
 

Abstract—Clustering is a fundamental task in data mining 

and knowledge discovery. The most widely used technique for 

clustering is the k-means algorithm, which is dependent on the 

choice number of clusters, k. In unsupervised situations, the 

choice of an appropriate value for k is difficult. To overcome 

this challenge, validity measures attempt to determine how 

accurately the clusters reflect the data. However, numerous 

validity measures proliferate, and different measures often 

produce disparate results. This paper reports an experiment to 

evaluate commonly used cluster validity measures, including 

Dunn, Davies-Bouldin, Calinski-Harabasz, Silhouette, Point Bi-

serial, PBM, and Sum-of-Squares. These measures were ap-

plied to k-means clusterings of 125 artificially generated data 

sets. The Sum-of-Squares method was found to be the most 

effective for predicting an appropriate value for k. Silhouette 

was found to be a good alternative, and Calinski-Harabasz and 

Davies-Bouldin both made only moderate showings compared 

to the other two. Dunn, Point Bi-serial, and PBM performed 

quite poorly. The results also suggest that validity measures 

could be used as explanatory tools in their own right. 
 

Index Terms—cluster analysis, cluster validation, k-

means 

 

I. INTRODUCTION 
  

It is beyond cliché to mention the current importance of 

clustering to data mining and knowledge discovery [1]. In 

our data-saturated world, and particularly in the areas of 

computer and information sciences, grouping multi-

dimensional data into clusters for classification or more effi-

cient processing is ubiquitous. The most widely used tech-

nique for this clustering is the k-means algorithm [1][2]. The 

k-means algorithm is efficient and effective, but it suffers 

from some frequently lamented shortcomings. Specifically, 

clustering by k-means favors hyper-spherical clusters, since 

the algorithm typically uses some variation on Euclidean 

distance from the cluster center as its primary clustering 

criteria. Often, however, hyper-spherical results are to be 

desired. A more persistent problem with k-means that occurs 

even when the actual structure of the data is hyper-spherical, 

is that the outcome of the clustering algorithm is dependent 

on certain parameters, most significantly for the purpose of 

this paper, on the number of clusters, or “k”. 
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The first step in the k-means algorithm is to choose the 

number of clusters into which the data will be divided. The 

initial choice of k is largely an interpretive decision.  Suc-

cessive runs of k-means can optimize the division of the  

data for any given number of clusters, but choosing an initial 

k-value presumes prior knowledge of the data’s structure. 

Without such knowledge, it is difficult to know the proper 

number of clusters—but with such knowledge, the need for 

the clustering is diminished. It is even conceivable that cer-

tain data sets might have more than one “natural” clustering. 

With simple data, i.e. 2- or perhaps even 3-dimensional, it is 

possible for the human eye to pick out possible candidates 

for k, but as the dimensionality of the data increases, it be-

comes increasingly difficult to determine a proper value for 

k. And, again, in the cases where the eye can pick them out, 

there isn’t a need for a clustering algorithm in the first place.  

It is for this reason that considerable attention has been 

given over the past 40 years to the subject of cluster valida-

tion—a process which attempts to evaluate a particular divi-

sion of data into clusters. While many sources claim there 

are three types of cluster validation: internal, external, and 

relative [3], there are really only two that have received at-

tention from the research community: external validation, 

which measures the clusters against some pre-determined 

structure of the data, and relative validation, which meas-

ures various attempts at clustering a set of data against each 

other, usually by way of a “score.” External validation pre-

sumes a pre-known structure of the data and so is not partic-

ularly relevant to this discussion. Relative validation, in con-

trast, is typically used to solve the problem of choosing a 

good k value. To the extent that validation can successfully 

choose, from a group of clustering attempts with various k, 

the k-value that best models the actual structure of the data, 

cluster validation is an integral step in the process of cluster-

ing data in unsupervised situations. 

Because the k-means algorithm is often applied in order 

to interpret and understand data about which little is known 

(unsupervised learning), validation becomes a de-facto last 

step in the clustering process. First, the data is clustered into 

various clusters of different k, and then validation methods 

select the “best” clustering from those. Therefore, validation 

is crucial to a successful division of data when the number 

of clusters is unknown. 

