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Abstract A shoreline is defined as the line of contact between
land and water surface. Shoreline extraction/mapping is critical
in many coastal zone applications such as safe navigation and
coastal environmental protection. Digitizing a feature such as
the coastline is a very tedious and time-consuming operation.
In this research shoreline mapping at a sub-pixel and pixel
levels was evaluated in the northern part of the coastal zone of
Egypt (Port Said). Three different image fusion techniques
have been used to merge two co-registered data, radar
(Radarsat) and optical (Landsat), to improve the classification
accuracy. Spatial, spectral, and radiometric qualities of the
fused images have been evaluated. The resulted three fused
images, the Landsat and Radarsat images, were fed to the fuzzy
and the maximum likelihood classifiers where the classification
delineated two classes; water and nonwater. The accuracy of
the classified images was estimated based on a reference data.
After classification, the results have been compared where it
was found that image fusion has improved the classification
accuracy and the accuracy of the fuzzy classification is better
than the maximum likelihood classification in all cases. The
best resulted classified image from the ten cases is that obtained
from the fused Radarsat-Landsat images using IHS technique
that was classified with the fuzzy classifier. Shoreline has been
extracted from the (IHS-fuzzy), (SAR-fuzzy), and (Landsat-

fuzzy). Experimental results showed that the shoreline extrac-
tion accuracy is dramatically improved by the effective image
fusion of Landsat and SAR data. The accuracies of the extracted
shorelines from (Landsat-fuzzy), (Radarsat-fuzzy), and (IHS-
fuzzy) data based on twenty differential GPS check points are
estimated to be 5.69, 5.26, and 5.14 m, respectively. The three
shorelines extracted/mapped from (Landsat-fuzzy), (Radarsat-
fuzzy), (IHS-fuzzy) datawere compared to a reference shoreline.
The RMS has been computed related to thirty checkpoints on
the reference shoreline. The accuracies of the extracted shore-
lines from (Landsat-fuzzy), (SAR-fuzzy), and (IHS-fuzzy) data
are estimated to be 8.3, 7.27, and 6.75 m, respectively. The
positional quality of the extracted shorelines (using generaliza-
tion factor) from (Landsat-fuzzy), (SAR-fuzzy), and (IHS-fuzzy)
data are estimated to be 0.977, 0.986, and 0.999, respectively.
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Introduction

Shoreline extraction/mapping is critical for safe navigation,
coastal resource management, coastal environmental protec-
tion, sustainable coastal development, and urban planning.
Since shoreline has a dynamic nature, its definition, mapping,
and monitoring are complicated tasks. Shoreline changes are
critical information for shoreline mapping. Shorelines have
never been stable in either their long-term or short-term,
because of the dynamic nature of the coastal area due to many
physical processes, such as tidal flooding, sea level rise, land
subsidence, and erosion–sedimentation.

Shoreline mapping techniques have developed from
conventional field survey methods through expensive,
airborne coastal mapping techniques to new automatic and
semi automatic extraction techniques from remote sensing
satellite images (Van and Binh 2008; Ruiz et al. 2007;
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Buckley et al. 2002). Classification of remotely sensed
imagery is one possible method of mapping these features.

Most traditional classification methods are ‘crisp’ or ‘hard’
in partitioning, in which every given object is strictly classified
into a certain group. In practice, mixed pixels occur because the
pixel size may not be fine enough to capture detail on the
ground necessary for specific applications, or where the ground
properties, such as vegetation and soil types, vary continuously.
The result of hard classification is one class per pixel, whereby
much information about the membership of the pixel to other
classes is lost. Allowing pixels to havemultiple and partial class
membership, in which pure and mixed pixels are accommo-
dated in the classification process, has generally been the
solution of the mixed pixel problem. This is achieved, among
other methods, by soft classification techniques, which assigns
a pixel to several land cover classes in proportion to the area of
the pixel that each class covers. Fuzzy c-means algorithm is one
of the most popular soft classification techniques (Okeke and
Karnieli 2006; Kumar et al. 2006; Atkinson 1997).

