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ABSTRACT 

The purpose of this study is to determine when a fracture system 

behaves as a porous medium and when it does, what is the appropriate 

permeability tensor for the medium. A volume of fractured rock can be 

said to behave like a representat ive volume of an equivalent porous 

medium when' (1) there is an insignificant change in the value of the 

equivalent permeability with a small addition or subtraction to the test 

volume and (2) an equivalent permeability tensor exists which predicts 

the correct flux when the direction of a constant gradient is changed. 

A two-dimensional fracture system model is developed. The density, size, 

orientation, and location of fractures in an impermeable matrix are 

random variables in the model. Simulated flow tests through the models 

measure directional permeability, Kg. A polar coordinate plot of 

1/"Kg will be an ellipse if the medium behaves like a equivalent aniso

tropic, homogeneous porous medium. Whatever shape the plot is, a best 

fit ellipse can be calculated and the scatter of measurements around 

the ellipse is expressed as NMSE, the normalized mean square error. 

NMSE approaches zero as the behavior approaches that of a continuum. 

Studies were performed where fracture length and areal density were 
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varied such that fracture frequency, as would be measured in a borehole 

was held constant. The examples studied showed the permeability in

creased with fracture length. In another study the modeling techniques 

were applied to data from the Atomic Energy of Canada ltd.'s Underground 

Research Laboratory facility in Manitoba, Canada. The fracture pattern 

as exposed at the surface was assumed to persist at depth. Well test 

data were used to estimate the aperture distribution for the model. 

Apertures were assigned to the fracture pattern, both by assuming that 

aperture was and was not positively correlated with fracture length. 

The permeabilities of models with uncorrelated length and aperture were 

smaller than for correlated models. The NMSE of certain correlated 

models may become high due to the production of very long high aperture 

"super conductors." A Monte Carlo type study showed that analysis of 

steady state packer tests would consistently underestimate the mean 

aperture. Finally, extension of the model to three dimensions is dis

cussed where fractures are discs randomly located in space. Intersec

tions between the fractures are line segments. Solution of the steady 

state flow equations is based on image theory. 
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I. INTRODUCTION 

Interest in storing nuclear waste in deep underground facilities 

has prompted research to analyze the regional groundwater flow systems 

in dense, fractured* rocks. At depth, the permeability of these dense 

rocks may be completely due to secondary porosity, i.e., fractures 

(Davis, 1969). Regional flow analysis through great volumes of frac-

tured rock cannot be handled by describing each of these discrete flow 

paths deterministically because the information describing every frac-

ture in the region is not available. Further, present computer methods 

cannot manage such volumes of data. Continuum or equivalent porous 

medium analysis could be used if equivalent porous medium parameters can 

be assigned to the fractured systems. This research is an attempt to 

determine if such appropriate equivalent porous media permeability** 

values' exist and determine their values from statistical information on 

the geometry of the discrete fracture system. 

Work reported here includes a literature survey, development of a 

numerical approach to the study of the permeability of random fracture 

systems, and application of this approach to several case studies. The 

literature survey is in- three parts. The first covers previous work 

that has been done to relate fracture geometry to equivalent porous 

media values of permeability. The second part covers the theory and 

measurement of homogeneous, anisotr~pic permeability. The third part is 

* For the purposes of this report, the words "fracture", "joint", and 
"discontinuity" are used interchangeably. 

** The term "permeability" is used in a generic sense throughout this 
report. All calculations are actually of hydraulic conductivity (LIT) 
which is also called the coefficient of permeability. Hydraulic conduc
tivity, K, is equal to kpg/~ where k is the intrinsic permeability with 
the dimensions of [L2]. See nomenclature for definition of terms. 
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a review of fracture geometry statistics as observed in the field. The 

numerical approach includes the adoption of a statistical fracture 

geometry model and the development of a computer program which generates 

random models of fracture systems and codes them for finite element 

analysis of fluid flow. The fluid flow analysis was used to measure the 

permeability of the fracture system. First the permeability of a system 

of regular fractures of infinite extent was studied in order to validate 

the model. Then the permeability of random systems of finite fractures 

was studied. 

Series of random fracture systems were studied to see the effect 

on permeability of fracture density, aperture and orientation distri

bution, and scale of measurement. Then a regression analysis was 

developed to determine the best-fit permeability tensor for the fracture 

system. This analysis was applied to a series of cases designed to test 

how well the permeability of a rock mass can be predicted from the frac

ture spacing in a well. A further analysis used data from the Atomic 

Energy of Canada Limited's Underground Research Laboratory in Pinawa, 

Manitoba to examine the effect of correlation between fracture length 

and aperture and the applicability of surface trace data to the analysis 

of the fracture system at depth. Also steady-state packer tests were 

simulated to see if they can be used to determine the aperture distribu

tion of a fracture system. Finally the theoretical basis for extending 

the numerical model to three dimensions was discussed. 
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II. LITERATURE REVIEW 

A. - Determination of Equivalent Porous Media Permeability from 

Fracture Geometry 

Work that has been done to determine the equivalent permeability 

of fractured rocks from information on fracture geometry (assuming an 

impermeable matrix) can be classified into two categories. Most of this 

work falls into the first category where fractures are assumed to be of 

infinite extent (continuous or extensive fractures). Very little work 

has been done in the second category, which takes into account the 

finite or nonextensive nature of fracture size. 

Study of the permeability of continuous fracture systems is based 

on the principle that the total permeability of the rock mass can be 

found by summing the contributions of each fracture. The principle 

holds for fractures which transect the entire rock mass; i.e., contin-

uous or "infinite fractures". Also, the assumption is made that head 

losses in the fracture intersections are negligible. The contribution 

of each individual fracture is determined by study of isolated fractures 

under various conditions of flow and stress (Huitt, 1956; Louis, 1969; 

Sharp, 1970; Maini, 1971; Iwai, 1976; Rissler, 1978; Witherspoon et al., 

1979; Strack, 1980; and others). However, for application to the study 

of fracture systems, flow in individual fractures is usually assumed to 

obey the cubic law for flow between parallel plates: 

(II-1) 

where V~ is the component of hydraulic gradient parallel to the fracture 

and W is the width of the flow system. 
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Simple models of fracture networks based on the cubic law have been 

reviewed by Wilson (1970), including work by Serafim and del Campo 

(1965), Crawford and Collins (1954), Crawford and Landrum (1955), and 

OlIos (1963). These were either physical models based on electrical or 

pipe-flow analogs, or mathematical models based on orthogonal fractures 

of equal aperture and spacing. Irmay (1955) and Childs (1957) also 

developed similar models. 

More sophisticated mathematical studies of extensive fracture 

systems were made by Snow (1965, 1969). Snow developed a mathematical 

expression for the permeability tensor of a single infinite fracture of 

arbitrary orientation and aperture relative to a fixed coordinate system. 

The permeability tensor for a network of fractures is therefore the 

tensor formed by adding the respective components of the permeability 

tensors for each individual fracture. Mathematically, the intrinsic 

permeability tensor of rock with reference to the i,j coordinates can be 

written: 

1 L b
3 

k .. = -12 -5 (6 .. - n.n.) 
1J 1J 1 J 

( II-2) 

where the summation is taken over all the fracture sets in the volume of 

rock, 5 is the spacing, and ni is the unit vector normal to each frac-

ture. If fractures are all randomly oriented, 5 becomes equal to the 

dimension of the sample perpendicular to the individual fracture. If 

fractures in a set are parallel and equally spaced, then 5 is constant 

and equal to the spacing for that set. 

With this model, Snow was able to examine the effect of random 

variations in orientation and aperture of extensive fractures on the 
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permeability of the rock mass. In the statistical study, the aperture 

of each fracture in a set was chosen as the absolute value of a normally 

distributed parameter. The orientation of each fracture was chosen with 

a Fisher distribution. As each fracture was randomly generated, the 

total permeability tensor was progressively cumulated. Thus the effect 

of sample size on total permeability can be seen. Snow found that an 

increase in sample size increases the geometric mean permeability. The 

explanation for this is that as sample size increases the probability of 

adding a rare large-aperture fracture increases. Since the permeability 

contribution of a fraction is proportional to b3, a single large-aperture 

fracture tends to have a very large effect on the total permeability. 

For the aperture distributions studied by Snow, most model systems 

had stable permeabilities at sample sizes of about 200 fractures. A few 

continued to increase in permeability for sample sizes larger than 200. 

The change in permeability from small sample sizes (with 20 to 30 frac

tures) to large samples was from 5 to 25 percent of the results for an 

infinite number of fractures. This implies that a representative sample 

of the continuously fractured rocks studied by Snow usually contains 

about 200 fractures. The volume of rock containing these 200 fractures 

depends on the density or spacing of the conductors. Throughout the 

remainder of this report, a volume of rock containing a representative 

sample of fractures will be called a representative elementary volume, 

or REV. 

For the purpose of comparison, it is useful to examine the size of 

an REV in fractured rock as estimated by other authors. Rats and 

Chernyashov (1965) made a rough approximation based on a statistical 
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analysis that a homogeneous porous medium analysis can be used if the 

dimensions of the rock being studied are at least ten times larger than 

the order of magnitude of the rock mass heterogeneity, i.e., fracture 

spacing. Maini's (1971) analysis, based on injection test data, claims 

continuum or homogeneous conditions can be assumed for rock containing 

nine or more fractures. Further estimates have been reviewed by Roegiers 

et al (1978). The reliability of such methods of estimation has not 

been demonstrated. 

The method of determining the equivalent porous medium permeability 

(EPMP) proposed by Snow has several limitations, some major and some 

minor. The method does not account for fracture roughness and infilling. 

This deficiency may be overcome by using an equivalent flow aperture 

(Iwai, 1976) or a correction factor as described by Rissler (1978). 

A much more important theoretical limitation is that this model 

assumes all the fractures transect the entire volume of rock. It can be 

seen in the field that fractures are clearly of finite dimensions. For 

example, Marine (1980) performed tracer tests on a permeable fractured 

zone in metamorphic rock. The tracer tests demonstrated that the per

meability was due to interlacing fractures, not a system of continuous 

conductors. The fact that fractures are finite means that each fracture 

can contribute to the permeability of the rock only insofar as it inter

sects other conducting fractures. Such interconnected fractures comprise 

the effective secondary porosity. In the extreme, an isolated fracture 

which does not intersect any other fracture effectively contributes 

nothing to the permeability of the total rock mass. Another limitation 

of Snow's (1965) approach is that it is difficult to obtain data on 



7 

effective or hydraulic aperture distributions. Further discussion of 

aperture statistics can be found in Section IIC. 

Three approaches have been taken to overcome the theoretical 

difficulties with Snow's method. Parsons (1966) and Caldwell (1971, 

1972) used analog models to study finite fractures. Parson's analysis 

utilized the approach of Fatt (1956) who had analyzed the capillary 
, 

properties of a network of random-diameter tubes, and Warren and Price 

(1961) who had studied random three-dimensional arrays of porous blocks. 

Rocha and Franciss (1977) proposed a field method for finding a correc

tion factor to Snow's analysis. Sagar and Runchal (1982) proposed an 

analytic extension of Snow's method. 

Parsons studied two-dimensional regular networks of fractures with 

random apertures. Both square patterns and triple hexagonal patterns 

similar to those of Fatt (1956) were studied. Values from a given dis-

tribution of conductances were randomly assigned in the pattern. In 

many of the conductance distributions used, the probability of having a 

zero conductance element was finite, which means not all fractures were 

continuous across the model. After assigning these conductances, boun-

dary conditions were imposed on the model to simulate quasi-linear flow 

in either the x, y, or 45 degrees from the x and y directions. The 

pressure distribution and flow in each element was calculated with a 

relaxation technique. Total flow was found by summing the flow across 

a plane perpendicular to the overall gradient through the system. Over-

all permeability per unit height of model was calculated as the ratio of 

total flux to gradient. Anisotropy was studied by doubling the random 

values of conductance oriented in one direction. From 1 to 23 random 
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models were generated for each of the studied statistical distributions 

for aperture. The mean and standard deviation of the resulting direc

tional permeabilty were calculated. 

Parsons did not study the effect of the size of the network on the 

value of the calculated permeability. Nor did he find the complete per

meability tensor. He did not find any correlation between the overall 

permeability and the element conductance distribution. Parsons did 

conclude that the larger the standard deviation of the conductance dis

tribution was, the larger would be the standard deviation of the overall 

permeabilities calculated with the models.. Also, he found that the 

geometric mean of the conductance distribution is a fair approximation 

to the permeability of the square network. 

A significant result of Parson's (1966) work was that doubling the 

permeability of all fracture elements in the x-direction increased the 

permeability in the y-direction. This effect would not be seen in con

tinuous fractures, but with discontinuous fractures the net flow in the 

y-direction must proceed through some fractures oriented in the x-direc

tion. Also, for a similar reason, permeability in the x-direction is 

less than doubled. This is an important effect in fracture networks 

that must be kept in mind. 

Caldwell (1971) modeled flow in discontinuous fractures. His 

method consisted of cutting joint sets from conducting paper and measur

ing the potential distribution in the model. He determined a "best fit" 

permeability tensor by comparing the measured-potential distributions 

with theoretical solutions for different values of the permeability 
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tensor. The accuracy of this trial-and-error method is questionable. 

The author was aware that the "best fit" tensor is not a unique solution. 

Caldwell also studied models with two orthogonal joint sets. One 

set consisted of continuous, regularly spaced fractures. The second set 

had joint lengths that were randomly selected from an exponential distri

bution and spacing equal to one-fourth of the spacing of the continuous 

set. Three such models were studied where the mean length of the dis

continuous fractures were one, two, and four times the spacing of the 

orthogonal joint set. In this limited analysis, Caldwell found that 

where the mean joint length was equal to the joint spacing, less than 

half the joints were hydraulically active. Where the mean joint length 

was at least twice the spacing, Caldwell indicated that the permeability 

of the joint model was equal to the permeability of a model with two 

continuous joint sets. Caldwell (1971) also extended these results to 

nonorthogonal joints. 

Rocha and Franciss (1977) proposed a well test to determine a cor

rection factor to the theoretical tensor obtained using Snow's method. 

From the calculated tensor, the equivalent isotropic permeability is 

calculated as the cube root of the product of the three principal perme

abilties, 31K1 KZ K3. This permeability is used to calculate a steady 

state flow rate under a given pressure. Then a well test is performed. 

The ratio of the flow measured in the field to the flow calculated from 

the theoretical tensor gives the correction factor p, to be applied to 

the permeability tensor: 
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K .. = [~K1 
l.J 

o 
(II-3) 

This single correction factor does not allow for any rotation of the 

principal axes. The authors also propose a trial-and-error solution 

for applying a different correction factor to each of two fracture sets 

separately. This method would permit rotation but there is no evidence 

that such tensors are correct for flow systems other than the radial 

flow system from which they were derived. 

Sagar and Runchal (1982) attempted to extend Snow's (1965, 1969) 

theory for permeability of fractured systems to account for finite frac-

ture size. Some of the assumptions made in their work are physically 

incorrect. The authors assumed that flow in any fracture is independent 

of flow in the other fractures if disturbances at the fracture -intersec-

tions are negligible and flow is laminar. Thus each fracture was assumed 

to experience a component of the field gradient which depends only on the 

orientation of the fracture. From this the authors concluded that "any 

fracture which does not appear on the boundary of the rock element con-

sidered is of no interest in the calculation of the equivalent permeabil-

ity" (Sagar and Runchal, 1982). These assumptions are correct for the 

extensive fracture systems analyzed by Snow. However, these assumptions 

are not reasonable for nonextensive fractures (see section VII-F). 

In summary, very little work has been done to quantify the effect 

of finite fracture length in combination with other geometric factors 

such as aperture distribution, fracture spacing, and orientation. 
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B. Homogeneous Anisotropic Permeability 

Anisotropy 

One of the purposes of this research is to determine when a 

fractured medium behaves as a homogeneous, anisotropic porous medium. 

The theory and measurement of homogeneity and anisotropy are reviewed 

here. 

If the permeability of a medium is not the same in all directions, 

the medium is said to be anisotropic. Darcy's law was originally postu-

lated for one-dimensional flow. Since directional properties have no 

impact on one-dimensional flow, permeability was represented as a single 

scalar quantity. In order to extend Darcy's law to two or three dimen-

sions in the most general case of an anisotropic medium, Ferrandon 

(1948) and others proposed that permeability be represented by a tensor 

quantity. This proposal is generally supported by either heuristic 

reasoning or associated laboratory experiments. 

Collins (1961) gives heuristic arguments for extending Darcy's law 

to three dimensions. In order to show what fracture systems will be 

compared to, it is important at this point to review the arguments pre-

sented by Collins. Darcy's law is extended in such a way that the flux 

remains linearly dependent on the gradient. In one dimension, we have 

v : -k R9. ~d • (II-4) x lJ x 

In three dimensions for an isotropic medium we have 

v. : -k R9. aaq, 
~ lJ x. 

~ 

i:1,2,3. (II-5) 
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For three dimensions and an anisotropic medium, we have in general, 

£.9. [o~ o~ o~ ] v. = - k· 1 os- + k· 2 a + k· 3 a 
1 lJ 1 gX 1 1 X 2 1 X 3 

or, using the summation convention 

v. = - £.9. k.. :~ 
1 l! lJ gX. 

J 

The nine quantities k11' k12' k13' k21' k22' k23 , 

tensor. The matrix equation for Darcy's law is 

v1 k11 k12 kn 
o~ 

ax.;-
v2 

£.9. k21 k22 k23 
o~ 

= ax; lJ 

v3 k31 k32 k33 
04> 
oX

3 

i = 1, 2, 3, (11-6) 

i = 1, 2, 3 
j = 1, 2, 3 

(11-7) 

k31' k32' k33' form a 

( 11-8) 

The most general form of the permeability matrix is assumed to be 

symmetric. If kij is symmetric, the matrix can be transformed to a 

diagonal form by a physical or mathematial model and rotation of coordi-

nate axes: 

( 11-9) 

The coordinate system which diagonalizes this matrix form the principal 

axes and the values k1' k2' k3, are called the principal permeabilities. 

In this coordinate system, for i * j, kij = O. Therefore, Darcy's law 

becomes 

v. = _.£9. k [ 04> ], (11-10) 
1. lJ i ax (i) 

where (i) here is exempt from summation. Thus in this form flux is 
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proportional to gradient in the principal directions and this is the 

basis for the extension of the original Darcy's law. For any medium 

having orthogonal principal axes, kij will be symmetric and the above 

form of Darcy's law will be correct. A medium with orthogonal principal 

axes has the following properties: (1) a reversal of gradient results 

in equal but opposite flux, and (2) for arbitrary orthogonal axes x, y, 

z, flow in the x-direction due to a unit gradient in the y-direction is 
. 

equal to flow in the y-direction due to a unit gradient in the x-direc-

tion, etc. That is, kij = kji. 

Experimental evidence supports this theory. Anisotropic materials 

which were tested did in fact have orthogonal principle axes. However, 

as Collins (1961) points out, there is no guarantee that every porous 

material has a symmetric permeability tensor. In fact it is likely that 

there are materials which do not have symmetric permeability tensors. 

Darcy's law can be derived for idealized cases. For example, a 

porous medium can be assumed to consist of an assemblage of elementary 

flow tubes or fissures. A good review of these methods is given in Bear 

(1972). As Bear points out, the problem with physical models such as 

flow tube models is that they attempt to represent an inherently dis-

ordered medium by an inherently ordered medium. This drawback also 

means that these models are of less interest to this research on the 

permeability of fractured rock. Assumptions made to produce an ordered 

physical model cannot easily be compared to the assumptions made to pro-

duce a random model. 



14 

The number and variation of models studied (ferrandon, 1948; Childs, 

1957; Scheidegger, 1960; Kozeny, 1927; Carman, 1937; fatt, 1956) does 

however lend support to the concept of anisotropic permeability as a 

symmetric tensor for many media. Elementary flow tube models all pre-

sume flow in the tubes follows Poiseuille's law. Poiseuille's law states 

that flux q in a tube is linearly proportional to the hydraulic gradient 

along the tube, df/dX. The constant of proportionality is a function of 

the diameter of the tube, d, density p, viscosity ~, and the gravita-

tional constant g: 

q = _ 'lfd4 
£..9. d, 

128 II ax • (II-11) 

Any number of tubes of arbitrary direction and diameter can be added 

together. The resulting flow law is always of the form 

v. = -k .. ~ 
:1 :1J aX. 

J 
(II-12) 

where kij is the permeability tensor and vi is the specific discharge 

(ferrandon, 1948 and Childs, 1957). Each specific model will produce a 

different relationship between kij and the geometric properties of the 

model. Scheidegger (1960) used the pore ·size distribution to arrive at 

the tube diameter distribution. Kozeny (1927) and Carman (1937) derived 

an expression for flow in noncircular, nonlinear tubes. fatt (1956) 

modeled networks of tubes in a similar manner. 

The fissure models discussed previously are similar to the tube 

models. However, flow in the fissures is governed by the cubic law, 

which is the solution to the Navier-Stokes equation for flow between 

parallel plates. further models based on the resistance to flow 
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provided by the soil grains are reviewed by Bear (1972) and are not 

discussed here. The net result for all these models is expressed in 

equation 11-12 where total flux is linearly proportional to the gradient. 

Another type of derivation of Darcy's law is based on statistical 

averaging. The geometric properties of the medium are allowed to be 

random and assumptions are made about the average or macroscopic behav

ior of flow. Some of the work which leads to a tensor form for permea

bility will be discussed here. More extensive reviews of this subject 

can be found in Scheidegger (1960) and Bear (1972). 

Day (1974) gives a derivation which leads to Darcy's law for an

isotropic homogeneous media. The derivation is based on work by Hall 

(1956) and Hubbert (1940, 1956). Day extends Hall and Hubbert's work 

from isotropic to anisotropic media. 

Day, Hall, Hubbert, and also 1rmay (1968) and Gray and O'Neill 

(1976) all used the same basic plan to derive Darcy's law. These authors 

start with the Navier-Stokes equations as applied to the details of flow. 

Then some form of averaging is applied under a set of assumptions about 

the nature of the flow regimes. The result is an expression relating 

the average gradient to the average flux, i.e., Darcy's law. 

For saturated flow, Day starts with the following assumptions: (1) 

nonturbulent flow, (2) negligible inertial forces, (3) rigid solid phase, 

(4) incompressible liquid, (5) viscosity unaffected by the proximity of 

the solid phase, and (6) velocity is zero at the solid-liquid interface. 
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Starting with the Navier-Stokes equation for creeping incompressible 

flow which assumes aVi/at is negligible 

(II-13) 

where vii is local velocity, .1 is local potential, p is viscosity, and 

p is density. Differentiating, we have: 

2 a3 I 

a,I p vi 
-2-=- 2· 
ax. Pg ax. ax . 

~ ~ J 

Continuity for an incompressible liquid is given by 

av! 
~ 

ax. = 0, 
~ 

so we have the Laplace equation 

( II-14) 

(II-15) 

( II-16) 

We seek a solution to the Laplace equation which will satisfy the 

boundary conditions of the detailed porous medium. Note that if • is a 

solution, then c. is also a solution if c is a constant. Also if c+ is 

the solution, the velocity will be cVi since from equation 11-13 

a2 
~ -- (cv!) 
p ax~ 1 

J 

a2 I v. 
=c L __ 1 __ 

Pg a 2 -x. 
J 

a ... I . a 
c ~ = - (c+ I

). ax. ax. 
~ 1 

(II-17) 

Day next defines macroscopic potential as a volume average of the micro-

scopic or local potential 
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(II-18) 

whe.re V is bulk volume, 4>! is the local potential, and b = 1 in the liquid 
~ 

phase and b = 0 in the solid phase. Thus the average gradient is 

!.L=l f b a+
I 

dV. (II-19) ax. vax. 
~ v ~ 

The major assumption in the analysis is that the local and average 

velocities are connected by a relationship of the form 

v! = c .. v. , 
~ ~J J 

(II-20) 

where c .. are functions of position and independent of the local velocity, 
~J 

. Vi 
i· Differentiating this equation twice, we have 

a2 I V. 
~ 

-2-=v. 
ax J 

k 

2 a c .. 
~J 
2· aX
k 

Substituting this in the Navier-Stokes equation (11-13) gives , . 

a2 
I a+" lJ'; Vi lJ -------v ax. - Pg a 2 - Pg j 

~ x
k 

Using the definition of macroscopic potential, (11-22) becomes 

2 
a4> 1 J'b a4>' dV 1 

a c .. J bLv. ~J dV, ax. = V ax. =V Pg J 2 
~ ~ aXk v v 

2 
a4> 1 J lJ a c. -a - = v. -v b -.-J..2 dV. 
x. J Pg a 1 X

k V 

(II-21 ) 

( 11-22) 

(11-23) 

( 11-24) 
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Letting 

2 
1 

a c .. 
A .. - -V Jb~ IJ dV I 
IJ Pg 2 aXk v 

(II-25 ) 

gives 

a+ -v .A .. ax. = J IJ 
1 

( II-26) 

or 

)-1 a+ v. = -(A. . -a - I 
J IJ X. 

1 

( II-27) 

and 

K •. ( -1 = A .. ) 
IJ IJ 

( II-28) 

There are several weak points in this derivation.· A major weakness 

has been pointed out by Narasimhan (1980). Narasimhan points out that 

volume (or ensemble) averages only make physical sense for extensive 

quantities, such as mass and energy. However, intensive quantities such 

as temperature or potential cannot be simply averaged. This is because 

potential or temperature of two disconnected sub domains cannot be added 

to find the total potential or temperature. Quantities such as poten-

tial and. temperature must be modified by capacity functions in order to 

be averaged. Thus a correct definition of average potential would be 

+ = V~c J bm~+' dV, 

V 

( II-29) 

where mc is the average specific fluid mass capacity of the medium and 

mt is the local value. The average specific mass capacity may also be 

difficult to evaluate because in heterogeneous systems, mt is not 
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additive. Only for steady state problems where the potential distribu-
~ 

tion is independent of the capacity terms can we have 

, = ~ f b,' dV. 

V 

(II-3D) 

Day's use of the above form of volume average for, without mc implies 

the result is applicable only to steady flow. Day implicitly assumed 

nearly steady flow from the beginning by neglecting aVi/at in the Navier

Stokes equation. 

Philip's (1957) approach to this problem was to accept the fact 

that Darcy's law really applies only to steady flow. He then examin'ed 

the transition from rest to steady flow for incompressible fluids using 

the Navier-Stokes equation including the acceleration term: 

avo 
1 

at = 

2 
_~+~ a vi 

ax. P a 2 1 X. 
J 

(II-31 ) 

Philip found that steady flow was established very quickly, within sec-

onds or a fraction of a second for most media. Thus Day's assumption 

that the acceleration terms of the Navier-Stokes equation are negligible 

may not be too bad. In other words, as long as the boundary conditions 

are changing slowly, the velocity field, can be related to the potential 

field with the form of the Navier-Stokes equation used by Day. So, at 

least for homogeneous media, the simplified form of the volume average 

may also be approximately correct. 

A further problem in this analysis is the equation 11-20: 

v' = C .. V •• 
1J 1 

If Cij' and therefore permeability, is to be unique, the local velocity 
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distribution must be constant or at least a constant multiple of the 

velocity distribution for which the components of Cij were derived. The 

components of Cij will change when the soil particles move (e.g., in 

compaction) or when there are any changes in the distribution or amount 

of water in the medium (nonsteady flow). In fact the Cij will be unique 

only for a given type of boundary conditions and steady (or incompress-

ible) flow. That is, the Cij will be invariant only for kinematically 

/similar, steady flows. 

Day has shown that permeability is a tensor for any given kinematic 

state of steady or incompressible flow if vI = CijVi. He has not shown 

that a unique permeability tensor can be found for a given medium which 

controls any laminar steady or unsteady flow state. The permeability 

tensor will be unique if 

A •. 
l.J 

1 
=-V ( 1I-32) 

is invariant for any laminar flow conditions. This can only be proven 

for specific cases as discussed above when the full details of the flow 

system are known. Only in these cases are the components of Cij known 

throughout the flow field under any flow conditions. 

Darcy's law cannot be proven for the general case. The only way to 

show that a given random medium has a symmetric permeability tensor is 

to actually measure the directional permeability. The theory of direc-

tional permeability measurement is given below. 
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Measurement of Directional Permeability 

Directional permeability can be measured under steady flow condi-

tions. If the correct form of Darcy's law is 

q = k .. ¥-=K .. J., 
1J Xj 1J J 

(II-33 ) 

then this expression can be used to examine the theory of directional 

permeability measurement. Fundamental to directional permeability 

measurement is the fact that flow and gradient are not necessarily in 

the same direction. Only when flow and gradient coincide with one of 

the principal axes of permeability will flow and gradient be in the same 

direction. This can be seen from inspection of the above Darcy equation. 

