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Abstract: In this article, an analytical technique based on unified method is applied to investigate
the exact solutions of non-linear homogeneous evolution partial differential equations. These partial
differential equations are reduced to ordinary differential equations using different traveling wave
transformations, and exact solutions in rational and polynomial forms are obtained. The obtained
solutions are presented in the form of 2D and 3D graphics to study the behavior of the analytical
solution by setting out the values of suitable parameters. The acquired results reveal that the unified
method is a suitable approach for handling non-linear homogeneous evolution equations.
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1. Introduction

Nonlinear homogeneous evolution equations form the most fundamental theme in
mathematical physics. In a few decades, due to its wide application, nonlinear evolution
equations have become a very significant class of PDEs. The investigation of nonlinear
evolution equations has become a very important topic in major fields such as plasma
physics, solid state physics, fluid mechanics, biology, optical fiber, chemical kinematics, eco-
nomics and many more [1–6]. A few years ago, various types of well-known mathematical
methods were used to solve the nonlinear homogeneous PDEs for obtaining exact solutions,
such as the tanh method [7], Exp-function method [8,9], (G′

G )-expansion method [10–14],
projective Riccati equation method [15], bilinear transformation method [16–20], higher
degree B-spline algorithm [21], spectral Tau method [22], Adomian decomposition and frac-
tional power series solution [23] and some higher–degree Lacunary fractional splines [24].
Therefore, it is not an easy task to use analytical methods for solving nonlinear PDEs [25].

Many of researchers investigate different homogeneous nonlinear PDEs for construct-
ing traveling wave solution by applying the unified method (UM). For example, MN
Rafique [26] used the unified method to find exact solutions of fifth-order Swada–Kotera
and Caudrey–Dodd–Gibbon equations. In [27], UM was applied to establish a traveling
wave solution of the higher-dimensional Chaffee–Infante equation. Majeed et al. [28]
constructed traveling wave solutions for a modified Burgers-KdV equation using the
unified method.

In [29], an analytical solution of the advection–diffusion reaction equation, which
represents the exponential traveling wave in heat and mass transport processes, was
compared to the unconditionally positive finite difference (UPFD) and standard explicit
finite difference methods. Although the UPFD scheme has unconditional positivity, it is
found that it is less accurate than the standard explicit finite difference scheme.
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The key objective of this study is to find the exact solution of the generalized regu-
larized long wave (GRLW) equation [30] and the modified Zakharov–Kuznetsov (mZK)
equation [31]. For this purpose, we use different traveling wave transformations to convert
the homogeneous nonlinear partial differential equation (PDE) into the nonlinear ordinary
differential equation (ODE) [32]. To find the variety of new exact solutions, the UM is
proposed [33].

In this work, we discuss two nonlinear homogeneous evolution PDEs. The first one is
the generalized regularized long wave (GRLW) equation of the following form [30]:

ut + ux + αuPux − µuxxt = 0, (x, t)εR× [0 T]. (1)

In Equation (1), the value of parameter P is a natural number and α, µ are positive
constants. When the value of parameter P = 1, Equation (1) becomes a regularized long
wave (RLW) equation. Equation (1) becomes a modified regularized long wave (MRLW)
equation for P = 2.

The modified Zakharov–Kuznetsov (mZK) equation is of the form [34]

mt + βm2mx + mxxx + myyx = 0. (2)

The nonlinear Equation (2) consist of two spatial, x and y, and one temporal coordinate.
Equation (2) explains the properties of weakly nonlinear ion sound waves in plasma. This
includes the cold and hot isothermal electrons in the presence of a uniform magnetic field.
In previous literature, many researchers studied the mZK equation by using different
methods. For instance, in [35], the homogeneous balance method was used to investigate
the exact solutions of the mZK equation. Bekir [36] used the basic (G′/G)-expansion
method to construct traveling wave solutions of the mZK equation.