Remote sensing optical satellite data and synthetic aperture
radar (SAR) imagery are now available for automatic or semi
automatic shoreline extraction and mapping (Di et al. 2003). A
SAR is an active instrument, and is therefore independent on
atmospheric circumstances like cloud cover and rain (Gungor
and Shan 2006; Dekker 2000), which can remedy the imaging
blend areas caused by the restriction of optical sensors. Also
SAR has a certain ability of penetration, which can penetrate
the earth surface cover and gain the underground information.
Furthermore, SAR provides more abundant earth surface
information, which can remedy the defect of other sensor’s not
getting enough information (Young et al. 2000). SAR images
(intensity and coherence) contain information on the surface
roughness, texture, dielectric properties, and change of the
state of natural and man-made objects (Ganzorig et al. 2006).

The combined use of the optical and radar images has a
number of advantages because a specific object or class
which is not seen on the passive sensor image might be
seen on the active sensor image and vice versa because of
the nature of the used electro-magnetic radiation (Burini et
al. 2008; Ganzorig et al. 2006).

The objective of image fusion is to enhance the spatial
resolution of multispectral images using a panchromatic (Pan)
image with a higher spatial resolution. The main purpose is to
get a fused image that retains the spatial resolution from the
panchromatic image and color content from the multispectral
images. Therefore, a good fusion algorithm should not distort
the color content of the original multispectral image while
enhancing its spatial resolution (Wu et al. 2008; Gungor and
Shan 2006; Garzelli 2002). Fusion of optical and SAR
imagery is more difficult than the ordinary pan-sharpening
because the gray values of SAR imagery do not correlate with
those of multispectral imagery. Much of the “image fusion”
literature focuses on the problem of combining imagery from

multiple sensors on a common platform. The more difficult
problem of combining imagery from different platforms
(Gordon and Logic 2005) will be examined here. The problem
is to maintain, to the extent possible, the spectral content of the
original Landsat image while retaining the detail of the high-
resolution radar image despite of the large difference (5×) in
resolution of the two different sources (Mercer et al. 2008).

The research objective is to evaluate three image fusion
techniques for the improvement of classification accuracy,
to assess shoreline extraction in the northern part of coastal
zone of Egypt (Port Said) from SAR, Landsat, and fused
SAR-Landsat images.

Study area and dataset

The study area is located at the northern part of the coastal
zone of Egypt and it covers Port Said Governorate. It extends
from the Mediterranean Sea coast at Port Said to a distance of
about 31 km to the south and from Port Said along Suez Canal
and then for about 31 km to the East in Sinai and 22 km to the
West along the Mediterranean Sea with an area of approxi-
mately 2,000 km2.

Two types of images have been used Landsat ETM+ and
Radarsat-1 CEOS. Actually, the shoreline position changes
continuously with time because of beach variation that results
from on-shore–off-shore and alongshore sediment transport
and it also changes because of the dynamic nature of water
levels at the coastal boundary, such as waves and tides. In our
case the two images are acquired in the same season (autumn)
with a difference in acquisition date of 25 days. This zone is
characterized by a relatively stable condition with respect to the
tidal effects. No abrupt changes have occurred in the tidal
regime in this area in the last 10 years. So, we assume that there
are no significant changes between the shoreline in both
Landsat and SAR images.

Table 1 summarizes the specifications of these data.
Twenty well-distributed differential GPS control points and
twenty differential GPS check points that were observed with
accuracy ±4 cm in x and y and ±3 cm in z were used. Also
topographic maps with scale 1:25,000 (date 2000) produced
from aerial photos (date 2000). The maps are published by
the Egyptian Surveying Authority in Transverse Mercator
projection and used for collection of reference points for
accuracy assessment of classifications.

Table 1 The images and their correspondent specifications

Data Acquisition date Bands Pixel size (m)

Landsat ETM+ 11/11/2000 3,4,5 30

Radarsat –1 CEOS 16/10/2000 C-band 6.25
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Methodology

Geometric correction of the multisensor images

In order to geometrically correct the SAR image, twenty
well-distributed differential GPS control points were used.
The image was then geometrically corrected to the
Universal Transverse Mercator (UTM) map projection.
The SAR image was resampled to a pixel size of 6.25 m.
For the actual transformation, a first order transformation
and nearest neighborhood resampling approach were
applied. The root mean square error of x, y, and total
RMS of control points were 2.95, 4.12, and 5.07 m,
respectively. The root mean square error of x, y, and total
RMS of the twenty check points were 3.22, 4.16, and
5.26 m, respectively. Figure 1 illustrates the geocoded
Radarsat image (with speckle noise).

