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Abstract

The research paper investigates the prediction capability of the artificial neural network for weld quality assessment 
from the captured voltage signals in a gas metal arc welding process. The bead-on-plate welds and v-groove welds were 
made on SA 516 grade 70 material by altering different parameters such as stickout distance, gas flow rate and travel 
speed. The voltage signals of each weld were captured using a data acquisition system having 8000 Hz data acquisition 
rate. The descriptive statistics of the voltage data such as mean, standard error, median, mode, standard deviation, sam-
ple variance, kurtosis, skewness, minimum and maximum corresponding to bead-on-plate welds and v-groove welds 
were used for training and testing the neural network respectively. The quality of the weld was assessed by the visual 
inspection, and from control charts plotted using voltage data. Overall classification accuracy of 94.7% was achieved in 
the training process. The feed-forward back propagation neural network predicted the quality of test v-groove welds 
accurately with a 90.9% prediction rate. The results proved that the developed method is promising for the immediate 
and early prediction of the weld quality.

Keywords Weld quality · Artificial neural network · Fast-forward back propagation · Welding voltage

1 Introduction

Gas metal arc welding (GMAW) process is widely chosen 
for joining thick parts due to their inherent ability of high 
deposition rate. The quality of the weld is a predominant 
factor in providing strength to the final structure. The pres-
ence of a defect is not expected in the welding process 
due to their ability to degrade the joint strength. Any fail-
ure in determining the defects during the manufacturing 
process or service inspection could cause catastrophic 
failure without any warning at operating conditions. The 
welding parameters have a crucial role in the production 
of quality defect-free weld joints. Commonly observed 

weld defects in gas metal arc welding are burnthrough, 
lack of fusion, undercutting, porosity, voids, spatters and 
whiskers. Regular inspection is advised for equipment, 
such as pressure vessel, boilers, steam generators, etc., 
which operate at high pressure and temperature. For the 
same reason, novel methodologies for failure prevention 
are encouraged in the present industrial practices. There-
fore, owing to vital importance, gas metal arc welding of 
SA 516 material, which is widely used in pressure vessels 
and boilers, and the scope of the artificial neural network 
for the identification of the weld quality are experimentally 
evaluated in the current research.
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Potential innovations for real-time monitoring were 
proposed in the past to evaluate the quality of the weld in 
the last decade. The extracted information from the weld-
ing sound, voltage signals, current signals, power, weld-
pool image, arc spectrum intensity correlates with welding 
quality [1]. Many methodologies were suggested to detect 
faults and weld quality. It was found that the Mahalanobis 
distance calculated from normally distributed welding cur-
rent and voltage values was sensitive to defects. The weld-
ing quality tester (WQT), developed based on Mahalano-
bis distance technique, was successful in quantifying the 
welding quality [2]. The cracks embedded in the material 
will affect the mechanical characteristics of the material 
[3–6]. The imperfect fusion and splash in a resistance spot 
welding can be detected as a part of a quality assessment 
by monitoring the parameters such as voltage, current, 
electrode displacement and electrode pressure [7]. An 
automated vision-based inspection system with the aid of 
image processing technique was found to detect the pres-
ence and position of the undercut defect in a shell-tube 
weld [8]. The weld image contains geometrical and tex-
tural features. The welding quality was determined from 
the weighted weld strength, elongation, bending angle 
and impact energy. The back propagation neural network 
model based on welding quality and weld image was 
established to monitor the welding quality instantly [9]. 
For the case of resistance spot welding, the current param-
eter has a predominant influence in the nugget size and 
the quality of the weld. The resistance to the current has 
a remarkable role in all the resistance welding processes. 
It is known that the overall resistance decreases with the 
increase in the current value; therefore, dynamic resist-
ance variation during the process is expected to reveal the 
characteristics of the weld quality. The back-propagation 
neural network was found to be more reliable than the 
multiple linear regression for monitoring welds [10]. The 
mean temperature, strain and strain rate were found out 
at the reference nodes selected while simulating the linear 
friction welding (LFW) performed using the parameters 
such as frequency, pressure, amplitude and time. The three 
outcomes and pressure were fed to the neural network 
as inputs to classify the condition of the weld. The results 
proved the neural network considered to be effective in 
predicting the occurrence of solid bonding [11]. In fact, the 
welding techniques have to be chosen carefully to meet 
the operating conditions and requirements. Laser beam 
welding with optimized parameters was found to impart 
corrosion resistance compared to gas metal arc welding 
using the same material [12]. The defects in a weldment 
affects the mechanical and metallurgical characteristics 
irrespective of the welding techniques [13, 14]. The heat 
distributed across the weld affects the fracture toughness. 
The cracks present in the parent metal or weld region 

usually grow due to the applied load [15–17]. Therefore, 
there is a vast scope for further exploring the methodolo-
gies using any potential sources for weld inspection.