Scheidegger (1954) and Maasland (1957) both give analyses of direc-

tional permeability. Neither stated that there is a difference between 

measurements made in the direction of flow and measurements made in the 

direction of gradient. Marcus and Evenson (1961), Marcu~ (1962), and 

Bear (1972) all give the expressions for both permeability in the direc-

tion of flow and permeability in the direction of gradient. They show 

how the results of directional permeability measurement can be plotted 

as ellipsoids. A summary of these analyses is presented here in simpli-

fied form. 

If a steady flow system is set up where the direction of flux is 

known, then permeability in the direction of flux, Kf, can be defined as 

q = - KfJ·m. , 
1 1 

( II-34) 

where Ji is the gradient vector, mi is a unit vector in the direction 

of the flux, and q is the flux per unit area. Therefore, Jimi is the 

component of the gradient in the direction of the flux' (Figure II-1). 
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1 r= 
f 

---v 

J. can be found from Darcy's law: 1. 

v. = - K .. J. 
J 1.J 1. 

23 

J. = - v .(K .. )-1 = -m.(K .. )-1 v• 
1. J 1.J J 1.J 

Substituting equation 11-37 into 11-35 gives 

1 ()-1 -K = m.m. K.. , 
f 1. J 1.J 

or 

Substituting 

(II-35 ) 

( II-36) 

(11-37) 

( II-38) 

( II-39) 

( II-40) 

into 11-39 implies the components of xi give the coordinates of a ray of 

length IKf plotted (as measured) in the direction of flux, mi' Substi-

tuting 11-40 into 11-39 we have: 

1 = x. x. (K .. )-1, 
1. J 1.J 

(II-41) 

which is the equation of an ellipsoid with semiaxes of length IK1, 1K2, 

/K3, where K1, K2, and K3 are the principal permeabilities. 

Permeability in the direction of the gradient Kg is defined by 

q.n. = - K J 1. 1. g ( II-42) 

(II-43 ) 
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where qi is the flux per unit area, ni is a unit vector in the direction 

of the gradient, vimi is the component of flux in the direction of the 

gradient and J is the magnitude of the gradient. Substituting Darcy's 

law: 

q. = - K .. J. , 
1 1J J 

into equation 11-43 gives, 

or 

K = g 

K .. J. 
1J J 

J ni 

K = K .. n .n. 
g 1J J 1 

1 = K .. (Ii< n .)( Ii< n.) 
1J g J g 1 

Substituting 

( II-44) 

( II-45) 

( II-46) 

(11-47) 

( II-48) 

into 11-47 implies that the components of xi give the coordinates of a 

ray of length 1/1Kg plotted (as measured) in the direction of gradient. 

This gives: 

1=K .. x.x. 
1J 1 J 

(11-49) 

which is the equation of an ellipsoid with semiaxes of lengths 1/1iK1, 

1/1K2 and 1/1K}. Recall in equation 11-41 for permeability measured in 

the direction of flow the semiaxes are /K1, /K2, 1K3. For permeability 

measured in the direction of flux the major axis of the ellipsoid is in 

the direction of maximum permeability. For permeability measured in the 

direction of the gradient the major axis of the ellipsoid is in the 

direction of minimum permeability. 
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Scheidegger (1954) reanalyzed directional permeability measurements 

made in the direction of the gradient by Johnson and Hughes (1948). 

Scheidegger plotted 1/1Kfclf as a function of a on polar coordinate paper 

for each set of data. A best-fit ellipse was calculated. The standard 

deviation of the laboratory values as compared to the best-fit ellipse 

was about 10%. This deviation can easily be accounted for by hetero

geneities in the samples. Greenkorn et al (1964) and Morita and Gray 

(1980) used a method of measuring conductivity in the direction of flow 

with a whole core type permeameter. Results in both cases plotted as an 

ellipse. This type of laboratory analysis tends to confirm that the 

behavior of many porous media can be predicted by a symmetric permeabil

ity tensor. 

Homogeneity 

Homogeneity has been discussed by Hubbert (1956), Fara and 

Scheidegger (1961), Toth \1967), Bear (1972), and Freeze (1975). Freeze 

pointed out that there is really no such thing as a truly homogeneous 

medium in geology. However, in order to have a tractable analysis of 

flow, a scale of measurement (the macroscopic scale) must be found for 

which the porous medium is seen as continuous (Hubbert, 1956). On this 

scale the medium is said to behave as if it were homogeneous. The scale 

at which such analysis is possible is commonly illustrated with a dia

gram such as Figure 11-2. The volume at which the parameter of interest 

(permeability in the case of Figure 11-2) ceases to vary was defined 

earlier as the representative elementary volume (REV). With respect to 

permeability, the REV of a medium can be sought by measuring the average 

permeability of increasing volumes of rock until the value does not 



>
t--.-J -CO « 
w 
~ 
a:: 
w 
a. 

Figure II-2. 

26 

R.E.V. 
VOLUME 

XBL813- 2735 

Statistical definition of a Representative 
Elementary Volume (REV). 



27 

change significantly with the addition or subtraction of a small volume 

of rock. An alternative to this theory was proposed by fara and 

Scheidegger (1961) and Moran (1962). These authors suggested the use 

of an autocorrelation function which could be evaluated along random 

lines through a given porous medium. If the medium is homogeneous and 

isotropic, the autocorrelation function should be equal for any line, 

provided the sample is as large as the REV. 

There is no guarantee that such an REV exists for every permeable 

system. Indeed, Snow's (1969) theoretical and experimental work shows 

the permeability of fractured rock may continue to increase with the 

volume tested.- This implies that within the practical limits of the 

geologic strata the statistical sample continues to change with the size 

of the sample. A further problem has been studied by freeze (1975), 

Smith and freeze (1979a and b), and Smith ·(1978). They have concluded 

that for some problems it may not always be possible to define equiva-

lent homogeneous properties for inherently heterogeneous systems. Using 

numerical simulation, Smith and freeze studied arbitrary flow systems in 

one- and two-dimensional heterogeneous porous media. Elements of the 

model were assigned permeability in a random manner. Hydraulic equiv-

alence between the heterogeneous systems and an equivalent homogeneous 

system was based on two criteria (Smith and freeze, 1979b): 

1. The mean value of the hydraulic head at any point, as 
determined from a stochastic solution that recognizes the spatial 
heterogeneities, must equal the head value at that point, as 
determined from a single deterministic solution using the effective 
conductivity of the medium. 

2. The mean value of any integrated flow measurement determined 
from the stochastic solution must equal the single value provided 
by the deterministic run. 
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Smith and Freeze concluded that in two dimensions these conditions 

were met only when very restricted conditions were placed on the nature 

of heterogeneity and the flow system operating within the domain. How

ever, this conclusion was based on two somewhat limiting assumptions. 

First, the geometric mean permeabil!ity was always used as the equivalent 

permeability. Although the geometric mean is a good approximation for 

some flow systems, there- is no guarantee that it is always the best 

estimate of equivalent permeability. Second, the equivalent permeabil

ity was only allowed to be isotropic. An anisotropic value may have met 

the above criteria. 

For any given set of boundary conditions, Smith and Freeze might 

have been able to find an equivalent anisotropic permeability which pro

duced the same average flux as the heterogeneous system. The difficulty 

in identifying this equivalent permeability is that the equivalent per

meability tensor that works for one set of boundary conditions will not 

necessarily predict the correct flux for another set of boundary condi

tions. The difficulty arises because, in general, different boundary 

conditions induce different gradients in different parts of the flow 

field. The permeability in one part of the field which has a higher 

gradient will have more effect on the total flux than the permeability 

in another part of the field which has a lower gradient. When the boun

dary conditions change, the emphasis changes. Therefore, a given equiv

alent permeability tensor will only apply to kinematically similar flow 

systems. Recall that this is the same difficulty identified in the 

derivation of Darcy's law by Day (1974). 
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Maini (1971) points out that the same medium can be considered 

homogeneous or heterogeneous, depending on the size of the flow system 

operating in it. A small flow system in a given medium can be classed 

as a heterogeneous problem while a large flow system in the same medium 

would behave as if it were in a homogeneous medium. The physical impli-

cations of Maini's remark are important: the size of the appropriate 

REV depends on the flow system of interest. The REV must be large 

enough to contain a representative statistical sample as discussed by 

Hubbert and others and. as shown in figure 11-2. However, for a parti-

cular application, the unit volume that can be used in an analysis must 

be small enough relative to the flow system being studied so that the 

gradient throughout the volume is approximately constant in magnitude 

and direction. This concept is familiar to groundwater flow modelers: 
< 

the smaller the mesh size is, the more accurate the results are because 

the head distribution within each element is more nearly linear. 

If the average flow lines through an internally heterogeneous 

volume remain linear, it may be possible to define a unique equivalent 

permeability tensor which will be correct for flow in any direction. 

However, if the isopotentials and flow lines are curved relative to the 

dimensions of the statistically determined REV, then the value of the 

equivalent permeability of the REV will depend on the particular 

kinematics of the flow system. In this case, no unique permeability 

tensor can be defined. further, a prediction of the behavior of the 

flow system as a whole would depend on the knowledge of the equivalent 

permeability which itself would depend on the flow system. So a unique 

solution to a flow problem w9uld be very difficult to achieve. 
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If, on the other hand, the average gradient is constant within the 

statistically determined REV, then there may exist a single permeability 

tensor which can be used to correctly predict flow in any direction. 

However, even under these constraints there is no guarantee that a 

unique, symmetric permeability tensor will exist for every medium on a 

given scale. 

Given a flow system similar to that studied by Freeze and Smith 

(1979a and b), (for example, flow under a dam) the appropriate volume 

for an element must be small enough to experience a constant average 

gradient. To satisfy the definition of a homogeneous continuum, how

ever, it must also be at least large enough to contain a representative 

sample of the heterogeneities. In some cases, a statistically defined 

REV may be too large to have constant average gradient. In this case, 

either a smaller REV must be found as the basis for analysis or a clas

sical continuum analysis will not apply. 

Freeze and Smith did not consider the size of the REV relative to 

the size of their problems when they looked for an equivalent porous 

medium permeability. It may be that a larger, statistically defined REV 

exists on the same or larger scale as that of the flow problems they 

studied. However, the boundary conditions imposed on their flow systems 

systems produced a nonconstant gradient field. Thus the largest appro

priate REV they could have found had to be small compared to the varia

tion in the magnitude and direction of the gradient. In fact, the REV 

in their problems was, a priori, the size of the individual blocks that 

were initially assigned a homogeneous single permeability. Constant 

I 



31 

gradients must be imposed on models such as those developed by Freeze 

and Smith in order to determine if and when a homogeneous equivalent 

system exists on a scale larger than that of the individual blocks. 

The above review leads to several conclusions central to this 

investigation. First, it only makes sense to look for equivalent porous 

medium behavior in fractured rock systems using flow systems which would 

produce linear isopotentials and flow lines in a truly homogeneous, 

anisotropic medium. Boundary conditions that will result in such a flow 

system will be described in Section 111-0. Second, the following cri

teria must be met in order to replace a heterogeneous system of given 

dimensions with an equivalent homogeneous system for the purposes of 

analysis: 

(1) There is an insignificant change in the value of the equivalent 

permeability with a small addition or subtraction to the flow 

volume; 

(2) A single equivalent symmetric permeability tensor exists which 

predicts the correct flux when the direction of gradient in an REV 

is changed. 

Criterion (1) implies that the size of the sample under consideration 

is a good statistical sample of the heterogeneities. Criterion (2) is 

based on the assumption that boundary conditions are applied to the 

sample which would produce a constant gradient throughout a truly homo

geneous, anisotropic sample. The actual gradient within the heterogen

eous sample does not have to be exactly constant for (2) to be satisfied. 

The average isopotentials of the heterogeneous system will probably be 

the same as the isopotentials in the equivalent homogeneous system, if 
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(1) and (2) above are met. However it is not necessary to have a 

constant actual gradient in order to have a tractable porous medium 

analysis. For example, if a block of material the size of the REV is 

removed from a flow system and replaced with a block of equivalent homo

geneous material, the overall characteristics of the flow system will 

not change significantly if criteria (1) and (2) are met. Each block 

will have experienced the same boundary conditions and produced the same 

average fluxes across the boundaries. Further, each block will contain 

a relatively linear flow field. The shape of the isopotentials within 

the two blocks may be different in detail, but this by itself will have 

no import on the overall description of the flow system. 

C. Statistics of Fracture Geometry 

Introduction 

Under a given set of boundary conditions, the hydraulic behavior of 

a fractured rock mass with an impermeable matrix is determined entirely 

by the geometry of the fracture system. Real fractures have complex 

surfaces and variable apertures, but for the purposes of this study and 

most other studies of fracture systems, the geometric description is 

simplified. The assumption is made that individual fractures lie in a 

single plane and have a constant hydraulic aperture. 

Characterization of a fracture system is considered complete when 

each fracture is described in terms of (1) its hydraulic or effective 

aperture, (2) its orientation, (3) its location, (4) its size and, for a 

three-dimensional description, (5) its shape. In two dimensions, size 

means length. This survey is organized into three sections corresponding 

to these geometric properties. Size and location are discussed together. 
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Apertures 

The hydraulic behavior of fractures has been shown to be a function 

of their aperture, b. Witherspoon et ale (1979) has reviewed the data 

on laminar flow in fractures and concluded that flow in fractures obeys 

the cubic law: 

.9... - Cb 3, V41 ,- (II-50) 

where q is flux, V4I is the gradient~ C is a constant, and b is the 

hydraulic aperture. Characterization of the permeability of a fracture 

requires determining the hydraulic aperture. 

Iwai (1976) was able to define a hydraulic or effective aperture 

for nonideal sample fractures in the laboratory. Iwai studied flow 

through rough tension fractures in granite, basalt, and marble, under 

various conditions of normal loading and opening. First he showed that 

for a fixed aperture, flux was proportional to gradient, i.e., Darcy's 

law was obeyed. He then tried to create a zero-aperture fracture by 

applying 20 MPa across the fractures. Fractures in this condition con-

tinued to conduct water. The effective parallel-plate aperture, bo, 

which would account for this residual flow, was calculated. As load was 

released, the fractures opened by ~b. The effective aperture which 

accounted for the flow was found to be bo + ~b. 

Significantly, the effective apertures could not have been measured 

directly for two reasons. First, the fracture that was subject to maxi

mum stress and appeared to be completely closed could still conduct 

water. Second, the fractures were rough and the sides had some contact 

with each other. The net effect of roughness and contact area could 
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be measured only hydraulically. Thus the effective aperture must be 

measured by performing hydraulic tests. 

Unfortunately, it is very difficult to perform hydraulic tests on 

isolated fractures in the field. Such attempts may be hampered by ina

bility to isolate single fractures in the borehole, the effect of inter

secting fractures, and low flow rates required for nonturbulent flow 

near the wellbore. Limited attempts have been made to test individual 

fractures. For example, Gale (1975) isolated a limited number of hori

zontal fractures with packers and performed injection tests to determine 

their apertures. His data also shows that hydraulic and measured (appar

ent) apertures are not the same. The apertures measured from a borehole 

periscope log were at least one order of magnitude higher than the cor

responding hydraulic apertures calculated from injection flow rates. 

Gale's data, however, are not extensive enough to make significant anal

ysis of the relationship between hydraulic and apparent apertures. 

Because of the difficulty involved in hydraulically isolating a 

single fracture underground, the knowledge of fracture aperture distri

butions is limited to apparent apertures that have been observed dir

ectly in cores or well logs. Methods for direct measurement of fracture 

aperture have been refined by Rocha and Franciss (1977) and Bianchi and 

Snow (1968). Rocha and Franciss proposed a technique called integral 

sampling. This method consists of drilling a small pilot hole and 

injecting a grout. Then an overcore is taken and the grout filled frac

tures are measured. Bianchi and Snow used a fluorescent ,dye process to 

reveal the fractures on the surface of a rock sample. Apertures are 
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then measured with a caliper. The distribution of apertures measured by 

Bianchi and Snow was found to be very close to lognormal. 

It may be reasonable to expect the distribution of true hydraulic 

apertures to also be distributed lognormally, Snow (1969) assumed this 

and was able to estimate the mean and standard deviation of aperture dis-

tribution from normalized pressure test data. He also assumed a Poisson 

distribution of fracture spacing. Individual injection test results 

were normalized to the same length of test zone. Snow then used the 

frequency of zero discharge zones to estimate the mean fracture density, 

A. He then concluded that the mean discharge of individual fractures is 

equal to the mean discharge of all samples of fractures encountered by 

the uniform test lengths divided by A. From the mean discharge, Snow 

calculated the mean aperture. This analysis does not differentiate the 

aperture distributions for individual sets; all the fractures are assumed 

to be perpendicular to the hole. 

A further consideration in understanding the aperture distribution 

of fractures is that fractures of greater extent may be likely to have 

larger apertures. Thus fracture length and apertures are possibly cor-

related. This important topic has not yet been studied. Support for 

such a correlation comes from the literature on fracture formation where 

the width of a crack can be calculated as a function of its length for 

various stress states (Sun, 1969; Secor and Pollard, 1975; Pollard, 1978; 
r 

Pollard, 1976; Pollard and Muller, 1976; Simonson et aI, 1978). Also 

studies of roughness show that the scale of roughness is linearly rel-

ated to fracture length, (Sayles and Thomas, 1978). That the size of 
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the asperities may in part determine the aperture this is further evi

dence for a possible relationship between length and aperture. The exact 

nature of the relationship between length and hydraulic aperture is not 

yet fully understood. 

In conclusion, the best estimate currently available is that aper

tures are distributed lognormally. However, confirmation of this esti

mate and the relationship of fracture aperture to lateral extent awaits 

extensive hydraulic field testing and mapping of isolated individual 

fractures. 

Orientation 

The statistics of fracture orientation are perhaps the best under

stood of all the geometric properties of fractures. There are three 

reasons for this. First, it is relatively easy to obtain a measure of 

the orientation of a large number of fractures. Orientation can be 

measured in cores or in outcrops with simple tools. Second, information 

on' fracture orientation has been developed in the pursuit of several 

different types of engineering projects, notably those concerning struc

tural stability of rock masses. These analyses are useful for hydro

logic purposes. In contrast, effective fracture apertures are harder to 

measure. Apertures are only of direct interest to hydrologic problems 

and are therefore not studied by other disciplines. Third, the mathe

matics of orientation analysis has been of interest to many fields. 

Statistical analysis of such data is well developed. Pincus (1953) 

gives an extensive table of references from the earth science field 

alone. 
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Fracture orientation distributions are usually studied by plotting 

the poles of each fracture plane on either a stereo net or a Lambert 

equal-area net. Terzaghi (1965) g~ves a description of these projec-

tions. Data from a single or several related sites plotted in this 

manner usually form clusters or sets. Each set can be identified and 

analyzed separately. In general, a parametric analysis of this type of 

data consists of determining (1) the form of the distribution, (2) a 

parameter representing the central tendency or mean direction, (3) a 

measure of the dispersion around this mean, and (4) a measure of the 

goodness of fit of the data to the theoretical distribution. 

For example, Fisher (1953) gave a simple method for estimating the 

mean direction of a collection of poles. The mean direction is simply 

the direction of the vector sum of all the unit vector poles. This 

vector sum is called the resultant. Fisher assumed the probability 

density is proportional to ekcos6 where 6 is the angular displacement 

from the mean and k > 0 is a measure of dispersion. If all N measure-

ments are in the exact same direction, the resultant R would be of 

length N. Therefore k is a function of Nand R. Fisher found 

N - 1 ( ) k = N _ R ' II-51 

is a good estimate when N - R < 2. It should be noted that Fisher's 

distribution is symmetrical about the mean direction. Snow (1965) 

applied Fisher's distribution to the Monte Carlo calculation of the 

permeability of sets of randomly distributed infinite fractures. 

Pincus (1953) gives a thoughtful discourse on the methodology of 

statistical analysis of orientation data. He discusses requirements for 
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sample size and suggests the method of sequential sampling. In this 

method successive increments of data are collected "until the total 

picture changes with the addition of the last increment by an amount 

less than that required by the precision of the investigation." If a 

model distribution is hypothesized, Pincus suggests use of the chi

square (x2) test for model validity. Pincus also suggests methods for 

applying linear, circular, and spherical normal distribution theory to 

two- and three-dimensional problems. 

Before statistical theory can be applied to orientation data, 

sample bias must be removed. Terzaghi (1965) explains the geometric 

causes of sample bias. Orientations are usually measured either in core 

or on an outcrop. Fractures which are more nearly parallel with the 

core or outcrop have a lower probability of being sampled. The number 

of fractures, N90, which would be intersected by a hole (or an outcrop) 

perpendicular to the joints is given by 

Na 
N ---90 - sina ( II-52) 

where Na is the number of fractures intersected by the same hole (or 

outcrop) which makes an angle a with the fractures. This formula can be 

used to correct orientation data. However, the reliability of such 

corrected data decreases as a becomes small. When a is zero no correc-

tion can be made. This problem can be overcome by sampling several out-

crops or core holes in a variety of orientations. 

Mahtab et al (1972) developed a computerized method for analyzing 

clusters of orientation data. This program divides the sphere on which 

the poles are plotted into 100 patches of equal area and obtains the 
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density of poles in each patch. Clusters are defined as "collections of 

all points in adjacent patches where each patch possesses a density that 

exceeds the threshold value." Mahtab compares the density against a 

Poisson distribution to identify threshold values. Once clusters have 

been identified they are compared to Arnold's hemispherical normal dis-

tribution with probability density v(~, k) given by 

v ( ~, k) = ( k k ) e kcos ~ 
41f(e - 1) 

( II-53) 

where ~ is the random variable which assumes values ~i , the angle 

between the ith observation and the mean vector, and k is a measure of 

dispersion. This distribution is similar to the univariate normal dis-

tribution. Mahtab gives the estimate of k for k > 6 as 

( II-54) 

Also, the probability P of an observation being within ~ of the mean is 

given by 

1 
cos~ = 1 + k 10ge(1 - P). (II-55) 

Once the estimate of k is found, the X2 goodness-of-fit test is applied. 

Mahtab et al applied this method to porphyry copper fracture data. The 

cluster analysis showed a major orthogonal joint system. One of the 

clusters passed the x2 test for Arnold's hemispherical normal distribu-

tion; the other two did not. Other distributions, for example Fisher's, 

could have been examined for these two sets. 
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Location and Dimension 

The mathematical descriptions of fracture locations and fracture 

dimensions are interrelated. Therefore, these two topics will be dis-

cussed together. Fracture traces can be observed in outcrops or in 

excavations. The location of fractures intersecting a borehole can also 

be determined. Using trace length and borehole data, we wish to deter-

.mine the location of fractures in space and their shape and dimensions. 

Robertson (1970) studied fractures exposed in the tunnels of the de 

Beers mine. Trace lengths of fractures were recorded using a category 

system with four intervals. The distributions obtained were compared to 

exponential distributions. In most cases, the fit was considered good. 

Robertson experienced difficulty in the placing of joints in the correct 

class intervals. Where traces continued into the walls, roof or floor, 

the correct trace length could not be measured. Statistical methods 

which correct for this censoring were not invoked. Robertson also made 

an effort to estimate fracture shape. The author made "bivariate plots 

of dip trace length against stri~e trace length." The authors then 

assumed that fractures were circular, and concluded that joint sizes are 

underestimated by trace lengths according to the relationship 

A - ~ A' - 2 ' 
'If 

( II-56) 

where A' is the joint area calculated from the visible trace lengths. 

Taking A to be the average area, then the average fracture radius, r, 

would be 

E(r) - fA _ /6AI _ ~ fA' - ~ E (!:.) - In - 3 - 'If In- - 'If 2' 
'If 

where E(L/2) is one-half the expected value of the trace length. 

( II-57) 
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Robertson (1970) estimates the volumetric density of jointing, AV ' 

given the number of joints, n, intersecting a simple line of length L as 

A 
v 

n = "'-L-· -a "1'"( c-o-s-S .... ) "1'"( c-o-s--S .... ) , ( II-58) 

where a is the average area of the joints and Sand 6 are the horizontal 

and vertical angles between the sample line and the joint set pole. 

This estimate is based on the assumption that parallel joints are ran-

domly distributed in space. The probability of intersecting n joints 

was assumed to follow the binomial law. 

Some further information on fracture shape has come from research 

on fracture formation. An example of such work is given by Pollard 

(1978). Pollard suggests that the form of sheet intrusions in sedimen-

tary rock should be s~milar to the form of hydraulic fractures since the 

mechanics of formation are similar. He finds that vertical dikes tend 

to be greater in length than height and horizontal sills tend to be 

equidimensional. Inclined intrusions are rare. Thickness-to-length 

ratios ranged from about 1/100 to 1/1000. Some intrusions were stacked 

up in groups with small spacings and some were arranged in echelon pat-

terns. Fractures formed in echelon would have decreased conductivity at 

the "steps" in the echelon pattern. An elliptical model for fracture 

shape may be applicable, at least to the extent that fractures in a rock 

mass were created by hydraulic fracturing. However this model may not 

apply to fracture networks produced by tectonic movements. £ 

Priest and Hudson (1976) and Hudson and Priest (1979) examined 

the distribution of fracture spacing along a scan line and concluded 

that spacing values can be approximated with a negative exponential 
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distribution 

( ) -AX 
f X = Ae , ( II-59) 

,where f(x) is the frequency of discontinuity spacing, x, and A is the 

average number of fractures per meter. An evenly-spaced distribution of 

fractures, such as in columnar basalt, would result in a normal distribu-

tion. Clustered distributions could occur near lithological boundaries 

or due to stress effects. Random spacing, which could occur in homogen-

eous rock, leads to a negative exponential distribution. Geologically 

complex rock is likely to have a combination of evenly spaced, clustered, 

and random distributions. Superposition of these fractures tends to 

result in a distribution similar to the negative exponential because 

superposition tends to preserve the smaller spacings and break up the 

larger ones. Hudson and Priest (1979) used numerical simulation to 

demonstrate the evolution of a negative exponential distribution from 

superposition. 

Hudson and Priest also analyzed scanline measurements from several 

tunnels. A negative exponential distribution for spacing was found to 

be a good approximation. It is interesting to note that at least 200 

measurement values were required to clearly define a negative exponen-

tial histogram. The mean and standard deviation of the theoretical 

negative exponential are equal. Priest and Hudson's measurements of the 

mean and standard deviation were within 20% of each other. 

Baecher et al (1977) reviewed the literature on spacing and length 

distribution. Both spacing and length have been reported to vary both 

exponentially and lognormally. The authors proceeded to analyze joint 
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data from sedimentary and complex metamorphic rocks. Trace length dis

tributions were compared to exp6nential, normal, gamma, and lognormal 

distributions. lognormal provided the best fit to the data. Spacing 

distributions were measured by extending joints found in outcrops to 

infinite planes. Distributions of spacing were measured for lines of 

various orientations on an exposed rock surface. Spacings were fit to 

exponential, negative binomial and lognormal distributions. Exponential 

distributions provided the best fit regardless of the orientation of the 

sample line. 

Baecher et ale (1977) developed a conceptual joint geometry model. 

Joint trace lengths are assumed to be lognormally distributed and spac-

ings are assumed to be exponentially distributed. The authors infer 

that joints are discs randomly distributed in space. Joint radii are 

shown to be lognormally distributed. Using this model, the authors 

estimated the expected joint radii from the expected trace length much 

as Robertson (1970) did. However, unlike Robertson, Baecher et al lower 

this estimate to account for the sampling bias of larger joints appear-

ing disproportionately in the sample. They give the expected value of 

r as 

( II-60) 

where l is the trace length, E(l) is the expected value of l, and Var(l) 

is the variance. From the spacing distribution data the density of 

jointing for a set of parallel joints was estimated as 

Nil A = -----:..---:--
2 ' 1T(COS 9)E(r ) 

(II-61) 

where N is the number of joints intersected on a line of length l which 
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makes an angle a with the joint poles. This estimate is similar to 

Robertson's (1970) result. However, as explained above, Baecher's esti-

mate of joint size includes a correction for sampling bias. 

Baecher and lanney (1978) further examined bias in trace length 

sampling. They identify three types of bias: size bias, truncation 

bias, and censoring bias. Size bias occurs because larger joints have 

a larger probability of being sampled. Truncation bias occurs because 

joints smaller than a certain size are eliminated from the survey. 

Censoring bias occurs because the full trace length of some joints is 

not observable. 

Size bias can be accounted for if assumptions are made about the 

shape and distribution of joints in space. Baecher assumed joints are 

circular discs randomly located in space. Then the probability of a 

joint being intersected by an outcrop is proportional to its radius. 