 This project aims to implement some of the most popular 

and successful validation methods in order to compare the 

validations against each other. There have been dozens of 

validation measures proposed over the past 40 years, and 

even though research in this area is still going strong, with 

new methods proposed every year, some of the earliest algo-

rithms have been shown to be the most effective [4][5]. This 

project is modeled after a few independent studies that have 
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measured validation techniques against each other [4][5]. 

Although most papers that propose new clustering validation 

methods also measure their algorithms against other valida-

tion methods, (for example, [6]), independent tests, which 

have no agenda of their own, are often more reliable. 

 

II. DESCRIPTION OF VALIDATION MEASURES 

Of the dozens of validation measures, this project had to 

choose only a few. Choices were made on the basis of three 

criteria: success of the measure in the literature, popularity 

of the measure, and simplicity/efficiency of implementation. 

The algorithms should be efficient enough to be processed 

quickly even on high-dimensional and large data sets, but 

also simple enough for quick implementation.   

The two nearly universal general criteria used by all va-

lidity measures to evaluate clusters are compactness and 

separation. A good clustering will create clusters with points 

that are similar or “close” in quantifiable Euclidean terms to 

one another (compact), but different or “distant” from points 

in other clusters (separation). Almost all of the most com-

mon and successful validity measures try to measure com-

pactness and separation and relate them to one another, ei-

ther maximizing the inter-cluster distance, or minimizing the 

intra-cluster distance, or maximizing/minimizing a ratio 

between measures of both qualities.  While the methods to 

determine separation or compactness can sometimes vary, it 

should be noted that most validity measures, like the k-

means clustering algorithm itself, favor hyper-spherical 

clusters, using the cluster centers as the basis for measuring 

compactness, if not also separation.   

The methods employed in this project were those com-

monly known as Dunn [7], Davies-Bouldin [8], Silhouette 

[9], Calinski-Harabasz [10], Sum-of-Squares [6], Point Bi-

serial [11], and PBM [12]. The following subsections pro-

vide descriptions of these validity measures. 

A. Dunn 

Perhaps the most frequently cited measure, the Dunn me-

thod provides a score based on the square root of the mini-

mum distance between any two clusters (measuring separa-

tion) divided by the square root of the maximum distance 

between any two points in the same cluster (measuring 

compactness). The distance between two clusters is meas-

ured by the distance between the two closest points, thus the 

ratio becomes:  

     √Min Intercluster Dist/√Max Intracluster Dist 
 

The higher the value, the “better” the clustering will be.  

Because the measure only uses minimum and maximum 

values rather than averages or aggregates, the Dunn method 

is highly susceptible to influence from noise, outliers, or two 

clusters that happen to be close together. 

B. Davies-Bouldin 

The Davies-Bouldin (DB) method also relates compactness 

to separation. DB compares each cluster to every other clus-

ter based on a function measuring similarity in which for 

each pair of clusters, the sum of the average distances of 

each point in the two clusters to its respective center (that is, 

a sum of the dispersion of the two clusters, measuring com-

pactness) is divided by the distance between the two cluster 

centers (measuring separation). The maximum values of this 

function for each cluster are averaged, resulting in a score:   

 1݇෍ ܴ௜௞௜ୀଵ  

 

where ܴ௜ ൌ maxܴ௜௝, ݅ ് ݆.   ܴ௜௝ ൌ ሺ ௜ܵ ൅   ௝ܵሻ/ܯ௜௝. ܵ݅ is the 

sum of the average distances from each point in cluster i to 

the centroid of its cluster, and  ܯ௜௝ is the distance between 

the two cluster centers. 

For DB, a lower score will be the result of less dispersion 

within clusters and more distance between clusters. Unlike 

Dunn, DB uses cluster centroids to represent clusters in or-

der to measure separation. Because the score uses the max-

imum comparison for each cluster, the measure is built upon 

“worst-case” situations. DB divides compactness by separa-

tion, meaning that as clusters become more compact and 

more separated, the DB value will shrink. 