In the study of nonlinear physical phenomena, the investigation of traveling wave
solutions of nonlinear homogeneous partial differential equations plays an important
role [37]. We obtain these solutions as two different types, namely, polynomial solution and
rational solution. The 2D and 3D diagrams of these solutions are plotted with specific values
for their existing parameters. The behavior of the solution of these governing equations
will be revealed by examining these graphs. Maple software is used for simulations. The
proposed techniques can be used in other real-world models in engineering and science.
The unified method is used to investigate non-linear evolution equations that prove the
importance of these equations. The main objectives of this study are listed below:

1. To analyze the unified method;
2. To find exact solutions of different nonlinear homogeneous partial differential equa-

tions (PDEs) using the unified method;
3. To obtain analytical solutions in polynomial as well as rational forms;
4. To represent their nonlinear physical behavior through 2D and 3D graphics.

The rest of the study demonstrated in the following manner: Section 2 presents the
description of the unified method. In Section 3, a new exact solution of the generalized
regularized long wave equation and modified Zakharov–Kuznetsov equation and their
graphical representation in 2D and 3D forms is presented. In Section 4, we describe the
advantages and limitations of this proposed scheme. In Section 5, we discuss the graphical
behavior. Finally, we present a brief conclusion in Section 6.

2. Description of Unified Method

Let us discuss the general form of non-linear PDE for w(x, y, t) in the form of

S(x, y, t, w,
∂w
∂x

,
∂w
∂y

,
∂w
∂t

,
∂2w
∂x∂t

,
∂2w
∂x2 , ...) = 0. (3)

where S is a function of the polynomial, and the subscripts represent the partial
derivative with respect to variables x, y, t. The unified method for solving evolution
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nonlinear PDEs is defined in the following steps.
Step 1. Change the given PDE into ODE using traveling wave transformation η =
x + y− vt, to Equation (3),

So this results in an ODE with the following structure:

S(w,
dw
dη

,
d2w
dη2 , . . .) = 0. (4)

Step 2. In this step, we find the polynomial and rational solutions of Equation (4).

2.1. Polynomial Solution

To obtain the polynomial solution of nonlinear PDEs, we assume that,

w(η) =
N

∑
i=0

aiφ
i(η),

(φ′(η))ρ =
ρs

∑
i=0

biφ
i(η), ρ = 1, 2.

(5)

where ai, bi are the unknown coefficients of the polynomial which are obtained from
Equation (5) to satisfy Equation (4) by applying the condition of consistency. Now, N and
s are the parameters which are determined with the help of the homogeneous balancing
principle by comparing the highest order linear derivative along with the nonlinear term.

It should be noted that the unified method solves Equation (5) for ρ = 1 or ρ = 2 for
elementary or elliptical solutions, respectively.

2.2. Rational Solution

To obtain these solutions, we assume that

w(η) =
∑n

i=0 aiφ
i(η)

∑r
i=0 ciφi(η)

,

(φ′(η))
ρ
=

ρs

∑
i=0

biφ
i(η), ρ = 1, 2.

(6)

where ai, bi are unknown coefficients of Equation (6) which are to be determined in such a
way that the obtained solution from Equation (6) must satisfy Equation (4). These unknown
coefficients that appear in Equation (6) are determined through the condition of consistency.
Now, n, r and s are parameters which are determined with the help of the balancing
principle by comparing the highest order linear derivative along with the nonlinear terms.

It should be noted that the unified method solves Equation (6) for ρ = 1 or ρ = 2 for
elementary or elliptical solutions, respectively.
Step 3. Computer software, such as Maple or Mathematica, are used to solve the system
of equations.
Step 4. In this step, we solve Equations (5) and (6) and obtain an analytical solution.

3. Governing Equation

We discuss two nonlinear homogeneous PDEs, namely, the generalized regularized
long wave equation (GRLWE), Equation (1), and modified Zakharov–Kuznetsov (mZK)
equation, Equation (2).

3.1. Generalized Regularized Long Wave Equation (GRLWE)

In this section, we discuss the generalized regularized long wave equation for P = 1,
P = 2.
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Let us consider GRLWE [34],

ut + ux + αuPux − µ uxxt = 0. (7)

In Equation (7), P represents a positive integer. α and µ are positive constants. Accord-
ing to these parameters, we divide Equation (7) into two types.

