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Abstract: Autism spectrum disorder is a group of disorders marked by difficulties with social skills,
repetitive activities, speech, and nonverbal communication. Deficits in paying attention to, and
processing, social stimuli are common for children with autism spectrum disorders. It is uncertain
whether eye-tracking technologies can assist in establishing an early biomarker of autism based on
the children’s atypical visual preference patterns. In this study, we used machine learning methods
to test the applicability of eye-tracking data in children to aid in the early screening of autism. We
looked into the effectiveness of various machine learning techniques to discover the best model for
predicting autism using visualized eye-tracking scan path images. We adopted three traditional
machine learning models and a deep neural network classifier to run experimental trials. This study
employed a publicly available dataset of 547 graphical eye-tracking scan paths from 328 typically
developing and 219 autistic children. We used image augmentation to populate the dataset to prevent
the model from overfitting. The deep neural network model outperformed typical machine learning
approaches on the populated dataset, with 97% AUC, 93.28% sensitivity, 91.38% specificity, 94.46%
NPV, and 90.06% PPV (fivefold cross-validated). The findings strongly suggest that eye-tracking data
help clinicians for a quick and reliable autism screening.

Keywords: ASD screening; autism spectrum disorder; machine learning; convolutional neural
network (CNN); eye-tracking scan path images

1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by
deficits in verbal and nonverbal communication, reciprocal social interaction, accompanied
by certain repetitive and stereotyped behaviors [1]. The severity of symptoms and the
effects of ASD varies from case to case. According to the Centers for Disease Control
and Prevention (CDC), 1 in 54 children has been diagnosed with ASD; it affects people of
all races, ethnicities, and socioeconomic backgrounds. Moreover, ASD is diagnosed four
times more frequently in boys than in girls; compared to boys, many girls with ASD show
fewer visible signs [2]. Autism is a chronic illness that lasts a lifetime [3]. Therefore, early
identification of ASD is crucial, and individuals with ASD diagnosed early in childhood can
significantly impact from appropriate interventions for a long-term positive outcome [4].

We currently lack a diagnostic test to confirm ASD, such as a blood test or a brain scan.
A behavioral assessment would be required to diagnose ASD in a child. The American
Academy of Pediatrics (AAP) recommends that all children be screened for developmental
delays and disabilities at 9, 18, and 30 months during routine doctor visits. However, at 18
and 24 months, every child should be screened for ASD using autistic-specific screening
tools based on the Diagnostic and Statistical Manual for Disorders—DSM_V [5].

ASD diagnosis is still a challenging task requiring several cognitive tests and hours of
clinical examinations and follow-up. Furthermore, the heterogeneities in the symptoms of
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ASD make the diagnosis even more difficult [6]. Autistic children exhibit symptoms from a
young age but are frequently not diagnosed until school age. A few studies have identified
a lack of resources in rural areas and low-income families, the efficacy of ongoing pediatric
care, a shortage of specialty referrals, and the parents’ awareness of ASD as possible causes
of diagnosis delays [7].

It is a fact that individuals with autism pay less attention to faces and other social stim-
uli such as the human voice and hand gestures when compared to nonsocial stimuli [8,9].
This unique pattern of eye movements appears in autistic children well before behavioral
symptoms of ASD start showing. Using the eye gaze data, we can figure out when the child
is looking and what they are looking at, whether it is people or objects. Furthermore, the
eye gaze data are instrumental in determining how difficult it is for an autistic to interact
with others, allowing interventions to be tailored to their specific needs.

Eye-tracking (ET) is a non-invasive technique for recording a person’s gaze positions
in real-time. An eye-tracking device is mainly composed of a high-resolution digital camera
and an intelligent algorithm that accurately detects eye gaze coordinates while watching
videos or images. According to relevant studies, ET data may be used as a biomarker for
identifying ASD in children at an early stage [10].

Machine learning (ML) has recently gained traction in various fields, including medical
diagnosis [11–14]. ML is a subset of Artificial Intelligence (AI) that employs intelligent
algorithms to learn patterns from large datasets (called training an ML model) without
explicit programming. To make an informed decision on new data, the model uses the
learned knowledge in the same way the human brain works. There are two common
learning approaches in machine learning: Supervised and unsupervised, depending on
the type of dataset used to train the model. Supervised models require labeled datasets to
categorize the data into binary or multi classes—also called classification or regression. In
comparison, the unsupervised models deal with unlabeled data and allow the system to
detect patterns within the dataset on its own (called clustering).

Deep Learning (DL) is a subset of machine learning that makes use of specialized
algorithms called artificial neural networks (ANN) to simulate the human brain [15]. The
Deep Neural Network (DNN) is an extensive network of artificial neurons capable of
handling complex problems [16]. A convolutional neural network (CNN) is an ANN
that has the capability to learn features from signals and images autonomously and adap-
tively [17]. CNN finds their applications in image processing, such as object detection,
object recognition, anomaly detection, and segmentation [18]. CNN’s main advantage over
its predecessors is that it extracts relevant features from the input image without the need
for human intervention.