The welding voltage is an important parameter in 
many of the welding processes. The electrode voltage 
in small-scale resistance spot welding which correlates 
with welding current, dynamic resistance and nugget 
formation can be used effectively for investigating the 
weld quality of titanium welds. The voltage curve plot-
ted for each of the welding processes for definite elec-
trode load, or welding current has been divided into 
four stages. The Generalized regression neural network 
(GRNN) model with extracted inputs, such as end volt-
age of each stage, time, period, variation of the voltage, 
and mean voltage change rate, was found to be useful 
in determining the failure load and level of weld quality 
[18]. Welding voltage and light signals can be referred 
to identify the stages in the droplet transfer mode due 
to their superior capabilities. For example, welding volt-
age is more reliable and efficient than light emissions in 
distinguishing the welding detachments during stream-
ing, spray, globular modes and at peak or background 
current detachments [19]. The voltage waveforms are 
found to be more significant in the process description 
and the assessment of arc stability in shielded electrode 
welding process [20]. The investigation for the prediction 
of the weld quality in a pulsed metal inert gas welding 
using radial basis function network and back propagation 
neural network indicated that the statistical parameters 
of welding parameters are the most significant input 
data; having a major impact compared to the welding 
parameters alone [21]. The control chart and probabil-
ity density distribution plotted using the voltage values 
can be deployed for finding the presence of the porosity 
and location. The voltage-based control chart is efficient 
enough to detect internal minute porosities. The voltage 
variation upon arc disturbance is the underlying princi-
ple for defect detection [22, 23]. The linear discriminant 
analysis with universal predictor group compromising 
voltage, wire feed speed, and the power spectral density 
components of arc current at 0 Hz and between 20 to 
40 Hz predicted the weld quality based on the presence 
of the porosity accurately [24]. Research with different 
outlooks has been conducted in the past to determine 
the effect of process parameters especially current and 
voltage upon arc disturbances. Some of the statistical 
parameters of current and voltage are found to have 
significant variations in the regions having large holes 
made in the welding direction intentionally. A monitoring 
system based on control charts from the voltage proved 
to have 100% identification rate for the normal condition 
and 95% identification rate for the abnormal condition. 
C.S Wu et al. [25] found out that the statistical parameters 
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such as mean, coefficient of variation, standard devia-
tion and kurtosis of welding voltage; mean, kurtosis and 
coefficient of variation of welding current considerably 
changed during the process disturbance. These consid-
erable changes in the characteristic variable during the 
arc disturbance motivated to choose the whole statistical 
description of the welding voltage for the present study.

Several intelligent models with high computational 
ability were introduced in the past years for operations 
such as classification, optimization, pattern recognition, 
clustering, and fitting. Artificial intelligence, being the 
research interest in the area of robotics nowadays, has 
a huge impact on equipping machines with perception. 
The machine learning algorithms were depended widely 
for the prediction of the response variable in the various 
multidisciplinary analysis. The extraction of useful infor-
mation from raw data is difficult without proper method-
ology and vision. To succeed in data collection, mining 
algorithms develop a model following 3 stages. In the 
first stage, the algorithms search for any specific trend or 
pattern. Then, the second stage defines the parameters 
that will be utilized based on the results obtained from the 
first stage. The final stage extracts useful information by 
applying the defined parameters to the entire set of data. 
In many of the studies, the parameters of the manufactur-
ing processes were independent variables that were used 
for training the algorithms. The ultimate tensile strength 
of the friction stir welded joints were predicted from the 
fed parameters such as spindle speed, plunge force, and 
welding speed [26]. The power, focal diameter, and radia-
tion time of the thermal-based process that used Gauss-
ian heat source were sufficient to determine the unknown 
heat affected zone and temperature using hybrid genetic 
algorithm-artificial neural network (GA-ANN) model [27]. 
In a gas metal arc welding process with CMT metal trans-
fer mode, the bead characteristics such as bead width, 
bead height, penetration depth, and dilution area were 
predicted using the welding speed, peak welding current 
and heat input [28]. In many of the experiments, the error 
associated with the artificial neural network was less com-
pared to other models, although it depends on the appli-
cation and the data associated with. The study compar-
ing the artificial neural network and multiple regression 
analysis for predicting the heat affected zone and bead 
dimensions from altered wire feed rate, stick-out distance, 
and transverse speed proved to have better accuracy for 
the former model [29]. The validation of the predicted val-
ues is necessary for checking the adequacy of the model. 
Experimental, numerical, and analytical techniques are 
commonly preferred for the validation of the developed 
models using machine learning algorithms. The data min-
ing algorithms were integral parts of artificial intelligent 
monitoring systems.