• Regularized long wave (RLW) equation for P = 1.
• Modified regularized long wave (MRLW) equation for P = 2.

3.1.1. Regularized Long Wave Equation for P = 1

Equation (7) becomes

ut + ux + αuux − µ uxxt = 0. (8)

In order to solve Equation (8) using the unified method, apply traveling wave trans-
formation in the following form.

u(x, t) = u(η), η = x− vt. (9)

After applying the transformation, we draw out ODE of the form

−vu′ + u′ + αuu′ + µvu′′′ = 0. (10)

In Equation (10), prime ( ′ ) shows the derivative with respect to η.
For simplicity, we integrate the above ODE and fix the integration constant equal

to zero,

−vu + u +
1
2

αu2 + µvu′′ = 0. (11)

We obtain solutions of Equation (11) using the unified method which enables us to find
those solutions in two ways, namely, the polynomial function solution as well as rational
function solution.

Polynomial Function Solution

Suppose the initial solution is given by

u(η) =
N

∑
i=0

aiφ
i(η),

(φ′(η))ρ =
ρs

∑
i=0

biφ
i(η), ρ = 1, 2.

(12)

ai and bi are unknown coefficients of Equation (12) which can be find later.
Now, using the homogeneous balancing principle between dispersive and nonlinear

term, we obtain the integer N2. After applying the balancing principle, we establish a
relation between N and s, such as N = s− 1 for all s ≥ 2. After integrating Equation (10),
the balancing number will be same as that of Equation (11).

For the polynomial function solution, we discuss two cases for s = 2, ρ = 1 and
s = 2, ρ = 2. Equation (12) becomes

u(η) =
2

∑
i=0

aiφ
i(η). (13)

(φ′(η))ρ =
2ρ

∑
i=0

biφ
i(η), ρ = 1, 2. (14)
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Here ai , bi are coefficients which can be found later.

• Case (1)

Here we put ρ = 1 and s = 2 in Equations (14) and (13), and Equation (14) becomes,

u(η) = a0 + a1φ(η) + a2φ2(η),

φ′(η) = b0 + b1φ(η) + b2φ2(η).
(15)

Substitute Equation (15) into Equation (11) and solve the system of algebraic equa-
tions in φ using computer software for (b0, b1, b2, a0, a1, a2, v, µ, α). We obtain the
following results:

α =
−12β vb2

2

a2
, a0 =

3 β va1
2b2

2 + va2
2 − a2

2

12β va2b2
2 , b0 =

β va1
2b2

2 + va2
2 − a2

2

4β va22b2
, b1 =

a1b2

a2
. (16)

and putting Equation (15) in Equation (16), as a consequence, the following result is obtained.

u(x, t) = −
(v− 1)(a2b2tan( 1

2 η
√
− b2(v−1)

βvb2
)2 + a2b2)

4b2βb2
2

. (17)

where η = x− vt and β 6= 0, v 6= 0, b2 6= 0.
Graphically, Equation (17) is shown in Figure 1 with suitable parameters a2 = 4,

b2 = 1.4, v = 2, β = 1.2.

(a) 3D graphical view (b) 2D graphical view

Figure 1. Graphical representation of Equation (17) within interval 5 ≤ x ≤ 7 and −2 ≤ t ≤ 9 (the
(b) shows 2D plot for x = 5, 6).

Figure 1 illustrates dynamics of soliton solutions in 2D and 3D graphs obtained in
Equation (17). Figure 1a,b plots the graphs at different values of parameters (a2 = 4, b2 = 1.4, v =
2, β = 1.2).