In this study, we utilize machine learning algorithms to investigate the efficacy of eye-
tracking data in diagnosing autism in children. Unlike the existing manually administered
autism screening procedures, which are highly subjective and thus prone to misdiagnosis,
our research uses eye-tracking data to detect autism quickly and reliably. Instead of the 1D
eye-tracking time series data utilized in related investigations, we use 2D eye-tracking scan
path (ETSP) images. We employ principal component analysis (PCA) and CNN as feature
extractors and the boosted decision tree (BDT), deep support vector machine (DSVM),
decision jungle (DJ), and deep neural network (DNN) as classifiers. In contrast to the
previously reported studies, we evaluate the model performance using the area under the
ROC curve (AUC), specificity, sensitivity, positive predictive value (PPV), and negative
prediction value (NPV).

2. Literature Review

We have reviewed relevant literature on the above topics and presented the most
recent ones here. Almourad M. [19] collected eye-tracking data from 65 participants, 34 of
whom had been diagnosed with ASD and 31 of whom were typically developing (TD). The
average age of the participants was eight years old. The data were collected using a Tobi
X2 eye-tracking device. While the experimenter recorded their eye fixation, the kids sat



Diagnostics 2022, 12, 518 3 of 19

in front of the eye tracker and watched the objects (such as tomato, football, banana, and
a human child). In this study, children with autism had less fixation on their eyes and a
greater interest in gazing at the mouth than TDs.

In a similar study reported by Duan et al. [20], the researchers recorded the eye
movements of 14 autistic children and 14 TDs to create a dataset. There was a total of ten
sessions in this study, each with 30 images (300 natural scenes). Each image is displayed on
the screen for 3 s before being replaced by the following image after 1 s. Data on gaze were
collected using the Tobii T120 eye tracker. According to the study, people with ASD have
more fixation on objects, whereas people with TD have more fixation on faces.

Tao et al. [21] used CNN to classify ASD and TD based on the scan path of the fixation
point in their study. They used 300 images from the ‘Saliency4ASD’ grand challenge
dataset, including 14 autistic and 14 neuro-typical. The authors proposed a framework
called SP-ASDNet for autism screening based on the observer’s gaze scan paths. To extract
the features from the saliency map, the authors adopted CNN-LSTM architecture. The
proposed model achieves 74.22% accuracy on the validation dataset. The authors intend to
include an attentive mechanism in future studies and integrate it into the model to improve
performance. According to the authors, it is necessary to conduct more research into the
scan path differences between ASD and TD.

Carette R. et al. [22] published a paper that presents experimental results using an
ML approach to detect autism spectrum disorder automatically. The children, aged 8 to
10, were divided into autistic (class 1) and TD (class 2). Each child showed a pre-recorded
video of a joint attention offer, and an eye-tracking system records all eye movements.
The authors used an LSTM-RNN based ML classifier to test the recordings. The model
correctly identified five of the six patients’ diagnoses from fitness values of 0.008 to 0.006
and scored an average accuracy of over 90% and a maximum of 98%. The investigation
reveals a sensitivity of 75% and a specificity of 100% in the best-case scenario. The authors
recommend that using other ML algorithms may help improve the prediction score. They
also mentioned the possibility of model overfitting due to the small dataset.

In the same year, Carette R. et al. [23] published another interesting research paper that
discussed the use of eye-tracking technology in the context of ASD. The authors presented
a method for converting eye-tracking records into eye-tracking scan path images as a
visual representation using color gradients, which is well-suited for Machine Learning. The
authors also provided a publicly available first-of-its-kind image dataset based on a series
of eye-tracking experiments with ASD diagnosed (n = 30) and TD (n = 29) participants.
Using an SMI RED series mobile eye tracker, the authors recorded ET data while the
participants watched a series of videos to stimulate eye movement across the screen. In
their second publication, the authors mentioned above provided the findings of several
classical and neural network (NN) based ML classifiers to identify ASD using the pre-
recorded eye-tracking scan path dataset [24]. The classical algorithms include Naïve Bayes,
Logistic Regression, SVM, and Random Forest. According to the obtained result, the
logistic regression model was the best performing conventional model, with an AUC of
70%, whereas the NN model achieved an AUC of 90%. Furthermore, the authors developed
a four-level severity-based classifier model for ASD, with classes such as TD, low, medium,
and severe based on Childhood Autism Rating Scale (CARS) score, with a maximum
classification accuracy of 93% for TDs and 6% for Severe ASD. According to the authors,
the size of the dataset and the limited duration of input videos (used as visual stimulus) in
their trials were two significant limitations of this study.