Data mining algorithms were used previously for fault 
analysis applicable to various applications. Data analysis 
using machine learning algorithms has been effectively 
conducted using data collected from welding voltage, 
welding current, radiographic films images, ultrasonic 
images, infrared thermal images, acoustic data, 3D weld 
image, etc. A table showing the accuracy achieved in 
these research investigations are given in Table 1. A range 
of accuracy from 62.5 to 97.2% is observed for monitoring 
the weld quality and classification of the defects using 
several data mining algorithms. According to reported lit-
erature, accuracy attained solely by neural networks using 
different data sources from 78.9% onwards are satisfac-
tory. However, high classification accuracy such as 97.2% 
and 95% are advantageous compared to those falling in 
the range between 78.9 and 90% as reported in Table 1.

There are several learning methods and variants for 
developing neural network models. Gradient descent, 
scaled conjugate gradient (SCG) and Levenberg–Mar-
quardt (LM) are some of well-known learning algorithms. 
Scaled conjugate algorithm is proven for fast supervised 
learning that needs no critical user- dependent param-
eters and less time [30, 31]. However in most of the several 
applications, LM is observed to be more efficient than SCG 
in terms of accuracy whereas, SCG requires less data pro-
cessing time [32, 33]. On the contrary, SCG is also found to 
be accurate for certain analysis conducted [34]. Therefore, 
the suitability of learning algorithms depends on the data-
set and other training parameters. A comparative study of 
learning algorithms in ANN in the field of weld quality 
inspection is very lacking. Henceforth, SCG is investigated 
in this current research as an initial evaluation.

The ANN developed by extracting the data from dif-
ferent sources were successfully used previously for 
predicting various responses. However, novel methods 
using ANN for determining the quality of the weld to 
replace the traditional non-destructive tests are rare. 
Therefore, the possibility of an ANN model using volt-
age information from the bead-on-plate trial welds for 
checking the weld quality of real joint (V-groove joint) 
is investigated in this research. Bead-on-plate trial welds 
are the welds performed over a plate with an intention to 
determine the appropriateness of the electrode on the 
base material and also to estimate the bead characteris-
tics corresponding to the set welding parameters. In real 
practice, bead-on-plate trials are followed by joint welds. 
This study is aimed to develop an ANN for predicting 
the quality of the weld joints from bead-on-plate weld-
ing trails. Therefore, the present research is unique in 
the area of fault analysis and can be easily implemented 
for a quick inspection. The model was concluded to be 
widely adaptable with less time consumption and better 
accuracy compared to non-destructive tests.
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2  Experimental procedure

The bead-on-plate and V-groove welds were conducted 
using Kuka KR 16 robot gas metal arc welding with Fronius 
(TPS 5000) powersource. The specimens were flat plates 
with 12 mm thickness and v-grooved plates with 6 mm 
thickness made of SA 516 grade 70 material, which is used 
widely in pressure vessels. The shielding gas required for 
GMAW comprised the mixture of Argon and Carbon Diox-
ide gas with 80:20 proportion. The specimen was held 
firmly using a rigid fixture. The data acquisition system 
with a hall effect sensor and low pass filter were connected 
to acquire welding current and welding voltage respec-
tively; the data acquisition rate was 8 kHz. The current and 
voltage data were recorded for each of the welds.

The stickout distance (SD), travel speed (TS), and gas 
flow rate (GR) were altered in each trial for examining the 
weld quality upon different welding parameters. The weld 
quality of the bead-on-plate trials was assessed by visual 
inspection and the control chart. Welding voltage-based 
control charts are proven to distinguish the welding qual-
ity. Three consecutive sample points outside the control 
limit indicate the arc instability and presence of poros-
ity. The initial and the final sample point are insignificant 
and thereby can be avoided for quality inspection [13]. 