• Case (2)

Here we put ρ = 2 and s = 2 in Equations (14) and (13), and Equation (14) becomes

u(η) = a0 + a1φ(η) + a2φ2(η),

(φ′(η)) = φ(η)

√
β0 + β1φ(η) + β2(φ(η))

2.
(18)
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Putting Equation (18) into Equation (11) and solving the system of equations in φ using
computer software for (a0, a1, a2 β0, β1, β2, v, µ, α), we obtain the following parameters:

a0 = 0, α = −12
a2 (v− 1)

a1
2 , β0 =

v− 1
vβ

, β1 = 2
a2 (v− 1)

va1 β
, β2 =

a2
2(v− 1)
va1

2β
, (19)

and substituting Equation (19) in Equation (18), as a consequence, the following result
is obtained.

u(x, t) =
4(v− 1)eη

√
v−1
vβ a3

1vβeC
√

v−1
vβ

[−4a2(v− 1)eC
√

v−1
vβ + eη

√
v−1
vβ a1vβ]2

. (20)

where C is a constant and η = x− vt and v 6= 0 , β 6= 0.
Graphically, Equation (20) is shown in Figure 2 with suitable parameters a1 = −0.3,

a2 = 2.4, v = 3, β = 2, C = 0.

(a) 3D graphical view (b) 2D graphical view

Figure 2. Graphical behavior of Equation (20) within interval 0.7 ≤ x ≤ 1.3 and − 1 ≤ t ≤ 3 ((b) 2D
plot for x = 0.7, 0.9).

Figure 2 illustrates optical soliton solutions in 2D and 3D graphs obtained in Equation (20).
Figure 2a,b plots the graphs at different values of parameters (a1 = −0.3, a2 = 2.4, v = 3, β =
2, C = 0).

Rational Function Solution

Suppose the initial solution in the following form,

u(x, t) =
∑n

i=0 aiφ
i(η)

∑r
i=0 ciφi(η)

, (21)

(φ′(η))ρ =
ρs

∑
i=0

biφ
i(η), ρ = 1, 2. (22)

where ai, bi, ci are unknown coefficients which are to be determined later. After using the
homogeneous balancing principle, we obtain the relation that states that n− r = s− 1 .

Here, we discuss only one case when n = r and ρ = 2 . So Equations (21) and (22) give

u(x, t) =
a0 + a1φ(η) + a2φ2(η)

c0 + c1φ(η) + c2φ2(η)
. (23)
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(φ′(η)) =
√

b0 + b1φ(η) + b2φ2(η). (24)

Putting Equations (23) and (24) into Equation (11) and solving the system of equations
in φ using computer software for (a0, a1, a2, c0, c1, c2, b0, b1, b2, v, µ, α), we obtain the
following parameters:

α = 2
c2(v− 1)

a2
, a0 = −1/8

a2
(
4 c0c2 − 3 c1

2)
c22 , a1 =

a2c1

c2
,

b0 = −1/4
c0(v− 1)

vβ c2
, b1 = −1/4

c1(v− 1)
vβ c2

, b2 = −1/4
v− 1

vβ
,

(25)

and putting Equation (25) in Equations (23) and (24), as a consequence, the following
solution is obtained.

u(x, t) =
a2[16(c0c2 − 1

4 c2
1)βvc2

2(v− 1)e
√
−v+1

vβ (C+η)
+ (c0c2 − 1

4 c2
1)

2(v− 1)2e2C
√
−v+1

vβ + 16e2η
√
−v+1

vβ v2β2c4
2]

c2[−8(c0c2 − 1
4 c2

1)βvc2
2(v− 1)e

√
−v+1

vβ (C+η)
+ (c0c2 − 1

4 c2
1)

2(v− 1)2e2C
√
−v+1

vβ + 16e2η
√
−v+1

vβ v2β2c4
2]

. (26)

where η = x− vt and C is constant of integration and v 6= 0, β 6= 0.
Figure 3 shows a graphical representation of Equation (26) with suitable parameters

c0 = 1.3, c1 = 2, c2 = 3, a2 = 1, v = −5, β = −1, C = 0 .

(a) 3D graphical view (b) 2D graphical view

Figure 3. Graphical visualizations of Equation (26) within interval 0.7 ≤ x ≤ 2 and − 2 ≤ t ≤ 1 ((a)
3D plot, (b) 2D plot for x = 1, 1.3).