The optical images (multispectral Landsat ETM+
images) were geometrically corrected. Four scenes of
Landsat TM images have been mosaiced and a subset of
the study area has been obtained. Although the
multispectral Landsat ETM+ images were geometrically
corrected, their geometrical accuracy was not enough to
combine them with the other high-resolution data sets.
Therefore, the subset of Landsat ETM+ (bands 3, 4, and
5) was further rectified to a UTM map projection using
image to image registration method and was resampled
to a pixel size of 6.25 m, using nearest neighborhood

resampling. Despite pixel size differences of a factor of
5 between RADARSAT CEOS image and Landsat
ETM+ image, they have been resampled to the same
pixel size in order to be able to be fused. Twenty control
points have been selected on both SAR and Landsat images in
clearly delineated crossings of roads, canals, and other clear
sites. The root mean square error of x, y, and total RMS of the
twenty control points were 4.06, 4.61, and 6.13 m, respec-
tively. The root mean square error of x, y, and total RMS of
the twenty check points were 5.05, 2.63, and 5.69 m,
respectively. Figure 2 shows the geocoded Landsat ETM+
image.

Filtering of the SAR image

A disadvantage of SAR is that it contains speckle noise that
can hamper the interpretation and information extraction,
but various filter methods have been developed to reduce
this problem (Dupas 2000; Gupta and Gupta 2007). Two
speckle filters were selected to be tested in RADARSAT
CEOS images: the Gamma-MAP filter and the Lee–Sigma
filter. A window size of (3×3) was applied for each filter. A
visual judgment of the results pointed out that the Gamma-
MAP filter was better that the Lee-Sigma filter in
smoothing the image while preserving the edges (Fig. 3).
All processing steps were performed using ERDAS
Imagine 9.2.

Fig. 2 Geocoded Landsat ETM+ image

Fig. 1 Geocoded Radarsat image (with speckle noise)
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Image fusion

Co-registered radar and Landsat data have been then
merged on a pixel by pixel basis using three different
fusion techniques (IHS, multiplication, and Brovey) em-
bedded in ERDAS Imagine 9.2.

Image fusion techniques

IHS technique: The basic concept of IHS is replacing the
intensity component from the low-resolution multispectral
image with the panchromatic image (Eshtehardi et al. 2007;
Doua and Chenb 2007). The fusion method first converts an
RGB image into intensity (I), hue (H), and saturation (S)
components. In the next step, intensity is substituted with the
high-spatial resolution panchromatic image. The last step
performs the inverse transformation, converting IHS compo-
nents into RGB colors (Svab and Osˇtir 2006). Figure 4
illustrates the IHS technique and the results of applying IHS
is shown in Fig. 5
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�
�
� Bj j;

ð1Þ

Where I = Intensity; and V1 and V2 are intermediate
values used later for deriving hue and saturation.

Multiplicative: Multiplicative technique is one of the
arithmetic algorithms where it is derived by using the four
possible arithmetic methods to incorporate an intensity
image into a chromatic image (addition, subtraction,
division, and multiplication).Only multiplication is unlikely
to distort the color (Svab and Osˇtir 2006).

DNMsnð Þ» DNPANð Þ ¼ DNnew»Msn ð2Þ
Where:
DNMsn = digital number of a pixel belonging to nth

multispectral band
DNPAN = digital number of a corresponding pixel

belonging to panchromatic band
DNnew*Msn = new digital number of corresponding

pixel (Mercer et al. 2008)
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Fig. 4 IHS technique

Fig. 3 Enhanced Radarsat image using Gamma-MAP filter

Fig. 5 IHS image fusion
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The advantages of this technique are

& Simplicity of integrating two images
& Good for highlighting urban features

The drawback of this technique is that it does not retain
the radiometry of the input multispectral image. The
results of applying the multiplicative fusion is shown in
Fig. 6

Brovey: In this method each band is divided into all the
layers and this normalizes band data then it is multiplied
with a panchromatic band to achieve a fused image
(Eshtehardi et al. 2007).