Recently, Oliveira et al. [25], collected ET data from 106 subjects using Tobii Pro TX300
equipment, with 30 participants belonging to the TD group (10 females and 20 males) and
76 belonging to the ASD group (27 females and 49 males), ranging in age from 3 to 18 years.
ET data were collected using a 54-second video with nine randomly selected visual stimuli
parts (each with a child’s interaction and a geometric movement). The authors employed a
genetic algorithm to identify the ASD-relevant traits from the ET data and chose 15 features
that the classifiers (SVM and ANN) require. The paper documented that the SVM model



Diagnostics 2022, 12, 518 4 of 19

scored an AUC of 77.5%, while the AUC of the ANN model was 82.2%. The authors faced
a significant challenge in obtaining annotated datasets from experts, which is problematic.
The authors were willing to test the existing dataset with other machine learning techniques
in future work.

In summary, the above literature identified that autistic children exhibit unique eye
gaze patterns compared to age-matched TDs, making ET data a viable biomarker for ASD
screening. Some researchers utilized state-of-the-art technology to obtain ET data accurately
directly from the children; however, this necessitates costly equipment, experimental setup,
and an adequate number of participants for trials. Pre-recorded datasets freely accessible
to the public strongly influence the relevant research; however, many authors reported the
shortage of a comprehensive ET dataset well suited for ML-based research work. Despite
the numerous attempts, the clinical utility of ML algorithms is still a distant dream. To
our knowledge, the most up-to-date research model had a maximum accuracy of 90%;
However, the authors did not mention about sensitivity, specificity, PPV, NPV, and AUC
of the model. Therefore, this research study focuses on finding the optimal algorithms for
identifying ASD in children using the visualized eye-tracking scan path images, and also
on making this paper as straightforward as possible to convey the essential concepts of ML
to an autistic specialist who is unfamiliar with the field of ML.

3. Materials and Methods
3.1. Data

We discovered an exciting dataset contributed by Mahmoud E. [26], as mentioned in
the Section 2, while searching for a reliable dataset for the early screening of ASD. This
dataset contains 547 visualized Eye-Tracking Scan Path (ETSP) images created from ET data
collected from 59 participants in an experiment using a series of autism-specific visual stim-
uli using an SMI RED eye tracker (https://imotions.com/hardware/smi-red-m/, accessed
on 12 January 2022). The authors created visualized images by extracting three dynamic
components from the ET data, namely, velocity, acceleration, and jerk, and mapping them
into three equal-sized planes (RGB). The values of the three components modulated the
gradient of colors in each channel. Table 1 summarizes the dataset’s most important details,
and Figure 1 shows two sample images from both classes (TD and ASDs).

Table 1. Summary of the ETSP Image Dataset.

Description Details

Number of participants 59

Number of classes 2

Number of TD 29

Number of ASD—Diagnosed 30

Total number of ETSP images 547

ETSP Images—TD 328

ETSP Images—ASD 219

Size of image 640 × 480 × 3

CARS Scores (Mean) 32.97

Age in years and Mean age 3–13, 7.88

% Gender distribution (M:F) 64:36

https://imotions.com/hardware/smi-red-m/


Diagnostics 2022, 12, 518 5 of 19

Figure 1. ETSP images from the dataset as examples (images on the left side for a TD participant and
images on the right side for an ASD diagnosed participant—Image ID’s as given in the dataset).

3.2. Overview of the Proposed ML Model

As depicted in Figure 2, the proposed ML model, composed of framework-1 and
framework-2. Many operations in the frameworks are the same, except the feature extrac-
tion, which is considered a critical step.

Figure 2. The framework of the proposed model.

Below are descriptions of the various stages (a to f) and relevant processes:

(a) Pre-Processing

The first step in the pipeline is image pre-processing, and it consists of two distinct
operations: RGB to grayscale conversion and image resizing. The input image has three
channels and is 640 × 480 pixels (Red, Green, and Blue). We use Equation (1) to convert
the RGB image to grayscale, where R, G, and B denote pixel data from the Red, Green, and
Blue channels, respectively. We then resize the resulting grayscale images of size 640 × 480
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to 100 × 100. This step reduces the computational load on the computer, allowing for
faster computation.

Grayscale Image = R/3.0 + G/3.0 + B/3.0 (1)

(b) Feature Extraction by PCA

PCA (Principal Component Analysis) is a popular feature extraction method in ma-
chine learning algorithms. PCA identifies the relationship between the input raw data
attributes and generates a feature map with relatively lesser dimensionality to present the
same information associated with the given input data [27]. Thus, PCA reduces the dimen-
sions of the data without losing information while generating feature maps for the raw
data. As a result, using PCA in ML algorithms significantly impacts computing speed [28].