Control charts are plotted with a subgroup size of 4650 
using Minitab software.

The quality of the welding that has been categorized 
as defect-free and defected weld is the output fed to the 
neural network. The input data to the neural network 
was tabulated from the statistical description of the volt-
age data (mean, standard error, median, mode, standard 
deviation, sample variance, kurtosis, skewness, minimum 
and maximum) for the bead-on-plate welds (19 different 
welds). The bead-on-plate welds conducted are shown 
in Fig. 1. The corresponding set of parameters, input and 
output data for training are given in Table 2. The 70%, 15% 
and 15% of the total input data were trained (13 samples), 
validated (3 samples) and tested (3 samples). When 70% of 
the data are used for training, the next 15% are used pri-
marily for validating that the network is generalizing and 
terminating the training before overfitting. The remaining 
15% is used for testing the network. The network has been 
set for testing after obtaining the perfect fit in the train-
ing process using bead-on-plate trial welds. For testing 
of ANN, twenty-two sets of V-groove plates were welded 
and the prediction capability of the network on quality 
was investigated. The test data comprises the voltage sta-
tistical description of these twenty-two v-groove welds. 
Twenty combinations of parameters for V-groove welds 

Table 1  Accuracy of data mining algorithms in welding fault analysis from literature

Algorithm Data source Objective Welding process Accuracy (%)

Fuzzy Kohonen clustering 
network

Welding current Development of a real-time 
monitoring system based 
on current transients.

Gas metal arc welding [35] 90

Decision tree Current Classification of weld defects Gas metal arc welding [36] 94.44

Voltage 96.83

Naïve Bayes Acoustic signals Monitoring of the weld 
quality

Shielded metal arc welding 
[37]

62.5

Support Vector Machines 67.96

Neural Network 82.76

J48 Acoustic signals Classification of weld defects Shielded metal arc welding 
[38]

70.78

Random Forest 88.69

Neural Network [39] Radiographic image Classification of weld defects Not specified 80

Adaptive network based 
fuzzy inference system

Radiographic image Classification of weld defects Not specified 82.6

Artificial Neural Network [40] 78.9

Artificial Neural Network [41] Magnetic Flux Leakage To classify defected and non-
defected pipe welds

Not specified 94.2

Cascade Feed Forward Back 
Propagation Network [42]

Ultrasonic image Classification of weld defects Not specified 85.2

Random Forest [43] Dynamic resistance signals Classification according to 
weld quality

Resistance spot welding 93.6

Support Vector Machine [44] 3D shape from SFS algorithm Detection of weld quality Gas metal arc welding 94

Back propagation neural 
network [45]

Weld image from CCD camera Classification of defects Gas metal arc welding 95

Artificial neural network [46] Parameters Fault detection of welds Remote laser welding 97.2
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are obtained from central composite design (3 factor and 
2 level system) using Minitab software. High and low level 
of three parameters are given in Table 3 and the v-groove 
welds for the experimental runs with a different combina-
tion of parameters are listed in Table 4. Among twenty set 
of parameters, a combination of parameters—SD: 20 mm; 
TS: 50 cm/min; GR: 12 lpm are repeated six times according 
to central composite design. To investigate the influence 
of defect on the arc stability, four weld lines correspond-
ing to parameters (SD: 20 mm; TS: 50 cm/min; GR: 12 lpm) 
and additional two welds with the same parameters have 
been applied with pinches of grease. These welds were 
observed to have porosities. The input and output of the 
test data is provided in Table 5. The predicted results and 
the actual weld quality were compared for determining 
the neural network identification rate. A representative 
workflow of the experimentation is shown in Fig. 2.

3  Results and discussions

The model with 10 inputs, one hidden layer with 10 neu-
rons, an output layer with one neuron and one output 
was fixed by optimizing the classification accuracy in the 
confusion matrix for the prediction of weld quality. The 
functions such as ‘trainscg’ as a training function, tan-sig-
moid, and softmax in the hidden layer and output layer 