3.1.2. Modified Regularized Long Wave Equation for P = 2

Equation (7) becomes,

ut + ux + ε u2ux − µ uxxt = 0. (27)

In order to solve Equation (27) using the unified method, apply transformation in the
following way:

u(x, t) = u(η), η = x− vt. (28)

After applying these transformation, we draw out ODE of the form

−vu′ + u′ + εu2u′ + µvu′′′ = 0. (29)

In Equation (29), prime ( ′ ) shows the derivative with respect to η.
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For simplicity, we integrate the above ODE and fix the integration constant equal
to zero.

−vu + u +
1
3

εu3 + µvu′′ = 0. (30)

We obtain solutions of Equation (30) using the unified method that enable to find
these solutions in two kinds, namely, the polynomial function solution and rational
function solution.

Polynomial Function Solution

Suppose the initial solution is given by

u(η) =
N

∑
i=0

aiφ
i(η),

(φ′(η))ρ =
ρs

∑
i=0

biφ
i(η), ρ = 1, 2.

(31)

where ai and bi are coefficients of the polynomial, which can be found later.
Now, considering the homogeneous balancing principle between the nonlinear and

dispersive term, we obtain the value of integer N = 1, after which results a relation
N = s− 1 for all k ≥ 2.

For the polynomial function solution, s = 2, ρ = 1 and s = 2, ρ = 2, are two different
cases, which we will discuss. The above equation can be converted into,

u(η) =
1

∑
i=0

aiφ
i(η). (32)

(φ′(η))ρ =
2ρ

∑
i=0

biφ
i(η), ρ = 1, 2. (33)

Here, ai , bi are coefficients which can be found later.

• Case (1)

Here, we put ρ = 1 and s = 2 in Equation (33), and after this, Equations (32) and (33)
become,

u(x, t) = a0 + a1φ(η),

φ′(η) = b0 + b1φ(η) + b2φ2(η).
(34)

Substitute Equation (34) into Equation (30), and solving the system of equations in φ
using computer software for a0, a1, b0, b1, b2, v, µ, α, we obtain the following parameters:

α = −6
vβ b2

2

a1
2 , b0 = 1/2

2 va0
2β b2

2 + va1
2 − a1

2

va1
2β b2

, b1 = 2
a0 b2

a1
, (35)

and inserting Equations (35) in (34), we obtain the following result:

u(x, t) =
tan[ 1

2 η
√

2b2(v−1)
vβb2

]a1

√
2b2(v−1)

vβb2

2b2
. (36)

where η = x− vt and β 6= 0, v 6= 0, b2 6= 0.
Figure 4 shows the graphical behavior of Equation (36) with suitable parameters a0 = −1.3,

a1 = 2.3, b2 = 1.9, v = 0.4, β = 2.
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(a) 3D graphical view (b) 2D graphical view

Figure 4. Graphical representation of Equation (36) within interval − 1 ≤ x ≤ 5 and 4.5 ≤ t ≤ 5 ((a)
3D plot, (b) 2D plot for t = 4.5, 5).

• Case (2)

Here, we put s = 2 and ρ = 2 in Equation (33) and after this, Equations (32) and (33)
become

u(η) = a0 + a1φ(η) + a2φ2(η),

(φ′(η)) = φ(η)
√

β0 + β1φ(η) + β2(φ2(η)).
(37)

putting Equation (37) into Equation (30) and solving system of algebraic equations in φ us-
ing computer software for a0, a1, β0, β1, β2, v, µ, α, we obtain the following parameters:

α =
3(v− 1)

a2
0

, β0 = −2(v− 1)
βv

, β1 = −2a1(v− 1)
a0βa2

0
, b2 = −

a2
1(v− 1)
2βva2

0
, (38)

and substituting Equation (38) in Equation (37), we obtain the following result.

u(x, t) = −
4[a1(v− 1)e

η
√
−2v+2

vβ − 1
4 e

C
√
−2v+2

vβ a0β]a0

4a1(v− 1)e
η
√
−2v+2

vβ + e
C
√
−2v+2

vβ a0βv
. (39)

where C is constant of integration and η = x− vt , v 6= 0, β 6= 0.
Graphical behavior of Equation (39) as shown in Figure 5 with suitable parameters

a0 = −1, a1 = 2.6, v = 2, β = −2, C = 1.
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(a) 3D graphical view (b) 2D graphical view

Figure 5. Graphical representation of Equation (39) within interval 2 ≤ x ≤ 5 and − 3 ≤ t ≤ 7 ((a)
3D plot, (b) 2D plot for t = 4, 5).