(c) Classical ML Classifier

This serves as the output of framework-1. The goal of the ML classifier is to accurately
classify images into TD or ASD using the features extracted in the PCA stage. Classic
machine learning algorithms such as Linear Regression (LR), Support Vector Machine
(SVM), Decision Tree (DT), and random forest excel at solving a wide range of problems.
These models are the most popular in machine learning because they are simple, ideal for
small datasets, compatible with low-power computers, and computationally less expensive.
To evaluate and compare the results of framework-1, we adopted Boosted Decision Tree
(BDT), Deep Support Vector Machine (DSVM), and Decision Jungle (DJ). The following
section provides a quick overview of the three classical algorithms.

BDT Algorithm

The Decision Tree (DT) algorithm uses a tree-like decision model to classify the data
by applying specific criteria. It incrementally breaks down a dataset into smaller and
smaller subsets while also developing an associated decision tree. The data splitting
process continues until a particular condition of stop is reached. The DT became well-
known in a variety of fields, including medical diagnostics. This approach would provide
great accuracy in classification or regression issues with only a few criteria. Boosting is a
technique for improving a weak classifier’s performance by narrowing the gap between
the actual (true) and predicted values [29].

DSVM Algorithm

Support Vector Machines (SVM) is a supervised ML algorithm, most often used for
classification problems; however, it can also be used for regression. The SVM algorithm fits
partition boundaries between data points to separate various classes in a given dataset. To
divide the distinct types in a dataset, one could construct many partitioning lines. On the
other hand, SVM fits the best hyperplane between the two classes, i.e., the most significant
margin between the hyperplane and the nearest data points on each side [30]. SVMs can
readily classify data that is linearly separable; however, when dealing with data that is
linearly inseparable, SVMs use kernel tricks to transform the 2D data into multi-dimensional
spaces to find the best borders between classes. DSVM is an extension of SVM, which has
a layered architecture consisting of SVMs at each layer. The SVMs at the low levels of
the DSVM have support vector machines to capture relevant features from the input data
and pass on the extracted data to the next level recursively. The SVMs on the top of the
model use the highest-level extracted features as inputs to perform the actual prediction. A
two-layer DSVM consistently outperforms a regular SVM in performance [31].

DJ Algorithm

Random Forest (RF) and DT are flourishing for solving many practical applications,
particularly computer vision. However, these algorithms experience some fundamental
issues: the number of nodes will grow exponentially in DT algorithms when data are
fed to the classifier, creating a requirement for additional memory, and thus impacting
the model’s performance [32]. Decision Jungle employs decision-directed discriminative
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models using DAGs (Decision-directed Acyclic Graphs) to achieve the potential to solve
complex problems without storage issues [33]. The DAGs allow multiple ways from
root to leaf to simplify the classification task. The DT allows only one path to every
node in comparison to DJ. Results indicate that compared to RF or DT, the DJ has less
memory requirement, and thereby it affords considerable improvement in the model’s
generalization.

(d) Feature Extraction by CNN

Framework-2, as previously mentioned, uses CNN to extract essential features from
pre-processed ETSP images. The structure of the CNN feature extractor that we used
in framework-2 is in Figure 3. It primarily consists of four alternate convolutional and
max-pooling layers, marked as Level 1 to Level 4. Convolution layers consist of many
kernels, each performing a mathematical operation known as convolution, which extracts
features from digital images [34,35].

Figure 3. Structure of a four-layer CNN feature extractor.

The default dimension of the kernel is 3 × 3; however, 5 × 5 or 7 × 7 kernels are also
in use. Each kernel location carries some coefficients called weights; weights are learnable
parameters of a CNN, and its value keeps updating as the model learns from training data.
Equation (2) defines convolution, where f (x,y) is a digital image, w(x,y) is a kernel, m, and n
define the kernel size [34].

(x, y) = f (x, y) ∗ w(x, y ) =
m

∑
t=−m

n

∑
h=−n

f (t, h)w(x− t, y− h) (2)

The image and kernel are convoluted to yield an output matrix g(x,y) with the exact
dimensions as the input image. An activation function converts the matrix into a feature
map at the output. The activation function in our model is a rectified linear function (ReLU).
This function returns M(x,y) the exact value of g(x,y) for all positive numbers in the output
matrix and 0 otherwise as indicated in (3) [35]

M(x, y) = max 〈0, g(x, y)〉 (3)

The max-pooling layers are used in conjunction with convolutional layers to reduce
the dimensions of the feature maps. This step is sometimes called down-sampling [35].
The max-pooling layer calculates the feature map’s maximum value for each patch. We
used max-pooling layers 2 × 2 in size, resulting in a 50% reduction in the feature map’s
dimensions. The feature maps obtained at Level 1 are fed to the next level (Level 2) and
follow the operation sequence until the final feature maps are available at Level 4.