respectively are used for developing the two-layered 
feed-forward network. The schematic representation of 
the developed back propagation network (BPN) model is 
shown in Fig. 3. All the ten inputs to the neural network 
were found in literature to have an effect on the weld qual-
ity. A monitoring system with 95% identification rate to 
detect defected welds was suggested by Wu et al. [25] in 
which standard deviation, mean, kurtosis and coefficient 
of variance of voltage as well as mean, kurtosis and coef-
ficient of variance of current were concluded to have a sig-
nificant effect. This finding is validated in [23] stating that 
the standard deviation and mean of voltage in a control 
chart vary sensitively if there are imperfections like porosi-
ties in the weld. A main reason for this behaviour is due to 
the high sensitivity of current and voltage to the welding 
arc fluctuations. In gas metal arc welding with short arc 
transfer mode, an increase in the voltage was observed 
in voltage transients during arc disturbances. This proves 
the necessity of statistical parameter—‘Maximum’ in our 
study. Probability density distribution plotted using volt-
age and current signals were verified to have a unique 
pattern when burnthrough and porosity were artificially 
induced in gas metal arc welded joints [47]. All these stud-
ies evidently ascertain that the voltage variations in the 
powersource contain relevant information regarding the 
quality of the joints prepared using gas metal arc weld-
ing process. Therefore, 10 statistical parameters of voltage 

Fig. 1  Bead-on-plate trial 
welds from 1 to 19 using gas 
metal arc welding process
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data that are incorporated in this investigation are highly 
relevant for developing neural network model.

The training performance of the neural network model is 
shown in Fig. 4. The best validation performance is obtained 
at the 6th epoch having cross-entropy value equals 0.28854. 
The epoch is defined as the one forward pass and one back-
ward pass of the entire training examples. It is affirmed 
that the cross-entropy value lying between  101 and  100 is 

acceptable for the training of the data [48]. In fact, the epoch 
is the measure of a number of times that the complete train-
ing vectors are used to update the weights. There are vari-
ous criteria for terminating the training process. This process 
stops when the maximum number of epochs is completed; 
maximum time is exceeded; performance is cut down to 
the goal; performance gradient falls below minimum gra-
dient; moment exceeds the maximum moment, and when 
the validation performance increases with respect to last 
epoch continuously for more than the provided max_fail. 
Parameters for training scaled conjugate algorithm are given 
in Table 6. In this study, training of the input data was ceased 
when validation performance reached the max_fail. The 
cross-entropy of the training and testing are comparatively 
less than the validation at the 6th epoch. The validation 
process is used to avoid overfitting of the data. Validation 
accuracy of validation set has decreased continuously for 
six times after 6th epoch while the training accuracy was 
increased. This is an indication for the overfitting of the input 
data and is the reason for stopping the training process giv-
ing the best yield at 6th epoch. Therefore, weights leading 
to lowest cross-entropy at the sixth epoch is used for the 
neural network model. Achieved performance results herein 
are similar to a neural network developed for the purpose 
of predicting the welding parameters in which the training 
was also terminated with validation checks exceeding the 
limit [49].

The mean squared error and cross-entropy are mainly 
used to express the error between the calculated output and 
target output. The lower values of error are preferred for a 
better neural network model. However, the cross-entropy 
error is preferred over mean squared error for the classifi-
cation and prediction since it contains categorical output 
(either 0 or 1). The cross-entropy error function is math-
ematically expressed for the binary classification as given 
in Eq. 1. i.e., it measures the difference between two prob-
ability distributions corresponding to actual and predicted. 
The log function in the cross-entropy error function helps in 
mathematically estimating the closeness of the prediction. 
In this study, 0 categorically represents quality welds and 1 
as defected welds. Cross-entropy will be high if the predicted 
outcome is close to 1 but the actual outcome of the event 
is 0 and vice versa. This, in fact, represents the inaccuracy of 
the neural network model to predict the actual outcome. On 
the contrary, if actual and predicted outcome is the same or 
nearly close, it indicates the capability of the neural network 
model to predict the actual outcome accurately enhancing 
the identification rate.

where, y is the binary indicator or the actual outcome (0 
or 1), p is the predicted outcome.

