + \varphi_4 \ln FD_{it} + \mu_{it}$$ \hspace{1cm} (1)

where t, i and μ_{it} refer to a period, cross-section and residual term, respectively. In addition, $lnEF$ is log of ecological footprint, $lnY (lnY^2)$ is log of real GDP per capita (log of the square of real GDP), $lnEC$ is energy consumption per capita and $lnFD$ is the credit of private sector to GDP ratio. The real GDP per capita is measured in millions of constant 2010 US dollars and energy consumption per capita is measured in kg of oil equivalent. The data of Y, EC and FD is obtained from World Development Indicators (World Bank, 2016), and the data of EF is retrieved from Global Footprint Network (Global Footprint Network, 2017).

The 1970’s oil crises, the 2007 global financial crisis, and the Kyoto protocol show there is a high degree of integration on economic, financial and environmental indicators in the world. Based on this reason, this study first examines the existence of cross-sectional dependence among countries using by LM test of Breusch and Pagan (1980), CD_{LM} and CD test of Pesaran (2004) and LM_{adj} test of Pesaran et al. (2008). In addition, slope homogeneity is examined with $\tilde{\alpha}$ and $\tilde{\alpha}_{adj}$ test of Pesaran and Yamagata (2008).

This study uses the Augmented Mean Group (AMG) estimator developed by Eberhardt and Bond (2009), Bond and Eberhardt (2013) to consider the cross-sectional dependence.
and country-specific heterogeneity among countries. The other advantage of using this methodology is that it allows the examination of the parameters of non-stationary variables. Therefore, any pre-testing procedure (unit root or cointegration) is not required to use this approach. In the first step of the testing procedure, the main panel model (Eq. 1) is estimated with the first-differenced form and $T-1$ period dummy as follows;

$$\Delta EF_{it} = \gamma_1 \Delta Y_{it} + \gamma_2 \Delta Y^2_{it} + \gamma_3 \Delta EC_{it} + \gamma_4 \Delta FD_{it} + \sum_{t=2}^{T} p_t (\Delta D_t) + u_{it}$$ \hfill (2)

where ΔD_t is first differences $T-1$ period dummies; p_t is the parameters of period dummies. In the second step, estimated p_t parameters are converted to φ_t variable which indicates a common dynamic process as follows:

$$\Delta EF_{it} = \gamma_1 \Delta Y_{it} + \gamma_2 \Delta Y^2_{it} + \gamma_3 \Delta EC_{it} + \gamma_4 \Delta FD_{it} + d_i(\varphi_t) + u_{it}$$ \hfill (3)

$$\Delta EF_{it} - \varphi_t = \gamma_1 \Delta Y_{it} + \gamma_2 \Delta Y^2_{it} + \gamma_3 \Delta EC_{it} + \gamma_4 \Delta FD_{it} + u_{it}$$ \hfill (4)

The group-specific regression model is first adapted with φ_t and then the mean values of group-specific model parameters are computed. For instance, the parameter of economic growth (γ_1) can be computed as $\gamma_{1,AMG} = 1/N \sum_{i=1}^{N} \gamma_{1,i}$.

To examine the causal connections between variables, this study uses heterogeneous panel causality of Dumitrescu and Hurlin (2012). This methodology is a modified version of Granger causality and adapted to heterogeneous panel data. In addition, the Monte Carlo simulations show that this methodology gives consistent results under cross-sectional dependency. The computation of the statistic is as following:

$$W_{N,T}^{HNC} = \frac{1}{N} \sum_{i=1}^{N} W_{i,t}$$ \hfill (5)
where $W_{i,t}$ is the Wald statistic and $W_{N,T}^{HNC}$ statistic is obtained with averaging each Wald statistics for cross-sections. In testing procedure, the null hypothesis of there is no homogeneous causality is tested against the alternative hypothesis that the causal relationships are heterogeneous.

4. Results and Discussion

In the first step of analysis, the cross-sectional dependence and country-specific heterogeneity is examined, and the empirical findings are shown in Table 2. According to the results, the null hypothesis that there is no cross-sectional dependence among countries is rejected for all tests. This means a shock that occurs in one of sample country may spill-over to the other countries. In addition, the homogeneity test results show that there is a country-specific heterogeneity among countries.