The Brovey fusion formula is as follows:

BMBi ¼
P

J

P

k
Blow jk � Bhigh jk

P

i¼1

P

j

P

k
Blow jk

ð3Þ

Where BMB is the fusion image, n = bands numbers
and dominators denote the summation of the three
ETM+ multispectral bands (Wenbo et al. 2008). The
results of applying the Brovey fusion is shown in
Fig. 7.

Judgment of fusion

Visual interpretation was performed for comparison of all
images, which were merged by using the three different
fusion techniques. Figures (5, 6 and 7) showed that the
merged images have better spectral details than the original
images and the improvement in quality of image interpre-
tation is visually depicted. Twenty checkpoints observed
with differential GPS have been used to compare the spatial
accuracy of the resultant image from each fusion technique.
Table 2 summarizes the achieved spatial accuracy for IHS,
multiplicative, and Brovey. For radiometric quality control
of the fused images two indexes will be examined over the
fusion results.

First index: In this index, the difference between mean
gray scale values of the fused image and the original
image is considered as an index for comparing the results
(Eshtehardi et al. 2007)

Difference of meansi ¼ mean msið Þ �mean fusedið Þi ¼ 1; 2; 3:

ð4Þ

Fig. 6 Fused multiplicative

Fig. 7 Fused Brovey

Table 2 Spatial accuracy of IHS, multiplicative, and Brovey image
fusion

Fusion technique IHS Brovey Multiplicative

RMS (m) 5.14 7.25 7.76
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Where: fusedi is the band i of the fusion result and msi is
the band i from the original input multispectral image
(Table 3).

The result of applying the first index is shown in Fig. 8.
From the results, it is obvious that by applying the first
index, the fused image by IHS has the least difference with
the original Landsat image.

Second index: In this index the difference between standard
deviation (STD) of gray scale values of the fused image and
the original image is considered as an index in comparing
the results.

Difference of STDSi ¼ STD mSið Þ � STD Fusedið Þ i ¼ 1; 2; 3:

ð5Þ

Where: fusedi is the band i of the fusion result and msi is
the band i from the original input multispectral image
(Table 4). The result of applying the second index is shown
in Fig. 9. From the results, it is obvious that by applying the
second index, the fused image by IHS method has the least
difference with the original Landsat image.

Feature identification accuracy of fused image

In order to verify the influence of various fusion methods
on the classification accuracy, maximum likelihood classi-
fier, and fuzzy classifier have been used for classifying
Radar, Landsat, and fused Radar-Landsat images into two
classes (water and nonwater). Signatures collection is the
first step in the classification process and they were chosen
to represent the different areas of water and nonwater areas.
The collected signatures were then evaluated and the result
is accepted before the classification process. Accuracy
assessment of the classified images of radar, optical, and
fused data sets was carried out on reference data obtained
from topographic maps of the same year. Random method
has been used to select one hundred and fifty reference
points from Landsat image. The overall accuracy and
Kappa index have been obtained. After classification, the
results have been compared (Table 5). It could be observed
that the accuracy assessment of the fused IHS obtained of
the fuzzy classification has a better accuracy compared to
other fusion results.
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Fig. 8 Result of applying first index of the fusion results

Table 4 Standard deviation of gray scale values of multispectral
image and fused images

Mean values Landsat IHS Brovey Multiplicative

Band 1 29.2407 10.9496 9.00573 5.19407

Band 2 25.0622 12.3068 6.02106 5.6595

Band 3 27.5958 16.0871 6.77799 4.85774
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Fig. 9 Result of applying second index of the fusion results

Table 3 Mean gray scale values of the multispectral and fused images

Mean values Landsat IHS Brovey Multiplicative

Band 1 45.7414 6.25369 6.35483 3.16075

Band 2 36.8011 8.12764 3.51294 3.04207

Band 3 34.0187 13.4245 3.71098 2.25156
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Shoreline extraction/mapping

The automatic extraction of the shorelines has been applied
over classified fuzzy Radarsat, classified fuzzy Landsat,
and classified fuzzy fused IHS images using classification
to vector method in ENVI 4.4 software. The classification
to vector conversion of the water class was done for each of
the three classifications separately then the vector of the
water class has been converted to shape files. The three
shape files have been overlaid resulting in extraction of
three different shorelines, that have been compared to the
reference line obtained from topographic maps (manually
extracted) by analyzing their respective differences. The
accuracy of the shoreline was assessed through a compar-
ison of the calculated positions of checkpoints with their
known positions. The layout has been done in ArcGIS9.2
for the three mapped shorelines and the reference shoreline.
Figure 10 shows a flowchart of shoreline extraction while
Fig. 11 illustrates mapping of the detected shorelines from
classified fuzzy (Landsat, Radarsat, and fused IHS).