(1)Cross−entropy = −(y log (p) + (1 − y) log (1 − p))

Table 3  High and low levels of parameters

Parameter Low High

Stick out distance (SD) 10 30

Gas flow rate (GR) 6 20

Travel speed (TS) 30 70

Table 4  Experimental runs (CCD) and V-groove welds

No. SD GR TS V-Groove welds
Weld Quality

1 10 6 30
Good quality

2 30 6 30
Porous weld

3 20 12 50
Good quality

4 36.8 12 50
Narrow bead 

width

5 10 6 70
Burn through

6 30 6 70
Porous weld

7 10 18 30
Good quality

8 10 18 70
Burn through

9 20 22.9 50
Good quality

10 20 1.9 30
Porous weld

11 30 18 30
Appreciable

quality

12 30 18 70
Narrow irregular 

bead width

13 20 12 50
Good quality

14 8 12 50
Good quality

15 20 12 83
Burn through

16 20 12 16.3
Excessive 

reinforcement

17 20 12 50
Porous weld

18 20 12 50
Porous weld

19 20 12 50
Porous weld

20 20 12 50
Porous weld

21 20 12 50
Porous weld

22 20 12 50
Porous weld
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The gradient and the validation check at each of the 
epochs are shown in Fig. 5. The gradient at the 12th epoch 
was 0.11375. The initial gradient assigned at the start of 
the training process was 1. It is evident from the distribu-
tion of the validation checks that the training of the data 
was stopped when the validation check was increased six 
consecutive times. The gradient decreased slightly from 
 100 to a lower value. Lower the gradient, higher is the 
expected prediction rate.

The error histogram and the confusion matrices after 
the training process are shown in Figs. 6 and 7. It is worth 
to note that all of the data fitting errors except one were 
symmetrical to zero. I.e., errors are between the limits 
(− 0.4569, 0.404). However, the developed network failed 
to categorize one training data completely as the error 
noticed was 0.7115 which is very close to 1. As the target 

data is assigned as 0 and 1 for the quality and defected 
welds respectively, the test error equals 0.7115 is high. In 
this case, the ANN identified the quality weld as a defective 
weld. But in reality, the target assigned for the respective 
test weld was 0 as it was categorized as quality defect-free 
on visual inspection and control chart. The test confusion 
matrix proves that only one training data is incorrectly 
classified and hence is the reason for obtaining compara-
tively high cross entropy for training compared to testing 
as depicted in Fig. 4. In the case of testing and validation 
processes, all the corresponding data were correctly classi-
fied, and none were misclassified as seen in the confusion 
matrices. This is the reason for the testing and validation 
error to lie close to zero and symmetrical in the error his-
togram. The zero error implies that the target data and 
output data are nearly equal.

Fig. 2  Workflow of the experi-
mental procedure
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The classification accuracy of the training, testing and 
validation are 92.3%, 100% and 100% respectively. But, the 
overall classification accuracy of the neural network model 
for the known input and output was 94.7% (18/19 × 100). 
The misclassification rate of the neural network model 
from the trained data was 5.3% which is very less. The 
sensitivity of the model to detect the defective welds was 
100% (5/5 × 100). The specificity of the model to detect 
the good quality welds was 92.85% (13/14 × 100). The 
precision of the model to detect the defective welds was 

Fig. 3  Schematic representation of the BPNN model with statistical description of voltage as input and quality as output

Fig. 4  Performance curve of the neural network

Table 6  Parameters used for training scaled conjugate algorithm

Maximum number of epochs 1000

Performance goal 0

Maximum time to train in seconds Infinity

Minimum performance gradient 1.00E−06

Maximum validation failures 6

Fig. 5  Gradient and validation checks at each of the epochs
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83.3% (5/6 × 100). The prevalence of the model is 26.31% 
(5/19 × 100). Higher the classification accuracy, higher will 
be the identification rate. Since overall accuracy achieved 
in this investigation is 94.7% which is comparatively 
closer to the best classification accuracy levels (Table 1), 
the results are found to be satisfactory for the developed 
model.

A few other data mining algorithms were also analyzed 
preliminarily with the same bead-on-trial dataset to com-
pare their classification accuracy with that of artificial neu-
ral network. Data mining algorithms such as decision tree, 
linear discriminant, logistic regression, quadratic support 
vector machine, cubic support vector machine, fine gauss-
ian support vector machine, fine K-nearest neighbours 
were investigated. The classification accuracies obtained 
using the above algorithms are listed in Table 7. It is evi-
dent that the classification accuracies of these algorithms 
were comparatively low compared to that of artificial neu-
ral network. Among these, highest classification accuracy 
obtained is only 73.7% whereas that for ANN is 94.7%. 

Fig. 6  Error histogram

Fig. 7  Confusion matrix after 
training the bead-on-voltage 
voltage data
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Henceforth, artificial neural network was selected as a 
best algorithm in this case for the weld quality inspection.