All CNN-based classification models have a flatten layer available at the output
terminal to reshape the output matrix and make it suitable for the next stage [34,35]. The
spatial information from the features at level 4 is removed here and replaced with a channel
dimension. As a result, unique channels are formed for each of the retrieved feature
maps [36].
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(e) DNN Classifier

The last part of framework-2 is a binary DNN classifier to perform the classification
by exploring the features extracted by the CNN block. DNNs are a feedforward network in
which the data move from the input layer to the output via several hidden layers (Bengio
et al. 2009). DNN uses many artificial neurons to simulate how the human brain solves
problems. An artificial neuron has several inputs (dendrites), a processing unit, and an
output (axon), as shown in Figure 4. As depicted in Figure 4, input information (Xi)
and some weights (Wi) attached to each input will produce an output (Z) of 0 or 1. A
neuron triggers if the cumulative sum of the input-weight product exceeds a threshold and
produces ‘1’ at its output. The activation function performs the thresholding. The output of
one neuron propagates to the input of another layer through a node (or synapse) [37,38]

Figure 4. Basic Structure of a Neuron.

DNNs have multi-layered hierarchical structures with 1000 s of neurons. The number
of hidden layers in the network varies depending on the problem. Some problems only
require a single hidden layer, while others require multiple layers [39,40]. The DNN binary
classifier shown in Figure 5 has an input layer that brings in flattened feature maps to the
network, followed by two hidden layers to derive optimal mathematical functions that fit
feature maps to the target output. Finally, an output layer makes final predictions (binary)
based on the information received from the preceding hidden layers.

Figure 5. Structure of DNN binary classifier.

(f) Building the ML Models

The three ML models used in framework-1 (BCT, DJ, and DSVM) are easy-to-use
built-in models available in Microsoft AZURE Machine Learning Studio (https://studio.
azureml.net, accessed on 5 December 2021) and do not require any configuration settings.
However, the CNN and DNN models used in framework-2 are handcrafted, and we tried
various configurations to choose the optimal model.

The dataset used to train a DNN-based ML model significantly impacts its gener-
alization. A small dataset makes the algorithm learn quickly during training; however,

https://studio.azureml.net
https://studio.azureml.net
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the model cannot accurately predict unseen test data because of high variance in the test
data. This situation is also called the overfitting of the model. DNN models become more
skilled and capable of making accurate predictions with the help of a large dataset. Image
augmentation is a commonly used method to populate a small dataset artificially. This
technique creates duplicates of every image in the dataset by applying one or more of the
following operations: rotation, translation, and cropping. By incorporating augmentation
into the training dataset, the model obtains variants of images in the original dataset to
learn from and make predictions with higher accuracy [41–43].

Our research used two types of datasets: the original dataset, which contains 547
ETSP images, and a large synthetic dataset, which was artificially created by applying
augmentations to the images in the original dataset. The details of the dataset are provided
in Table 2.

Table 2. Details of the datasets used in our study.

Dataset Total Number
of Images

Number of
TD. Images

Number of
ASD. Images

Size of the
Image

Dataset I (Original) 547 328 219 640 × 480 × 3

Dataset II
(Augmented dataset) 2566 1519 1041 640 × 480 × 3

We use the metrics Sensitivity, Specificity, Positive Prediction Value (PPV), Negative
Prediction Value (NPV), and Area Under the Receiver Operating Characteristics (AUC) as
given in Equations (4)–(7) to evaluate the models’ performance. Sensitivity is a metric that
measures how frequently a test correctly generates a positive result for people who have the
disease. Specificity is the ability of a test to correctly generate a negative result for people
who do not have the condition. The PPV indicates the likelihood of having the disease after
a positive test result; it is also called precision. The NPV shows the possibility of not having
the condition after a negative test result. The Receiver Operating Characteristics (ROC)
curve plots the True Positive Rate (TPR) against the False Positive Rate (FPR) at different
threshold values. The AUC is a better estimate of accuracy because it summarizes the curve
that measures a classifier’s ability to distinguish between classes [44].

Sensitivity =
True Positives
Total Positives

(4)

Specificity =
True Negatives
Total Negatives

(5)

PPV =
True Positives

Total Positives + False Postives
(6)

NPV =
True Negatives

Total Negatives + False Negatives
(7)

Cross-validating the model scores is critical to avoid overfitting in ML models when
dealing with a small dataset. K-fold cross-validation (KCV) is a widely used method that
divides the dataset into k folds to test the model ‘k’ times using ‘k’ independent training
and test sets. The average of the ‘k’ test scores is the cross-validation score [45].

As previously stated, we used Microsoft AZURE Machine Learning Classic to create
framework-1 models. On Google Collaboratory, we built a DNN-based classifier [46]. The
goal of the Microsoft AZURE and Google Collaboratory is to promote machine learning
research. The Collaboratory is a cloud-based Jupyter notebook environment that is free
to use. Microsoft’s Machine Learning Studio (classic) is a GUI-based machine learning
development platform for building ML models quickly. We used a Dell XPS 15 9500 laptop
with a 2.60 GHz Intel(R) Core (TM) i7-10750H CPU, 6 Cores, and 12 Logical Processors
as a local system. We used the following hyperparameters as default for both models:
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model loss—binary cross-entropy, number of training epoch-50: the batch size—32, and the
learning rate—0.001 with an ‘Adam’ optimizer.