Assessment of quality of shorelines

The three extracted shorelines from (Landsat-fuzzy),
(Radarsat-fuzzy), and (IHS- fuzzy) data are compared to a
reference shoreline. Two sets of comparisons were per-
formed. The first comparison is computation of RMS
related to thirty check points on the reference shoreline
and the second comparison for error analysis is using
quality metric (generalization factor)

Table 5 Accuracy assessment of classification results

Classification method Accuracy assessment method Landsat Radar Fused IHS Fused Brovey Fused multiplicative

Maximum likelihood Overall accuracy % 81.20 67.97 91.25 85.18 72.98

Kappa coefficient 0.6320 0.3234 0.7993 0.6534 0.4523

Fuzzy Overall accuracy % 83.17 72.2 94.6 89.23 78.97

Kappa coefficient 0.6532 0.4532 0.8979 0.7768 0.5983

Image classification using fuzzy 
classifier and Maximum Likelihood 

Geocoding of SAR image 

Speckle suppression (gamma) Image to image registration of Landsat 
image 

Image fusion  

Accuracy assessment of classification 

Shoreline extraction/mapping from 
fuzzy classifier of (radar-landsat-IHS) 

Assessment of quality of shorelines  

Fig. 10 Flowchart of shoreline extraction/mapping

Fig. 11 Mapping of the detected shorelines from Landsat, Radar,
fused IHS, and reference shoreline
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Assessment of planimetric quality: The three extracted
shorelines from (Landsat-fuzzy), (Radarsat-fuzzy), and
(IHS-fuzzy) data were compared to a reference shoreline.
The RMS has been computed related to thirty check points
on the reference shoreline. The accuracies of the extracted
shorelines from (Landsat-fuzzy), (SAR-fuzzy), and (IHS-
fuzzy) data are estimated to be 8.3, 7.27, and 6.75 m,
respectively.

Assessment of quality metrics for shoreline: Ali (2003)
has developed the quality metrics for the positional quality
assessment of the linear features. He developed four quality
metrics (distortion factor, generalization factor, bias factor,
and fuzziness factor) and an automated interface for
calculating these metrics in order to access the positional
quality of any linear dataset quantitatively. In this research,
generalization factor has been calculated for assessment of
the positional quality of the shoreline.

Generalization factor

The generalization factor compares the length of two
corresponding lines segments (Fig. 12). For example, the
shoreline generated from a higher quality data source with
the equivalent shoreline generated from lower quality data.
One of them will be a more detailed representation of the
shoreline. Figure 12 shows error analysis of the shoreline
positional quality using quantitative matrices (generaliza-
tion factor).

Therefore, if the higher quality line is stretched until it is
transformed into a straight line, and the same is done for the
one with lower quality, the result will be two lines of
different lengths

GF ¼ AB=A0B0 ð6Þ

Where AB is the length of the less precise shoreline, A′B′ is
the length of the more precise shoreline, and GF is the
generalization factor. A value of 1 will indicate no
generalization, and a value smaller than 1 will indicate
the amount of generalization. For example, 0.7 will
indicate a more generalized feature than 0.8 (Ali 2003;
Srivastava et al. 2005).

The generalization factor for the three shorelines has been
computed; the results have been compared (Table 6). It
could be observed that the generalization factor of the
shoreline from (Landsat-fuzzy), (SAR-fuzzy), and (IHS-fuzzy)
data are estimated to be 0.977, 0.986, and 0.999,
respectively. This indicates that the extracted shoreline
from (IHS-fuzzy) is better than the extracted shoreline

from (Radarsat-fuzzy) followed by the extracted shore-
line from (Landsat-fuzzy)

Results

SAR and Landsat data were merged using different fusion
methods, the merging effects are evaluated and quantitative
statistics results related to spatial accuracy and radiometric
accuracy are shown in Tables 2, 3, and 4, respectively.
Visual interpretation was performed for comparison of the
merged images showed that merged images have better
spectral details than original images. Figures 5, 6, and 7
show all images, which were merged by using different