[INSERT TABLE 2 HERE]

In the second step of our analysis, the effect of real GDP, square of real GDP, energy consumption and financial development on ecological footprint is investigated with AMG estimator. According to the results presented in Table 3, the coefficient of real GDP is positive and the coefficient of the square of real GDP is negative in Mexico, the Philippines, Singapore, and South Africa. However, the coefficient of real GDP is negative and the coefficient of the square of real GDP is positive in China, India, South Korea, Thailand, and Turkey. Therefore, an inverted U-shaped relationship is found in Mexico, Philippines, Singapore, and South Africa. Meaning that income levels increase environmental degradation at the initial stages of economic development but declines after attaining a specific turning point of income level. Sarkodie (2018) revealed that the
decline in environmental pollution versus economic development can be attributed to a structural change in the economy and technological advancement. According to Sarkodie and Strezov (2019a), as income levels increases, environmental awareness increases, thus, driving the populace to demand clean environment resulting in the enforcement of environmental laws, policies, and regulations which in turn reduces environmental pollution. On the other hand, a U-shaped relationship is supported in China, India, South Korea, Thailand, and Turkey. This results may be attributed to vintage and obsolesce energy technologies that influence economic productivity. Sarkodie and Strezov (2019b) revealed that the U-shape relationship occurs when energy intensity increases per economic outcome, thus, reducing energy efficiency. Apart from this, since China, India, South Korea, Thailand, and Turkey are industrialized countries, pollution haven hypothesis may have influenced the shape of the EKC hypothesis as revealed by Sarkodie and Strezov (2019a, 2019b). According to (Dinda, 2004); Sarkodie and Strezov (2019a), developed countries with stringent environmental policies and regulations transfers their dirty technologies to developing countries with lax environmental laws, hence, adding to their pollution stock. In addition, an increase in energy consumption leads to an increase in environmental degradation in China, India, Mexico, Singapore, and Thailand, which is in line with Sarkodie and Adams (2018). Sarkodie and Adams (2018) revealed that while clean and renewable energy technologies promote a clean environment, fossil fuel energy technologies increases environmental pollution. However, the negative coefficient of financial development on environmental degradation is found in China and Malaysia. When the group panel estimation results are evaluated, the inverted U-shaped EKC hypothesis is confirmed in newly industrialized countries.

[INSERT TABLE 3 HERE]
In the third step of the analysis, the causal relationship between ecological footprint, economic growth, energy consumption, and financial development is examined with heterogeneous panel causality method. The results are illustrated in Table 4. Accordingly, there is a bi-directional causality between economic growth and ecological footprint, thus, confirming the feedback hypothesis. Economic development in industrialized economies accelerates natural resource extraction and exploitation, as such reduces the biocapacity of the environment while increasing the ecological footprint (Panayotou, 1993). However, if sustainable and management options are integrated in production and consumption, the rate of natural resource depletion and environmental stress declines, hence, allowing resources to regenerate (United Nations, 2015). Unidirectional causal relationships are found from energy consumption to ecological footprint, from ecological footprint to financial development, from economic growth to energy consumption and from economic growth to financial development. Most of the newly industrialized countries depend on conventional form of energy sources such as coal, oil and gas. However, unlike the renewable energy technologies that are ubiquitous and sustainable, fossil fuel energy technologies are finite and unsustainable, as such, its exploitation increases the ecological footprint (Owusu and Asumadu, 2016). A unidirectional causality from economic growth to energy consumption confirms the conservation hypothesis (Inglesi-Lotz and Pouris, 2016). Meaning that economic growth drives energy consumption patterns rather than the opposite. As such, energy conservation options in the 11 newly industrialized countries will have no effect on economic development.

[INSERT TABLE 4 HERE]
5. Conclusions and policy implications

This study aims to examine the relationship between ecological footprint, economic growth, energy consumption and financial development in 11 newly industrialized countries. For this purpose, the annual period from 1977 to 2013 is investigated using the augmented mean group estimator and heterogeneous panel causality method. Because both methods are suitable to investigate the relationship between variables in the case of cross-sectional dependence and country-specific heterogeneity, we first test the dependence and slope homogeneity among the countries.

According to the augmented mean group estimator results, it is concluded that an inverted U-shaped environmental Kuznets curve hypothesis is supported by the panel of newly industrialized countries. It is important to note that increased levels of energy use lead to an increase in ecological footprint for these countries. When the estimator results of each country were evaluated, we found an inverted U-shaped EKC hypothesis valid in Mexico, Philippines, Singapore, and South Africa while a U-shaped relationship is found in China, India, South Korea, Thailand, and Turkey. In addition, increased energy consumption leads to an increase in environmental degradation in China, India, Mexico, Singapore, and Thailand. However, the negative coefficient of financial development on environmental degradation is found in China and Malaysia. Causality test results show that there is evidence of a bi-directional causality link between economic growth and ecological footprint. Finally, we found one-way causality running from energy consumption to ecological footprint, from ecological footprint to financial development, from economic growth to energy consumption and from economic growth to financial development.
ACKNOWLEDGEMENT

The usual Disclaimer applies to the final version of this paper. S.A.S is grateful to Macquarie University, Australia — for their International Macquarie University Research Training Program (iMQRTP) Scholarship.

Declaration

There is no conflict of interest.
References