3.3. Experimentations and Results

We began our research with the original dataset, which, as previously stated, contained
547 ETSP images, each of size 640× 480× 3. To attain our objective, we planned and carried
out a series of systematic and logical steps of research experiments that are described below
in steps:

Step 1: Conversion of ETSP images to grayscale images and resizing

Using the given Equation (1) in the Section 3, we converted these original images
(RGB) to grayscale images of size 640 × 480. We treated the three color components equally
by multiplying each by a factor of 1/3. Figure 6 shows Red, Green, and Blue components
of the original image and the converted resulting grayscale image. To reduce the workload
on the computer, we then resize the image to 100 × 100. We flattened the image array of
size 100 × 100 into a dimension of 10,000 × 1 and appended class labels (0 for TD and 1
for ASD) to it. We repeated the above steps for all dataset images and stacked them into a
547 × 10,001 array before feeding them to the next stage. Note that the extra column in the
stacked array stores the class labels as either 0 or 1.

Figure 6. Three components (Red, Green, and Blue) of the ETSP and Grayscale Image.

Step 2: Application of PCA to Extract Features

The next step was to apply PCA on the stacked data to extract features. As input,
PCA receives image data with a size of 547 × 10,001. The PCA identified 500 principal
components for the given data, as shown in Figure 7, which serves as features for training
the ML models.
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Figure 7. PCA analysis on original dataset.

Step 3: Creation of ML Model

We carried out the following procedures to create the ML models. We started by
splitting the image data (547 × 10,000) into two parts: 70%:30%, with 382 images serving
as the training set and 165 images acting as the model’s test set. We experimented with
various classical ML algorithms to find the best algorithm for the given dataset. Table 3
shows the cross-validated (fivefold) scores of the top three best-performing models: DSVM,
DJ, and BDT.

Table 3. Performance of the ML algorithms’ tests on the original dataset.

Dataset Model %Sensitivity %Specificity %PPV %NPV %AUC

Original

DSVM 44.06 55.55 52.0 47.61 51.50

DJ 55.93 64.80 63.46 57.37 60.40

BDT 64.40 57.40 62.20 59.60 67.60

DNN 78.57 75.47 87.12 62.50 78.00

Results in Table 3 show that the BDT algorithm performed better than the others, with
a percent AUC 67.60%, a sensitivity of 64.4%, specificity 57.40%, NPV, and %PPV 59.60%
(cross-validated with k = 5). Since the outcome did not appear promising, we decided to
proceed with the DNN model.

Step 4: Design of DNN Models

At first, we built a DNN model with two convolution layers of 16 and 32, kernel size
3 × 3, pooling layer of size 2 × 2, flatten layer followed by one dense layer of size 128 and a
sigmoid output layer. We continued modifying configurations of the above model, such as
various combinations of convolutional, pooling, and dense layers until we found an optimal
model. The optimal model has the following configurations as given in Table 4. The CNN
module generated 4608 features from each pre-processed ETSP image (grayscale images
of size 100 × 100) as input to help the classifier accurately predict ASD. Four convolution
layers (16, 32, 64, and 128, with kernels of 3 × 3) with alternate max-pooling layers of size
2 × 2 and a flatten layer, the binary classifier with two dense layers (256 and 128) and one
output layer with a binary sigmoid activation function.
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Table 4. Configuration of the best performing DNN.

Layer ID Type/Function Dimensions
(Number of Kernel and Size)

Dimensions of
Output Feature

Level 1
2D convolution
Activation-ReLU 16, 3 × 3 16, 100 × 100

Max pooling 16, 2 × 2 16, 50 × 50

Level 2
2D convolution
Activation-ReLU 32, 3 × 3 32, 50 × 50

Max pooling 32, 2 × 2 32, 25 × 25

Level 3
2D convolution
Activation-ReLU 64, 3 × 3 64, 25 × 25

Max pooling 64, 2 × 2 64, 12 × 12

Level 4
2D convolution
Activation-ReLU 128, 3 × 3 128, 12 × 12

Max pooling 128, 2 × 2 128, 6 × 6

Flatten Layer - 1 × 4608

Dense Layer 1
Dense Layer 2

256
128 -

Output Layer
(Sigmoid Activation) 1 -

We began the model’s training (70:30 data split) with default hyper-parameter settings
(batch size: 32, learning rate: 0.01, number training epoch: 25), then fine-tuned the hyper-
parameters until the model produced the highest score. The model achieved a mean AUC
of 78% (cross-validated with k = 5) with sensitivity 78.57%, specificity 75.47%, PPV 87.12%,
and NPV 62.5%. The corresponding hyperparameters were batch size: 16, Adam optimizer
with a learning rate of 0.001, and the number of epochs: 50. Figure 8 shows the ROC curves
CNN model for fivefold cross-validation; the CNN model achieved a relatively higher
score on the original dataset.