Baecher shows that the distribution of trace lengths, l, is given by 

f(lla) = jf 
l/2 

(11-62) 

where C is a constant and a is a vector of parameters (not explicitly 

defined by the authors). For exponential or lognormal forms for fer), 

Baecher and lanney show that the expected value of trace length, E(l), 

is greater than twice the expected value of the unconditional average. 

Also, f(l) has lognormal form whether fer) is lognormal or exponential. 
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Truncation also leads to systematic overestimation of average joint 

size since smaller joints are systematically removed from the sample. 

This error is greater for exponential distributions than for normal or 

lognormal distributions. For an exponential distribution of true trace 

length, Baecher finds the estimated mean trace length is up to three 

times larger than the true mean, depending on the truncation limit. 

Censoring tends to cause an underestimation of mean trace length. This 

bias cannot be easily corrected, but Baecher and Lanney present some 

approximate corrections. 

Barton (1978) studied an unusual outcrop where all the joints be

longed to a single set perpendicular to the outcrop. The size of the 

outcrop was such that there was no apparent censoring, and truncation at 

the lower limit was at a well-defined 30 mm. Barton established a numer

ical model of the joints which placed parallel circular discs randomly 

in space. Various distributions of radius were assigned to the discs. 

The numerical model was used to calculate trace length distributions for \ 

a plane intersecting the model perpendicular to the fractures. Barton 

found that chords from circles with lognormally distributed diameters 

were distributed in a similar manner to the trace lengths of the field 

site. Further, the analysis showed that the standard deviation of the 

trace length distribution is always higher than the standard deviation 

of the diameter population. This can be understood by considering the 

case where the discs are all the same size but the traces are not. The 

model also showed that size bias becomes more important as the size 

range of the population sample increases. 
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Slightly different models of fracture systems were presented by 

Veneziano (1979) and Conrad and Jacquin (1973) for application to rock 

mechanics. Conrad and Jacquin's two-dimensional model separates frac-

tures into two superimposed networks. First there is a network of large 

fractures called major fractures, which are infinite straight lines. 

These lines form convex polygons in the plane. The second is a network 

of small segments called minor fractures. These straight line segments 

extend at most to the perimeter of the polygons defined by the major 

fractures. The network of major fractures is formed by Poisson major 

fractures. The network of major fractures is formed by Poisson lines of 

variable density according to direction. The network of minor fractures 

consists of line segments of random location, length, and orientation. 

The Poisson lines are constructed as follows: a base line is drawn 

perpendicular to the .direction of each set of major fractures. A cer-

tain number of Poisson points are generated on this base line. Poisson 

lines are drawn through these points perpendicular to the base line. 

This is similar to the method employed by Lippmann (1973) in his study 

of heterogeneous porous media. Jhe Boolean diagram of minor fractures 

is constructed such that the center, orientation, and length of the 

fractures are random. Then the fractures are truncated where they inter

sect a major fracture. Using statistics obtained from an observed net-

work of fractures, Conrad and Jacquin simulated a random network. The 

model was used to calculate geometric parameters of the blocks such as 

area perimeter and height. Most of these geometric comparisons between 

the observed network and simulated model were favorable. The authors 

suggest the model could be improved by truncating the major fractures 

and extending the model to three dimensions. 
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Veneziano's (1979) model is similar to that of Conrad and Jacqu~n 

(1973). However, Veniziano defines only one type of network. The frac

ture network is constructed using two processes. The primary process 

includes a random network of anisotropic Poisson lines in two dimensions 

or planes in three dimensions. The secondary process partitions each 

line or plane into two random sets: one set for intact rock and the 

other for open fractures. In two dimensions, each line is partitioned 

into segments by a Poisson point process., In three dimensions, the 

plane is partitioned with a random polygonal tesselation induced by a 

homogeneous Poisson network of lines in the plane. The probability 

that each line segment or polygon is an open fracture is allowed to vary 

with the orientation of the line or plane. A homogeneous, anisotropic 

network of joints results. By taking limiting cases of the parameters, 

this model becomes essentially the same as the model proposed by Baecher 

et al (1977) except that Baecher used circular fractures, and Veneziano's 

are polygonal. Veneziano's model has the advantage of easily simulating 

systems with more than one fracture in a given plane or generating frac

tures with variable apertures. Veneziano used this model to predict 

rock failure in slope stability problems. 

In summary, the best current estimates based on field data for the 

geometry of fracture location and length result in elliptical fractures 

located randomly in space. This is essentially the model of Baecher et 

al (1977). (Note that circles are subsets of ellipses.) Thus the 

spacing between fractures is likely to be distributed in a negative 

exponential manner~ Fracture radii, if fractures are taken as circular, 

are distributed either lognormally or in a negative exponential manner. 



48 

Correlations between fracture length and hydraulic aperture are not 

available. Correlations of length and density with orientation are 

available since fractures are commonly divided into sets for analysis. 

For certain rocks, however, some variation of the more complex models of 

Conrad and Jacquin (1973) and Veneziano (1979) may be more applicable 

than Baecher's model. So far, the above models of fracture geometry 

have been used to analyze slope stability but not to predict hydraulic

behavior of a rock mass. 

D. Conclusions from the Literature Survey 

The permeability of fractured rocks where the fractures transect 

the entire rock mass is well understood (Snow, 1965). The permeability 

of systems of nonextensive fractures is not well understood. There can 

be no generalized analytic formulation which can account for the random 

interconnections between nonextensive fractures. Some modeling work on 

nonextensive fracture systems has been done but this work has not yet 

examined the circumstances under which it is reasonable to represent 

fractured systems with an equivalent porous med~um permeability. 

In order to examine this problem, it is necessary to understand the 

nature of porous medium permeability. In general, porous media are 

anisotropic. Although the anisotropic permeability tensor is usually 

assumed to be symmetric, this assumption may not always be valid. The 

only way to find out if a given medium has a symmetric permeability 

tensor is to measure the directional permeability. For a symmetric 

tensor, permeabi~ity measured in the direction of the gradient or the 

flux can be plotted such that it forms an ellipse. In the case of the 

permeability measured in the direction of the gradient, 1/IKgCQ ) plotted 
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in polar coordinates versus Q, the direction of measurement, is an 

ellipse. The values of the components of Kij can then be determined 

from the plot of the ellipse. 

If a volume of fractured rock can be represented by an equivalent 

volume of homogeneous anisotropic material, then the calculation of 

regional groundwater flow will be tractable. Also, in order to perform 

the analysis, an appropriate REV must be found. An appropriate REV is 

the volume that is (a) large enough to contain a representative sample 

of the heterogeneities and (b) small enough relative to the flow problem 

of interest to experience a constant average gradient. Thus it is pos-

sible that the appropriate REV may either be very small or nonexistent 

for a particular flow system in a particular medium. 

A block of fractured rock can be tested to see if it behaves as an 

equivalent homogeneous porous medium. Boundary conditions which would 

induce a constant gradient throughout an anisotropic homogeneous medium 

are imposed on the rock. Flux is measured and permeability calculated. 

This process is repeated in many directions and the results plotted on 

polar coordinate paper as described above. If an ellipse is obtained, 

the permeability of the rock is a symmetric tensor. Then the rock must 

be tested to see if the addition or subtraction of a small volume to the 

sample of rock significantly changes the value,.of the tensor. If a 

volume of rock tested as described above has a symmetric permeability 
I 

tensor which is constant with small volume changes, then that volume may 

be replaced by an equivalent porous medium in the analysis of flow prob-

lems which are large compared to the volume tested. 
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The literature on fracture geometry was reviewed to find realistic 

fracture systems to test for porous medium behavior. Based on the 

information available, a realistic two-dimensional fracture system model 

has the fracture centers randomly located in the plane. Fractures are 

generally elliptical in three dimensions, so they are line segments in 

two dimensions. Their orientations by sets are distributed normally, 

trace lengths are distributed either exponentially or lognormally, and 

apertures are distributed lognormally. 
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III. DESCRIPTION OF THE NUMERICAL ANALYSIS 

A. Introduction 

In order to determine when a fracture network can be treated like 

a porous medium, a numerical approach has been taken in this work. A 

numerical program was developed to generate sample fracture systems and 

measure their directional permeability. The program was then used to 

study examples of extensive and nonextensive fracture systems and deter-

mine how well their behavior approximates that of a porous medium. 

A two-dimensional mesh generator produces random realizations of a 

population of fractures. Input to the generator includes specification 

of the distributions that describe the fracture population. The mesh 

generator can randomly choose fractures for the sample according to 

these distributions. A finite-element analysis can then be used to cal-

culate Qg' the component of flow through the pattern in the direction of 

the gradient. Using Darcy's law, the hydraulic conductivity in the dir-

ection of the gradient, Kg, of the sample fracture pattern is calculated 

by 

-~ Kg - V~A (111-1) 

where A is the gross area perpendicular to flow. This program can be 

used to study the effect of sample size on conductivity measurement. 

First a large fracture pattern is generated. A small piece of this, 

sample can be numerically removed and subjected to the numerical conduc-

tivity test described above (Equation 111-1). Succeedingly larger pieces 

can be tested and the results compared. 
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The program can also be used to study the variation in conductivity 

between different realizations of a statistically described fracture 

system. This Monte Carlo type of analysis can also be used to analyze 

statistical data collected in the field. An expected value and standard 

deviation of equivalent porous media conductivity are obtained in this 

way. 

B. Mesh Generation 

Fracture patterns are produced according to the best currently 

available description of real fracture systems. Sets of fractures are 

assumed to be independent and individual fractures are randomly located 

in space. Length distributions are assumed to be lognormal or exponen

tial. Apertures ate assumed to be lognormally distributed. Orientation 

is normally distributed. 

The permeability test which is applied to the fracture model is 

independent of the way the fracture pattern is generated. A fracture 

model, such as that proposed by Veneziano (1979), could also have been 

used and the remaining analysis of permeability would still have been 

valid. 

A particular sample fracture pattern is randomly generated in a 

rectangular or square area (generation region) a specified dimension. 

A general description of this process follows. Each set of fractures 

is generated independently. Then the individual sets are superimposed 

(Figure 111-1). The location of each fracture in a set is found by 

assuming the center of the fractures are randomly distributed (Poisson 

distribution) within the generation region (Figure 111-1a). For each 
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Figure 1II-1. Superposition of random sets of fractures. 
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set a density (number of fractures per unit area) must be supplied to 

determine the total number of fracture centers to be generated. 

The orientation of each fracture in a set is determined next (Fig

ure lll-1a). Orientation of fractures in a set has been assumed to be 

normally distributed. Therefore the mean and variance for orientation 

must be supplied for each set. At this point, the equation of the line 

on which the fracture lies is identified. 

The length of each fracture is chosen next (Figure lll-1c). Frac

ture length within a set is assumed to be distributed lognormally or 

exponentially. If the length is distributed lognormally the mean and 

variance must be supplied. In the case of the exponential distribution 

the parameter A, is equal to 1/£ ~here £ is the expected value of the 

fracture length •. The value of { must be supplied for each set. Frac

ture centers have been constrained to lie within the generation region. 

However, when lengths are assigned, part of the fracture may be outside 

the boundaries. These fractures are truncated at the boundaries of the 

generation region. 

Finally, apertures are assigned to each fracture (Figure lIl-1d). , 

This can be done in two ways. The simplest way is to assume that aper-

tures are lognormally distributed within a set. For this approach a 

mean and variance for aperture must be supplied for each set. A second 

way is to assume that apertures are correlated with fracture length 

according to some model. A simple model has been incorporated into this 

mesh generation procedure. This model assumes that the mean fracture 

aperture associated with a particular fracture length is proportional to 



55 

the log of fracture length to some power: 

- ) 1/n bet = log CP • (111-2) 

The actual value of b assigned to a particular fracture is found by 

allowing bet) to be the mean value of a normal distribution. To use 

this method, two parameters to describe the relationship between bet) 

and t and a third parameter, the standard deviation of the normal ~ 

distribution of b around bet), must be supplied. Use of this option 

and definition of the input parameters is described in Chapter VII and 

Appendix A. 

When all the sets have been generated, a flow region is selected. 

The fractures which lie in the flow region are identified and the coordi-

nates of each intersection are calculated. A more detailed explanation 

of the mathematics is given in Section III-G. 

C. Statistical Considerations 

This model is designed to study variation in conductivity for frac-

ture systems that are homogeneous in a statistical sense~ That is, the 

geometric characteristics of aperture, length, orientation, and location 

of the fractures in the system are assumed to be distributed in the same 

manner throughout the rock. Fractures in the field mayor may not be 

homogeneous within discernable boundaries. Conclusions drawn from this 

study will apply only to regions of rock which are statistically homo-

geneous. 

D. Measurement of Conductivity 

As previously discussed, conductivity of a homogeneous medium can 

be defined either in the direction of flow or in the direction of the 
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gradient. In a heterogeneous medium such as fractured rock, conduc

tivity must be measured in the direction of the gradient. The average 

gradient can be constant in magnitude and direction throughout a hetero

geneous region in steady flow if the region behaves like a homogeneous 

porous medium. The direction of flow, however, is controlled by the 

direction of the fractures. Since the direction of the gradient can be 

controlled, measuring permeability in the direction of the gradient is 

much easier than measuring in the direction of flow. 

The boundary conditions necessary to produce a constant gradient in 

a rectangular anisotropic flow region are illustrated in Figure 111-2. 

They consist of two constant-head boundaries (~2 and ~4) and two boun

daries with the same linear variation in head from ~2 = 1.0 to ~4 = O. 

Conductivity is measured in the direction perpendicular to sides 2 and 4. 

The linearly varying boundary conditions in sides 1 and 3 are neces

sary because, in general, the medium in the flow region is anisotropic. 

Without these boundaries, the lines of constant head would be distorted 

near sides 2 and 4 as shown in Figure 111-3. When the isopotentials are 

distorted, only part of the flow region can experience a constant gra

dient. In an arbitrary heterogeneous system of unknown anisotropy. it 

is impossible to determine what part of the system is experiencing a 

constant gradient and what part is not. Therefore when no flow bounda

ries are used, it is not always possible to measure only that part of 

the flux which is due to a known constant gradient. 

The boundary conditions used in Figure 111-2 insure that the whole 

fracture system is equally stressed by the hydraulic gradient. Under 
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these boundary conditions, whether or not a constant gradient actually 

exists in the flow region depends only on how well the fracture system 

is interconnected. If the system is well connected, it will behave like 

a porous medium and have a constant' gradient. See Chapter X for a 

discussion of the limitations associated ,with the use of these boundary 

conditions. 

Applying Darcy's law to an LxL flow region under the boundary con-

ditions of Figure 111-2 we have 

( III-3) 

~-K ~+K ~ L - yx ox yy oy , 

where Q and Q are the total fluxes per unit thickness in the 
x y 

x and y directions, respectively, and L is the dimension of the square 

flow region. 

For the boundary conditions shown in Figure 111-2, o~/ay is zero. 

K can be calculated: xx 

(III-4) 

For ~2 = 1 and ~4 = 0, and consistent units, K is numerically equal 
xx 

to Q. Since Q is also known, K can be calculated: x y xy 

For ~2 = 

K xy 
= Qy _Qy 

(~2 - ~ 4)L - ~2 - ~ 4 

L 

1 and q, 4 = 0, as above, K xy = Q • y 

( lII-5) 
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E. Rotation of the Flow Region 

Conductivity in a fracture pattern can be measured in any direction 

chosen. Figure III-4a shows a sample fracture pattern called a genera-

tion region. An arbitrarily oriented rectangular section of the region 

(called a flow region) can be chosen for analysis as shown in Figure 

III-4b. Boundary conditions are applied to the boundaries of this flow 

region and conductivity is measured in the direction of the orientation 

of the flow region. This direction is specified by a, the angle between 

side 1 and the x-axis. 

In gener al, the fr acture pattern forms an anisotropic medi um. For 

homogeneous anisotropic media the directional conductivity, 1/IK (a) xx . 

where a is the angle of rotation, is an ellipse when plotted in polar 

coordinates. However, for heterogeneous fractured media, 1/IK (a) may xx 

not plot as a smooth ellipse. In fact, the shape of a polar plot of 

measured values of 1/IK (a) for a given area of rock may be quite xx 

erratic. This plot can est~blish whether or not the given area can be 

approximated as a homogeneous porous medium. If 1/IK (a) does not plot xx 

at least approximately as an ellipse, then no single symmetric conductiv-

ity tensor can be written to describe the behavior of the medium on the 

scale of measurement. If there is no conductivity tensor, then flow 

through the medium cannot be analyzed by existing continuum techniques. 

If 1/IK (a) does not plot approximately as an ellipse, behavior of xx 

the block of rock in situ cannot be predicted by application of the bound-

ary conditions of Figure 111-2. This is because these boundary conditions 

are unlikely to apply in situ if 1/IK (a) does not plot as an ellipse. . xx 
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A technique for predicting the behavior of such systems is discussed in 

Chapter x. 

If the flow region is to be rotated, it cannot be as large as the 

generation region. If the generation region is a L x L square, the 

largest square flow region which can be rotated within the generation 

region is L/IZ x L/IZ. Each flow region of a different orientation will 

contain different parts of the fracture pattern. In Figure 111-5, for 

example, the corners of flow region B are not included in A. Likewise, 

the corners of A are not included in B. A and B are, therefore, not 

exactly the same sample. This limitation of geometry is assumed to be 

negligible if the fracture geometry statistics of each flow region are 

nearly equal. 

F. Fracture Flow Program 

Flow through the fracture system is calculated using LINEL, a 

finite-element program developed by Wilson (1970) for fracture flow. 

Fractures are represented as line elements with flux related to aperture 

by the cubic law. The rock matrix is assumed to be impermeable. Only 

the steady state flow rate is calculated. 

This line element program solves a series of equations, one equa

tion for each fr acture intersection or endpoint (i. e. node). The 

equation for each node is simply a mass balance equation, flow into the 

node equals flow out of the node. For N nodes, there are N equations 

and N unknowns. The N unknowns are either the head or the flux' at each 

node. If these N equations are written in matrix form, the matrix of 
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coefficients is symmetric and banded. The original version of LINEL 

docs not exploit this symmetry in its solution technique. 

The size of fracture problem that can be studied using the original 

version of LINEL is limited by the size of the coefficient matrix. This 

size limitation has been the major obstacle to studying statistically 

representative systems. To reduce this problem the solution scheme of 

LINEL was replaced by a solution scheme which requires storage of only 

one half of the band width of the symmetric coefficient matrix. 

The results of this effort were somewhat disappointing. The in

crease in the allowable problem size has been less than an order of 

magnitude. However the program was then rewritten to run on the VAX-11 

machine. Very large problems requiring millions of bytes of storage can 

easily be run. 

G. Mathematical Description of Random Generation 

The following describes the mathematics of generating a random net

work of fractures. 

Poisson distribution 

Fracture centers for a given set are assumed to be randomly dis

tributed in space by a Poisson distribution. A random sample of frac

ture centers for a given generation region is obtained by simply taking 

pairs of random numbers between zero and one. ·The number of significant 

figures in these random numbers is set by the user. These pairs become 

the coordinates of the center points when multiplied by the length and 

width of the generation region, respectively. One only needs to know 

the density of points or alternatively how many points to generate in 



65 

the given area. The original generation region has the density speci-

fied by the user. The smaller flow region, however, may have a slightly 

different density. Also, as the flow region is rotated, the density of 

the different flow region samples may not be exactly the same. 

Normal Distribution 

In two dimensions, the orientation of fractures in a given set is 

specified by the angle the fracture makes with the x axis. For a given 

set, these angles are assumed to be distributed normally. Because the 

angle e is effectively the same as the angle e + 2nw, n = 1, 2, 3, ... , 
the distribution resulting from the simulation is not exactly the same 

as the model distribution. This difference is ignored at this point. 

A normally distributed variable x, with mean ~ and variance 02 can 

be simulated as follows. By the Central Limit Theorem, sums of random 

numbers are approximately normally distributed. Hammersly and Handscomb 

(1964) show that the sum of 25 random numbers is a good approximation 

of a normally distributed variate. Let 

N 
5 =, R , (III-6) 
n L n 

n=1 

where R is a uniformly distributed, random number between 0 and 1, , 
n 

E(R ) = 1/2, and Var(R ) = 1/12. Now the expected value of 5 is n n n 

N 
E(S ) = N[E(R )] = -2 ' n n 

and its variance is 

Var(S ) = E[S - E(S )]2 = 1N2 • n n n 

(III-7) 

( III-B) 
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5 - E(s ) 
n n 
/ Var Sn 

(III-9) 

Now 5* is normally distributed with E(s*) = 0 and Var(s*) = 1. substi-n n n 

tuting equations 111-7 and 111-8 into 111-9 gives 

(II1-10) 

For N = 25, III-9 becomes 

(%, Rn)- 12.5 

* 5 = ;g (III-11 ) n 

If x = 05* + lJ, then x is n normally distributed with E(x) = lJ and 

Vadx) 2 = 0 • So we have 

x = 0 

( .~ Rn) - 12.5 
n=1 

I~~ 
+ lJ. (III-12) 

Lognormal 

Apertures and fracture lengths within a set can be distributed log-

normally. We have shown how to generate normally distributed values of 

x with mean lJ and variance 02• The probability density of x is 

f(x) 1 [-(X _ lJ)2] 
= ""'0,-r(""'2~lI'or) exp 2 

20 
(III-13) 

Let x = RO y. Now f(y) is lognormally distributed with probability den-

sity given by 
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1 1 1n y - ~ { ( )2} fey) = yo I2i exp - 2 0 ' y > 0, (III-14) 

(Benjamin and Cornell, 1970). Let E(y) = a and Var(y) = a2• Then by 

integration, 

E(y) = a 
~ 0

2
/2 = e e , (III-15) 

2 0
2 

Var(y) = a = (e (II1-16) 

Solving for ~ and 0 2, we have 

1 a2 
~ = Ina - 2 1n -Z + 1, (111-17) 

a 

a
2 = In[ (!)2 + 1] (1II-1B) 

Given values of a and a2, we calculate ~ and 0 2• Then ~ and 0 2 are 

used to find normally distributed values of x as previously described 

Values of yare found as y = exp x. 

Exponential 

Fracture length is sometimes assumed to be distributed exponentially 

within a set. The exponential density and distribution functions are 

given, respectively, as 

= { 
-AX x > a f(x) Ae 

a x .. a 
( II1-19) 

1 -AX x > a 
F(x) = { 

- e 

a x .. a 
(III-20) 

where E(x) = 1/A. So A is equal to the inverse of the mean length. 
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Simulation of f(x) can be accomplished as follows. Let y be dis-

tributed uniformly on (0, 1). Then the probability density g(y) and 

distribution function G(y) are 

{: 
o < x < 1 

g(y) = 
elsewhere, 

and 

S 0 x < 0 
G(y) = { ~ 0 ( x ( 1 

x > 1-

Let x = - (1/A)[1n(1 - y)]. Then the probability density 

can be shown to be exponential (Hoel et al., 1971), since 

F(x) = P(X ( x) = P(_A-1 In(1 - Y) ( y) 

= { 
Aoe -xy 

F' (x) = fey) 
for y > 0 

for y ( O. 

(III-21) 

( III-22) 

of x for A > 0 

(III-23) 

(I II-24) 

Since 1 - Y is distributed the same way as y, exponentially distributed 

values of x may be obtained simply by letting x = (1/A)(ln y) where y is 

a random number between 0 and 1. 

H. Calculation and Plotting of Average 1sopotentials 

The constant head boundaries shown in Figure 111-1 should in fact 
}' 

produce a constant average gradient in a fractured sample which behaves 

like an equivalent porous medium. The program, PCTOUR has been devel-

oped to locate and plot these average isopotentials. 

The program L1NEL calculates the head at each fracture intersection 

or endpoint (i.e. at each node). Given the value of the isopotential of 
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interest, PC TOUR checks the endpoints of each fracture segment (element) 

to see if the head at one endpoint is below the isopotential value and 

the other is above the value. If this is the case, PCTOUR does a linear 

interpolation to find the point on the fracture where the isopotential 

crosses the fracture segment. For each isopotential all the points 

where the particular value of head is found are plotted. The x- and y-

axes are defined such that the x-axis is in the direction of the gradi-

ent and the y-axis is perpendicular to the gradient. PCTOUR goes on to 

calculate the average x-coordinate of the points found as described 

above and plots a line parallel to the y-axis through thIs point. The 

standard deviation of the points from the line is also calculated. For 

-
the usual head difference of 1.0 em across the flow region, the 0.75 cm, 

0.5 cm, and the 0.25 cm average isopotentials are usually plotted. For 

a homogeneous, anisotropic medium, these isopotentials should be equally 

spaced. The more nearly homogeneous the system is, the smaller the 

standard deviation should be, but this is not a necessary condition for 

a medium to have .an equivalent porous medium permeability. 

I. Verification of the Conductivity Measurement 

Fracture systems of known theoretical conductivity were tested to 

verify the numerical method of permeability measurement. The conductiv-

ity of fracture systems with infinitely long fractures is known from the 

theory developed by Snow (1965) and others. Because of the physical 

basis of this fracture model, we could only examine finite pieces of 

such fracture systems. The infinite fractures are seen in a finite 

model as fractures which transect the entire model. Fracture systems 

with two sets of parallel, evenly spaced, equal aperture fractures were 
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tested to avoid problems of representativeness as much as possible. 

Effort was concentrated on fracture sets of equal apertures 30° apart 

in order to study an anisotropic case. The results of these tests are 

presented here. 

Figure 111-6 is the generation region used to obtain all the subse-

quent flow regions given in Figure 111-7 and discussed below. The spac-

ing of the fractures in these meshes is 10 cm. The apertures are all 

0.1 cm. Arrows on the figure show the direction of the gradient and the 

direction of the conductivity measurement. Due to the symmetry of this 

example conductivity measurements were only made for angles of rotation 

every 15° from a = 0° to a = 105°. Values of 1/{K (a) were plotted on xx 

polar coordinate paper and compared with the theoretical ellipse 

(Figure III-B). 

In all, agreement between theoretical and numerical results is good. 

The differences in values can be attributed to th~ finite nature of the 

numerical model. Conductivity in the model is calculated with the 

equation 

where the dimensions of the flow region are Lxl. To be exactly equal 

to the theoretical results, L would have to be an even multiple of the 

component of spacing of the fractures perpendicular to the gradient for 

every direction of measurement. This can only occur for all sets and 

all rotations in the limit as L +~. Since L is arbitrary, the larger 

the sample or the closer the spacing, the smaller the deviation should 

be. In order to check this trend, fractures with different spacing were 
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tested. Results are presented in Table 111-1. Note that the conduc-

tivity of a set of fractures with spacing of 5 is twice that of spacing 

of 10. In order to compare results, K/2 has been given for spacing of 5. 

Results for a spacing of 5 are on the average slightly better than for a 

spacing of 10 as expected. 

Table lII-1. Comparison of theoretical and numerical results for 

"infin'ite" fractures (hydraulic conductivities in cm/sec). 

Angle of Spacing = 10 cm Spacing = 5 cm 
Rotation Theoretical Numerical Numerical 

a K11 K12 K11 K12 K1l2 K1z12 

0 1.4301 0.3539 1.43788 0.377431 1.4306 0.377463 -
15 1.5250 O~O 1.68397 ..... 0 1.57875 ..... 0 

30 1.4301 0.3539 1.43788 0.377433 1.4306 0.377461 

45 1.170 0.6129 1.22724 0.595736 1.21316 0.59576 

60 0.817 0.7077 0.784133 0.704374 0.83137 0.73165 

75 0.46335 0.6129 0.441600 0.610839 0.480139 0.59676 

90 0.204 0.3539 0.217907 0.326920 0.217951 0.354179 

105 0.109 0.0 0.112750 ..... 0 0.112774 ..... 0 

J. Examples of Random Fracture Systems 

In order to check the various functions of the numerical model, a 

random example was chosen for conductivity testing. Table 111-2 gives 

the statistics used to generate the fractures. The generation region 

was 110 x 110 cm. 
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Table 111-2. Input Parameters for the Random Example. 

Parameters Set 1 Set 2 

Density (Number of Fractures) 49 100 

Orientation Normal distribution 30, 5 60, 10 
lJ, 0 2 (deg) 

Length Lognormal distribution 
lJ, 0 2 (cm) 40, 10 30, 7.5 

Lognormal distribution 
Aperture 

lJ, 0 2 (cm) .001, .005 005, .0001 

Three different random realizations were generated (Figures 111-9a, 

111-10a, 111-11a). Flow regions 75 x 75 m at rotation angle 0° were ex-

amined in each of these realizations (Figures 111-9b, 111-10b, 111-11b). 

The three flow regions had characteristics given in Table 111-3. In 

comparing the flow regions with their respective generation regions, 

note that fractures in the generation region which do not intersect any 

other fractures have been eliminated from the flow region. 

Table 111-3. Characteristics of the Flow Regions. 