The whole purpose of training the developed model 
is to predict the quality of the weld from the fed data. 
However, the prediction capability with the testing data 
is assessed by comparing the known result with the pre-
dicted result. Quality of test v-groove joints is verified 
using visual inspection and control chart. Control charts 
were proved to identify defects and fluctuations in the arc 
stability. It has essentially two parts namely X-bar (Mean 
control chart) and S chart (standard deviation control 
chart) that are primarily used to reveal the variability of the 
process. Both of them have an upper control limit (UCL) 
and lower control limit (LCL). Control charts are plotted 
by categorizing the entire welding voltage data in such 
a way that each contains 4650 data. Mean and standard 
deviation of each of these 4650 data, hereafter called as 
sample points, are distributed in X-bar and S chart respec-
tively. The process is considered to be unstable if the sam-
ple points are outside across any of the control limits and 
stable if they are within the control limits. The mean line 
in the X-bar and S chart statistically estimates mean volt-
age in the powersource and their standard deviation. In 
this research, this tool has shown unique characteristic in 
distinguishing defected and defect-free welds. Therefore, 
three each control charts of defected welds and quality 
welds among 22 set of test data are shown in Figs. 8 and 9 
respectively. The voltage in the powersource and control 
chart were around 18.5 V corresponding to quality welds 
as in Fig. 9 indicating clearly that there are no voltage 
fluctuations. I.e., the estimated statistical mean voltage 
is close to set voltage in the powersource. On, the other 
hand, there was a rise in the voltage due to arc instability 
when porosities were created. Because of this fact, voltage 
has increased to more than 19 V owing to arc instability 
when porosities are formed as in Fig. 8. These extensive 
porosities were formed primarily due to inappropriate 
parameters. The lack of sufficient gas and higher stick-out-
distances are the reasons for the formation of the porosity. 

The higher stick-out-distance such as 30 mm and low 
gas flow rate of 1.9 lpm are inappropriate. Both of these 
extreme parameters reduce the shielding effect at the 
electrode deposition region causing atmospheric gases to 
be trapped in the weld region, leading to the formation of 
the porosity. For these reasons, the welds in Fig. 8a–c had 
porosities throughout the weld. The target data for these 
samples were assigned as 1 as shown in Table 4. But the 
control charts drawn for the defect-free v-groove welds 
(Fig. 9a–c) have their sample points inside the control lim-
its except one or two in X-Bar and S-Chart. The stability of 
the process is assured if all the sample points are within 
the upper and lower limits. The initial sample point out-
side the control limit may be due to the lack of gas at the 
beginning of the weld. At the same time, the subgroup at 
the end may have less than 4650 data and therefore the 
sample point can be outside the control limit. In addition, 
the standard deviation of the 18th subgroup in 9(a), an 8th 
subgroup in 9(b) and 10th subgroup in 9(c) are outside 
the control limit indicating the chances for arc instability. 
However, the lack of three consecutive sample points out-
side the control limits proves these respective welds (see 
Fig. 9) to be defect-free welds. No defects identified in the 
respective welds experimentally validated the results from 
control charts. Since the location of the sample points in 
the control chart within or across the control limit reveals 
the quality of the weld, one or two sample points outside 
the control limit give a hint to the welder for cross-check-
ing the welding parameters or welding conditions. This 
evidently proves that the welding voltage is sensitive to 
arc stability [47]. The arc disturbances have a major role in 
the creation of the defects. As the neural network model 
is investigated based on the voltage data, the control 
chart based on voltage is the most desirable to assign the 
desired or output target.

The confusion matrix after testing the test data is shown 
in Fig. 10. Twenty out of twenty-two test welds were cor-
rectly classified providing 90.9% classification accuracy. 
The misclassification accuracy is as low as 9.1%. It is worth 
to mention that the accuracy is satisfactory for a small 
data set. Compared to similar works as shown in Table 6, 
90.9% classification accuracy is satisfactory for predicting 
the quality of the weld. This proves that the training of 
the bead-on-plate trial welds is sufficient for testing the 
v-groove welds.