Figure 8. Cross-validated ROC on the original dataset.
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Step 5: Creation of artificially populated more extensive dataset

To attain higher performance, DNNs need a large amount of training data. Image
augmentation is the most common but effective way to populate a small dataset. As
explained in the Section 3, Image augmentation techniques apply one or more of the
following operations such as shifts, zooms, random rotations, and flips on each of the
images in the original dataset. Although the augmented images are a copy of the images in
the original dataset, the orientation applied to them ensures that they never seem the same.
We rotated each image in the original dataset by 45, 60, 90, and 180 degrees, resulting in a
synthetic dataset of 2566 RGB images consisting of 1047 ASD and 1519 TDs. Figure 9 shows
three augmented images generated by rotating a sample image in the original dataset
at 45, 60, and 180 degrees. In the same order as the previous case, we continued the
experiments on the synthetic dataset using the classic ML models (DJ, DSVM, and BDT)
and the DNN model.

Figure 9. Three variants (b–d) of a sample image (a) in the original dataset generated by augmentation.

Step 6: Experimentations on the augmented dataset

When we applied PCA on the augmented image data stack of size 2566 × 10,000,
as demonstrated in Figure 10, the number of features reduced to 1750, resulting in an
image array of 2566 × 1750. Table 5 shows the results of the three classic models on the
augmented dataset. With this dataset, all models exhibited significant improvements in
overall performance. Amon the classical models, BDT achieved the highest AUC of 74.60%,
with a sensitivity of 49.80% and specificity of 86.5%. This model also reported a PPV of
70.56% and an NPV of 72.66% (all scores cross-validated with k = 5).
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Figure 10. PCA analysis on the augmented dataset.

Table 5. Performance of the ML algorithms’ tests on the augmented dataset.

Dataset Model %Sensitivity %Specificity %PPV %NPV %AUC

Original

DSVM 43.90 72.80 51.51 66.60 61.60

DJ 38.28 84.15 61.05 67.75 66.80

BDT 49.80 86.50 70.56 72.66 74.60

DNN 93.28 91.38 94.46 90.06 97.00

When we trained the DNN model using the augmented dataset and performed the
tests, this model achieved outstanding performance with AUC 97.0%, sensitivity: 93.28%,
specificity: 91.38%, PPV 94.46%, and NPV 90.06 (all scores cross-validated with k = 5) as
indicated in Table 5. Figure 11 shows the cross-validated ROC curve of the CNN model on
the augmented dataset.

Figure 11. Cross-validated ROC on the augmented dataset using the CNN model.

As a final step, we prepared a mini-batch dataset that encapsulated only single trials
from each of 59 participants and evaluated the DNN’s (the best performing model) accuracy.
This dataset contains only 59 ETSP images, as the name implies. We used the leave-one-
out cross-validation (LOOCV) technique to train and validate the model. LOOCV is
recommended over k-fold cross-validation; in this method, one randomly selected ETSP
image from the minibatch of 59 serves as the test image, while the rest of the photos serve
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as the training set. The procedure is repeated 59 times, with each run having 50 epochs
with a batch size of 16. The resulting scores are in Table 6.

Table 6. Perfomance of the DNN’s tests on the mini batch dataset.

Dataset Model %Sensitivity %Specificity %PPV %NPV %AUC

Mini batch DNN 58.62 86.67 80.95 64.00 72.88

4. Discussion

Diagnosis of ASD is still a challenging task for clinicians due to heterogeneity in its
symptoms. Current methods of ASD diagnosis are based on analysis of a child’s behavior,
language skills, cognitive functioning at different ages, and a source of information gathered
from parents or caretakers. As previously stated, these procedures are highly subjective,
leading to misdiagnoses or missed diagnoses. Therefore, identifying an objective biomarker
to assist clinicians with a quick and reliable screening of ASD would substantially impact
current diagnosis practices. As mentioned previously, this study looked into the feasibility
of using eye-tracking data to accurately identify ASD traits in children using optimal ML
algorithms. Hence, we evaluated the performance of three classical algorithms and a DNN
algorithm using the original and augmented ETSP images. The classical ones were ready-
to-use models with minimal settings, making them lightweight and suited for low-power
computers. DNN models, on the other hand, are handcrafted models that necessitate
high-performance computers with a GPU. We wired multiple DNNs by modifying the
CNN module’s kernel settings (size and counts) and the number of deep layers and dropout
layers in the DNN module to obtain the best results.