Number of Number of Number of Number of 
Network Fractures Fracture Intersections Nodes Elements 

1 81 123 285 327 

2 86 110 282 306 

3 90 139 319 368 

Boundary conditions were applied to these three flow regions such 

that conductivity in the x-direction was measured. That is, sides 1 and 

3 were given a linearly varying head distribution, side 2 had a constant 
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Figure III-9. Generat ion and flow regions for Network 1. 
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79 

head of 1, and side 4 had a constant head of 0 (see Figure 111-2). 

Table 111-4 gives the total fluxes through each side for each flow 

region. A positive sign indicates flow into the region and a negative 

sign indicates flow out of the region. 

Examination of Table 111-4 leads to several observations. First, 

there is a great deal of variation· between the three realizations of the 

same statistical fracture population. As shown in Table 111-3, the 

number of fractures in each flow region varies. Thus some of the varia-

- tion in flow rate is due to nonergotic sampling. Recall that under the 

boundary conditions used, for an ideal porous medium the flux in the x-

direction (side 2 to side 4) is numerically equal to the conductivity. 

Table 111-4 shows that the flux into side 2 does not equal the flux out 

of side 4. The sum of the fluxes through all sides, however, is zero as 

expected. These samples are clearly not behaving like porous media, 

since in anisotropic porous media under the chosen boundary conditions 

the flux on opposite sides would be equal. 

Table 111-4. Total Fluxes (cm3/s) for the Three Random Realizations. 

L Fluxes. L Fluxes r Fluxes L Fluxes 
Network Side 1 Side 2 Side 3 Side 4 

1 3.13402E-19 4.41796E-7 -4.41384E-7 -4.11388E-10 

2 -3.3926 E-10 2.00821E-5 -2.00809E-5 -8.67380E-10 

3 5.42390E-10 1.01927E-4 -1.01927E-4 -8.97845E-11 

These sample fracture systems do not act like porous media. A more 

nearly continuum-type result could possibly be.achieved in two ways. 
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The relative density of the same fractures could be increased or a larger 

sample with the same statistics could be examined. 

In order to check the functions of the numerical model, Network 3 

(Figure 111-11) was chosen for further analysis of directional conduc-

tivity and the effect of sample size on permeability measurement. Flow 

regions 75 x 75 m at rotation angles, a, every 15° from 0° to 1800 were 

tested (Figure 111-12). The results are given in Table 111-5. 

Table 111-5. Resulting fluxes (cm3/s) for the random case 

Angle of E fluxes 
Rotation side 1 

o 5.42390E-10 

15 1.22374E-04 

30 1.02261E-05 

45 -1.15375E-12 

60 -7.40427E-11 

75 -1.08876E-10 

90 -9.88001E-11 

105 -1.17851E-04 

120 -5.76379E-06 

135 7.36028E-09 

150 1.39114E-09 

165 2.29966E-09 

180 1.01927E-04 

I: fluxes 
side 2 

1.0927 E-10 

4.74181E-06 

1.59838E-05 

4.39136E-06 

1.56620E-04 

6.93567E-10 

6.83398E-10 

1.17851E-04 

5.76347E-06 

4.25565E-13 

2.65264E-11 

6.02192E-11 

8.97845E-11 

E fluxes 
side 3 

-1.01927E-04 

-4.74124E-06 

-1.59731E-06 

-4.38238E-06 

-1.56612E-04 

7. 4641 OE-09 

1.71904E-04 

4. 17830E-06 

9.17211E-07 

1.39285E-06 

8.45053E-06 

-3.04834E-10 

-5.42392E-10 

E fluxes 
side 4 

-8.97845E-11 

-1. 22375E-04 

-1.02271E-05 

-8.97228E-09 

-8.02968E-09 

-8.04880E-09 

-1.71905E-04 

-4. 17789E-06 

-9.16885E-07 

-1.40021E-06 

-8.45195E-06 

-2.05505E-04 

-1.01927E-04 

The fact that inflow does not equal outflow on opposite sides leads 

to a problem in defining conductivity. If conductivity is arbitrarily 
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defined as numerically equal to the inflow into side 2, no information 

lost. Side 4 for a = 0° becomes side 2 for a = 180°, etc. Using this 

convention, symmetry in the permeability plot implies that inflow does 

equal outflow on opposite sides. 

Figure 111-13 shows the values of 1/1KfQT for Network 3 plotted on 

polar coordinate paper where K(a) is defined in terms of flux across 

side 2. The results clearly do not plot as an ellipse; nor are they 

symmetric. For certain angles of rotation (e.g., 75°, 90°) the value of 

1/1KIi) becomes very Ilarge and goes off the scale of the graph. For 

these angles K(a) is very small because there is essentially no hydraul-

ic connection between sides 2 and any other side. This cannot be com-

pletely confirmed visually from the plots of these flow regions because 

aperture has not been included in the figures. Although isopotentials 

have not been plotted for these samples, it is fairly certain they will 

not be linear. 

If we define K as numerically equal to the flow into or out of yx 

side 3, then K is the flow into or out of side 1 when the flow mesh is xy 

rotated 90°. K should equal K if K .. is symmetric. Examination of xy yx 1J 

Table 111-5 confirms again that no symmetry is present. 

The tests described above show clearly that the sample chosen did 

not have an equivalent porous medium symmetric conductivity tensor. As 

\ 
further proof of the nonhomogeneous nature of the sample, flow regions 

of different sizes were extracted and tested. All the flow regions were 

at 0° rotation. Flow regions from 25 cm x 25 cm to 75 cm x 75 cm were 

tested (Figure 111-14). Results are given in Table 111-6. Conductivity 
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Figure 111-13. Values of 1/IKTQ) plotted on polar coordinate 
paper for Network 3. 
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Figure 111-14. Flow regions of increasing size from Network 3. 
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varies by orders of magnitude from sample to sample, again indicating 

marked departure from continuum behavior. 

Table 111-6. Resulting fluxes (cm3/s) for flow regions of different 
sizes. 

Size of flow 1: fluxes 1: fluxes 1: fluxes 1: fluxes 
Region (cm) side 1 side 2 side 3 side 4 

25 x 25 2. 23427E-05 4.84085E-17 -2.23421E-05 -5.74141E-10 

45 x 45 6.10129E-04 3.10717E-06 -3.10003E-06 -6.10136E-04 

50 x 50 -3.04850E-09 2.18729E-06 -2. 18409E-06 -1.53793E-10 

60 x 60 4. 58843E-04 2.70645E-08 -2. 29660E-08 -4. 58841E-04 

75 x 75 5. 42390E-1(0 1.01927E-04 -1.01927E-04 -8.97845E-11 
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IV FRACTURE GEOMETRY STUDIES 

A series of preliminary numerical experiments were run to illus-

trate some of the key effects of fracture geometry on fracture system 

permeability. These experiments show trends in behavior. They mainly 

serve the purpose of confirming behavior that is intuitively expected. 

Increase in fracture density increases permeability. Permeability 

decreases with increase in the spread of the aperture distribution or 

decrease in the spread of the orientation distribution. The behavior of 

the fracture system is different depending on the scale of measurement. 

These experiments are detailed below. 
\ 

A. Effect of Fracture Density 

In order to see how the density of fractures affects the hydraulic 

behavior, the following three examples were analyzed. All three exam-

pIes consist of two fractures sets with the uniform characteristics 

given in Table IV-1. Fracture centers were randomly located. 

Table IV-1. Fracture System Characteristics for the Density Study 

SET 1 

SET 2 

Uniform 
Orientation 

Uniform 
Length (cm) 

10 

20 

Uniform 
Aperture (cm) 

.001 

.002 

Number of 
fractures 

60 

40 

Figures IV-1, A, Band C show the three fracture meshes studied.' 

The difference between A, Band C is that the same fractures have been 

squeezed into succesively smaller areas with successively greater frac-

ture densities. Figure IV-1A is 40 x 40 cm, IV-1B is 30 x 30 cm and 

IV-1C is 25 x 25 cm. Thus the number of fracture intersections and, 
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therefore, the number of hydraulically active fractures increases as 

the fracture density increases. Figures IV-1D, E and F show the corres

ponding permeability "ellipses" for fracture systems IV-1A, Band C 

respectively. The rotated flow regions used to measure permeability in 

each case were as large as possible. 

Comparing the plots from left to right in order of increasing 

density, a significant improvement in the ellipticity of the plots is 

evident. The illustration shown in Figure IV-1D is irregular and non

symmetric. The value of 1/1K goes to infinity for several directions of 

measurement. Where the plot goes to infinity the permeability in that 

direction is zero. This happens for a given direction of measurement 

when no conducting fractures intersect side 2 since the flow into side 2 

is always used to define permeability. For Figure IV-1D this occurred 

when side 2 was roughly parallel to fracture set 2. It should be noted 

that the choice of a slightly larger or smaller flow region may have 

eliminated this condition. For Figure IV-1E, the fracture density 

increased to the point where side 2 always intersects some conducting 

fractures. Thus no zero permeability directions were found. The ellipse 

is fairly regular but not symmetric, especially in the direction of min

imum principal permeability. Figure IV-1F is slightly improved in this 

regard. The size of the ellipses decreases from left to right as expec

ted, since denser fracture systems are more permeable. The direction of 

minimum and maximum permeability is roughly the same in all three plots. 

Figures IV-1G, H and I show average isopotentials for flow regions 

at 15° of rotation. For other rotations, the plots are similar. The 
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locations on the fractures where heads are 0.75, 0.50 and 0.25 are plot

ted. For a continuum, the isopotentials should be equally spaced and 

all the points should lie on the lines. For Figure IV-1G, very few 

points are plotted because few fractures actually conducted water. The 

spacing of the average isopotentials improves from G to I. The scatter 

of the plotted points also decreases in this direction. 

In summary, the hydraulic behavior of the fracture systems becomes 

more like that of a homogeneous, anisotropic material as fracture den

sity increases. This is an expected result. However the trend in 

hydraulic behavior was augmented by the design of the experiment. The 

same fractures were squeezed into increasingly smaller areas to increase 

the density. As a result, in the more dense examples many more frac

tures transect the flow region. More conductivity is achieved for this 

reason alone. In later examples, the size of the flow region is scaled 

to a constant multiple of the fracture length to eliminate this effect. 

B. Effect of Aperture and Orientation Distribution 

The effect of distributing aperture or orientation is illustrated 

in Figure IV-2. The fractures shown in Figure IV-2 are exactly the same 

as the fractures in Figure IV-1B. Consequently, IV-2E and H are the 

same as IV-1E and H, respectively. Figure IV-2A is the same as IV-2B 

except that aperture has been distributed lognormally. Figure IV-2A 

looks exactly like Figure IV-2B because aperture is not shown on the 

plot. Figure IV-2C is the same as IV-2B except that orientation has 

been distributed normally. All other parameters are uniform. The 

permeability plot is the most skewed for the case where aperture was 

allowed to vary (Figure IV-2D). In this case not all the conductors are 
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of equal strength. For some directions of measurement, notably at 

a = 135°, the hydraulic connections to side Z were evidently through 

fractures with lower than average aperture. At a = 30°, higher than 

average aperture fractures were intersected by side Z. The flux through 

a fracture is proportional to b3• Therefore, the measured flux through 

side Z, which is used to define the permeability, is greatly affected by 

the size of the fractures intersected by side Z. Fracture meshes IV-ZA 

and IV-ZB have the same number of fracture intersections, but because 

there is a great variation in the conductivity of the individual frac

tures of IV-ZA the results shown in Figure IV-ZD are more irregular than 

the results in Figure IV-ZE. 

Varying the orientation of the fractures improves the hydraulic 

behavior. In this case, the number of fracture intersections increases 

because fractures of the same set are no longer parallel and now can 

intersect. The degree of fracture interconnection is thus increased and 

the permeability plot becomes more symmetric and regular. 

The isopotential plots in Figures IV-ZG, H and I show slightly 

improved spacing and decrease in scatter from left to right. In general, 

fracture systems with distributed orientations behave more like homogen

eous porous media than do systems with uniform orientations. Fracture 

systems with distributed apertures behave less like homogeneous media 

than uniform aperture systems. 

C. Scale Effect 

The effect of fracture length on the permeability of a fracture 

system is very sensitive to the scale of measurement. At a scale of 
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measurement smaller than the length of the fractures, the system may act 

like a system of infinite fractures relative to the chosen boundaries. 

At this small scale, the hydraulic behavior may become like that of a 

homogeneous, anisotropic medium. However, as the scale of measurement 

increases, the fractures no longer transect the entire measurement vol

ume. The hydraulic behavior of the system may become less regular. In 

this case, only one criterion for equivalent porous medium behavior is 

met by the small-scale volume; the permeability plots as an ellipse, but 

the results are still sensitive to volume change. 

In order to illustrate the scale effect, a system of fractures was 

chosen which consisted of two perpendicular sets of fractures all with 

the same aperture and length. The orientation distribution about the 

mean for each set was the same. The fracture system generated is shown 

in Figures IV-3A and IV-4A. Theoretically, two orthogonal sets with 

equal characteristics should have a circular permeability plot. Random 

variations from th'e circle can only be due to insufficient density of 

fractures or insufficient sample size. 

Figures IV-3B - L show flow regions of increasing size for which 

permeability measurements were made. The flow regions at 0° rotation 

are shown for illustration. Flow regions at every 15° rotation were 

used for analysis. Figures IV-4B - L show the corresponding permeabil

ity ellipses for the corresponding flow regions in Figure IV-3. 

For Figures IV-4B, C and 0, the results are erratic. Only a few 

fractures are included in each sample. In IV-4B, only the vertical 

set is represented and in C'and 0 there is only one fracture from the 
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horizontal set. The type of fractures included in the sample is a ran

dom function of the location of the flow region. If the flow region had 

been taken in the upper right-hand corner, the result might have been 

the opposite with a greater preponderance of horizontal fractures. 

Although in these three figures most of the fractures transect the flow 

region, for certain values of the rotation angle, no fractures intersect 

side 2. The permeability in this direction, therefore, is zero and 

1/1Kg is infinite. 

In figures IV-3E and IV-4E enough fractures have been included to 

provide flow through side 2 for any rotation. In IV-4f, the larger 

15 x 15 cm mesh has produced a fairly regular symmetric ellipse. figure 

IV-3f shows that for this flow region size many of the fractures tran

sect the entire flow region. However the ellipse in figure IV-3f is not 

circular, as expected. figures IV-4G - L show how the form of the per

meability ellipse is changed as the flow region is further increased in 

size. As more fractures are gradually added to the sample, the effect 

of each fracture is to deform the ellipse in some way. 

Although figure IV-4f shows a seemingly regular ellipse this is 

misleading because figure IV-3f does not include a representative sample 

of the fracture population. figure IV-3L is the largest sample size 

which could be studied by these programs on the CDC 7600. It is a 

better sample and figure IV-4L does have a more circular shape. However, 

figure IV-4L still shows some perturbations in hydraulic behavior. The 

permeability plots may improve somewhat with a further increase in 

sample size. This can be seen by noticing that there is still a large 



95 

A B 6x6 

G 20x20 

Figure IV-4. 

XBL813-2779 

Permeability plots for fractures samples of 
increasing size. 



96 

proportion of truncated fractures in the 64 x 64 cm mesh of Figure IV-4L. 

To obtain a good statistical sample of fracture length in the flow 

region, the flow region should be large compared to the fracture length. 

In this way a relatively small number of fractures are truncated. 

Samples larger than 64 x 64 cm would be necessary for determining if the 

perturbations in the permeability plot are a function of the sample size 

or inherent in the fracture population. 

D. CONCLUSIONS 

This chapter presents some simple examples which illustrate how 

various fracture geometry parameters affect bulk permeability. All of 

the results conform to intuition. Increasing the standard deviation of 

aperture creates a more heterogeneous medium which behaves less like a 

homogeneous porous medium. Increasing the standard deviation of orien

tation creates more connections between fractures and thus increases the 

permeability and makes the behavior more like that of a porous medium. 

The results of permeability measurements are determined by the extent of 

the fractures relative to the scale of measurement. Measurements made 

on scales very small relative to the fracture extent are very erratic. 

Porous media behavior is unlikely on such a small scale. When the scale 

of measurement approaches the same scale as the fracture extent, porous 

media behavior may be observed, but it may be an artifact of the measure

ment technique. This is because the boundaries of the model truncate 

many of the fractures at both ends. All of these fractures therefore 

become conductors. In situ all these fractures would not be as well 

connected to the boundaries. Thus measurements on a scale which is the 

same as or smaller than fracture extent may be misleading. 
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The understanding of fracture system behavior illustrated in this 

chapter was used t6 design the experiments presented in Chapters VI 

and VII. For these studies the programs FMG and LINEL were revised to 

run on the VAX/11. As such much larger problems could be handled. 
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V. REGRESSION ANALYSIS TO DETERMINE THE PERMEABILITY TENSOR 

A. Introduction 

In the previous chapter directional permeability measurements were 

simply plotted and the resemblance of these plots to ellipses was noted 

in a qualitative way. Appropriate quantification of the best-fit 

ellipse and a measure of the goodness of fit of the data to the best-fit 

ellipse would be very useful for comparing the behavior of different 

fracture systems. This chapter gives a regression technique for calcu-
. 

lating the components of the best-fit permeability tensor and the error 

associated with using the best-fit tensor as opposed to the actual meas-

ured values of directional permeability. 

Directional permeability measurements of random fracture systems 

are made as previously described. From the measured values of direc-

tional permeability, Kg(a), we wish to determine the three components of 

the permeability tensor, Kij' which best fit these measurements. We 

also wish to determine the principal values (eigenvalues) and principal 

axes (eigenvectors) of the permeability tensor. Further, we wish to 

find a quantitative measure of the difference between the measured val-

ues, Kg(a), and the best-fit values. 

Recall that for an ideal anisotropic homogeneous porous medium 

directional permeability, Kg, measured in the direction of the gradient 

a, is defined by the following equation: 

q.n. = K J, 
1 1 g 

(V-1) 

where ni is a unit vector in the direction of the gradient, J is the 

magnitude of the gradient, and qi is the specific flux. Solving Darcy's 
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law for qi and substituting this into V-1 gives 

K .. J.n. = K J, 
lJ J 1 g 

and since Jj/J = nj we have 

Kg = Kijnin j , 

or 

where n1 and nZ are direction cosines and n1 = cos a, nZ = sin a. 

(V-Z) 

(V-3) 

(V-4) 

If 1/1Kg is plotted in the direction a (the direction of the gradi

ent), then n1 = cos a = xlKg and nZ = sin a = ylKg. Equation V-4 

becomes 

1=K .. x.x. 
lJ 1 J where xi = {; } • 

( V-5) 

(V-6) 

(V-7) 

Equation V-7 is the quadratic form of the permeability ellipse equation. 

If each measurement of Kg(a) can be considered an independent meas

urement of the value of Kij' then methods of statistics can be used to 

estimate the parameters K11, K1Z and KZZ. The statistical technique 

can be used on measurements of Kg(a) from different, equally incremented 

directions on one fracture pattern or the combined measurements from any 

number of fracture pattern realizations. 
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B. Distribution of Kg(a) 

In a random fracture pattern, the measured values of Kg(a) will not 

all plot on a single, unique ellipse (Figure V-1). In order to use all 

of the individual measurements to derive a single, most representative 

set of parameters for the permeability tensor, we must assume that each 

measurement is independent and similarly distributed. Figure V-1 shows 

an example of a set of measurements, Kg(a), and a possible ellipse with 

parameters K11, K12 and K22. Each measurement can be assumed to be 

distributed about a different mean which is a point on the ellipse 

determined by a. Therefore, the value of the mean for each measurement 

depends on a. Thus, each Kg(a) is considered to be distributed with the 

same form but each has a different or shifted mean. The variance of 

each Kg(a) is assumed to be identical. In this way, all the measure

ments are considered as one population. 

It would be very useful to be able to define a likely distribution 

function for Kg(a), but this is not easily done. The normal distribu

tion does not match the data because Kg(a) can never be less than zero. 

A lognormal is not proper because the probability of Kg(a) = 0 is finite, 

not zero. Exponential, Gamma and Beta distributions also are not suit

able. A normal distribution truncated at Kg(a) = 0 is a likely choice. 

Unfortunately, assumption of this distribution leads to a contradiction 

with the basic assumption that all the measurements are members of the 

same distribution. At each angle a, the mean value of the distribution 

is different. However, since all the distributions are truncated at 

zero, the difference between the mean value and the truncation limit is 

different for each value of a. This means that each measurement must be 
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a member of a different, truncated normal distribution and not just a 

shifted one as required in the original assumptions. Since a simple, 

likely, distribution form for Kg(a) which conforms to the basic assump

tions cannot be identified, a least squares regression technique must be 

used to derive estimates of the parameters K11, K12 and K22. 

c. Regression Techniques 

Two regression techniques are discussed here. They are based on a 

technique, discussed by Scheidegger (1954), which will also be briefly 

described. The most direct approach to finding the best-fit ellipse is 

to find the ellipse which minimizes the sum RI, where 

2 

/ K. ~n.n. ) , 
IJ 1 1 

(V-B) 

where N is the number of measurements made, either on one fracture 

pattern or all measurements on all realizations of the fracture pattern. 

The difference between 1/(/Kg(an») and 1/(/Kijninj) in each case is the 

actual distance on the permeability ellipse plot between the plotted 

measurement and the ellipse (Figure V-1). Note that this distance is 

not the perpendicular distance, but rather the distance along the ray 

inclined at the angle aO. To minimize R we solve for K11, K12 and K22 

in the following equations: 

N 

aaRKI = '\ 2 [(K
g

(a
n

))-1/2- (K .. n.n .)-1/2](K .. n.n .)-3/2cos2a = 0, (V-10) 
11 L IJ 1 J IJ 1 J n 

n=1 
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-1/2J( )-3/2 (K .. n.n.) K .. n.n. cosa sina 
IJ 1 J IJ 1 J n n 

= 0, 

(V-11) 

N 

aaRKI = ~ 2 r(K
g
(a

n
))-1/2_ (K .. n.n.)-1/2J(K .. n.n.)-3/2sin 2a = O. (V-12) 

22 ~ L IJ 1 J IJ 1 J n 
n=1 

These nonlinear equations are difficult to solve. An iterative method 

would have to be employed. 

The second regression technique is to minimize the function RII: 

= ~~ [K (a ) - (K .. n. n . )] 2. 
~ g n IJ 1 1 

(V-13) 

n=1 

In this case we are not directly regressing to the best-fit ellipse. We 

are finding the parameters K11, K12, and K22 which best fit the data ex-

pressed by Kg(on) in equation V-5. Figure V-2 illustrates the type 

of three parameter curve which is fitted to the data. This curve is 

less easily visualized than the ellipse is but it is much simpler mathe~ 

matically. There is no reason to expect the two techniques to give the 

same answer, but there is also no obvious physical reason to expect one 

technique to give a better answer than the other. As such, the second 

technique is pursued here. 

A similar technique was used by Scheiddeger (1954). Scheiddeger 

minimized the function 

(V-14) 

Although not stated by Scheiddeger, this regression techniques applies 
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to measurements of permeability Kf(a) made in the direction of flow. 

Thus, mi is a unit vector in the direction of flow. To see this recall 

that permeability in the direction of flow is defined by 

1 J.m. 
1 1 r=--f q 

where q is the specific flux and Ji is the gradient. 

Substituting Darcy's law we have 

1 1 
m.q. 

( ) - ~ K
f 

= qi Kij q 

-K1 = (K .. )-1 m.m .• 
f lJ J 1 

(V-15) 

(V-16) 

( V-17) 

So equation V-14 is effectively the same as equation V-13, except that 

in V-14, Kij becomes the inverse of the permeability tensor. 
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D. Solution of the Regression Equations 

The solution of the regression equations is exactly the same as the 

solution given by Scheidegger (1954) and is repeated here only for com-

pleteness. The equations are 

aRU 
N 

0 2 -2[K (a ) - K .. n .n.] 2 
aK

11 
= = cos a gn lJ 1 1 n 

n=1 

(V-18) 

aRU 
N 

0 L -4[Kg(an) - K .. n.n.] cosa sina aK
12 

= = lJ 1 1 n n 
n=1 

(V-19) 

N 

= 2 -2[Kg(an) K .. n.n.] sin2a lJ 1 1 n (V-20) 

n=1 

Rearranging, expanding Kijninj, and putting in matrix form we have 

N N N 

L cos
4
an L 3 L .2 2 2cos a sina Sln a cos a n n n n 

n=1 n=1 n=1 

N N N L 3 . L2 . 2 2 L .3 cos a Slna Sln a cos a Sln a cosa n n n n n n 
n=1 n=1 n=1 

N N N L 2 .2 22 
3 L .4 cos a Sln a sin a cosa Sln an n n n n 

n=1 n=1 n=1 

N 

L 2 K (a )cos a g n n 
n=1 

N 

L K (a )cosa silla g n n n (V-21) 

n=1 

N 

L K (a )sin2a g n n 
n=1 
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Now, if for each fracture mesh, measurements are made at equal angle 

intervals from 0 to 2n, all sums with only odd powers of sine and cosine 

drop out and the equation becomes: 

N 

2 
n=1 

o 

2 . Z cos a sln a 
n n 

N 

L 
n=1 

N 

2 
n=1 

N 

L 
n=1 

o 

N 

2 2 
. 2 2 Sln a cos a n n 

n=1 

o 

K (a ) Z cos a g n n 

K (a ) cos a sin an g n n 

K (a ) Z sin a g n n 

Solving for K11, K1Z, and KZZ gives 

N 

2 
n=1 

o 

N 

L.' Sin
4
an 

n=1 

cos a sin a I~ ZsinZa cosZa , n n ~ n n 
n=1 

= 

(V-Z2) 

(V-Z3) 

( V-Z4) 
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N 

2 2 K (a )cos a g n n 

K22 
n=1 

= N 

I . 2 2 Sln a cos a n n 
n=1 

N 

2 2 .2 cos a Sln a 
n n 

n=1 

N 

L cos4a n 
n=1 (V-25) N 

L sin 2 2 a cos a n n 
n=1 

E. Principal-Permeabilities and Directions 

Knowing the values of K11, K12, and K22 the values and directions 

of the principal permeabilities K1 and K2 can be calculated with stan-

dard techniques of linear algebra. The techniques are given here only 

for completeness. The informed reader may wish to skip to Section V-F. 

In Edelen and Kydoniefs (1972) 

K .. E. = AE. , lJ J. 1· 
(V-26) 

where Ei is a unit vector in a principal direction, or eigenvector, for 

Kij' The transformation KijEj gives a vector in the same direction as 

Ej' but of magnitude A where 0ij is the Kronecker delta. Thus, 

(K .. - AO .. )E. = O. (V-27) 
lJ lJ.1 

Here the components of E j and A are unknowns. This equaticl1 can have a 
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solution only if 

= 0, (V-28) 

or 

(V-29) 

So the principal permeabilities are 

K11 + K22 /(K11 
. 2 2 

K1 = A1 
+ K22 ) - 4(K11 K22 - K12) 

= 2 + 2 (V-30) 

K11 + K22 /(K11 
2 2 

K2 = A2 = 
+ K22) - 4(K11 K22 - K12) 

2 2 (V-31) 

The principal directions, E1j and E2j' are found by solving the 

equations 

(K .. - A16 .. )E1. = 0, 
l.J l.J J 

(V-32) 

and 

(K .. -A26 .. )E2. = 0, 
l.J l.J J 

(V-33) 

for the components of the E1j and E2j.· 

Let E j = [;] • Now for each A we have 

[K11 - ~i K12 ] [x] = o. 
K12 K22 - A. Y 

1. 

(V-34) 

Using row reduction we obtain 

1 
K12 

1 
K12 

K11 - Ai K11 - Ai 
= (V-35) 

2 
K12 

0 0 (K22 - Ai) - K11 - Ai o 
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because (K11-Ai)(K22-Ai) - K122 = ° due to the choice of A (Equation 

V-29). So we can choose 

x = 1, 

A. - K11 K12 1 
y = 

K12 
= Ai - K22 

. 

The Ei can be expressed as the unit vectors 

1 

E2. 1 (A 2 - K11 )/K12 
= 

f ('2 - '" ) 2 f + ('2 ~, :" r · 1 

+ 
K12 

If A1 = A2, the ellipse is circular and any two perpendicular 

can be eigenvectors. In this case we can choose 

E1j = (0,1) 

E2j = (1,0). 

F. Mean Square Error 

MSE 

The mean square error, MSE, is simply given by 

RII 
= -N-

N 

(V-36) 

(V-37) 

(V-38) 

vectors 

(V-39) 

= ~ 2 [Kg(an ) 
n=1 

2 _ 

- (K11 cos2an + 2K12cos ansin an + K22sin2an )] (V-40) 

In order to use the MSE to compare the data from different fracture 

samples the MSE must be normalized as follows. 