Rational Functional Solutions

Suppose the initial solution is in the following form:

u(x, t) =
∑n

i=0 aiφ
i(η)

∑r
i=0 ciφi(η)

. (40)

(φ′(η))ρ =
ρs

∑
i=0

biφ
i(η), ρ = 1, 2. (41)

where ai, bi, ci are unknown coefficients which are to be determined later. After using the
homogeneous balancing principle, we obtain the relation that states that n− r = s− 1 .

Here we discuss only one case when n = r and ρ = 2 . Equations (40) and (41) gives,

u(x, t) =
a0 + a1φ(η)

c0 + c1φ(η)
,

(φ′(η)) =
√

b0 + b1φ(η) + b2(φ(η))
2.

(42)

Putting Equation (42) into Equation (30) and solving the system of equations in φ using
Maple software for (a0, a1, c0, c1, b0, b1, b2, v, µ, α), we obtain the following parameters:

α =
3c2

1(v− 1)
a2

1
, b0 = −

va2
0c2

1 + 2va0a1c0c1 + va2
1c2

0 − a2
0c2

1 − 2a0a1c0c1 − a2
1c2

0
vβa2

1c2
1

,

b1 = −2(va0c1 + va1c0 − a0c1 − a1c0)

vβa1c1
, b2 = −2(v− 1)

vβ
,

(43)

and inserting Equation (43) in Equation (42), we obtain the following result.

u(x, t) =
a1[e

η
√
−2v+2

vβ a1c1 +
√
−2v+2

vβ e
C
√
−2v+2

vβ (a0c1 − a1c0)]

c1[e
η)
√
−2v+2

vβ a1c1 −
√
−2v+2

vβ e
C
√
−2v+2

vβ (a0c1 − a1c0)]

. (44)

where C is a constant of integration and η = x− vt and v 6= 0, β 6= 0, b2 6= 0.
The graphical behavior of Equation (44) is shown in Figure 6 with suitable parameters

a0 = 1.9, a1 = 2.3, c0 = 2.8, c1 = 2.8, v = 1.3, β = −1.2, C = 0.
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(a) 3D graphical view (b) 2D graphical view

Figure 6. Graphical representation of Equation (44) within interval 1 ≤ x ≤ 2 and − 1 ≤ t ≤ 8 ((a)
3D plot, (b) 2D plot for t = 1, 2).

3.2. Modified Zakharov–Kuznetsov Equation (mZK)

Here, we find the exact solution of the modified ZK equation using the unified method.
So, the nonlinear mZK equation [35],

mt + βm2mx + mxxx + myyx = 0. (45)

where β is a positive constant.
In order to solve Equation (45) using the unified method, apply transformation in the

following way.

m(x, y, t) = m(η), η = x + y− vt. (46)

After applying transformation, we draw out ODE of this form,

−vm′ + βm2m′ + 2m′′′ = 0. (47)

In Equation (47), prime ( ′ ) shows derivative w.r.t η,
For simplicity, integrate the above Equation (47) and fix the integration constant equal

to zero,

−3vm + βm3 + 6m′′ = 0. (48)

We obtain solutions of Equation (48) using the unified method that enables us to
find those solutions in two kinds, namely, the polynomial function solution as well as the
rational function solution.

Polynomial Function Solution

Suppose the auxiliary equation is in the following form,

m(η) =
N

∑
i=0

aiφ
i(η),

(φ′(η))ρ =
ρp

∑
i=0

biφ
i(η), ρ = 1, 2.

(49)

where ai and bi are coefficients of the polynomial, which can be find later.
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Now, using the homogeneous balancing principle between the dispersive and nonlin-
ear terms, we obtain integer N = 1 after applying the balancing principle to form a relation
between N and p, such as N = p− 1 for all s ≥ 2.