The discussed method has many advantages which 
can be implemented in the welding industry. Generally, 
welders perform welding trials on a flat plate rather than 
on the real joints to check several aspects. The right selec-
tion of the electrodes, finding the right combination of 
parameters, checking adhesion of the molten electrode to 
the base material, to visualize bead geometry at different 
parameters, to analyze the suitability of welding positions 

Table 7  Classification accuracy for algorithms using bead-on trial 
dataset

Data mining algorithms Classification 
accuracy (%)

Fine tree 63.20

Linear discriminant 68.40

Logistic regression 63.20

Quadratic SVM 68.40

Cubic SVM 73.70

Fine gaussian SVM 68.40

Fine KNN 68.40
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Fig. 8  Control chart of 
defected v-groove welds. a 
Stick out distance: 30; gas flow 
rate: 6; travel speed: 30. b Stick 
out distance: 30; gas flow rate: 
6; travel speed: 70. c Stick out 
distance: 20; gas flow rate: 1.9; 
travel speed: 30

a

b

c
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Fig. 9  Control chart of defect-
free v-groove welds. a Stick 
out distance: 10; gas flow rate: 
18; travel speed: 30. b Stick out 
distance: 20; gas flow rate: 12; 
travel speed: 50. c Stick out 
distance: 10; gas flow rate: 6; 
travel speed: 30

a

b

c
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are some of the interests to perform bead-on-plate trial 
welds before producing actual weld joints. In our study, 
data collected using the bead-on-plate trial welds are used 
for testing V-groove welds. Therefore, enormous data can 
be collected from the trials following the procedure pre-
scribed. Developed neural network and the approach are 
ideal for welders to set the optimum welding parameters 
for any material and geometry. Once the voltage from the 
powersource is captured using an appropriate data acqui-
sition system, the data can be fed to the developed ANN 
for distinguishing quality and defect-free welds. The pro-
cedure is easy to use and highly reliable. Compared to con-
ventional non-destructive tests, suggested ANN consumes 
less time and hence can be used for immediate estimation 
of the weld quality soon after the production of the weld 
joint. 90.9% accuracy rate of the proposed ANN developed 
with a small dataset is appreciable suiting for the current 
application. However, large data set after conducting the 
welding process extensively has to be prepared for better 
training and accuracy of the data. The suggested method, 
using ANN and acquired voltage data, are promising for 
the instantaneous inspection of the weld quality.

4  Conclusion

A voltage-based feed-forward back propagation net-
work was developed for instantaneous inspection of 
the v-groove joint weld quality by conducting bead-on-
plate trial welds using gas metal arc welding process. The 
effect of the three parameters; stick-out-distance, travel 

speed, and gas flow rate on weld quality was inspected 
using visual inspection and control charts. Classifiers 
such as decision tree, linear discriminant, logistic regres-
sion, quadratic support vector machine, cubic support 
vector machine, fine guassian support vector machine 
and fine K-nearest neighbours and artificial neural net-
work were investigated initially with the bead-on-trial 
dataset. The classification accuracy obtained were 63.2%, 
68.4%, 63.2%, 68.4%, 73.7%, 68.4%, 68.4% and 94.7% 
respectively. Therefore, artificial neural network was 
analyzed in the current study due to comparative high 
classification accuracy. The voltage data corresponding 
to the bead-on-plate and v-groove welds were selected 
for the training and testing process respectively. The 
training was terminated after reaching the validation 
fail for six consecutive times satisfying one of the stop-
ping criteria. Out of 19 total data fed to the network, 
only one was misclassified during the training process. 
The accuracy for individual training, validation and test-
ing obtained were 92.3%, 100% and 100% respectively. 
Thereby, the overall classification accuracy achieved was 
94.7%. There was no evidence for the over-fitting and 
under-fitting of the data during the training process. The 
network with 5.3% misclassification accuracy and suc-
cessful performance characteristics was set for testing 
the v-groove weld data. Out of twenty-two v-groove test 
data, twenty of them were correctly misclassified. Hence, 
the classification accuracy obtained for the testing data 
was 90.9%. The network presents a 9.1% misclassifica-
tion accuracy for the data presented and this value is 
attributed because of only two misclassifications out 
of the twenty-two set of data. Any misclassification will 
lead to a considerable drop in accuracy if the data is very 
less. Therefore, it is recommended in the future to train 
a large data set after conducting numerous welding tri-
als. However, the network is successful in distinguishing 
the weld quality condition of the v groove joints from 
bead-on-plate weld data. A comparative investigation 
of learning algorithms such as Levenberg–Marquardt, 
gradient descent and Bayesian regularization is in the 
future scope. The methodology using the artificial neural 
network and voltage data for each of the welds from the 
powersource is promising for a preliminary inspection of 
the weld quality condition.
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