C. Silhouette 

The Silhouette method also relates compactness to separa-

tion, but unlike DB, Silhouette is based on the mean score 

for every point in the data set. Each point’s individual score 

is based on the difference between the average distance be-

tween that point and every other point in its cluster and the 

minimum average distance between that point and the other 

points in each other cluster. This difference is then divided 

by a normalizing term, which is the greater of the two aver-

ages: 

 1ܰ ෍ ௫೔ே௜ୀ଴ݏ  

where N is the number of points in the data set and: ݏ௫೔ ൌ ሺܾ௤,௜ െ ܽ௣,௜ሻ/݉ܽݔሼܽ௣,௜ , ܾ௣,௜ሽ. 
If ݔ௜ is a point in cluster p, then,  ܾ௤, ௜ ൌ min ݀௤,௜  where ݀௤,௜ 
is the average distance between point ݔ௜ and every point of 

cluster q. On the other hand, ܽ௣,௜ is the average distance 

between point ݔ௜ and every other point of cluster p. Unlike 

Dunn and DB, the Silhouette measure relates separation to 

compactness by subtraction rather than division. As cluster-

ing improves, the score will approach 1. 

D. Calinski-Harabasz 

The Calinski-Harabasz (CH) method has been one of the 

most successful in independent studies. The method is based 

on a relationship between a “between cluster scatter matrix” 

(BCSM) and a “within cluster scatter matrix” (WCSM):   

 ሻܯܵܥሺܹ݁ܿܽݎݐ ሻܯܵܥܤሺ݁ܿܽݎݐ  ∗ ܰ െ ݇݇ െ 1  

 

The trace BCSM is merely the sum of the squares of the 

distances between the center of each cluster and the centroid 

of the data set, weighted by the size of the cluster.  The trace 
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WCSM is the sum of the squares of the distances between 

the center of each cluster and every point in the cluster. 

 Like DB, CH uses cluster centers for calculating separa-

tion; however, separation is measured according to the cen-

ter of the data set, rather than particular clusters. The norma-

lization factor, ሺܰ െ ݇ሻ/ሺ݇ െ 1ሻ, will diminish the score as 

k increases. 

E. Sum-of-Squares 

The sum-of-squares (SS) method is a simple adaptation of 

the CH method: 

 ሻܯܵܥܤሺ݁ܿܽݎݐ ሻܯܵܥሺܹ݁ܿܽݎݐ  ∗ ݇ 

 

Thus, the measure reverses the relationship between separa-

tion and compactness, and the normalization factor changes 

much more dramatically as k increases. Since SS divides 

compactness by separation, like DB, a lower score indicates 

better clusterings. 

F. Point Bi-serial 

The Point Bi-serial (PB) method finds the difference be-

tween the average intra-cluster distance (that is, the average 

distance between each point in the cluster, a measure of 

compactness) and the average inter-cluster distance (that is, 

the distance between each point and all the other points in 

the data set that are not in that point’s cluster, a measure of 

separation): 

 ൫݀௦തതത െ ݀௖തതത൯ ∗ ඥሺߙ ∗ ߪଶݔ/ሻߚ   
 

where ݀௖is the distance between each point and every other 

point in its respective cluster and ݀௦ is the distance between 

each point and every other point not in its cluster. In the 

normalization figure, α is the number of intra-cluster dis-

tances, and β is the number of inter-cluster distances and x is 

the number of point pairs in the data set. σ is the standard 

deviation of the distances. This measure is like Silhouette, 

except that it measures separation from all non-cluster shar-

ing points, rather than only those of the closest cluster. 

G. PBM 

The PBM score relates a figure of compactness, measured as 

the sum of the distances between each point and its cluster 

centroid, to a measure of separation, calculated as the max-

imum distance between any two cluster centers, normalized 

over a measure of dispersion, calculated as the sum of the 

distances between all points: 

 ൬1݇ ∗ ߚߙ ∗  ൰ଶߛ
 

where α is the sum of the distances between each point and 

its cluster center, β is the sum of the distances between each 

point and the centroid of the data set, and γ is the maximum 

distance between any two cluster centers. Separation is 

measured by the greatest distance between any two clusters, 

so this measure favors clusterings that have at least two 

well-separated clusters. 

 

III. EXPERIMENTAL RESULTS 

A cluster validity measure can be tested on two types on 

data sets: real-world or artificial. Even though real-world 

data sets are useful insofar as they represent the complexity 

of the real world, the class attributions of such data sets are 

not generally based on a structural analysis of the data itself. 

As a consequence, the correspondence between optimal 

clustering and the nominally correct clustering is questiona-

ble. Therefore, we decided to use artificial data sets where 

the structure of the data could be controlled and known a 

priori.  