NMSE MSE = K1KZ 

1 N ~ = N K K )' K (a) 
1 Z ~ g 

. n=1 

111 

(K11cos2an + ZK1Zcos ansin an + Kzzsin2an)]Z. 

(V-41) 

As NMSE approaches zero, the fracture systems behave more like aniso-

tropic, homogeneous porous media. 
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VI LENGTH-DENSITY STUDY 

A. Background 

With the exception of the rare underground test facility, most of 

what is known about fracture geometry in the underground is derived from 

boreholes. It is relatively easy and straightforward to determine the 

number of open fractures which intersect a borehole and estimate their 

orientation. On the other hand it is relatively difficult to get a good 

estimate of volumetric fracture density, fracture lengths and fracture 

apertures from hydraulic tests. The aim of this study was to see the 

effect on permeability of these fracture geometry parameters that cannot 

easily be determined from boreholes. In particular this study looks at 

the effect of varying fracture length and density. The effect of vary

ing aperture has been discussed in Chapter V and is discussed in greater 

detail in Chapter VII. 

It is not necessary to look at all possible combinations of frac

ture length and density. As discussed in Chapter II, the probabalistic 

relationship between the number of fractures per unit length of sample 

line, AL, the areal density, AA (or volumetric density AV in three dimen

sions), and the mean length, 1 (or mean area in three dimensions), of 

the fractures is 

(VI-1) 

for each set of fractures, where e is angle between the borehole and the 

mean fracture pole (Robertson, 1970; Baecher et aI, 1977). ,This equa

tion states the probability of a fracture intersecting a unit length of 

borehole increases as the volumetric density increases and also as the 

fractures become longer. 
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From examination of core or TV log, the mean length or the volumet

ric density of the fractures cannot be determined absolutely. However, 

AL and e can be readily determined. Rearranging Equation VI-1 with 

knowns on one side and unknowns on the other, we have 

(VI-2) 

This means that for each set of fractures we may not be able to deter

mine AA and 1 directly, but we can determine the product of AA and 1 

The product of 1 and AA wi 11 be called LD, or the length-densit y 

parameter. 

Figure VI-1 illustrates this principle. In both VI-1A and VI-1B, 

a borehole of length L penetrates a system of fractures. The fractures 

in A are twice as long as those in B, but there are half as many frac

tures per unit area in A as there are in B. Both boreholes intersect 

approximately 12 fractures. From the borehole wall we see no difference 

in the two systems but, as will be shown below, there is a great deal of 

difference in the hydrologic behavior of the two systems. 

B. Parameters Used in the Length-Density Study 

The parameters common to the whole length density study are given 

in Table VI-1. Table VI-2 gives the parameters used in the first series 

which was designed to study the effect of increasing length while keep

ing the product of length and density constant. The units used in all 

these studies are length in centimeters and hydraulic conductivity in 

cm/s. 
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- AL 
AAL = COS e = a measurable borehole parameter 

Figure VI-1. 

A B 
N 12 12 Num ber of intersecting fractures 

L 42 42 Borehole length 

AL = NIL .29 .29 

t 16 8 
Mean fracture length 

AA= 
number of fractures .018 .036 

unit area 

AA f COS e (e: 0) .29 .29 

XBL829-2419 

Example of two boreholes of equal length where (A) 
penetrates a system of fractures whose mean fracture 
length is twice that of (8). 
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Table VI-1. Parameters common to the whole length-density study. 

Orientation LD (cm-1) Aperture (em) 
Mean Standard Deviation Mean Standard Deviation 

Set 1 0.288 0.001 o 

Set 2 0.288 0.001 o 

Table VI-2. Input parameters used in the first series of 
length-density studies. 

Fracture Length i Flow Region Number of Fractures 
(Set 1 and Set 2) Dimensions L x L Per Set Per Unit 

Name (em) (em) L/i Area AA (cm-2) 

LD2 2 12.5 x 12.5 6.25 .1440 

LD8 8 50 x 50 6.25 .0360 

LD10 10 62.5 x 62.5 6.25 .0288 

LD12 12 75 x 75 6.25 .0240 

LD14 14 87.5 x 87.5 6.25 .0206 \ 
LD16 16 100 x 100 6.25 .0180 

LD20 20 125 x 125 6.25 .0144 

LD24 24 150 x 150 6.25 .0120 

In all of the length-density studies presented in Chapter VI, the 

length-density parameter LD, is 0.288/cm. This means a borehole through 

such a rock would intersect roughly 288 fractures in 10 m. However, 

these model results could easily be scaled to represent a fractured rock 

having an LD of say 0.288/m or about 3 fractures every 10 meters of 

borehole. The relative magnitude of the results is important in this 

study, not the absolute magnitude. Also, larger values of LD will pro-

duce systems of higher permeability; lower values will produce lower 
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permeability. Since LD can be measured, different values of LD were not 

tried in these simulations. 

Orthogonal fracture sets were used because if the sample size is 

sufficiently large, the theoretical shape of the permeability ellipse 

for orthogonal fractures of constant length and aperture is a circle. 

Thus the degree of anisotropy was not an unknown. Apertures were held 

constant and orientations were varied with a 20° standard deviation. 

This arrangement provided the best opportunity of finding porous medium 

behavior in fracture meshes that were small enough to be solved within 

the size limitation of the computer. Fracture lengths were kept con

stant only for the sake of simplicity. 

In the first series, three parameters were varied in a systematic 

manner. These were the flow region size, the fracture length, and the 

fracture density, AA. The length and width of the flow region, L, was 

kept equal to 6.25 times the fracture length to insure that an equal 

proportion of fractures would be truncated in the flow mesh of each case. 

Also, from previous experience the factor of 6.25 was expected to yield 

flow regions where the mean fracture length was reasonably close to the 

value used in input. That is, only a small proportion of the fractures 

were truncated by the flow region. Figure VI-2 shows mean fracture 

length for each rotation of all the flow regions divided by input length 

plotted as a function of input length. The mean fracture length was 

always about 85% of the input value. Thus each of the fracture systems 

were approximately equally good statistical samples. 
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i, input fracture length (cm) 

XBL829-2442 

Normalized mean fracture length, i in the 
flow region versus input fracture length, t 
for mesh size, L = 6.25t. 
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The fracture density and input length were calculated using the 

equation: 

LD = tAA = 0.288. (VI-3) 

So as t became larger, L became larger and AA became smaller. 

c. Results of the First Series of Length Density Studies 

The flow regions and permeability plots are shown in Figures VI-3 

through VI-10. In each figure, the top left shows the 00 rotation flow 

region with all the fractures as they were generated. The top right 

shows the reduced version of the fracture system for the 00 rotation. 

The reduced version was used to calculate permeability. In the reduced 

version, all the dead ends on the fractures and all single isolated frac

tures are eliminated. Isolated patches of fractures persist because 

there is no simple algorithm for removing th~m. The flux through the 

reduced version is the same as the flux through the unreduced version, 

but the reduced version is smaller and less expensive to solve. It is 

easy to see flow paths and degree of connection between fractures on the 

plot of the reduced fracture system. 

In each figure, only the 00 rotation is shown as an example, but 

for each model, a total of six differently oriented flow regions were 

defined. For each flow region, each of the four sides were sequentially 

used as the inflow side. Thus permeability was measured every 150 for 

24 rotations in all. 

When the flow regions are reduced for analysis, a fracture which 

connects two sides in one flow region may be isolated and nonconducting 

in a differently orientated flow region. In Figure VI-3 for instance, 
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the 0° rotation had no conducting fractures. However, it can be seen 

from the permeability plots that· conduct~ng fractures intersecting the 

inflow side of the mesh for rotations of a = 15°, 30°, 75°, 105°, 120°, 

225°, 315° and 345°. These conductive fractures cannot be observed in 

the reduced flow mesh at 0° rotation shown in the figure, but could be 

seen if all six rotations of the flow region were shown. 

The bottom left of Figures VI-3 through VI-10 shows the permeabil

ity ellipse. The dashed lines connect the values of 1/IKg calculated by 

the model. The area enclosed by the dashed lines is shaded. The solid

line ellipse is the ellipse which best fits the data as calculated by 

the methods explained in Chapter V. The XX and YY axes are the 1st and 

2nd principal permeability axes, respectively. The bottom right of each 

figure shows a Cartesian plot of Kg versus a. The best fit values of 

Kg are shown by a solid curving line. The ellipse plot provides a 

simple visualization of how well the permeability can be represented by 

a symmetric tensor. The closer the shaded area is to the ellipse the 

better the representation. ~ince the Cartesian plot is linear in Kg, it 

is better for easy visualization of the magnitude of the permeability 

and the scatter of the measurements. 

The fracture meshes are not plotted to the same scale. The scale 

is varied such that each plot is the same size on the paper. The flow 

region size, L, is a constant multiple of 6.25 times the fracture length, 

t. Thus, the fractures in all the plots also appear to be the same 

length. Moving from Figure VI-3 to VI-10 the actual fracture length, t, 

and the region size, L, are increasing and the areal density, AA, is 
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decreasing. The net result is that the number of fractures in each mesh 

is increasing as i increases. Thus there is an apparent increase in 

density which is proportional to ~: 

Number of fractures 
in the flow region 

= 11.25i. CVI-4) 

If all the meshes in Figures VI-3 through VI-10 were drawn to the same 

scale it could be seen that there are actually more fractures per unit 

area in VI-3 than VI-4, etc., and that the fractures in VI-3 are shorter 

than those in VI-4, etc. 

Drawing all the meshes to the same size is useful because the 

"apparent density" has a strong influence on the hydrologic behavior of 

the fract~re system. The longer the fracture, the higher the "apparent 

density", the higher the permeability, and the lower the NMSE. Figure 

VI-11 is a plot of the values of K1, K2 and NMSE versus fracture length. 

For the values of i studied, permeability increases and NMSE declines 

with increase in fracture length. 

It appears that the plot of K versus i levels off at the higher 

values of i. This should occur because as i becomes larger the density 

becomes smaller. The effect of increasing length may be partially can-

celed by decreasing density. In this series the limit as i goes to zero 

can be examined but the limit as ~ goes to infinity is difficult to exa-

mine. This is because the number of fractures per set in each mesh is 

equal to 11.25i. Thus the number of nodes and elements increases rapidly 
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Figure VI-11. Permeability and NMSE versus fracture length 
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with the fracture length, t. Therefore systems with even moderately 

large values of t cannot be processed in the computer. In fact, the 

case where t = 24 was the largest problem which could be run. The 

apparent leveling off in the K versus t curve could not be confirmed. 

Figure VI-12 is a plot of ellipticity, K2/K1 versus fracture length. 

Ellipticity for a good statistical sample of orthogonal fracture sets is 

theoretically unity. For all cases studied the value is less than unity. 

Perhaps the statistical sample is too small. With a larger sample, one 

would expect ellipticity closer to 1.0. However, since the sample is 

statistically isotropic, the low ellipticity values are caused in some 

degree by the flip-flop of the K1 and K2 axes, which have no preferred 

direction. Since K1 is always taken as the larger value, random fluctu

ations are not averaged out. 

Figures VI-3 through VI-10 and Figure VI-11 could be used to separ

ate fracture systems which behave like. porous media from those that do 

not. The closer NMSE is to zero, the more the fracture system is like a 

porous medium. From a perusal of the figures one might conclude that a 

value of NMSE greater than 1.0 means the medium would be very poorly 

represented by a porous medium. Permeability plots for such systems are 

irregular, nonsymmetric, and not necessarily even closed figures. A 

fairly smooth permeability ellipse seems to be produced for these sys

tems when tpe NMSE is less than about 0.05 (Figures VI-S, VI-9, VI-10). 

Above 0.05 there is a gradual transition from a relatively smooth sym

metric figure to completely irregular and nonsymmetric figure. Another 

transition occurs at values of NMSE above 0.3. Above this point, for 
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some directions, Kg is zero and the permeability plots are not closed 

figures. Below this transition the plots are closed figures. For these 

systems, a cutoff point for use of a porous medium analysis could easily 

be put anywhere in the NMSE range of 0.05 to 0.3 depending on the degree 

of acceptable error in the solution. 

Dashed lines are drawn on Figure VI-11 from NMSE values of 0.05 and 

0.3 on the vertical axis to the NMSE curve and then down to the corres

ponding values of 1 which are approximately 1 = 15 and 1 = 9.5, respec

tively. Thus for LD = 0.288, orthogonal fracture sets with 20 0 of 

standard deviation in orientation, constant apertures, and lengths, the 

fracture systems can be categorized in terms of their lengths. Fracture 

systems with lengths greater than 15 can be well represented by a porous 

medium. Those with lengths less than about 9.5 cannot be well represen

ted by a porous medium. Between 9.5 and 15 is a transition area where 

acceptability of the porous medium approach will depend on the accuracy 

required in the solution. 

Caution should be used in setting up such a categorization. The 

NMSE calculated in this way is a measure of how well the permeability of 

a given fracture system is represented by a symmetric tensor. It is not 

directly a measure of the error involved in using a tensor for such a 

fracture system. This is because the more unlike a porous medium the 

fracture system is the more unrealistic the linear boundary conditions 

are. A modification of the method for measuring NMSE which makes the 

boundary conditions more realistic will be discussed in Chapter X. 

Unless this modified method is used, categories like those determined 

above will be somewhat arbitrary. 
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Another point of caution is that these categories are based on a 

single realization for each fracture system. The validity of making 

conclusions based on a single realization was examined in a limited 

Monte Carlo type analysis which is explained in Section VI-D. 

Finally, it may be that the value of NMSE will be smaller for flow 

regions larger than those tested, especially for cases where fracture 

length is less than 15. This possibility is examined in Section VI-E. 

D. The Monte Carlo Study 

A Monte Carlo type analysis was used to test the soundness of the 

observations made in VI-C which were based on single realizations of 

each fracture system. The models for fracture lengths of 10 and 20 were 

chosen because 10 has a poor fit to an ellipse and 20 has a good fit. 

Only these two cases were 'run because the cost of doing this type of 

analysis is quite high. 

In each case, the same statistical input was used to generate a 

series of random realizations of the fracture system. After each run 

the results were concatenated with the previous runs and a current best 

fit permeability tensor and NMSE were calculated. When the current 

values of K1, KZ, and NMSE ceased to change noticeably, the study was 

terminated. Figures VI-13 and VI-14 show plots of the NMSE, K1, KZ, and 

the principal directions, 61 and 6Z, versus the number of runs averaged 

in for 1 = 10 and 1 = ZO, respectively. For 1 = 10, a total of Z5 

realizations were generated; for t = 20, 10 realizations were generated. 

Results of each individual run are plotted on the ordinate to illustrate 

the range of the data. 
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In the case of 1 = 10, the values of K1 and K2 never completely 

converge to the same value. This fact goes hand in hand with the fact 

that the NMSE is fairly high and the direction of the principal axes is 

completely random. The high value of NMSE means the connections between 

fractures are infrequently located. Therefore, in each run, there is 

usually some difference between K1 and K2. Since there is no preferred 

orientation for the principal axes, the direction of K1 and K2 (i.e., 

01 and 02) changes randomly in each run. Since K1 is always chosen to 

be the higher of the two principal permeabilities, the difference be

tween K1 and K2 does not get averaged out as it would in a sample exhib

iting strong anisotropy. With strong anisotropy, K1 and K2 would always 

be roughly in the same direction. Sometimes K1 would be a little higher 

than the average, sometimes it would be lower, but eventually the differ

ences would average out. In the isotropic case, K1 is determined by 

which value of principal permeability is higher, not by orientation. So 

the differences between K1 and K2 are preserved. 

Figure VI-1S shows the permeability plots for the final concatena

tion of all the realizations for both the 1 = 10 and the 1 = 20 cases. 

In both cases, the ellipses are nearly circles as expected. The 1 = 20 

results are closer to a circle than the 1 = 10 results. The scatter of 

points is greater in the 1 = 10 case and the permeability is higher in 

the 1 = 20 case. 

The mean plus or minus one standard deviation of all permeability 

measurements and NMSE from this Monte Carlo study are plotted as bars on 

Figure VI-11. The standard deviation is larger for 1 = 10 than for 
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t = 20 for both permeability and NMSE. The standard deviation for NMSE 

for t = 20 is so small it shows up only as a line on Figure VI-11. 

These bars reinforce the general observations made in Section VI-C. 

The Monte Carlo results provide the opportunity to make further 

observations. For a series of realizations of a fracture system, when 

the NMSE is higher, the standard deviation of permeability will also be 

higher. This trend has implications for regional stochastic modeling. 

The higher the NMSE of the blocks chosen as REV's in the model, the 

greater the standard deviation that must be used to assign permeability 

to the blocks. This in turn will increase the standard deviation of the 

outcomes (Freeze 1975). Thus, the higher the NMSE, the lower the relia

bility of the model results. 
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E. Study on the Effect of Flow Region Size 

In a second series of cases, the meshs for fracture lengths 10, 12, 

14 and 16 were increased in order to see if the NMSE would decrease and 

if the permeability would change. The input parameters for this study 

are given in Table VI-3. In each case, the A flow mesh is the same as 

presented in Sections VI-B and VI-C for cases where Lit = 6.25. The B 

mesh is larger than the A mesh, and the C mesh is larger than the B mesh. 

Table VI-3. Input Parameters Used in Second Series of Length-Density 
Studies. 

Fracture Length t Flow Region Number of fractures 
Flow Mesh (Set 1 and Set 2) Dimensions per unit area AA 

Name (cm) L x L (cm x cm) Lit (cm-2) 

LD10 A 10 62.5 x 62.5 6.25 0.288 

B 10 90 x 90 9.00 0.288 

C 10 125 x 125 12.50 0.288 

LD12 A 12 75 x 75 6.25 0.024 

B 12 108 x 108 9.00 0.024 

C 12 150 x 150 12.50 0.024 

LD14 A 14 87.5 x 87.5 6.25 0.0206 

B 14 126 x 126 9.00 0.0206 

LD16 A 16 100 x 100 6.25 0.0180 

B 16 175 x 175 10.90 0.0180 

Figures VI-16 through VI-19 show the permeability plots for frac-

ture lengths of 10, 12, 14 and 16, respectively. On each plot the mesh 

size, L, is the smallest for the results shown in the top frame and is 
, 

larger for each succeeding frame. Figure VI-20 is a plot of NMSE versus 

mesh size for each fracture length studied. 
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In the case of t = 10, increasing the flow mesh size does not con

sistently decrease the NMSE. Figure VI-16 shows that for Lit = 9.0 the 

ellipse is more regular than for Lit = 6.25. However for Lit = 12.5, 

the ellipse is the least regular of the three. In fact, the values of 

NMSE produced by all three of these runs are within the mean plus or 

minus one standard deviation of NMSE found in the Monte Carlo analysis 

of the t = 10 case in Section VI-D. Thus, for the case of t = 10, in

creasing the mesh size may have little effect on the NMSE. For t = 12, 

t = 14, and t = 16 (Figures VI-17, 18, and 19, respectively), there is 

a slight decrease in NMSE with increase in mesh size. The most signifi

cant decrease is for t = 16 which had the lowest NMSE to begin with. 

In the case of LD10B and LD16B, mesh sizes were increased such that 

the number of fractures in the flow region was the same as in the LD20 

case described in Secton VI-C. By increasing the mesh size in this way 

the NMSE of LD16B became approximately equal to the NMSE of that of LD20. 

The NMSE of LD10B was less than that of LD10A but still greater than 

LD20. Furthermore, as discussed above, the NMSE increased again in 

LD10C, so LD10C had a value of NMSE greater than the value of NMSE for 

LD10A, LD10B, and LD20. Increasing the mesh size of LD10 such that it 

included the same or a larger number of fractures as were in LD20 did 

not result in lowering the NMSE to the same level as LD20. 

The question of whether or not large enough samples were examined 

can also be addressed by looking at the change in permeability with 

scale of measurement. If permeability is relatively constant with scale 

increase, then the mesh may already be a good statistical sample and 

further increase in sample size will not change the conclusions. 
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The average of K1 and K2 for the first and second series versus 

fracture length t are shown on Figure VI-21. Figure VI-22 shows all the 

principal permeabilities for both series versus mesh size, L. The bars 

on Figure VI-22 are the results of the Monte Carlo study discussed in 

section VI-D. There is no substantial change in observations from 

Figure VI-21 versus Figure VI-11. On Figure VI-22, for all fracture 

lengths except t = 12, K1 and K2 are converging to the same value with 

increase in mesh size. Some permeabilities increase with mesh size, 

some decrease. In general, increase in mesh size seems to produce 

random fluctuations in behavior which dO'not qualitatively change the 

observations made in Section VI-C. 

For the case of t = 10, the Monte Carlo analysis demonstrated that 

the statistics used to generate this system yield permeabilities with a 

stable mean but a high standard deviation compared to those for the case 

of t = 20. This section demonstrated that for t = 10, the observed 

values of NMSE were not decreased by enlarging the scale of measurement. 

But, the values of K measured on larger scales are not within 2 standard 

deviations of the values measured on a smaller scale in the Monte Carlo 

analysis of LD10. Short of doing another expensive Monte Carlo analysis 

on a larger scale, there is no way to ensure that a larger scale of 

measurement would not give a different mean value of K than that pre

viously measured. The only evidence available that LD10 was a large 

enough statistical sample is that the change in magnitude of K with in

crease in mesh size is not a.clear trend: the permeability of LD10B was 

greater than the permeability of LD10A and the permeability of LD10C was 

less than LD10A (Figure VI-22). 
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Figure VI-22. Variation in K1 and K2 with mesh size for 
various values of fracture length, t. 
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If further increases in the scale of measurement for L010 will not 

eventually decrease the NMSE, then this fracture system apparently has 

an inherent range in NMSE that cannot necessarily be decreased by look

ing at larger samples. Certainly NMSE cannot be decreased for L02 

(Figure VI-3) by considering a larger sample. In L02 the fractures are 

poorly connected no matter what the scale. This concept contradicts the 

common assumption that all fracture systems behave as a porous medium on 

some scale. Some fracture systems apparently do not behave in situ like 

a porous medium on any scale. 

F. Representative Elementary Volume Study 

The case of L020 is a sample that does behave like a porous medium. 

In order to see how this behavior develops with increase in scale, the 

representative elementary volume (REV) study was performed. In this 

study, 14 different flow region sizes within the generation region were 

each rotated every 15° to give 24 different measurements of directional 

permeability. The flow regions at 0° rotation are all shown superimposed 

on Figure VI-23. Figures VI-24 through VI-37 show the flow region and 

the reduced flow region at 0° rotation, the ellipse, and the permeability 

plots for each of the flow mesh sizes. 

Figure VI-38 shows plots of normalized mean fracture length in the 

flow region, NMSE, and K1 and K2 versus flow mesh area. The NMSE values 

are less than 0.05 for all flow regions greater than 400 cm2• Thus 

large samples are not necessary for symmetric permeability tensors. At 

this scale of observation, however, permeability is still oscillating. 

Mesh sizes greater than about 1,000 cm2 are needed to avoid rapid oscil

lation of K with mesh size. Beyond mesh sizes of about 1,000 cm2, the 
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value of K1 and K2 slowly decline. K1 and K2 converge to the same 

value when the area is 15,625 cm2• Normalized mean fracture length, 

1/20, has achieved most of its increase by about 9,000 cm2• The value 

of 1/20 in an infinite sample is 1.0, but in finite samples some frac

tures are always truncated, so 1/20 is always less than 1.0. Thus in 

this case, representative values of NMSE and permeability are observed 

in samples which are much smaller than a good statistical sample. 

The question of what size mesh should be used for this particular 

fracture system in a regional groundwater model can be addressed using 

Figure VI-38. Any block size greater than 1,000 cm2 would probably be 

acceptable since the NMSE is fairly stable in this range. However, 

block sizes greater than 5,000 cm2 would provide a better estimate of 

permeability. Block sizes as large as possible are preferable in a 

regional model because they are less expensive to analyze.' Constraints 

of the problem region must also be taken into account. Gradients in the 

region must be linear on the scale of the block sizes in order to have 

an accurate numerical solution. Thus Figure VI-38 provides information 

on the minimum acceptable block size, but the regional problem provides 

the constraint of the maximum acceptable block size. 

G. Conclusions 

The study described in this chapter was designed to see if permea

bility could be determined from the fracture frequency in a borehole 

without knowing the actual length distribution and actual fracture den

sity. For small values of fracture length, the fracture length must be 

known in order to predict the permeability. For fracture systems where 
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all boreholes intersect the same number of fractures per unit length, 

those with shorter fracture lengths and higher density will have lower 

permeability than those with longer fracture lengths and lower density. 

Furthermore, fracture systems with shorter fractures behaved less like 

porous media than fracture systems with longer lengths. The measured 

values of permeability and NMSE were much more strongly linked to frac

ture length than to sample size. Thus if a fracture system does not 

behave like a porous medium on one scale, increasing the scale of obser

vation may do little to improve the behavior. Intuitive prediction of 

these results would not have been easy. 

For large values of fracture length, the increase in permeability 

with increase in fracture length may become negligible. For fractures 

longer than a certain minimum, it would not be necessary to exactly 

specify the length and fracture density. Specification of the fracture 

frequency as measured in a borehole along with the aperture and orienta

tion distributions would be sufficient. However, this trend could not 

be confirmed because of the size limitations of the computer. 

The numerical study that was performed was based on an isotropic 

system of fractures with constant apertures. However the general trend 

in behavior exhibited by these isotropic systems should also be observed 

in anisotropic systems and in systems with distributed apertures. 
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VII. USE OF FIELD DATA FROM THE UNDERGROUND RESEARCH LABORATORY 

A. Introduction 

The Lac du Bonnet granitic batholith in the Canadian Province of 

Manitoba is the site of investigations for the Canadian Nuclear Fuel 

Waste Management Program. As part of this program, Atomic Energy of 

Canada Limited (AECL) is conducting hydrologic research at the Under

ground Research Laboratory (URL) site in the Lac du Bonnet batholith. 

This chapter describes two studies in which hydrogeologic data from 

this site were used in the existing two-dimensional model of permeabil

ity. The analysis serves as an example of the application of field data 

to the model and what can be learned about the site from even limited 

amounts of data. Types of field data which could be used to further 

this analysis are discussed in Appendix A. 

In the first study, the effect of a correlation between length and 

aperture was examined. Models were created in which length and aperture 

are both correlated and uncorrelated. When length and aperture are 

correlated, the longer fractures tend to have the larger apertures. The 

study shows that the hydraulic behavior of correlated systems is signi

ficantly different from the behavior of uncorrelated systems. This 

study serves to demonstrate the importance of understanding the relation

ship between length and aperture. 

A second study evaluates the use of steady state well tests to 

determine the true mean aperture of the fracture system. Field data, 

including well test data were used to create a fracture model. Then 
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well tests were simulated in the model. The simulated well tests are 

analyzed to see if the input data on fracture aperture can be retrieved. 

The study shows that steady state well tests are inadequate for deter

mining the aperture distribution. 

At the time of this investigation, five boreholes, URL-1 through 

URL-5, had been drilled and tested at the URL site (Figure VII-1). 

Fracture traces on the extensive surface exposures had been mapped. 

Data from these sources indicate that approximately the upper 200-300 m 

of rock are fractured. The rock below this zone, as examined by these 

boreholes, is relatively unfractured except for one or two small frac

ture zones on the order of 10 m thick. Data from the upper fractured 

zone and the surface are the focus of attention for this analysis. 

Specifically, potential sources of data for analysis of the upper frac

tured zone are: 

(1) URL 1 

(2) URL 2 

(3) URL 3 

70 m - 120 m 

45 m - 155 m 

50 m - 155 m 

(4) URL 4 0 m - 90 m 

(5) URL 5 90 m - 110 m 

(6) Surface Trace Data 

All fracture data were assumed to be samples from the same overall popu

lation. Spatial correlation was assumed to be lacking. Where the input 

parameters could not be determined from maps, well tests, or logs, a 

range of values was used. 

B. Two-Dimensional Analysis of a Three-Dimensional Fracture System 

Analysis of a real three-dimensional fracture system with a two

dimensional model has drawbacks. The primary drawback is that fractures 

which do not intersect in the plane of analysis may intersect somewhere 
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outside the plane of analysis as shown in Figure VII-2. Also, fractures 

parallel or subparallel to the plane of analysis are not represented in 

the analysis. For both these reasons, a two-dimensional analysis tends 

to underestimate permeability in the plane of analysis. Furthermore, 

there is no good way at this time to correct for this error. In a sense 

a two-dimensional analysis is a bounding study. However, for the pur

poses of waste storage, this bounding study is not a conservative 

analysis. 

The two-dimensional analysis is useful for examining the relation

ship between fracture geometry and the hydraulic behavior of the system. 

A fracture system which behaves like an equivalent porous medium in two 

dimensions will probably behave like an equivalent porous medium in 

three dimensions. 