We found that the BDT model showed a better score than the DSVM and DJ models
on the original dataset. The BDT model could discriminate ASD from TD with a mean
AUC of 67.6%, detecting 64.40% of true positive cases and 57.40% of true negative cases.
However, the findings did not look promising; we reasoned that the retrieved features
might not support the model to distinguish between the two classes. In comparison, the
DNN model achieved a mean AUC of 78.6%, successfully detected 78.57% true positive
cases and 75.47% of true negative cases. The CNN-based feature extractors excelled
at extracting subtle features from ETSP images, resulting in more precise classification.
However, we found that all models were overfitting, which could be due to two factors:
model complexity or the limited size of the dataset. We hypothesized that a larger dataset
would yield better results from the same models, so we utilized data augmentation to
populate the original dataset and reran the experiments. The resulting scores show that the
AUC of the classical and DNN models improved significantly, with the BDT showing a 10%
improvement (AUC 74.6%), and the DNN’s improvement was 23.4% (AUC 97.00%), higher
than the performance (AUC: 90%) reported in the research work on the same dataset with
augmentation [24].

The discrepancy between the results using original and augmented datasets may be
due to possible data contamination as similar replicates are entered into the training set,
as seen in the testing dataset. To mitigate the above issue, we formed a mini dataset that
accommodated only single trials from 59 participants, and we continued experiments using
the DNN model. The results show that the model detected 26 true negative cases out of the
30, scoring a specificity of 86.67%, 17 true positive cases out of the 29, offering sensitivity of
58.62%, NPV 64%, and PPV 80.95% with an overall accuracy of 72.88%. The result appears
to be promising using such a small dataset. For an extensive dataset containing single trials
from thousands of individuals, we predict the DNN model to deliver a superior score.

The above findings support the hypothesis that ET could be a potential biomarker for
ASD screening. Using the proposed DNN model, we can expedite a reliable outcome if ET
data are valid and authentic. Furthermore, unlike contemporary questionnaire-based ASD
screening tools such as QCHAT and M-CHAT, which are prone to subjectivity, screening by
ET data provides an objective assessment because it does not require any manual input.
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According to research studies [47–50], ASD symptoms are likely to be reflected on ET data
in children as young as 6 to 24 months of age, well before ASD-related behavioral traits
manifest. So, if we can record ET data accurately from toddlers, we can discover early
indicators of ASD in them using the proposed DNN model.

Often, clinicians find it difficult and time-consuming to diagnose ASD because of the
heterogeneity in the ASD symptoms. Due to heterogeneity, distinct variations in ASD-
relevant symptoms exist within a subclass of ASD [51]. Unfortunately, there is no reliable
method for quantifying autism heterogeneity in children that helps plan for effective
interventions targeted to small groups rather than a broad range. However, studies have
found a strong link between ASD heterogeneity and ET data complexity [52]. Therefore, by
leveraging the capabilities of complex CNN-based algorithms, ML models could quantify
heterogeneities in ASD symptoms, allowing for accurate ASD severity grading using
ET data.

4.1. Clinical Implications

Rather than being a diagnostic tool, the research model we proposed in this work is
meant to be used for ASD screening using ET data. This methodology would improve the
efficacy of current ASD screening methods while simplifying the diagnosing procedure.
Furthermore, utilizing the suggested DNN model with ET data, a screening test takes less
than a second. With the support of a comprehensive and reliable ETSP image dataset, we
could identify autism with high accuracy even at the infancy stage with needed changes in
the model’s anatomy. Further, ASD screening using ET data is subjectivity-free, making it
more accurate and reliable than manual screening methods. Finally, a mobile app with an
incorporated DNN-based ASD classifier and an extensive ET dataset of children aged 6 to
24 months may assist parents in independently screening their toddlers for ASD using a
mobile device.

4.2. Limitations

Obtaining an extensive dataset representing the complete spectrum of ASD symptoms
was the most challenging task in our study. A few open-access ET datasets are available;
however, they combine multiple ETSP images from a small set of participants rather than a
single trial from a large group, making them unsuitable for reliable ASD screening.

Furthermore, the quality and consistency of the training data determine the accuracy
of the proposed ASD screening tool. Hence, the clinician must ensure that the child is
staring at the eye tracker throughout the trials and that the recording environment is free
from any distractions that may impact the child’s attention.

We would like to investigate the usability of electrooculogram (EOG) to predict autism
in children using a machine learning algorithm in our future work.

5. Conclusions

Using the eye-tracking scan path image dataset, we tested four different machine
learning algorithms to identify an accurate model for detecting ASD. Using the original
dataset and an extended dataset created through augmentation, we trained three traditional
ML algorithms and one DNN-based algorithm. Experimental results indicate that the
conventional algorithms were found ineffective for this dataset. The DNN-based model
outperformed the state-of-the-art models published in recent days. The DNN-based model
achieved a cross-validated AUC of 78% on the original dataset, 97% when tested on the
augmented dataset. The DNN model scored an accuracy of 72.88% for the mini-batch
dataset with only 59 individual trials. Experimental results strongly suggest that using
ETSP images and the proposed DNN model, a quick, accurate, and reliable diagnosis of
ASD can be performed if the outcomes clinically correlate with results of other commonly
used ASD screening tools.
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