In order to compare the seven validity measures, we arti-

ficially generated 125 data sets using the Clustering Algo-

rithms’ Referee Package [13]. The size of the data sets 

ranged from 256 to 4096 points: 256, 512, 1024, 2048, and 

4096. The number of attributes ranged from 2 to 32: 2, 4, 8, 

16, and 32. Finally, the number of clusters ranged from 2 to 

10: 2, 4, 6, 8, and 10. 

The data was clustered using the k-means algorithm [14]. 

The algorithm starts with k initial centers, typically chosen 

uniformly at random from the data points. Each point is then 

assigned to the nearest center, and each center is recalcu-

lated as the mean of all points assigned to it. These two steps 

are repeated until a change of .1% or less in the sum-of-

squared error is observed or 20 iterations, whichever oc-

curred first. As for the selection of the initial centers, we 

employed the farthest-first method [15] in which the first 

center is chosen arbitrarily and each of the remaining centers 

is chosen as the point that is the farthest from the already 

chosen centers. 

For each data set, k-means was run successively to create 

optimal clusterings of the data for k values between 2 and 

15. These optimal clusterings were tested by the seven va-

lidity measures, resulting in a set of 14 “scores” for each 

validity measure, one each for k = 2 through 15. These 

scores were then compared against each other to find the 

“best” k value for the clustering according to the validity 

measure in question. Finally, the result was compared to the 

“correct” number of clusters. If the validity measure correct-

ly predicted the number of clusters, then it scored a “cor-

rect” tally. If not, the absolute difference between the pre-

diction and the “true” number of clusters was calculated. 

After processing all 125 data sets, these two tallies, the 

number of correct predictions and the running sum of the 

deviation were recorded, with the deviation being divided by 

the number of data sets (125) to provide an average absolute 

deviation. Table 1 gives the results. Here, the last three col-

umns, from left to right, indicate the number (percentage) of 

correct predictions, average (standard deviation) of the abso-

lute differences, and average of the absolute differences for 

only the mispredictions, respectively. It can be seen that SS 

is the best predictor, which is followed closely by Sil-

houette. 
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TABLE I  

COMPARISON OF THE INTERNAL VALIDITY MEASURES 

Dunn 46 (36.8%) 2.272 (3.024) 3.595 

DB 47 (37.6%) 1.456 (1.657) 2.333 

Silhouette 64 (51.2%) 0.968 (1.563) 1.984 

CH 54 (43.2%) 2.184 (2.735) 3.845 

SS 77 (61.6%) 0.808 (1.577) 2.104 

PB 19 (15.2%) 3.600 (3.446) 4.245 

PBM 36 (28.8%) 3.024 (2.768) 4.247 

 

IV. DISCUSSION 

When compared to the results of other comparative studies, 

one of the most striking results is the lack of accuracy of the 

results. Although SS could predict the correct number of 

clusters more than half the time, most of the others could 

not, even SS was wrong nearly 40% of the time. 

There are three reasons we believe the scores are as low 

as they are. First, when investigating the results, we found 

irregularities in the data sets, perhaps caused by the overlap 

feature of the data set generation software. Additionally, we 

discovered that often k-means was not finding the natural 

clusters in the data set. Finally, some of the discrepancies 

and “incorrect” predictions could be the result of different 

interpretations of the data sets themselves. 

A. Data Irregularities 

Because most of the data sets were high-dimensional, and 

thus difficult to visualize, the analysis of the results focused 

on the subset of the data which was two dimensional. Fig. 1 

shows such a data set with six classes. It can be seen that 

there is some overlap between clusters, which had two con-

sequences. First, the clusters are close together and so the 

separation between them will be low. Second, it might be 

difficult for both clustering and validation to “split” clusters 

that are close together (see Figs. 2 and 3). 

 

 
Fig. 1.  1024 2-D points divided into 6 classes 

 

A more pernicious problem appeared when plotting the 

data set containing 4096 points in ten clusters. When that 

data set was plotted, one of the classes completely over-

lapped another, such that it is impossible for the eye to dis-

tinguish them without visual aid (see Fig. 4). 

This phenomenon was observed in at least one of the oth-

er data sets which was divided into eight classes. Such ex-

treme overlap could be more likely in data sets with large k 

and a break-down of the performance of the clustering algo-

rithms demonstrated that all the measures showed marked 

improvement when the number of clusters was decreased 

(see Table 2). There could be other explanations for this 

phenomenon, but it is clear that if the data set contains clus-

ters that completely overlap one another, neither k-means 

nor the validity measure will be able to distinguish them. 