The permeability in a horizontal plane of the upper fractured zone 

at URLwas analyzed because information about trace length and orienta

tion distribution could be easily obtained from excellent trace maps of 

surface exposures. However, it is difficult to obtain a consistent data 

set for analysis of the horizontal plane. All the hydraulic data are 

from wells which have preferentially sampled horizontal fractures. 

Samples of fractures taken from traces in the horizontal plane are 

biased towards vertical fractures. Furthermore, most of the information 

on fracture patterns comes from the surface. Since stress conditions at 

depth are quite different from those at the surface, the fracture pat

tern is also likely to be different. This study proceeds initially on 

the assumption that the'aperture distribution of near-vertical fractures 
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is the same as that at the surface. This assumption was then evaluated 

in examining the results. 

c. Input Parameters Used in the Study 

Input for the model was obtained in two steps. First, density, 

orientation, and length i~put statistics were derived from the surface 

trace data. That is, the fracture pattern was determined completely 

from the surface data. Second, apertures were assigned to the fractures 

in the pattern. 

For the first study, the same realization of this fracture pattern 

was used for each calculation of permeability. However, for each dif

ferent calculation the fracture pattern was given a different assignment 

of apertures. Seven different statistical models for aperture were used. 

In five of these models, the correlated models, A, 81, 82, 83, and C, an 

aperture was assigned to each fracture such that the longer fractures 

tended to be assigned the larger apertures. In two other uncorrelated 

models, D and E, apertures were assigned randomly without regard to the 

fracture length. All seven, correlated and uncorrelated models, have 

the exact same fracture pattern. That is, each has fractures of the 

same length and orientation which are located in the same place. How

ever, in each model the apertures are distributed differently. 

An analysis of the effect of packer spacings was also made. For 

this study, many realizations of the fracture pattern were used; each 

with the same distribution of apertures determined by the 81 model. 

In each of these models the statistical distributions are the same, but 
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each is a different random realization. The packer spacing study is a 

Monte Carlo type study. 

Fracture Pattern 

The fracture pattern input data was obtained from a fracture trace 

map provided by A[CL. A 3100 m2 triangula~ area of the map was chosen 

for study because of the good exposure in this area (Figure VII-3). Two 

sets of fractures were identified. Set 1 strikes approximately N27°[ 

and Set 2 strikes N115°[. A 200 m sample line was drawn on the map for 

each set. The sample lines were approximately perpendicular to the mean 

strikes of the fracture sets. The lengths and orientations of the frac-

tures intersecting the sample lines were recorded. The statistics of 

this sample are summarized in Table VII-1. 

Table VII-1. Underground Research Laboratory Fracture Statistics. 

Orientation Length Density 

Standard Number of fractures 
Mean Standard Mean Deviation Range per unit length 

Set (Strike) Deviation (m) (m) (m) (m-1) 

1 N27°[ 2.7° 24.7 22.2 5.0-100.0 0.100 

2 N115°[ 2.3° 25.0 26.9 2.0-112.0 0.135 

For data input the mean and standard deviations for length were 

rounded off to two digits. The fracture density for each set was cal-

culated using the length-density relationship described in Chapter VI. 

Recall that if the sample line is perpendicular to the strike of the 

fracture, the number of fractures per unit sample length equals the 

product of mean fracture length and number of fractures per unit area: 
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(VII-2) 

(VII-3) 

For set 1, 

-1 
A - 0.001 cm = 4.0 x 10-7/cm2, 

A 2500 cm (VII-4) 

and for set 2, 

-1 
A - 0.00135 cm = 5.4 x 10-7/cm2• 

A 2500 cm (VII-5) 

The input data for density, orientation, and length are summarized in 

Table VII-2. Orientation in the model is measured counterclockwise from 

the x-axis (East). The fracture mesh pattern generated using the data 

in this table is shown in Figure VlI-4. 

Table VII-2. Input Data 

Areal Density (cm-2) Orientation, SO Length, SO (cm) 

SET 1 4 x 10-7 2500, 2200 

SET 2 5.4 x 10-7 2500, 2700 

Apertures 

The available borehole well test data were analyzed in order to 

obtain an estimate of the aperture distribution. In the zones of 

interest, data from 12 packer tests in the URL boreholes were available. 

For these test zones, the equivalent aperture of a single fracture, b1, 

which would account for the measured permeability in the test zone was 

calculated. Th~n the number of open fractures, N, intersecting the zone 

was counted using the T.V. log of the borehole. Assuming all N fractures 



35121212. 

312121212. 

2512120. 

21212120. 

>-

151200. 

10000. 

5000. I-

0. 

0. 5000. 

Figure VII-4. 

177 

10000. 151200. 200012. 25121212. 30121212. 35121212. 

x 
XBL 8211-2607 

Fracture pattern for the Underground 
Research Laboratory data. 



178 

were of equal aperture, the value of that aperture, bA, which would 

account for the permeability was calculated. Table VII-3 gives the 

results of these calculations. 

A simple correlation model for length and aperture was developed 

based on this data. In Figure VII-5, various plots of the log of frac

ture length, t, versus aperture, b, illustrate the models used. Four 

points as summarized in Table VII-4 are labeled 1, 2, 3, and 4. Point 1 

is the mean length and the approximate mean aperture; point 2 is the 

maximum recorded length and the maximum expected aperture; point 3 is 

the minimum recorded length and the minimum recorded aperture; point 4 

is the mean plus two standard deviations of length and the mean plus two 

standard deviations of aperture. The points do not lie on a straight 

line. The lines on the graph show the model relationships between t and 

b that were chosen for the A, Band C models. 

All the models were chosen such that they passed through point 3. 

This was done to insure that any fractures with generated lengths less 

than those observed in the field sample would have a minimum aperture 

and therefore a small effect on the flow. These trial correlation 

models are fairly simple; only one straight-line segment on the semilog 

plot (Figure VIII-5) is used to govern the choice of aperture for 

fractures with lengths greater than 100 cm. Model A was chosen as a 

probable maximum. Model B was chosen to give some weight to points 1, 

2, 3, and 4. Model C was chosen to give weight only to points 1 and 3. 

Model C was chosen to achieve a good match with the average aperture 

statistics as given at the bottom of Table VII-3. 
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Table VII-3. Aperture Data. 

Hole 
Zone 

(m) 

N 
II of 
Open 
Frac
tures 

K 
Conduc
tivity 
cm/s-' 

Equivalent Aperture 
Single 
Fracture 

b1** 
(cm) 

n Fractures 
bA** 
(cm) 

URL-1 73.9-91.1 3 1.5x10-7 3.16x10-3 2.l9x10-3 

4.0x10-6 7.00x10-3 3.06x10-3 

5.0x10-6 8.55x10-3 4.47x10-3 

1.5x10-6 5.72x10-3 3.97x10-3 

URL-1 108.6-115.6 12 

URL-2 45.0-55~2 7 

URL-2 60.0-70.2 

URL-2 86.0-96.2 

URL-2 105.0-115.2 

URL-2 120.0-130.2 

UHL-2 130.0-140.2 

URL-2 148.0-158.2 

URL-3 61.0-64.5 

URL-3 116.0-120.5 

URL-4 2.36-62.84 

URL-5 79.35-94.11 

3 

3 5.25x10-7 4.03x10-3 2.80x10-3 

1 2.0x10-6 6.29x10-3 6.29x10-3 

4 

2 

o 

2~Ox10-6 1.36x10-2 8.55x10-3 

6.0x10-7 4.22x10-3 3.35x10-3 

2.0x10-7 

2* 1.0x10-8 7.54x10-4 5.98x10-4 

4* 2.0x10-7 2.23x10-3 1.40x10-3 

9* not avail. 

0* 2 .6x1 0-8 

URL-5 94.11-108.87 31 9.0x10-5 2.53x10-2 8.06x10-3 

II of Frac
tures per 
Unit Length 
in the Zone 

(m- 1) 

0.1744 

1.714 

1.457 

2.941 

2.941 

0.0984 

0.3921 

0.1961 

0.0 

1. 75 

0.8 

0.319 

0.0 

2.1 

* Estimated from fracture frequenc~ graphs, T.V. log not available 

** b = /KL 12~ 
3 N Pg 

L = zone length 

N = number of fractures assumed to be ~onducting 

61 = 7.35xlO-3 cm bA = 5.54xlO-3 cm 

Std. Dev. (b1) = 6.89xlO-3 cm Std. Dev. (bA) = 2.67xlO-3 cm 
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Table VII-4. Description of Length and Aperture Coordinates Used to 
Plot Points 1,2,3, and 4 on Figure VII-5. . 

Point 

1 

2 

3 

4 

Description of 
length, R. 

Approximate mean 
value of length 
from Table VII-1 

Order of magnitude of 
the maximum observed 
value of length in 
the triangle on 
Figure VII-3 

Order of magnitude of 
the minimum observed 
value of length in 
the triangle on 
Figure VII-3 

The mean value of 
length (from 1 above) 
plus approximately 2 
standard deviations 
frdm Table VII-3 

Descr iption of 
aperture, b 

Values of length and 
aperture (R.,b) (cm) 

Approximate average of 
b1 and bA from 
Table VII-3 

The maximum expected 
aperture based on 
Table VII-3 

Order of magnitude of 
the minimum observed 
value of aperture on 
Table VII-3 

The mean value of 
aperture (from 1 above) 
plus approximately 2 
standard deviations 
from Table VII-3 

(2500, 0.006) 

( 1 0000, 0 • 05 ) 

( 100, 0 • 0005 ) 

(7500, 0.02) 

These correlation models were used to pick a value of aperture for 

each fracture in the existing fracture pattern. First the length, R., of 

each fracture was used to find the value of b(R.) on Figure VII-5. If 

aperture and length were perfectly correlated (i.e., a one-to-one corre-

lation), then b(R.) would be the aperture assigned to a fracture of length. 

However, in this study b(R.) was considered to be the mean value of aper-

ture for all fractures of length R.. The value of aperture actually 

assigned to the fracture was assumed to be a member of a normal distri

bution with mean, b( t), and standard deviation, SDb( t), specified in the 

input. Thus, if the values of aperture assigned to each fracture were 

plotted on Figure VII-5, they would be scattered around the sloped por-

tion of the line. The amount of scatter is determined by the magnitude 
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of SOb(t). The total dispersion of the values of aperture is determined 

both by SOb(l) and by the randomness inhere~t in t. 

Model B was run with three different standard deviations as B1, 82, 

and B3. In B1, SO(b(t)) (the standard deviation of bet) around bet)), 

was 0.001; in B2, it was 0.01; in B3, it was 0.04. 

Zero aperture fractures create a problem in the numerical analysis 

and negative aperture fractures do not make sense physically. Therefore 

a minimum aperture, in this case 0.0001 cm, was assigned to any fracture 

with a length less than 100 cm, which is the minimum length recorded in 

the field data. This aperture was also assigned to any fracture for 

which the correlation model gave a negative aperture. 

In simulations 0 and E, length and aperture were uncorrelated. 

Model 0 used values of mean aperture and standard deviation the same as 

those measured in the generation region of Model 81. Model E used a 

slightly smaller mean aperture and a much larger standard deviation than 

model o. A summary of the aperture assignments used in each model is 

given in Table VII-5. 

For each model the permeability was calculated in 24 directions 15° 

apart. The superimposed flow regions for the permeability calculations 

are shown in Figure VIII-6. The flow region size was 250 x 250 m. 

These dimensions are 10 times the mean fracture length which is large 

enough to insure a good statistical sample. All of the models used the 

same fracture pattern, but apertures were assigned differently in each 

model. The flow regions were simplified for the purpose of economy by 



Table VII-5. Input and Output Aperture Statistics for the Underground Research Laboratory Models. 

Coefficient of Observed Aperture 
Length and Correlation in Input Aperture Statistics in-the 

Model Aperture Ineut Correlation Parameters the Generation Statistics Generation Region 
Set Correlation Y-Intercept Slope SDb~~-r- Region b SOb b SOb 

A Yes 
1 -.06 .03 .01 .5461 .0388 .0135 
2 -.06 .03 .01 .6340 .0369 .0153 

81 Yes 
1 -.036 .019 .001 .8283 .0262 .00596 
2 -.036 .019 .001 .8215 .0255 .00738 

82 Yes 
1 -.036 .019 .01 .3886 .0269 .0115 
2 -.036 .019 .01 .5011 .0253 .0123 

83 Yes 
1 -.036 .019 .04 .084 .0343 .0337 
2 -.036 .019 .04 .1656 .0312 .0318 

~ 

CD 
\,H 

C Yes 
1 -.01 .005 .001 .6937 .00643 .00182 
2 -.01 .005 .001 .7392 .00616 .00217 

D No 
1 .026 .0065 .027 .007 
2 .026 .0065 .026 .006 

E No 
1 .02 .04 .024 .050 
2 .02 .04 .019 .029 
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eliminating the isolated and dead end fractures which do not conduct. 

These reduced flow meshes are shown in Figure VIII-7. Each of the six 

reduced flow regions shown represent four different directions of meas

urement: 0, 0 + 90, 0 + 180°, and 0 + 270°. 

D. Results of the Permeability Study 

The results of the permeability calculations are shown in Figures 

VII-B through VII-11. The left-hand side of each frame is a permeabil

ity ellipse plot. The dashed line connects the values of 1/1Kg calcu

lated by the model. The smooth ellipse drawn with a solid line is the 

best fit ellipse. The right-hand side of the figure shows the values of 

calculated permeability plotted against rotation angle in Cartesian 

coordinates. The smooth solid-line curve on this plot is the best fit 

"ellipse." The polar plot provides a good visualization of the hydraulic 

behavior, but the Cartesian plot provides a better visualization of the 

magnitude of permeability and the degree of scatter. The values of the 

principal permeabilities, the principal directions, and the normalized 

mean square error (NMSE) for each case are given in Table VII-6. 

Model A represents a probable maximum aperture model based on Figure 

VII-5 and thus had the largest permeability of all the models. The per

meability of this model was on the order of 10-4 cm/s whereas the per

meabilities measured in URL-1 through URL-5 are generally on the order of 

10-6 or 10-7 cm/s. This difference mayor may not be a discrepancy. 

Permeability may simply be increasing with scale of measurement. The 

borehole measurements were on the scale of 10 m. The permeability 

models were on the scale of 250 m. However, none of the individual 
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Table VII-6. Permeability Results for the Underground Research 
Laboratory Data. 

Principal Permeabilities (cm/s) Principal Directions 
Model K1 K2 81 82 NMSE 

A 7.61 x 10-4 4.26 x 10-4 -9.5 -80.5 .044 

81 2.09 x 10~1 1.32 x 10-4 -9.5 -80.5 .041 

82 2.40 x 10-4 1 .31 x 10-4 -8.3 81.66 .051 

83 8.25 x 10-4 2.05 x 10-4 -4.7 85.3 1.727 

C 3.38 x 10-6 1.98 x 10-6 -10.0 80.1 .041 

D 8.17 x 10-5 5.13 x 10-5 -6.8 83.2 .046 

E 3.55 x 10-5 2.51 x 10-5 -24.6 65.4 1.317 

borehole measurements were as high as 10-4 cm/s. The difference between 

the model results and the borehole measurements is strong evidence that 

either the aperture model is wrong or the fracture pattern from the sur-

face does not apply at depth, or both. -

The overall linear density, AL, of open fractures as recorded in 

the borehole T.V. logs for the zones of interest is about 0.65 fractures 

per meter. This number is larger than the values measured at the 

surface as given in the last column of Table VII-1. Therefore, the 

linear density at depth is probably larger than at the surface. All 

else being equal, a larger density at depth than at the surface would 

imply a larger permeability at depth than predicted by the model using 

surface data. Yet the permeability at depth is evidently lower than 

predicted by model A. This is more evidence that the apertures in model 

A are too large or the fractures may be much shorter at depth than 

those at the surface. 
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The observed values of mean aperture and standard deviation 

of aperture in model A are not the same as calculated from the 

borehole test data. The field mean aperture and standard deviation 

are lower than the model. Note that the overall mean aperture and 

standard deviation of the aperture are not assigned directly in the 

correlation model. These statistits can only be calculated after 

the model is generated. Heproducing specific aperture statistics 

can only be done by trial and error. 

The aperture model used in A may very likely be wrong because 

it results in apertures which are too high. This discrepancy would 

also account for the permeability of the model being too high. 

Since th~ aperture statistics of model A did not match the aperture 

statistics measured in the field, the B1, B2, B3 and C models were 

tried to see if the permeability of the models could be signifi

cantly lowered. The B models were all set to give more weight to 

points 1, 2, and 4 on Figure VII-So These models still result in a 

mean aperture higher than that observed in the field (Table VII-S). 

Some decrease in permeability from model A to the B models was 

observed. However the permeability of the B models is still 

significantly larger than the packer test results. 

From model B1 to B3, the only significant change in the fracture 

mesh is an increase in the standard deviation of the overall aperture 
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distribution. This increase has two net effects. The first is the 

permeability increases slightly and the second is the normalized mean 

square error (NMSE) increases substantially. The net increase in 

permeability can be explained because the flux carried by the fracture 

is proportional to aperture cubed. When the standard deviation is 

increased, a fracture of initial aperture, b, is likely to have its 

aperture increased or decreased by an amount, say 8. However, in this 

case the resulting net increase in flux is greater than the net decrease. 

This can be seen by calculating (b - 8)3 and (b + 8)3. 

(b - 8)3 = b3 3~2+ 382b - 83 

(b + 8)3 = b3 3~2 + 382b + 83 

The magnitude of increase in b3 is 

(b + 8)3 - b3 = 3~2 + 382b _ 83 

The magnitude of decrease in b3 is 

(VII-6) 

(VII-7) 

(VII-B) 

(VII-9) 

The magnitude of the increase is greater than the magnitude of the 

decrease by 682b. Therefore the permeability of individual fractures 

increases systematically. However, with a higher standard deviation of 

aperture the connections between fractures in the pattern are more 

heterogeneous, and therefore the NMSE increases. This increase in 

heterogeneity itself also causes random decrease and increase in the 

permeability. When length and ap~rture are correlated the net result of 

both the systematic and random effects of increasing standard deviation 

seems to be an increase in permeability. 
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Model C was designed to find an aperture-length model which 

would achieve permeabilities on the order of 10-6 cm/s with the 

same fracture pattern used in the A and B models. Mean apertures 

in this model were decreased by a factor of about 1/4 from the B1 

models. The permeability of C was decreased by a factor of about 

1/62, which is approximately equal to (1/4)3. Model C best 

represents the field statistics. The permeability of model C was 

therefore on the same order of magnitude as the field test results. 

Permeabilities of models with uncorrelated length and aperture 

are smaller than those of correlated models. Model D was designed 

to determine the magnitude of decrease in permeability caused by 

having length and aperture uncorrelated. Model D has approximately 

the same overall aperture statistics as model B1. 

Model D has a slightly higher NMSE and a significantly lower 

permeability than B1. In B1, the correlated model, large apertures 

are not "wasted" on short fractures which do not as often connect 

to other fractures. Therefore the correlated model B1 has a higher 

permeability than the uncorrelated model D. Correlation did not 

seem to produce a large effect on the NMSE. 

A comparison can be made between B3 and E. The correlated model 

83 has a lower standard deviation of aperture than the uncorrelated 

Model E. In this case, however the correlated model has a higher NMSE. 
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This disparity is apparently due to a random long, higher aperture 

fracture which connects the inflow side at 0° rotation to an adjacent 

side rather than the opposite side. This creates the anomalously high 

permeability at 0° and the anomalously low value at 180°. It may be 

that correlation between length and aperture may be responsible for 

creating a "super conductor" which increases the value of NMSE. In 

both the correlated and uncorrelated models, an increase in the standard 

deviation of aperture increases the NMSE. 

All else being constant, an increase in the standard deviation 

of aperture increases the NMSE. If length and aperture are correlated, 

an increase in standard deviation of aperture will probably increase 

the permeability. All else being constant, uncorrelated models have 

lower permeability than do correlated models. All else being constant, 

increasing the mean aperture by a factor of m increases the permeability 

by a factor of about m3• Correlation between length and aperture may 

explain the occurrence of "super conductors." 

E. The Monte Carlo Packer Spacing Study 

A study was conducted to observe the influence of packer spacing 

on the ability to predict the true mean aperture of the fracture system. 

First a 350 x 350 m fracture mesh generation region was created using 

the fracture statistics of Model B1. Then, a series of flow regions 

were defined in the generation region. All the flow regions were at 0° 

rotation and the sizes varied as follows: 1 x 1 m, 2 x 2 m, 5 x 5 m, 

10 x 10 m, 20 x 20 m, 50 x 50 m, 80 x 80 m, 150 x 150 m. In the first 

set of runs, the sizes ranged from 1 x 1 m to 50 x 50 m. Then another 
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set of runs was made to see the results in regions larger than 50 x 50 m. 

In this second set of runs flow regions ranged in size from 1 x 1 m to 

250 x 250 m. In each set of runs, 20 different generation regions and 

the associated flow regions were created as different realizations of 

the same statistics. Figure VII-12 shows one of these realizations from 

the second set of runs. Figure VII-13 shows the flow regions of differ-

ent sizes for this realization. Figure VII-14 shows the reduced flow 

regions. 

In each of the flow regions, permeability was calculated in the x-

direction. In fact, two values of permeability were calculated for each 

flow region, one based on flow into the region in the x-direction and 

one based on flow out of the region in the x-direction. Therefore 40 

values of Kxx were calculated for each set of runs and each size of flow 

region. These values of Kxx were assumed to represent the results of 

permeability tests in a well bore when the packer spacing is equal to the 

flow region dimensions. The values of Kxx were used to calculate frac

ture apertures in the same way that the field data in Section VII-E was 

analyzed. That is, a single equivalent aperture, b1 was calculated as 

3 fK;;L 
b 1 = / pg/Tzi;" , (VII-10) 

where L is the zone length or flow region dimension. Then the number 

of fractures, N, which actually intersected the side in question was 

counted. An average equivalent aperture, bA, was calculated as 

(VII-11) 

The actual apertures b of the N fractures which intersected the zones as 
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they existed in the model were also recorded. Then for each set of 20 

runs, the average values of b1, bA, and b were calculated: 51, 5A, and 

5. The mean aperture of all the fractures in all of the 40 generation 

regions was approximately constant at 0.026 cm. 

Figure VII-15 shows 5, 51, and 5A plotted versus zone length, L. 

The true mean aperture for all of the generation region is shown as a 

horizontal line. The object of doing the packer tests is to determine 

this value of mean aperture. 

For all zone lengths the mean of the actual fracture apertures 

intersecting the well zone is larger than the true mean aperture of 

fractures in the whole region as Figure VII-15 shows. Because length 

and aperture are correlated, the fractures with larger aperture are also 

longer and thus more likely to intersect the well zone. If length and 

aperture were uncorrelated, the average actual aperture would be expec

ted to converge to the average aperture for the whole region. 

The values of 51 and 5A are less than the mean aperture of the 

generation regions for all the zone lengths tested. The value of 5A is 

stable for all zone lengths. A slight decline in 5A with zone length 

can be explained by the slow decline in average permeability of all the 

samples with flow mesh size as shown in Figure VII-16. This effect also 

explains why the increase in 51 does not become a linear function of the 

packer spacing. 

Within the limits of the size of the fractured zone at URL, neither 

51 nor 5A are likely to provide good estimates of the mean aperture. 
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The magnitudes of 61 and 6A are lower than the mean aperture because of 

two factors. First, the calculation of b1 or bA assumes the fractures 

are perpendicular to the well when in fact they are not necessarily 

perpendicular. The error involved is proportional to the cube root of 

cos e where e is the angle between the fracture and the plane perpendic

ular to the well. 

The second error in calculating b1 and bA results from assuming 

that the fractures are all perfectly connected and conducting. A good 

example of this error can be seen in Figures VII-12, VII-13 and VII-14 

for the 2,000 x 2,000 cm (20 x 20 m) flow region. Figure VII-12 is one 

realization from the packer spacing study, and Figure VII-13 shows the 

flow regions which were analyzed. As can be seen in Figure VII-13, the 

right-hand side (the outflow side) of this mesh intersects two fractures. 

But, as can be seen in the 2,000 x 2,000 cm reduced flow mesh of Figure 

VII-14, both of these fractures have been eliminated from the flow cal

culation because they do not connect with any other fractures or any 

other boundary. Thus in this extreme example, the well intersects two 

isolated fractures but zero permeability is measured. So zero apertures 

would be calculated for the two fractures if they were assumed to be 

"connected." In fact, they are not connected and have nonzero apertures. 

In less extreme cases, the larger aperture fractures that intersect 

the well are connected, but only through smaller aperture fractures. 

When a large aperture fracture feeds into a smaller one, the flux 

carried by the larger aperture fracture is reduced. Therefore, the 

measured permeability is reduced and the calculated equivalent aperture 
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is smaller than the real aperture. In the opposite case, when a small 

aperture fracture is connected through larger aperture fractures, the 

flux is not significantly increased. 

This effect can be illustrated by considering the example of two 

fractures in series. Figure VII-17 shows two such fractures, A and B, 

under an overall field gradient, JF. The equivalent overall permea-

bility in the x-direction, K, of the two fractures can be found by 

equating the flux through A to the flux through B. That is, 

( VII-12) 

(VII-13) 

where '1 is the head at the left-hand face of the rock element, '0 is 

the head at the right-hand face and 'M is the head at the intersection. 

Solving for the head 'M at the intersection, 

( VII-14) 

The field gradient Jf is 

(VII-15) 

The equivalent K for this rock element in the direction of the field 

gradient is 

(VII-16) 
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The single equivalent aperture, b, for this system is found by 

equating 

Q = KJfh = 3 £L 
b 12lJ Jf· (VII-17) 

So we have: 

b = Y Kh 
pg712lJ (VII-1B) 

3 3 

b 
(LA + LB)b AbB 

= 3 3 
LAbB + LBbA 

or 

b = bB (VII-19) 

If bB is much greater than bA, and LA and LB are both approximately 

equal to each other, then bB/bA » 1 and 

( VII-20) 

(VII-21) 

So if bA is smaller than bB, the equivalent aperture, b, is approxi-

mately equal to bA. 

Heterogeneous connections between fractures usually result in the 

measured aperture being less than the actual aperture. In this case, 

although the average of the actual apertures of fractures intersected by 

the well zone is higher than the true mean aperture this does not com-

pensate for the lack of perfect connection. In the case where length 

and aperture are not correlated, the average of the actual aperture of 
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fractures intersected by the well will be closer to the true mean 

aperture of the system. However as a result, in the uncorrelated case 

the estimate of aperture obtained in steady-state well tests may be even 

worse than the correlated case. 

F. Conclusions and Recommendations 

In these model studies the aperture distributions were varied in 

three different ways. The mean and standard deviation of aperture were 

varied and aperture was assigned to the fractures such that it was 

ccirrelated or uncorrelated to fracture length~ These three variants 

influence both the magnitude of the permeability' and the NMSE. The 

magnitude of the permeability is most affected by the magnitude of the 

mean aperture. An m-fold increase in mean aperture results in an m3 

increase in permeability. Thus even a less than an order of magnitude 

change in 'mean aperture can result in several orders of magnitude of 

change in permeability. The next strongest influence on the magnitude 

of the permeability is correlation between length and aperture. 

Correlated systems may have permeabilities about an order of magnitude 

higher than similar uncorrelated systems. Finally the standard 

deviation of the aperture distribution influences the magnitude of the 

permeability. An increase in the standard deviation of aperture when 

fracture apertures are correlated to fracture lengths results in an 

increase in permeability. If they are not correlated, then an increase 

in the standard deviation may increase or decrease the permeability. 

Thus, in order of importance the magnitude of the permeability is 

affected by the mean aperture, the correlation between length and 

aperture and the standard deviation of aperture. 
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The value of NMSE is most significantly influenced by a change in 

the standard deviation of the aperture distribution. An order of 

magnitude change in standard deviation can result in a change in NMSE 

of two orders of magnitude. Corelation between length and aperture has 

some influence on the NMSE. If length and aperture are correlated, 

long, high aperture fractures may be formed which serve to increase the 

NMSE. The value of the mean aperture effectively has no influence on 

the NMSE. Thus, in order of importance the magnitude of the NMSE is 

affected by the standard deviation of the aperture distribution, and 

the correlation between length and aperture. 

Based on model C of this study the best estimate of the NMSE of 

URL rock is very roughly 0.04. A value of 0.04 means the permeabiiity 

ellipse is probably fairly regular. This estimate would be decreased 

by adding a third dimension to the analysis. However, it would be 

increased by shortening the fracture lengths or by restricting the 

sample size to the width of the upper fracture zone. Since we have no 

estimate of the length of fractures or depth this estimate of NMSE must 

be treated with extreme caution. 