Fig. 12 Error analysis of the shoreline positional quality using
quantitative matrices (generalization factor)

Table 6 Assessment of the positional quality of the shoreline (using
generalization factor)

Shoreline source Generalization factor

IHS 0.999

Radarsat 0.986

Landsat 0.977

184 Appl Geomat (2010) 2:177–186



fusion techniques. Visual comparison also reveals that all
the three methods have spectral distortion, IHS and Brovey
are the best two in retaining spectral information of original
images, but the Multiplication is the worst. The results
reveal that all the fused images have higher spatial
frequency information than the original images, and IHS
is the best method in retaining spectral information of
original image.

By comparing the overall accuracy and kappa index of the
maximum likelihood classifier and fuzzy classifier, based on
Table 5, it is clear that the accuracies of classification vary
from radar image, Landsat image, and fused images. Also
image fusion improves the classification accuracy and the
use of fuzzy classification gives better results than maximum
likelihood classification. The accuracies of the extracted
shorelines from (Landsat-fuzzy), (SAR-fuzzy), and (IHS-
fuzzy) data related to twenty differential check points are
estimated to be 5.69, 5.26, and 5.14 m, respectively. The
three shorelines extracted/mapped from (Landsat-fuzzy),
(Radarsat-fuzzy), and (IHS-fuzzy) data were compared to a
reference shoreline. The RMS has been computed related
to thirty check points on the reference shoreline. The
accuracies of the extracted shorelines from (Landsat-fuzzy),
(SAR-fuzzy), and (IHS-fuzzy) data compared to reference
shoreline are estimated to be 8.3, 7.27, and 6.75 m,
respectively. The positional quality of the shoreline (using
generalization factor) from (Landsat-fuzzy), (SAR-fuzzy),
and (IHS-fuzzy) data are estimated to be 0.977, 0.986, and
0.999, respectively, compared to historical shoreline.

Discussion and conclusions

In this research three different fusion techniques have
been compared. The resultant fused images were
evaluated geometrically using GPS check points and
radiometrically by two different indices. According to
the achieved results, the geometric aspect of IHS shows
higher spatial accuracy. Also from the radiometric
aspect and spectral aspect, it can be deduced that IHS
mainly has better results followed by Brovey then
multiplicative. The decision to choose the most suitable
technique is influenced by the specified application and
can be supported by statistical validations.

The resulted three fused images, Landsat image, and
Radarsat image have been fed to the fuzzy classifier and
Maximum likelihood classifier. The classification delineat-
ed two classes water and nonwater. Accuracy assessment of
the classified images of the radar, optical, and fused data
sets on reference data was carried out. After classification,
the results have been compared. It was found that image
fusion has improved the classification accuracy and the

accuracy of fuzzy classification is better than the maximum
likelihood classification.

Experimental results show that the shoreline extraction
accuracy has dramatically improved by effective image
fusion of Landsat and SAR data. Three shorelines have
been extracted/mapped from the (IHS-fuzzy), (SAR-fuzzy),
and (Landsat-fuzzy).

The accuracies of the extracted shorelines from (Landsat-
fuzzy), (SAR-fuzzy), and (IHS-fuzzy) data related to twenty
differential check points are estimated to be 5.69, 5.26, and
5.14 m, respectively.

The accuracies of the extracted shorelines from (Landsat-
fuzzy), (SAR-fuzzy), and (IHS-fuzzy) data compared to the
reference shoreline are estimated to be 8.3, 7.27, and 6.75 m,
respectively.

The positional quality of the shoreline (using general-
ization factor) from (Landsat-fuzzy), (SAR-fuzzy), and
(IHS-fuzzy) data are estimated to be 0.977, 0.986, and
0.999, respectively. This indicates that the extracted shore-
line from (IHS-fuzzy) is better than the extracted shoreline
from (Radarsat-fuzzy ) followed by the extracted shoreline
from (Landsat-fuzzy)

It is recommended to extract the shoreline from Quick-
Bird or Geoeye images and compare the extracted shore-
lines with the three resulted shorelines. For future work
wavelet-based technique could be used for image fusion
and other quality indices could be tested in order to get
better accuracy control.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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