 

 
Fig 2.  Data set in Fig. 3 divided into k=6 clusters 

 

 
Fig. 3.  Data set in Fig. 3 divided into k=5 clusters 

  

 
Fig. 4.  4096 2-D points divided into 10 classes 

 
TABLE 1 

ACCURACY (%) AS THE NUMBER OF CLUSTERS (K) INCREASES 
 k=2  k=4 k=6 k=8 k=10 

Dunn 88 44 20 20 12 

DB 100 36 24 20 8 

Silhouette 100 44 32 56 24 

CH 100 48 32 24 12 

SS 96 81 64 40 24 

PB 20 4 20 16 16 

PBM 100 16 16 8 4 
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B. K-Means Clustering Irregularities 

Irregularities in the data sets, however, do not tell the whole 

story. To make matters more muddled, the clusterings 

created by the k-means algorithm often do not best reflect 

the “natural” structure of the data for any given k. Looking 

at the 10 cluster data set above, for instance, the eye easily 

makes out nine distinct clusters of points. On this data set 

Dunn, DB, Silhouette, CH, SS, PB, and PBM predicted 3, 4, 

4, 13, 13, 10, and 13 clusters, respectively. The two reoccur-

ring choices are 4 and 13 clusters (see Figs. 5 and 6). The 

four cluster division seems intuitively justifiable to the eye. 

The 13 cluster division, however, hardly seems as natural as 

the nine. However, when the clustering algorithm divided 

the data set into nine clusters, the result was hardly any 

more natural (see Fig. 7). Part of the reason for this some-

what counter-intuitive division is using the farthest-first 

initialization method. Fig. 8 shows how k-means clusters the 

same data set with random initialization, but run 100 times, 

choosing the clustering with the best (lowest) SSE. 

 

 
Fig. 5.  Data set in Fig. 4 divided into k=4 clusters 

 

C. Explanatory Clustering 

The final wrinkle to explain why the validity measures give 

such widely different results is that the validity measures, 

like clustering itself, are merely ways of looking at the data 

and interpreting it. While all validity measures agree that 

separation and compactness are desirable and more separa-

tion and compactness will predict a better clustering, each 

method defines separation and compactness in its own way.   
 

 
Fig. 6.  Data set in Fig. 4 divided into k=13 clusters 

 

Again, to use the ten class data set above as an example, 

two of the validation algorithms liked the four-cluster parti-

tioning better than the 13 cluster partition. To the human 

eye, such a partition makes sense—and once it has been 

pointed out, it may even make more sense than the obvious 

nine-cluster partition which is closest to the “actual” ten 

classes. In such ambiguous situations, different priorities 

assigned to separation and compactness, and different me-

thods for their computation will almost inevitably yield dif-

ferent recommendations. 

 

 
Fig. 7.  Data set in Fig. 4 divided into k=9 clusters 

 

 

 

 

 

 

 

 

Fig. 8.  Data set in Fig. 4 divided into k=9 clusters (random initialization 

with 100 runs) 

 

V. CONCLUSIONS 

In terms of choosing an effective validation technique for 

predicting the appropriate value of k, it seems that the SS 

method works better than many of its competitors. Sil-

houette is a good alternative, and, surprisingly, CH and DB 

both make only moderate showings compared to the other 

two. Dunn, PB, and PBM performed quite poorly. 

However, the results of these tests need to be qualified by 

the nature of the validity measure. Validity measures pro-

vide a better analysis of data than the mere compactness 

criteria included in the k-means test, by also taking separa-

tion into account and trying to normalize the results so that 

different clusterings can be compared. However, they are 

limited by the clusterings that are given. If the k-means does 

not find the optimal solution for any particular given k, the 

validity measures will be providing sub-optimal results.  

And the different means that measures have for evaluating 

compactness and separation will also inevitably result in 

varying results. 

More work needs to be done on the use of validity meas-

ures as interpretive tools for understanding data that is either 

too difficult to visualize or apparently ambiguous.  Investi-

gations into cluster validity indexes should move into more 
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complex issues than “right k” or “wrong k.”  How the va-

lidity measure determined a particular k, and what that 

might mean about the different ways in which the data 

might be understood or structured, and how those predic-

tions relate to the predictions and measures provided by 

other validity measures are questions that need to be asked. 
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