For these statistical s~stems, NMSE values as high as 1.7 still 

produce permeability plots that are closed figures. Thus approximation 

of the URL rock as a porous medium may be acceptable. However, due to 

the combination of adding a third dimension,' shortening the fractures, 

and decreasing the sample size, the net change in the NMSE may be an in

crease. If such increase in NMSE produces a permeability plot which is 

not closed, approximation as a porous medium will be poor. 

Steady-state packer tests are likely to give estimates of the mean 
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apertures that are lower than the true mean. In estimating the mean 

aperture, the packer spacing is not very important as long as bA is used 

to estimate the mean aperture instead of b1 and enough tests are run. 

The relationship between the true mean aperture and bA has not been 

established, but it will clearly be ~ complex function of fracture den

sities, orientations, lengths, and the correlation between length and 

aperture. 

Research and data collection in several areas would be very useful . 

at URL. The correlation between length and aperture should be examined. 

Field data collected at depth using transient methods (Doe et aI, 1982) 

which provide data on local hydraulic aperture and fracture extent would 

help to determine whether and how length and aperture are correlated. 

Complementary theoretical work from a rock mechanics standpoint on the 

relationship between length and aperture would help to guide these field 

efforts. More numerical analyses aimed at uncovering the relationship 

between bA, 5, and the true mean aperture under various correlation 

conditions would greatly help to interpret steady-state packer tests at 

URL. Research on the relationship of radial flow permeability test 

results to the behavior of fractured rock under quasi-linear regional 

flow would also allow for better interpretation of well tests. The 

development of a three-dimensional fracture model as described in Chap

ter VIII would greatly reduce uncertainty in understanding the hydraulic 

behavior of the fractured rock at URL. Finally, some error will likely 

be associated with application of classical tensorial analysis to flux 

in the upper fracture zone. Work should be done to quantify this error, 

possibly by using the methods presented in Chapter X. 
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VIII. EXTENSION OF THE MODEL TO THREE DIMENSIONS 

A. Introduction 

A two-dimensional model of a system of finite fractures i% useful 

for examining qualitative relationships between fracture geometry and 

permeability. However, two-dimensional models will never be able to 

completely describe three-dimensional behavior. The reason for this is 

that fractures which are not connected in the plane of a two-dimensional 

analysis may be connected in some other part of the rock mass. Permea

bility will always be underestimated and hydraulic behavior will always 

appear to be less like porous media in a two dimensional analysis than 

in a three-dimensional analysis. Thus, a three-dimensional model would 

greatly increase the reliability of the results when field data are 

analyzed using a fracture model. 

In reality fractures are irregular, finite discontinuities in the 

rock. In two dimensions we made the idealization that the fractures 

could be modeled by straight line segments. Likewise, we will assume 

fractures are planar segments in three dimensions. We now have to make 

a further assumption about the shape of the planar segments. 

As described in Chapter II, there is support in the literature for 

elliptically shaped fractures. However, the simplest and most pragmatic 

approach is to assume fractures are circular. Circles of course are a 

subset of ellipses. The identification of intersections between circu

lar fractures is much more 'straightforward than that for elliptical 

fractures. The calculation of flow in a fracture between intersections 

is simplified. Also if circular fractures are assumed, the lateral 

dimensions of the fracture can be specified with only one parameter, 
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the radius. For ellipses, three parameters are needed: the dimensions 

of the major and minor axes and the orientation of the axes. The assump

tion of a circle is pragmatic because the availability of statistically 

significant field data on the length versus width of fractures and the 

orientation of the major axes of the ellipse in the fracture plane is 

unlikely. Therefore fractures will be represented as circles. 

The radii of these discs can be considered to vary lognotmally, 

just as the length of fractures in the two-dimensional model varied. 

Baecher (1978) has shown that lognormally distributed radii give rise 

to lognormally distributed trace lengths. Since lognormally distributed 

trace lengths are observed in the field the assumption of lognormally 

distributed radii is reasonable. Fracture centers are located randomly. 

Fracture orientations and apertures are distributed by sets in a manner 

similar to the construction of the two-dimensional model except that 

orientations can vary in two directions. Distributions such as Arnolds' 

spherical normal distribution (Mahtab et al., 1972) or Bingham's distri

bution (Mahtab, 1982) can be used to generate the orientations. Also, 

discrete field data could be used to specify the orientations directly. 

The complete three-dimensional model consists of randomly located 

discs with distributed orientations, apertures, and radii (Figure 

VIII-1) These discs intersect to form the flow system. The form of 

the intersections is a line segment, whereas in the two-dimensional 

model the intersections are points. Thus the line segments will become 

the "nodes" of the three-dimensional model. Steady flow takes pI ace in 

any given disc-shaped fracture from one node to another. 
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The fracture system can be generated in a spherical generation 

region and the flow region will be a cube that lies entirely within the 

generation region (Figure VIII-2). Boundary conditions for the overall 

model will be similar to those of the two-dimensional model. Boundaries 

will be the faces of the cubic flow region rather than the edges of the 

square flow region in the two-dimensional model. As an example consider 

Figure VIII-1. Suppose side I is the inflow face and side III is the 

outflow face. Then side I will be assigned a head of unity. Any 

fracture intersecting side I will have a node with prescribed unit head. 

Thus the intersection of fracture 3 with side I will have a prescribed 

head of one. Likewise, side III will be assigned a head of zero, and 

the intersection of fracture 5 with side III will be a node with pre

scribed head of zero. On sides II, IV, V, and VI the head will have a 

fixed, linear distribution. A plot of the head distribution over these 

boundaries would look like a wedge: the head would be unity along the 

edge where each of these sides intersects side I and zero along the edge 

where each of these sides intersects side III. The head in between 

these two lines can be found by linear interpolation. Fractures such as 

2 and 4 intersect the distributed head boundaries. The treatment of 

these nodes will be discussed below. 

As in the two-dimensional model, permeability in the direction of 

gradient can be measured. The direction of gradient can be changed by 

mathematically defining different cubic regions of simulated rock 

oriented in different directions but centered at the same point. In the 

two-dimensional model the flow region was rotated in equal intervals 

from 00 to 1800 to obtain the entire permeability ellipse. In three 
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dimensions, the rotations must be over a half-sphere in order to define 

the permeability ellipsoid. 

B. Solution of the flow equation 

As in the two-dimensional model, a general analytical solution 

cannot be found for flow in large, random, three-dimensional fracture 

systems. On the other hand, in three dimensions, a purely numerical 

solution scheme such as used in the two-dimensional problem would 

require discretization of each fracture plane. While this is theoreti

cally possible, this approach has two practical problems. The first is 

that the total number of unknowns would be equal to the number of 

fractures times the average number of elements in each fracture. Thus 

there would be severe limitations on the size of problem which could be 

analyzed. Secondly, the intersections between fractures are randomly 

located in the fracture disc. Thus the development of a numerical mesh 

generator which could successfully discretize every fracture would be 

difficult. The solution technique proposed here is an approximate 

mixed numerical and analytical method. Flow in each fracture plane is 

handled analytically. The flux through the system is then calculated 

using a numerical solution based on mass balance in the system. 

The analytical solution in each fracture plane is based on the 

assumption that each fracture intersection acts like a source or sink 

with constant strength per unit line length (Figure VIII-3). The 

fracture itself acts like a permeable disc with impermeable boundaries. 

Solution of the Laplace equation for this case allows calculation of the 

head distribution along each fracture intersection (node) in terms of 

the total flux entering or leaving each of the nodes in the fracture 
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disc (Figure VIII-3C). When this is done in each fracture disc, two 

different head distributions will have been found for each node, one for 

each fracture which forms the intersection. 

It is impossible to force these two head distributions to be identi

cal under the assumption that the intersections are of constant strength 

per unit line length. In reality, the nodes will not have constant 

strength per unit line length and the head distribution along the node 

must be the same as measured in either fracture. The -actual distribu

tion of strength along the intersections can only be found by using the 

completely numerical scheme described above, but such a procedure is 

impractical. In this mixed numerical/analytical scheme, the total flux 

into or out of an intersection is assumed to be approximately equal to 

the flux predicted with a source of constant strength per unit length. 

Furthermore, we require only the average head along the fracture inter

section to be the same in each of the fractures which form the intersec

tion. Therefore, for each intersection, the two unknowns are the value 

of average head and the total flux through the intersection. 

Solution of the Laplace equation in each fracture disc allows us to 

write a set of equations for the average head at each of the intersections 

in terms of the total flux into or out of each of the intersections. The 

particular form of these expressions will be determined by the particular 

geometry of intersections present in that fracture. When inverted this 

set of equations produces an equation for the total flux into or out of 

each intersection in terms of the average head at each of the nodes. A 

global mass balance equation can then be written by equating the flux 

into a node from one of its associated fractures to the flux out of 



the intersection into the other fracture. Just as in the two-dimensional 

case, there will be one equation for each node. Solution of these equa-

tions gives the average head at each intersection. Knowing the average 

heads, the flux through each intersection can be calculated using the 

analytical solutions for each fracture. The flux through the boundary 

nodes of each boundary can then be cumulated to find the total flux 

through the boundary. 

Flow in a fracture disc 

Flow can only take place in a fracture if it is intersected by at 

least two other fractures. If a fracture is intersected by only one 

other fracture then it is a dead end which does not conduct fluid. If 

a fracture is intersected by two other fractures, then one of the inter-

sections acts as a line source and the other acts as a line sink. If 

the fracture is intersected by more than two other fractures then at 

least one of the intersections acts like a source and at least one acts 

like a sink. 

The solution of the problem of flow in the fracture discs uses 

image sources and sinks to account for the impermeable boundaries. In 

fact, the simplicity of the image system for a source or sink within a 

circle is a major advantage of assuming fractures are circular. The 

solution for an arbitrary number of line sources and sinks within a disc 
l 

with impermeable boundaries is derived from the solution for a point 

source within a circular flow region. Consider a circular disc which 

contains a point source of strength +m at B as shown in Figure VIII-4. 

For steady state conditions, Milne-Thomson (1968, p. 222) gives an image 

system which accounts for the impermeable boundary at r = a. If the 
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source is located in the circle at r = g, then there is an image source 

of strength +m at r = a2/g and an image sink of strength -m at r = O. 

Since the source and the images all lie on the same radial line, the 

head at any point in the fracture can be found by cumulating the head 

contributions of the source and the two images. 

Recall at least two fracture intersections in a fracture disc are 

necessary to have flow in the disc, and at least one of the intersec

tions must act like a source and at least one must act like a sink. 

Furthermore, in order that the total flow into the fracture equals the 

total flow out of the fracture, the total strength of all sources must 

be equal and opposite to the total strength of all sinks. Therefore, 

the total strength of all required images at r = 0 will always be zero. 

Now we allow point sources to be distributed along an arbitrary 

line segment in the circle such that the strength per unit line length 

is constant. First we must find the locus of the distributed images. 

Then we must find the expression for the total head at any point in the 

circle due to the sources along the intersection and along the image. 

A nonradial line segment source will have an arc-shaped image con

structed as shown in Figure VIII-5. A radial source will have a radial 

segment image. The equations for the locus of the arc and radial images 

can be derived as follows. Th~ equation of the line on which the seg-

ment lies can be given as Ax + By = C. Changing to radial coordinates, 

let x = r cose and y = r sine. Then the equation is 

Ar cose + Br sine = C , 
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or 

C 
r = A cose 8 sine . + 

(VIII-1) 

If the line segment is radial, C = 0, so 

e = tan-1(-A/8), (VIII-2) 

is the equation of the image segment. The endpoints of the image seg

ment are given by r = a2/g1 and r = a2/g2, where a is the radius of the 

fracture and 91 and 92 are the distances from the endpoints of the inter-

section to the center of the fracture. 

If C * 0, the equation of the image arc, R, is 

2 2 
a a ( e) R = r = c A cose + 8sin • ( VIII-3) 

Returning to Cartesian coordinates, let 

cose x x = R= 
/xZ z , 

+ y 

and 

sine = :r = y 
R Ix 2 2 y 

So we have 

(x _ a
2c

2
A) 2 + ( a

2
8 )2 a

4 
2· 2 

Y - 2C = 4C2 (A + 8 ). (VIII-4) 

Equation VIII-4 is the equation of a circle centered at 

(
a

2
A 28) 

2C ,~c ,C * 0, 

with radius 

and which always passes through the origin. 



223 

Now it remains to evaluate the potential distribution in the circle 

due to both the sources distributed on the intersection itself and the 

sources distributed on the image arc or radial segment. In the follow

ing, ~~N will be the potential due to the sources distributed along the 

intersection i on fracture k; ~~I will be the potential due to the 

sources distributed along 

of intersection i is <P~ = 
1 

the image. The potential due to the presence 

k k 
<PiN + <Pil· The total potential due to all the 

k intersections in the circle will be given by ~, and the average poten-

tial on the intersection will be -k cpo • 
1 

First, consider a nonradial intersection (Figure VIII-6). A local 

arbitrary X, Y coordinate system is established for each fracture disc. 

All the equations for potential distribution must be referred to X, Y 

coordinates before they ~re added. Coordinates convenient for calcula-

tion are the x', y' coordinates shown on Figure VIII-6. These coordi-

nates are centered at one endpoint of the intersection. The y'-axis 

lies on the intersection. Point 0 is the center of the fracture. Point 

P is an arbitrary point in the plane. 

The fundamental solution of the Laplace equation for a point source 

in an infinite plane is 

<P = Kh = 2~ R.n r, (VIII-5) 

where m = Q is the strength of the source, r is the distance from the 

source, K is the permeability (K = b2pg/12~), and h is the hydraulic head. 

Milne-Thomson (1968) shows that the potential due to sources distributed 

over a line segment of length 1 on the y'-axis is given by 
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JI. 

fi 2 2 R.n[x' + (y' - e;) ] de;, (VIII-6) 

o 

where me; = Qi/JI. is the strength per unit line length and Qi is the total 

strength of the line source. The subscript i refers to intersection i. 

This integral has been evaluated in Selby (1965, p. 334 No. 380): 

.~N = - ~:t {u; - y')m[x' 2+ <y' - .) ~ 

- 2. + 21x'l tan-
1 (·I~'() }; . 

Changing to x, y-coordinates (see Figure VIII-6) 

x = x' + B; 

y = y' - C. 

So equation VIII-7 becomes 

(VIII-7) 

(VIII-8) 

.~N = - ~:tf[<t - y + C)m «x - B)2 + <y - C - t)2) 

_ 2t+ 21x _ B\tan-1 (t,: ~ :n -[<-y + C)RIl«X - B) 2 

2) I 1 -1 C - Y ] } + (y - C) + 2 x - B tan I x _ B I ' (VIII-9) 

where Band C are defined on Figure VIII-6. This expression must now be 

written in X, Y coordinates which involves the rotation: 

x = X cos 9 - Y sin 9; 

y = X sin 9 + Y cos 9. 

After this substitution we have an expression of the form 

k k 
$oN = QofoN(X,Y). 
111 

(VIII-10) 

(VIII-11) 
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Now consider the image arc as shown in Figure VI~I-7. The total 

strength of the sources on the image arc is Qi because the total strength 

of the sources on the intersection is Qi. However, the strength per unit 

arc length on the image is not constant as it is on the intersection. 

For any infinitesimal piece of the intersection, d~, the total strength 

is 
Q. 

1 
m~ d~ = T d~. (VIII-12) 

The total strength on the corresponding infinitesimal piece of image arc, 

ds, is also (Qi/t)d~. However along the arc this strength is distrib-

uted over the length ds. Thus, the strength per unit line length along 

the image arc, mI is 

(VIII-B). 

The integral for the head distribution at any point in the plane 

due to sources on 5 distributed according to mI can be written. Figure 

VIII-8 shows the coordinate systems used to evaluate this integral: 

5 
k -Qi f 2 d~ 

= K h iI = 2'd ds R.n r ds, p 

51 

(VIII-14) 

where rp is the distance from a point 5 on the arc to any point P in the 

plane. 

In order to avoid evaluating d~/d5, we wish to find rp in terms 

of ~ and integrate from ~1 to ~2. On 5 we have 

2 
R case' a x' = = 2B cosS' s (VIII-15) 

2 
y' = R sine' a . e' 
s = 2B Sln 
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So rp is given by 

r2 = (x' - R cose,)2+ (y' - R sintl'); 
p (VIII-16) 

where (x', y') is any point in the plane. Expanding and collecting 

terms: 

2 2 2 2 r = x' + y' + R - 2R(x'cose' + y'sin e'). p 

Now referring to Figure VIII-8: 

and 

So 

cose' = cos2ct 

= 1 - 2 ( 2 ;2 2)' 
; + 8 

sine' = sin2ct 

= 2sin ct cos ct 

2 2 2 2 [ 2x ,;2 - 2y';8 ] rp = x' + y' + R + 2R - x' + -----:;;---~---
(;2 + 82) • 

Expanding and collecting terms in the numerator gives: 

(VIII-17) 

(VIII-18) 

(VIII-19) 

(VIII-20) 

r2 = (x,2 + y,2 + R2 + 2Rx,);2 _ (4Ry'8); + (x,2 + y,2 + R2 _ 2Rx')82 

p ;2 + 82 (VIII-21) 

k Now ~iI can be written in terms of;. Substituting VIII-21 into 

VIII-14 gives 
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where 

2 
Q = y; + S; + a; 

y = (x,2 + y,2 + R2 + 2Rx'); 
(VIII-23) 

S = -(4Ry'B); 

a = 222 2 (x' + y' + R - 2Rx') B • 

These integrals can be evaluated using the same formula used to evaluate 

VIII-6, Selby (1965, p. 334, No. 380): 

4-~~Lr( ~ + 2Bv) R.n Q -2.~ + 14ay s2tan-1( 2Y; + S ) 
, ---y- 14ay S2 

( 
2 2 I I -1 ~)] ~2 - ~ R.n ( ~ + B ) - 2; + 2 B tan IBI ' 

~1 

k k' 
<Pi! = K hi! = \ or (VIII-24) 

F,; 

( 
2 2 I I -1 F,;)] 2 - ~ R.n( ~ + B ) - 2; + 2 B tan lSi ' 

F,;1 

if (s2-4ar) > o. 

To move to x, y coordinates allow 

x' = x - R = x - (a2/2B) 
(VIlI-25) 

y' = y. 
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The value of 4ay - 62 can be positive or negative depending on the 

k values of x and y for,the point P where ~iI is to be evaluated. Finally 

equation VIII-24 must be written in X, Y coordinates by using the trans-

formation given in VIII-1D. After this substitution we have 

(VIII-26) 

If the intersection is radial, a different form must be used for 
k . k 
~iN and ~iI· Figure VIII-9 shows the geometry for this case. 

we have 

k 
~iN 

k -Q. IC-~ 
= K hiN = 2n: 2 in[(x' 

D 

( VII 1-27) 

This integral is evaluated by the same formula as VIII-6 and VIII-24. 

~~N = ~~~I « - x') £n[(x' - <)2 + y,2] - n + 2jY' Itan «I~,n 1:~B 
(VIII-28) 

Changing to x, y coordinates 

x' = x - B 
(VIII-29) 

y' = y. 

The equation becomes 

- [<-x 2 2 - B) in[y + x -B) ] 

( VIII-3D) 

/ 



232 

A 
y 

x 

Fracture disc 

y 

, XBL 832-1694 

Figure VIII-9. A. Radial intersection. B. Radial image. 
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The image for this case is also a radial line segment. First the 

strength per unit length, mI must be evaluated. Referring to Figure 

VIII-9B: 

(VIII-31) 

The distance from a point on the image to any point P(x', y') is 

Now we have 

but 

k 
4> i I 

Q. 
1 = -:-41r--:('-;;C~----::;B~) 

and to change x, y-coordinates: 

a2 
x" = B - x 

y" = - y. 

So VIII-33 becomes 

Expanding the term in square brackets we have 

( VIII-32) 

2 2 - x") + y" ] dn, 

(VIII-33) 

(VIII-34) 

(VI II-35) 
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2 = x 

= 
(x 2+ y2)~2 + 2«x2 + y2)B _ a2x)~ + (x 2 + y2)B2 _ 2a2xB + a4 

~2 + 2~B + B2 (VIII-37) 

Equation VIII-36 can now be written: 

where 

k -Qi { J C JC 2 2 
<P i I = 4n ( C _ B) R.n n ~ - . R.n ( ~ + 2~ B + B ) 

B B 

2 n = a + ~ + 'Y~ , 

222 
~ = 2«x + y ) B - a x), 

4 + a , 

2 2 
'Y=x +y. 

(VIlI-38) 

Since ~2 - 4a~ can be positive or negative depending on the values 

of x and y, two forms of the solution are needed as in equation VIII-24. 

The two forms are given in equation VIII-39. Furthermore, if the radial 

intersection passes through the center of the fracture there will be two 

image segments, one on each side of the fracture. In this case B is 

zero and two values of C, C1 and C2, are defined, one positive and one 

negative. <PiI then becomes the sum of the two versions of equation 

(VIII-39), one using C1 and the other using CZ. 
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I 4.(~Q~ B) WI; + ~y) Rn Q - 21; 

+ I~ya _ 132 tan -1 2Y~ + a ] 
y 14ya _ 132 

k k 
<Pi! = K hi! = or (VIII-39) 

if (132 - 4ay) > o. 

Finally the rotation of coordinates expressed by VIII-lOis applied 

to VIII-39 and the result is of the form 

(VIII-40) 

The global mass balance equations 

The potential in fracture k due to any intersection and its image 

is 

l (X,Y) 
1 

(VIII-41 ) 
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Note that a third potential term, ~iO, associated with intersection i 

could also have been defined. This term would be the potential due to 

an image of strength -Oi at the center of the fracture. However, as 

previously explained, the total strength of all such images at the 

center is zero, so no head is contributed from the sum of the images at 

the center. 

Now the total potential in fracture k is 

(VIII-42) 

where I are the numbers of the intersections in the fracture disc, k. 

Equation VIII-42 becomes 

where 

I 

.<I>k( X, Y) = 2: 
i=1 

k O.F.(X,Y), 
1 1 

(VIII-43) 

The F~ represent shape functions for the total head distribution over 
1 

the entire fracture due to the presence of the ith intersection. Now 

the average potential at each intersection, i, of fracture k is 

-k 
<1>. 

1 

-k 4>.(X,Y) 
1 

1 
r. 

1 

1 =r 
i it 

R. . j =1 
.1 

k o . F . ( X , y) dR. . 
J J 1 

I 

f F~(X, Y)dR..) = "'0 .$~. J .1 ~ J Jl 
R.. j=l 

1 

(VIII-44) 
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where ar~. is the shape function for the average head on intersection i 
Jl 

in fracture k due to the intersection j also on fracture k. That is, 

k 1 ar .. = Jl r. 
1 R.. 

1 

k F. dR.. 
J 1 

(VIII-45) 

k The value of ar .. may be di fficult to obtain analytically, but it can be 
Jl 

easily approximated by evaluating Fj at a discrete number of points on 

each intersection. 

Changing to indicia1 notation, where summation over repeated sub-

script indices is implied, we have 

k k 
<1>. = a·ar .. , 1 J Jl 

(VIII-46) 

where i, j take on I values and the I are the numbers of the intersections 

" on fracture k. By inverting VI II-42 we have 

Q. = [6~.r1<1>~ k k (VI II-47) = G ., <1>. 
J Jl 1 Jl 1 

where [ar~. ]-1= G~ .• Equation VIII-43 is the analytical solution for 
Jl Jl 

the average head on the ith intersection of fractur~ k. 

Now assume all the fracture intersections in the whole system have 

been numbered sequentially, 1 to N. In equation VIII-43, i and j assume 

the intersection numbers which lie on fracture k. Thus for instance if 

intersection 3,7, and 9 lie on fracture k = 4 we have 

(VIII-48) 
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Note that the order of the indices on Gij is important. Gij may not be 

symmetr ic. 

Equation VIII-47 can be written twice for each intersection, once 

for each fracture k associated with intersection i. If fractures k1 and 

kZ make up intersection j, then Qj for k1 equals -Qj for k2: 

+ (VIII-49) 

where the i1 are the numbers of the intersections on fracture k1 and the 

i2 are the numbers of the intersections on fracture k2. 

Construction of the matrix eguations 

To explain the formation of the matrix equations, an example frac-

ture system has been chosen (Figure VIII-10). In this fracture system , 

both the fractures and the intersections have been numbered. The inter-

section numbers are circled. Table VIII-1 describes each intersection. 

Remember that any intersection between two fractures or a fracture and a 

side is referred to as a node. 

k Assume that the shape factors, G .. , have been calculated for each 
IJ 

intersection i, with reference to every other intersection j, in frac-

ture k. The matrix equations will then be formed by writing equation 

VIII-49 for each intersection. Equation VIII-49 is written in terms of 

. -k the average potentIal, ~i. In order to solve for the average head, hi 

at each intersection, i, we write: 

-k k 
~. = K h. 

I I 
(VII I-50) 
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Table VIII-1. Description of Intersections for Figure VIII-10. 

This node is an intersection between: 

Node No. Node Descr i pt.i on Fracture Numbers Side Number 

1 Boundary 3 I 

2 Internal 3 1 

3 Internal 1 2 

4 Boundary 2 'VI 

5 Internal 1 4 

6 Boundary 4 V 

7 Internal/Boundary* 4 5 V 

8 Boundary 5 V 

9 Boundary 5 III 

* Node 7 is an internal node which intersects side V at one point. 

Note that if permeability, Kk, is di fferent in the two fractures forming 

the intersection then the potential ~ will have a different value in 

each of the two fractures. However, the head, hi is the same as measured 

in either fracture. 

Now the following equations can be written for flux through each 

intersection: 

Q1 
3 3 3 3 

= b11 K h1 + G12K h2; 

Q2 
3 3 3 3 

= G21 K h1 + G22K h2; 

Q
2 

1 1 1 1 1 1 
= G22K h2 + G23K h3 + G25K h5; 

Q3 
2 2 2 2 

= G33K h3 + G34K h4 ; 
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1 1 1 1 1 
QS = GS2K h2 + GS3 K1 h3 + GSSK hS; 

4 4 .44 . 4 4 
QS = GSSK hS + GS6K h6 + GS7K h7; 

(VIII-S1) 

By equating the flux into and out of each intersection and identi-

fying the known values of head on the boundary nodes with H we have 

Intersection Equation 

1 

2 

3 

4 

S 
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Intersection Equation 

6 

7 

8 

9 (VIII-52) 

Note that the special case of node 7 has been treated by allowing 

the average head, h7 to be equal to the average of the head at the point 

on the boundary, H; and the head at the opposite endpoint of the inter

section, h~. In this case we solve for h~ and then calculate h7. 

Now rearranging these equations and putting them in matrix form we 

have: 

h, H, 

( Gl2
K3

) G1 K' 
+GbK' 3 

G~sK' h2 -Gl,K3H, 

, K' (%K2) 
<332 +G,hK' %K' h3 _~K2fit 

h4 fit 

GJ2K' GJsK, ( GJsK' ) 
+GtsK4 tGt7K4 hs -GtsK4~ - t Gt7K4Hf 

h6 ~ 

hf 
G:6K4~ - t 'G1TK4Hf 

-GfeKsHe - GfgKsHg - t Gf7K~ 

he He 

hg Hg 

XBL 834-1774 
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In general most of the elements of the bj vector will be zero. 

However, in this simple example each fracture is either connected to a 

boundary directly or connected to another fracture which is directly 

connected to a boundary. As a result all the elements in bj are non

zero. For each fracture that does not intersect a boundary or another 

fracture which intersects the boundary, the value of bj will be zero. 

The matrix is sparse, banded and nonsymmetric. When the matrix 

equation is solved, the values of hi can be substituted into equation 

VIII-47 to determine the fluxes through each node. The fluxes through 

the nodes on each boundary can then be added to find the total flux 

through each boundary. 

c. Required Output from the Fracture Mesh Generator 

In order to fill the Aij matrix and modify the bj vector for the 

connections to the boundary, the fracture mesh generator must provide 

the following tables: a fracture list, a node list, and a fracture 

plane geometry list. These are given below in Tables VIII-2, 3, and 4. 

Table VIII-2. Fracture List. 

Fracture number Aperture Radius Number of Intersecting Fractures 

o o o o 

o o o o 

o o o o 
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Table VIII-3. Node or Intersection List. 

Intersection 
or 

Node Number 

1 

2 

3 

Table VIII-4. 

Fracture 
Number 

I 

I 

I 

I 

J 

J 

Boundary Code 
O-Internal 
1-Const. cp 

(-1-const. q) 
2-Int'l/bdry 

o 

o 

o 

Side Code 
1 + 6 

o 

o 

o 

Number of 
Fractures 
Forming the 
Intersection 
I J 

0 0 

0 0 

0 0 

Fracture Geometry List. 