For polynomial function solutions, p = 2, ρ = 1 and p = 2, ρ = 2 are two different
cases, which we will discuss. The above equation can be converted into

m(η) =
1

∑
i=0

aiφ
i(η). (50)

(φ′(η))ρ =
2ρ

∑
i=0

biφ
i(η), ρ = 1, 2. (51)

Here, ai , bi are coefficients which can be found later.

• Case (1)

Here, we put σ = 1 and k = 2 in Equation (51), and after this, Equations (50) and (51)
become

m(x, y, t) = a0 + a1(η),

φ′(η) = b0 + b1φ(η) + b2φ2(η).
(52)

Putting Equation (52) into Equation (48) and solving the system of equations in φ using
computer software for a0, a1, b0, b1, b2, v, β, we obtain the following values of parameters:

v = 4b0b2 − b2
1, a0 =

a1b1

2b2
, β = −

12b2
2

a2
1

, (53)

and putting all above values of Equation (53) in Equation (52), we obtain the following result:

m(x, y, t) =
a1(tan( η

√
4b0b2−b2

1
2 )

√
4b0b2 − b2

1 − b1)

2b2
+

a1b1

2b2
. (54)

where η = x + y− vt and b2 6= 0.
Figure 7 shows a graphical visualization of Equation (54) with suitable parameters

a1 = 2.5, b0 = −0.2, b1 = 1.4, b2 = 1.8, v = 1, y = 2.

• Case (2)

Here, we put ρ = 2 and p = 2 in Equation (51) and we obtain the following equations,

m(η) = a0 + a1φ(η),

(φ′(η)) = φ(η)
√

β0 + β1φ(η) + β2φ2(η).
(55)

Putting Equation (55) into Equation (48) and solving the system of equations in φ
using computer software for a0, a1, β0, β1, β2, v, β, we obtain the following values
of parameters:

v =
βa2

0
3

, β0 = −
βa2

0
3

, β1 = − βa0a1

3
, β2 = −

βa2
1

12
. (56)

and substituting Equation (56) in Equation (55), we obtain the following solution:

m(x, y, t) = −
2(βa0a1eη

√
−

βa2
0

3 − 3
2 eC

√
−

βa2
0

3 )a0

2βa0a1eη

√
−

βa2
0

3 + 3eC

√
−

βa2
0

3

. (57)
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where C is a constant of integration and η = x + y− vt.

(a) 3D graphical view (b) 2D graphical view

Figure 7. Graphical behavior of Equation (54) within interval − 2 ≤ x ≤ 2.5 and 2 ≤ t ≤ 3 ((a) 3D
plot, (b) 2D plot for t = 2.1, 2.7).

Graphically, Equation (57) is shown in Figure 8 with suitable parameters a0 = −2.3, a1 =
2.4, y = 2, v = 1.4, β = −1.6, C = 0.

(a) 3D graphical view (b) 2D graphical view

Figure 8. Graphical representation of Equation (57) within interval 1 ≤ x ≤ 2.3 and 1 ≤ t ≤ 6 ((a)
3D plot, (b) 2D plot for x = 1.2, 1.6).

Rational Function Solution

Suppose the initial solution is given by

m(x, y, t) =
∑n

i=0 aiφ
i(η)

∑r
i=0 ciφi(η)

. (58)

(φ′(η))ρ =
ρp

∑
i=0

biφ
i(η), ρ = 1, 2. (59)

where ai, bi, ci are constants of coefficient which are to be determined later. After using the
balancing principle, we obtain the relation that states that n− r = k− 1.
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Here, we discuss only one case when n = r and σ = 2. Equations (58) and (59) give

m(x, y, t) =
a0 + a1φ(η)

c0 + c1φ(η)
. (60)

(φ′(η))σ =
√

b0 + b1φ(η) + b2φ2(η). (61)

Putting Equations (60) and (61) into Equation (45) and solving the system of equations
in φ using computer software for (a0, a1, b0, b1, b2, c0, c1, v, β), we obtain the following
values of parameters:

β =
3vc2

1
a2

1
, b0 = −

v(a2
0c2

1 + 2a0a1c0c1 + a2
1c2

0)

4a2
1c2

1
, b1 = −v(a0c1 + a1c0)

a1c1
, b2 = −v. (62)

and inserting Equation (62) in Equations (60) and (61), we obtain the following results.

m(x, y, t) =
a1[−e(η)

√
−vva1c1 + eC

√
−v(2a0c1(−v)

3
2 + v(a0c1 + a1c0)

√
−v)]

c1[−e(η)
√
−vva1c1 + eC

√
−v(2a0c1(−v)

3
2 + v(a0c1 + a1c0)

√
−v)]

. (63)

where η = x + y− vt, and C is a constant of integration.
The graphical behavior of Equation (63) is shown in Figure 9 with suitable parameters

a0 = 1, a1 = 2.2, c0 = −2.4, c1 = 1.3, c2 = 2, v = −0.06, y = 2, C = 0.

(a) 3D graphical view (b) 2D graphical view

Figure 9. Graphical representation of Equation (63) within interval −1 ≤ x ≤ 9 and 5.2 ≤ t ≤ 6.3 ((a)
3D plot, (b) 2D plot for t = 5.9).

4. Graphical Behavior

In this section, our focus is to define the physical behavior of traveling wave solutions
which are obtained from governing equations. Figures 1–3 illustrate the graphical behavior
in 2D and 3D graphs of polynomial and rational function solutions of (RLW) Equation (8).
Figures 4–6 show the 2D and 3D graphs of polynomial and rational solution of (MRLW)
Equation (27). Figures 7–9 express the polynomial and rational solutions in 2D and 3D
forms of (mZK) Equation (45). In the polynomial, Figures 1a,b and 2a,b plot the graphs
at different values of parameters, respectively (a2 = 4, b2 = 1.4, v = 2, β = 1.2), (a1 =
−0.3, a2 = 2.4, v = 3, β = 2). In the rational, Figure 3a,b plots a graph at constants (c0 =
1.3, c1 = 2, c2 = 3, a2 = 1, v = −5, β = −1, C = 0). For Equation (27), Figures 4a,b, 5a,b
and 6a,b plot graphs at the given parameters (a0 = −1.3, a1 = 2.3, b2 = 1.9, v = 0.4, β = 2),
(a0 = −1, a1 = 2.6, v = 2, β = −2, C = 1) and (a0 = 1.9, a1 = 2.3, c0 = 2.8, c1 =
2.8, v = 1.3, β = −1.2, C = 0). Similarly, for (mZK) Equation (45), Figures 7a,b, 8a,b and 9a,b
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indicate the plot in 3D and 2D forms at the given parameters (a1 = 2.5, b0 = −0.2, b1 =
1.4, b2 = 1.8, v = 1, y = 2), (a0 = −2.3, a1 = 2.4, y = 2, v = 1.4, β = −1.6, C = 0) and
(a0 = 1, a1 = 2.2, c0 = −2.4, c1 = 1.3, c2 = 2, v = −0.06, y = 2, C = 0).

5. Advantages and Limitations
5.1. Advantages

• The unified method gives analytical solutions using traveling wave transformations.
• The proposed method provides us with multiple solutions of different types of gov-

erning equations with minimum effort.

5.2. Limitations

• The unified method is not applicable to linear PDEs due to the absence of a highest
order nonlinear term.

• The proposed scheme is also not applicable to those equations which have a balancing
number zero, such as the Zabolotskaya–Khokhlov (ZK) equation [38].

6. Conclusions

In this article, exact solutions of two nonlinear homogeneous partial differential
equations, namely the generalized regularized long wave equation and modified Zakharov–
Kuznetsov (mZK) equation, were investigated. For this purpose, we used different travel-
ing wave transformations for finding the analytical solution in polynomial and rational
forms. On the basis of traveling wave transformation, PDE was converted into ODE. The
exact solution can be found by applying the unified method. Computer software, such as
Maple and Mathematica, were used to solve the system of equations. This method provided
us with an exact solution of the (GRLW) and (mZK) equations and also described their
graphical representation in 2D and 3D forms using specific parameters. The unified method
offers multiple solutions of different types with minimum effort.
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