Definition of Local 
Intersecting Coordinates in the 
Fractures Fracture in Column 1 

J 0 

K 0 

L 0 

M 0 

I 0 

Q 0 

Global 
Coordinates of 
the End Points 
of Intersection 

(X,y,Z)K (X,y,Z)L 

0 0 

0 0 

0 0 

End Points of IJ 
Intersection in 
Local Coordinates 

(x 1' Y1) (x 2' Y2) 
0 0 

0 0 

0 0 

0 0 

0 0 
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IX. SUMMARY 

This investigation defined criteria for determining when the 

permeability of a two-dimensional discontinuous fracture system can be 

represented by a symmetric permeability tensor. Tests to establish 

these criteria compare the average hydraulic behavior of the fractured 

medium to that of an ideal homogeneous anistropic porous medium. That 

is, when the directional permeability, Kg, of the fracture systems is 

measured, 1//Kg should plot as an ellipse in a polar plot for those 

systems where flux through the system can be predicted with a symmetric 

permeability tensor. This ellipse provides a means to calculate the 

values of the permeability tensor. 

The literature on fracture statistics was reviewed to develop a 

stochastic model of fracture geometry. The size, orientation, and loca-

tion of fractures in' an impermeable matrix were selected as the control-

ling random variables. These variables served as the basis for random 

generation of discontinuous fracture systems. Selected portions of these , r 

fracture systems called flow regions were then analyzed by finite-element 

methods to calculate flux through the fracture system. Using Darcy's 

law, directional permeability was then calculated by dividing the flux 

through the flow region by the gradient and the cross-sectional area. 

To determine directional permeability without ambiguity, it was 

necessary to impose boundary conditions that would produce a constant 

gradient in the flow region of systems that were ideally homogeneous and 

anisotropic (see Figure 111-2). The behavior predicted by using these 

boundary conditions will be the actual behavior of the rock volume in 
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the field only if the rock volume does in fact behave as an ideal, homo

geneous and anisotropic medium. The boundary conditions were rotated 

for selected regions of the fracture networks to obtain directional 

permeabilities in different directions. flow is induced across the flow 

region, but flux may also occur into or out of the sides of the region 

since none of the boundaries are impermeable. Thus the inflow on a 

given side may not equal outflow on the opposite side. The convention 

adopted in this investigation was that the inflow into the region of 

interest in the direction of interest would be used in the calculation 

of permeability. Thus, permeability for the 0-direction may be differ

ent than for the 180 + 0-direction. In an ideal anisotropic porous 

medium, inflow equals outflow on opposite sides. Thus, permeability in 

the 0-direction equals permeability in the 0 + 180°-direction. 

Use of this model demonstrated that fracture systems behave more 

like porous media when (1) the fracture density is increased,' (2) aper

tures are constant rather than distributed, (3) orientations are dis

tributed rather constant, and (4) larger sample sizes are tested. 

A regression technique was developed to quantitatively interpret 

the directional permeability data by determining a best-fit permeability 

tensor. The differences between the values of directional permeability 

calculated using the tensor and the measured values is considered the 

"error." The mean square error can then be calculated and normalized by 

dividing by the product of the principle permeabilities. This normal

ized mean square error (NMSE) approaches zero as the behavior of the 

fracture system approaches that of an anisotropic, homogeneous porous 

medium. 
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A series of parameter studies were performed to examine the effect 

of fracture length and density on fracture system permeability. For a 

given set of fractures in a given rock matrix, the number of fractures 

intersected by a unit l~ngth of borehole perpendicular to the set 

provides a characteristic parameter, AL' In two dimensions, AL is the 

product of areal density of the fractures, AA, and mean fracture length, 

1. In three dimensions, AL is the product of the volumetric density, AV, 

and the mean fracture area. 

The linear density, ~, can be measured in a borehole but 1 and AA 

are very difficult to measure. To investigate the importance of these 

parameters, fracture systems were analyzed where AL was held constant 

and 1 and AA varied such that AAI = AL' The ratio of mesh size to frac

ture length was also kept constant to ensure the statistical samples 

were similar. For very short fracture lengths and high areal densities, 

the permeability values were relatively low and the value of NMSE was 

very high because there were very few connections between fractures. As 

1 increased and AA decreased, the permeability increased. For higher 

values of 1 the rate of increase in permeability appeared to decline. 

This trend was expected but could not be confirmed due to the inability 

to analyze larger problems with the computer. 

The value of NMSE could be used to categorize fracture systems 

based on the criteria of an acceptable error level. For instance, the 

fracture systems used in this study with values of NMSE below 0.05 could 

be considered to be well represented by a porous medium. For a system 

with values of NMSE above about 0.3, representation as a porous medium 
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could be considered marginal. With values above 1.0, representation 

could be considered poor. The same categorization system will not apply 

to all fracture systems. 

Because this length-density analysis was based on a single realiza

tion for each statistically different case, a Monte Carlo-type analysis 

seemed necessary to provide substantiation for the results. The Monte 

Carlo study was limited due to the costs of computer time required. 

However the results tended to confirm the general observations based on 

the single realizations. Furthermore they showed that for a series of 

realizations of a given fracture system, when the NMSE is higher, the 

standard deviation of permeability will also be higher. Thus the relia

bility of regional groundwater models based on the equivalent porous 

medium concept will be 'subject to more uncertainty when their NMSE val

ues are higher. 

Another series of fracture systems was studied to determine if an 

increase in the mesh size would reduce the NMSE. In general, the NMSE 

slightly decreased with increase in mesh size. However, for a particu

lar instance where,the NMSE was high to begin with, increasing the mesh 

size produced an apparently random decrease and then increase in NMSE. 

This case suggests that certain fracture systems with values of t below 

a critical level will not behave like a porous medium on any scale. 

An REV study was performed to observe the development of equivalent 

porous medium behavior as the scale of measurement increases. In this 

study, the oscillation and gradual leveling off of permeability and NMSE 

was plotted as a function of the area of the flow region. These plots 
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can be used to determine a lower limit for the scale of the REV for use 

in a continuum groundwater model. 

The modeling techniques were applied to data from the Underground 

Research Laboratory (URL) facility of Atomic Energy of Canada Ltd. in 

Manitoba, Canada. Good surface exposures were used to develop a model 

of the fracture pattern. This fracture pattern was assumed to per~ist 

at depth. Well test data were used to estimate aperture distribution 

models for the model. Seven different aperture models were used to 

assign apert~res to the same fracture pattern model. In the first five 

models, aperture was correlated with fracture length such that long 

fractures tended to be assigned larger apertures and shorter fractures 

were assigned smaller apertures. In the last two models length and 

aperture were independent. 

The permeabilities of models with uncorrelated length and aperture 

were smaller than those for correlated models with the same overall 

fracture statistics. TheNMSE of certain correlated models may become 

high due to the production of very long, high-aperture "superconductors." 

Increasing the standard deviation of the apertures increases the value 

of NMSE. For correlated models increasing the standard deviation of 

the apertures increases the permeability. ~ncreasing the mean aperture 

in the model by a factor of m increases the permeability by about m3 

as expected. 

For all the models tested, the permeability plots were closed fig

ures, even when the NMSE was as high as 1.7. However the permeability 
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of the model which best reproduced the field data for apertures 

well represented the permeability measured in the well tests. However, 

the fracture pattern at depth may not be as well connected as that at 

the surface. A less well-connected fracture pattern implies a lower 

permeability and also a higher NMSE. However, the NMSE would probably 

be decreased by adding a third dimension to the analysis. The per

meability plot mayor may not produce a closed figure if the change in 

NMSE is a net increase. 

Another Monte Carlo study was performed using the URL data to inves

tigate the effect of well test packer spacing on the ability to predict 

the true aperture distribution. A total of 40 different realizations of 

the URL fracture system were produced using a correlated aperture-length 

model. In each of these, flow regions with sizes, L x L from 1 x 1 m to 

250 x 250'm were isolated. Flow through all of these regions was calcu

lated. These fluxes were used to determine the mean aperture, 51 of the 

single equivalent fracture which would account for the flux, and the 

mean aperture, 5A, of N equivalent fractures where N was the number of 

fractures which intersected the "test zone." For each flow region the 

apertures of the fractures which actually intersected the test zone were 

recorded and the mean 5 was calculated. 

The results showed that the fractures which actually intersected 

the test zone had a mean aperture, 6, that is higher than the true mean 

aperture. Since length and aperture were correlated, longer fractures 

with higher apertures were more likely to be intersected by the test 

zone. The value of 51 and bA are both less than b and also less than 

the true mean aperture. This is because the fractures are not perfectly 
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connected and not perpendicula~ to the borehole as was assumed in the 

calculation of b1 and bA. The value of b1 increased with L as expected, 

but bA very quickly became stable. The value of bA was approximately 

1/5 the true mean for all the packer spacings tested. This factor would 

have been even smaller if length and aperture were uncorrelated. 

Finally, the extension of the fracture model to three dimensions 

was discussed. A model was described where fractures are discs randomly 

located in space. The intersections between the fracture discs are line 

segments. Flow in each fracture occurs between the line segment inter

sections. These line segments are assumed to be at constant head. An 

approach to an analytical solution for the flow in a fracture disc be

tween all the line segment intersections was described using the method 

of images and the principle of superposition. An approximate solution 

was given which analytically calculates the flux between line segments 

as a function of the geometry of the fracture disc and the average head 

at each intersection line segment. Then global mass balance equations 

were developed to solve for the head at each intersection. Fluxes 

through each intersection can then be back-calculated. This development 

provides a basis for extending the two-dimensional method of analyzing 

networks of discontinuous fractures to three dimensions. 
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x. CONCLUSIONS AND RECOMMENDATIONS 

A. Use of this technique 

It is obvious that an analytical expression cannot be written for 

the overall permeability of a network of randomly located, discontinuous 

fractures. Therefore, in this work a,numerical approach has been adopted. 

In this approach a statistical description of fracture network geometry 

is used to produce random realizations of fracture systems. By measur-

ing the permeability of these network realizations one can investigate 

the important parameters of fracture flow in a systematic manner. There 

are, however, certain trade-offs: (1) many realizations must be made in 

-
order to obtain the mean and standard deviation of the permeability of 

the statistically described fracture system, and (2) there is no quanti-

tative way to predict the permeability of fracture systems which have 

not been measured. Prediction of hydraulic behavior with these tech-

niques is cumbersome. 

Use of this model, however, does provide insight into the behavior 

of fracture systems that was heretofore unavailable. The techniques can 

be used to study the conditions under which an equivalent porous media 

permeability can be used to represent the behavior of a fractured rock. 

The effect on the hydraulic behavior of each of the geometric fracture 

system parameters can be examined. Field data on fracture geometry can 

be used in the model. The model can then be used to determine the most 

important needs for further data collection. In all applications to 

field situations, the limitations inherent in a two-dimensional model of 

three-dimensional reality must be remembered. A two-dimensional analysis 

does not include all the connections between fractures that exist in a 

three-dimensional fracture system. 
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A three-dimensional model is necessary for prediction of in-situ 

behavior but it is not sufficient. In order to have a predictive tool, 

means must be found to provide the geometric data for the model and to 

verify the results. Well tests used to determine these parameters are 

difficult to interpret. It may be that one of the best uses of this 

model will be an interactive process of (1) using well -tests to obtain 

model parameters, (2) creating a fracture network model, (3) numerically 

reproducing the well tests in the model, (4) adjusting the interpreta

tion of the well test data and collecting more data, and (5) adjusting 

the fracture model, etc. If the basic assumptions are correct, this 

iterative process should converge to a prediction of hydraulic behavior 

of the rock mass. 

B. Modeling Techniques 

The major limitation in the numerical analysis of systems of random 

fractures is problem size. Over the period in which this research was 

conducted two major steps were taken to increase the maximum size of the 

problem which could be solved. The first was to recode the programs to 

run on the Vax-11 computer which has virtual memory and thus increase 

the allowable number of unknowns. The second was to eliminate the dead

ends and isolated fractures from the flow analysis and thus decrease the 

number of unknowns that had to be solved. This streamlining could be 

augmented in several other ways. The numbering system of the nodes 

could be changed to decrease the band width. More efficient solvers 

could be incorporated. Finally, the fracture system could be further 

reduced to a hydraulic equivalent for flux calculations through an 

algorithm combining fractures in series or fractures in parallel into 

hydraulic equivalent fractures. 
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Such an algorithm would first identify nodes which connect only two 

fracture elements. For such nodes, the two fracture elements could be 

combined into one equivalent. Then each fracture element could be 

compared to every other element to see if it is connected to the same 

two nodes. If so, these two fracture elements would be combined. The 

process could be repeated until no further changes could be made. Once 

the mesh was simplified, it would no longer be easy to determine the 

average isopotentials, as explained in Chapter III. Also the details of 

the velocity distribution would be lost. However, the advantage would 

be that much more could be learned about permeability. 

The boundary conditions used in this work are only useful for 

determining the best-fit permeability tensor and the NMSE when the 

system does behave as a porous medium, i.e., if NMSE is small. If the 

system does not behave as a porous medium on the scale of interest, then 

the boundary conditions are unrealistic. This is because the actual 

head distribution on the boundaries will be more' variable with a higher 

value of NMSE. 

A technique for predicting the behavior of fracture systems which 

do not have porous medium equivalents could be developed based on the 

current methods that have been discussed. The primary change in the 

analysis would be the addition of a study region within the flow region. 

The boundary conditions would be applied to the flow region and the flow 

region would be rotated as before. However, the flux into and out of 
i 

the smaller study region within the flow region would be used to develop 

the permeability analysis. 
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The relative difference in size between the flow region and the 

study region may depend on how far the fracture system deviates from 

porous medium behavior. For higher values of the NMSE, the distance 

between the study region and the flow region may have to be larger. For 

a system with NMSE close to zero, the flow region and study region can 

be the same size. The appropriate ratio between the dimensions of the 

flow region and the study region might also be determined by steadily 

i~creasing the ratio from unity until there is no change in the result

ing permeability. Alternatively, the appropriate ratio might be deter

mined by a field situation where the real boundaries would be known. At 

the least, the ratio should probably be large enough such that no frac

ture in the study region intersects the boundaries of the flow region. 

The implications of using a study region in the computer analysis 

may be difficult to surmount in some cases. Flow through the entire 

flow region must still be calculated. Therefore it may be difficult to 

analyze large study regions, especially for high values of NMSE. Fur

thermore, the mesh simplification techniques discussed above could not 

be applied in a straightforward manner. Care would have to be taken to 

ensure that flux through the boundaries of the study region remains 

unchanged for the simplified mesh. This could probably be accomplished 

by tagging each fracture which intersects the study region boundaries 

and exempting these from the simplification procedure. 

The permeability plot from a study region analysis could be used to 

predict the hydraulic behavior in situ of fractured rocks which do not 

behave as porous media. Two approaches could be used. One is to assume 

a mean and deviation of behavior that can be expressed by a permeability 



256 

ellipse and a function of the NMSE. The second method would be appro

priate if some pattern of nonsymmetry persistently recurred in most or 

all realizations of the fracture system. It might then be possible to 

quantify this pattern in a probabilistic manner such that the response 

of the rock volume to a specified gradient could be calculated. In both 

methods, Darcy's law would be used as it is in other stochastic modeling 

methods. However, in the first method the permeability would be a sym

metric tensor with associated error. In the second, the quantification 

of the permeability plot pattern would replace the tensor. 

The use of NMSE, especially when measured with a study region as 

described above, is probably valid as a quantification of error. The 

derivation of the term should be kept in mind during application to a 

stochastic groundwater model. The NMSE is the sum of the squared differ

ence between the measured and best-fit values of Kg, all divided by the 

product of the principal permeabilities. The lowest value the measured 

Kg can have is zero but there is no maximum value. Thus, there is a 

limit to the contribution to NMSE made by values of measured Kg less 

than the best-fit values. There is no limit to the contribution made by 

values of measured Kg greater than the best-fit values. 

c. Parameter Studies 

The parameter studies examined the effect on permeability of aspects 

of fracture geometry that are poorly understood. The motivation behind 

the length-density study was to determine the extent permeability could 

be quantified by measuring fracture frequency in a borehole, given the 

orientation and aperture distribution. Such a relationship would be 
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very useful since fracture length and density are difficult to measure 

and fracture frequency in a borehole is easy to measure. 

Fracture frequency is proportional to both the density and the mean 

length of fractures. If the length or the density of the fractures 

increases, the permeability should increase. Therefore, for some range 

in values when the product of length and density is constant, the net 

effect on permeability might be small. Unfortunately~ such a range of 

values could not be identified in the study. ,Access to a larger computer 

is needed to extend this part of the investigation. 

The results do indicate that, at least for shorter fractures, the 

mean value of permeability is roughly proportional to fracture length. 

Also the shorter the fracture length is the higher the NMSE tends to be. 

In fact, for the range of fracture lengths studied, although a porous 

medium equivalent is a good approximation for the systems with longer 

fracture lengths, it is not a good approximation for the systems with 

shorter fracture lengths. Given a measurement of the fracture frequency 

in a borehole, some knowledge of fracture length is critical to deter

mining the permeability and in deciding whether to use an equivalent 

porous-medium approach in groundwater analysis. 

If the programs used in this analysis were streamlined as described 

in Section X-B, fracture systems with longer lengths could be analyzed. 

For given values of borehole fracture frequency, aperture distribution 

and orientation distribution,it may then be possible to determine whether 

or not there is a critical va~ue of fracture length. For mean values of 
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fracture length less than the critical length, permeability and NMSE are 

strongly dependent on fracture length. For mean values of fracture 

length greater than the critical value, permeability and NMSE are only 

weakly dependent on fracture length. This information would be useful 

to site exploration programs where efforts could be concentrated on 

determining whether the mean fracture length was larger or smaller than 

the critical value. 

In the REV study, ,the model was used to show how representative 

behavior develops as scale increases. Such an analysis of field data 

would be useful in selecting an appropriate scale for elements in a 

regional groundwater flow model. This analysis also gives a very good 

indication of how large large-scale permeability tests should be in such 

situations. 

The URL data study has shown the importance of possible correla

tions between length and aperture. If length and aperture are correla

ted, permeability is higher than if they are not. Also the correlation 

between length and aperture can possibly provide a method for predicting 

the existence of "super conductors" or "big cracks" so commonly encoun

tered in wells and underground excavations. The actual relationship 

between length and aperture should be pursued. A study of the mechanics 

of crack formation might provide a useful model for the relationship 

between length and aperture. Field data using transient techniques 

which indicate both the size of the aperture and extent of an isolated 

fracture are largely unavailable but would be of great use. 
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, 
The packer spacing study of the URL data demonstrated that steady

state analyses of well tests underestimate the true mean aperture of the 

fractures. New research should be done to determine the relationship 

between the true mean aperture and well test results. These results 

also point out the need for transient well test analysis. Such tran

sient analysis will give a good estimate of the apertures of the frac

tures which intersect the wells. If length and aperture are correlated 

however both the mean aperture and the mean lengths will be overesti

mated since the longer fractures with larger apertures are more likely 

to intersect the well. With a known correlation between length and 

aperture, the model studies can be used to determine the mean length and 

aperture of fractures intersecting a line sample. These values can be 

compared to the mean length and aperture of the fracture sample as a 

whole. In this manner model studies can be used to develop correction 

factors for steady state well test analyses. 

In all the parameter studies, values of NMSE below about 0.05 

appeared to have very regular, symmetric permeability plots. However, 

there is no distinct upper value of NMSE above which the permeability 

plots are irregular open figures where 1/IK is infinite in some direc

tions. In the length density study, values of NMSE greater than 0.2 

produced permeability plots that were not closed. In the URL study, 

values of NMSE as high as 1.7 were observed, but for all cases the per

meability was never zero in any direction. This disparity is due in 

part to three factors. First, the boundary conditions are not realistic 

for high values of NMSE, so NMSE is only a valid measurement when it has 
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a low value (e.g., below 0.05). Secondly, whether or not the permeabil

ity is zero in a given direction depends only on the fracture pattern, 

not on the aperture distribution. The NMSE, however, depends on both 

pattern and aperture distribution. Thus, the values of NMSE based on 

the URL fracture data are higher because the apertures are distributed 

rather than constant as they were in the length density study. Finally, 

NMSE is based on the difference between the best fit and measured values 

of Kg, not 1/~. Therefore, anomalously large measured values of Kg 

can contribute to a large value of NMSE. However, in the polar plot, 

the value of 1/~ for these directions can, at most, plot near the 

origin and do not cause the ellipse to become an open figure. Care must 

be taken in comparing the values of NMSE from different statistical 

systems when the values of NMSE are high. Even when evaluating with a 

study region as discussed above, a higher value of NMSE does not give a 

quantitative measure of the shape of the permeability plot. The NMSE is 

only a measure of relative error and as such is really more important 

than the shape of the polar plot. 

D. The Three-Dimensional Model 

The three-dimensional model shows great promise for understanding 

the permeability of real fracture systems. A major problem with this 

model will be verification. Because of the nature of the circular frac

tures, there is no limiting case which reduces to a two-dimensional 

problem. It may be that verification can only be accomplished with a 

laboratory study. As an alternative, it may be possible to partially 

validate this approximate model with numerical techniques. One good 

technique may be to divide each intersection into n parts which are then 
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treated as n independent intersections. Dividing each intersection into 

increments allows a more accurate representation of the head distribu- , 

tion along the intersection. An optimal value of n may be identified in 

this process. Another possibility is to write a completely numerical 

solution that discretizes each fracture. This model could then be 

compared to the mixed analytical/numerical model in a limited number of 

small cases. 

The two-dimensional parameter studies that have been presented here 

should be repeated with the three-dimensional model in order to observe 

the behavior of three-dimensional systems and also evaluate the error 

associated with using a two-dimensional analysis as opposed to a three

dimensional analysis. Also the possibility of including mechanical 

transport in the three-dimensional model should be pursued. Once the 

solution for flow is known, the 'head distribution throughout the frac

tures is known. Thus, it may be possible to identify and trace flow 

tubes through the system much as Endo et al (1983) has done in two 

dimensions. 

Three- or two-dimensional models to predict permeability should be 

used with caution. Determining the hydraulic aperture distribution 

from borehole investigations is very difficult. Yet this parameter is 

extremely important in the calculation of permeability since the bulk 

permeability is proportional to the aperture cubed. In some cases, the 

model may be better used to determine the relative error associated with 

using a porous medium model for the fracture system. In these cases the 

skewedness of the aperture distribution is more important than its 
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magnitude. In fact, this use of the model is quite important because 

the NMSE or its equivalent is not easily measured in the field whereas 

the magnitude of the permeability can be measured. If one desires to 

use this model to predict the magnitude of permeability throughout a 

site, then the techniques used in collecting small-scale data must be 

validated. Large-scale permeability measurements performed at the same 

location where small-scale data is collected for use in the model can 

serve to validate the technique. Such large-scale measurements and 

their relation to the synthesis of data on small-scale fracture geometry 

data have been discussed by Long et al (1981). 

\ 
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Appendix A 

FIELD DATA WHICH CAN BE USED TO DETERMINE 

THE INPUT PARAMETERS FOR THE MODEL 

Some information about fracture length can be obtained from measure

ments made in the borehole. Such information may be extracted from well 

test results on fractures isolated by packers if transient methods are 

used (Doe, et aI, 1982). At URL and other sites, trace length data are 

available at the surface and in excavations. This is currently the 

primary source of data on fracture length. For each fracture set, meas

uring the mean and standard deviation of the observable trace lengths is 

useful. The data can be collected as shown in Table A-1. The minimum 

trace length included in the sample indicates where the length distribu

tion is effectively truncated. A plot such as shown in Figure A-1 is 

useful for determining the distribution parameters. 

If apparent apertures (i.e., apertures as measured with a caliper) 

can be measured at the same time as trace length, it may be possible to 

gain information on the relationship between length and aperture. This 

possibility is explained below under the section on aperture. 

Areal Density 

If the horizontal plane is chosen for analysis, areal density can 

be estimated from the trace observations at the surface. Areal density 

is defined as the number of open fractures per unit area per set and 

should be fairly easy to obtain. Fractures too small to be included in 

the trace length data should also be excluded from the density data. 

The data may also be recorded as shown on Table A-1. The sample area 
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Table A-1. Sample Data Form for Area Surveys 

SAMPLE NO. AREA OF SAMPLE 

Set 1 Mean Or ientation: Std. Dev. of Orientation: 

Fracture number Trace length Number of visible Apparent aperture 
end points (0, 1 or 2) 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

Set 2 Mean Orientation: Std. Dev. of Orientation: 

Fracture number Trace length Number of visible Apparent aperture 
end points (0, 1 or 2) 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

should be as large as feasible. Also, the surface data provides direct 

information on both length and orientation. 

For any plane a length-density analysis can be performed as 

described in Chapter VI. Data can be obtained from boreholes in or near 

the plane of analysis. In this case, the number of open or partly open 

fractures of each set intersecting the borehole zones under considera-

tion and the angle between the mean pole for each set and the borehole 

must be known. These values can be obtained from a borehole television 

survey. 

If borehole surveys are used to determine the number of fractures 

per unit length, the boreholes should preferably be drilled perpendicu-

lar to each set. But if only one survey can be run, a direction halfway 

between the strike of the two most prominant sets would be best. The 

data needed is shown in Table A-2. Data can be recorded as in Table A-1. 
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Table A-2. Sample Data Form for Line Surveys 

SURVEY NO.: LENGTH OF SURVEY LINE: ---- ---- ORIENTATION OF 
SURVE Y LI NE : ----

No. of Fractures Mean Trace Length Standard 
From Set Inter- Standard for Fractures of Deviation 

secting the Mean Strike Deviation Set 1 Intersect- of Trace 
Set Line Sample of Set Strike ing the Sample Length 

1 
0 Q Q Q 0 

Q 0 0 Q 0 

Q 0 Q Q Q 

2 
0 Q Q Q 0 

Q Q 0 Q 0 

0 Q Q Q 0 

Orientation 

The orientation distribution obtained from the surface trace data 

will be of primary interest to the study of the horizontal plane. The 

open fractures should be divided into sets. The mean and standard devi-

at ion of orientation (i.e., strike) for each set should be calculated. 

A plot for each set such as shown in Figure A-2 would be useful to deter-

mine the form of the orientation distribution.' Dip angle is ignored for 

the analysis of the horizontal plane. 

For application to another plane of analysis similar data could be 

obtained from a borehole T.V. survey. But, in this case the mean and 

dispersion of the fracture pole directions for each set should be calcu-

lated. Stereographic projections of these data would be useful. 

Aperture 

Aperture is a very difficult parameter to estimate. The only way 

to obtain effective hydraulic apertures may be to measure them in a well 
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in which each fracture is packed off separately. Very little, if any, 

of this type of data is available on any site. Well tests performed on 

short zones containing several fractures may be available. From these 

data one can make an educated guess about the aperture distribution by 

assuming the largest fracture in each zone was responsible for all or 

most of the permeability, or by assuming all the fractures conducted 

equally. The usefulness of these assumptions are examined in Section 

VII-D. 

Furthermore, fracture length, t, can initially be assumed to be 

related to hydraulic aperture, 6, for example by: 

6 = 10gCt1/n (A-1) 

where C is a constant and n ) 1. The physics of fracture formation and 

measurements of fracture roughness as described in Chapter II suggest a 

correlation between length and aperture. The hydrologic importance of 

this relationship is that the permeability should be higher if length 

and aperture are correlated than if they are not. If length and aperture 

are correlated, the long conductors which tend to be connected will also 

tend to be the strong conductors. The short fractures which tend to be 

unconnected will also tend to be weak conductors. 

The best way to determine a correlation model for length and 

aperture might be to perform transient constant head tests on isolated 

fractures in the borehole. The early time data (i.e., the first minute), 

from such tests give an estimate of the hydraulic aperture of the frac

ture intersecting the well. Later time data can give information about 

the size of the fracture (Doe, et aI, 1982). 
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As an alternative, a correlation model might be obtained using 

surface trace data. The mean apparent aperture can be estimated by a 

caliper measurement. If fracture trace lengths and mean apparent aper

tures are recorded as suggested in Table A-1, it may be possible to 

deduce a correlation model from a regression analysis of the data, per

haps as shown in Figure A-3. Linear and exponential models could also 

be tried. Data should be plotted by sets for open fractures only. The 

model might then be adjusted using the results of permeability tests on 

isolated single fractures in the boreholes. From the measured permeabil

ity, the values of effective apperture, b, can be calculated. The mean 

value of effective aperture should then be compared to the mean aperture 

as measured by T.V. log. The ratio of mean hydraulic aperture to mean 

observed aperture can then be used to move the regression line up or 

down. 

The aperture-length correlation model proposed in equation (A-1) is 

only a guess. However, so far no work has been done on the relationship 

between length and aperture which would help to derive a model. Since a 

correlation between length and aperture is very important to the hydraul

ics of fracture networks, this simple model was tried in Chapter VII. 
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