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Abstract

Background: Lipid metabolism reprogramming is a hallmark for tumor which contributes to tumorigenesis and

progression, but the commonality and difference of lipid metabolism among pan-cancer is not fully investigated.

Increasing evidences suggest that the alterations in tumor metabolism, including metabolite abundance and

accumulation of metabolic products, lead to local immunosuppression in the tumor microenvironment. An

integrated analysis of lipid metabolism in cancers from different tissues using multiple omics data may provide

novel insight into the understanding of tumorigenesis and progression.

Results: Through systematic analysis of the multiple omics data from TCGA, we found that the most-widely altered

lipid metabolism pathways in pan-cancer are fatty acid metabolism, arachidonic acid metabolism, cholesterol

metabolism and PPAR signaling. Gene expression profiles of fatty acid metabolism show commonalities across pan-

cancer, while the alteration in cholesterol metabolism and arachidonic acid metabolism differ with tissue origin,

suggesting tissue specific lipid metabolism features in different tumor types. An integrated analysis of gene expression,

DNA methylation and mutations revealed factors that regulate gene expression, including the differentially methylated

sites and mutations of the lipid genes, as well as mutation and differential expression of the up-stream transcription

factors for the lipid metabolism pathways. Correlation analysis of the proportion of immune cells in the tumor

microenvironment and the expression of lipid metabolism genes revealed immune-related differentially expressed lipid

metabolic genes, indicating the potential crosstalk between lipid metabolism and immune response. Genes related to

lipid metabolism and immune response that are associated with poor prognosis were discovered including HMGCS2,

GPX2 and CD36, which may provide clues for tumor biomarkers or therapeutic targets.
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Conclusions: Our study provides an integrated analysis of lipid metabolism in pan-cancer, highlights the perturbation

of key metabolism processes in tumorigenesis and clarificates the regulation mechanism of abnormal lipid metabolism

and effects of lipid metabolism on tumor immune microenvironment. This study also provides new clues for

biomarkers or therapeutic targets of lipid metabolism in tumors.

Keywords: Lipid metabolism, Tumor immune micro-environment, Pan-cancer, Multiple omics analysis

Introduction
Reprogramming of cellular metabolism is a well-established

hallmark of tumor that has attracted increasing attention in

the recent years [1]. Among the most important biology

components, lipids have many key biological functions, i.e.

acting as cell membrane components, serving as energy

storage sources and participating in cell signaling [2, 3].

The perturbations of lipid metabolism in cancer cells may

alter cellular function dramatically. Metabolic reprograming

also provides critical information for clinical oncology, and

the recent study from the pan-cancer study showed a clin-

ical relevance of metabolic expression subtypes in human

cancers [4]. Over the past few decades, many important

discoveries regarding genes that regulate lipid synthesis and

degradation have led to the current understanding of the

complex biochemical reactions in the metabolism transduc-

tion pathways. However, different types of lipids may have

different features in different cancer types. Up to now, there

is still no comprehensive study of the lipid metabolism in

pan-cancer.

Furthermore, increasing evidences suggest that the alter-

ations in tumor metabolism can also contribute to the in-

hibition of the antitumor response. Immunosuppression

in the tumor microenvironment (TME) is suggested to be

based on the mutual metabolic requirements of immune

cells and tumor cells [5]. Abnormal lipid metabolism

occurres not only in tumor cells but also in TME. A previ-

ous study demonstrated the deletion of 5-Lipoxygenase in

the TME promoted lung cancer progression and metasta-

sis through regulating T Cell recruitment [6]. Thus, the

investigation of the lipid metabolism features as well as

the crosstalk between the lipid metabolism and the tumor

immune microenvironment could help us to understand

the tumorigenesis in the solid tumors.

In the past 10 years, multiple omics data for different

tissue-origin tumors have been generated in The Cancer

Genome Atlas (TCGA) project, which provides a rich re-

source for understanding tumor features. According to the

tumor origin, tumors are classified into pan-gastrointestinal,

pan-gynecological, pan-kidney and pan-squamous tumors

etc. However, recent studies have shown both commonal-

ities and differences in genetic mutations [7] exist among

different tissue-origin tumors. The integrative analysis of

gene expression, mutation and DNA methylation could not

only draw a landscape of the alteration of lipid metabolism

pathways, but also give clues to the regulation of lipid

metabolism. A comprehensive analysis of lipid metabolism

in different tissue specific cancers using multiple omics data

may provide novel insights in tumorigenesis and progres-

sion. At the same time, tools or algorithms were developed

in characterizing cell composition of complex tissues from

their gene expression profiles, especially for the immune cell

compositions, such as CIBERSORT [8] and TIMER [9]. The

data resources and tools may help us to study the lipid

metabolism features and their relations to the immune

microenvironments. In the present work, we explored the

key altered lipid metabolism pathways in pan-cancer, and

investigated the regulation of these pathways through the in-

tegration of mutation, DNA methylation and transcription

factors. We also analyzed the crosstalk of the key altered

lipid pathways with other oncogenic pathways, as well as the

correlation of the expression of lipid metabolism genes with

the proportions of immune cells in the TME and prognostic

effects of genes in the lipid metabolism pathways.

Results

Key altered lipid metabolism pathways in pan-cancer

Sixteen solid tumor types were selected in the present study

with a criterion of the number of para-tumor samples in

RNA level over ten samples, namely BLCA, BRCA, COAD,

ESCA, HNSC, KICH, KIRC, KIRP, LIHC, LUAD, LUSC,

PARD, READ, STAD, THCA and UCEC. Differentially

expressed genes were detected in each tumor type

comparing the tumor samples with the paired adjacent

normal tissue samples respectively using edgR [10].

Pathway enrichment analysis (Fisher exact test, Benjamini

& Hochberg adjustment) was performed according to the

differentially expressed genes with the background pathway

database KEGG. From the twenty-one selected

lipid-metabolism-related pathways (Additional file 1), the

result shows that the most widely and significantly altered

lipid metabolism or related signaling pathways in

pan-cancer are PPAR signaling, fatty acid degradation,

arachidonic acid metabolism pathway and cholesterol

metabolism pathway (Fig. 1a). Unsupervised clustering of

the pan-cancer by the pathway enrichment false discover

rate (FDR), shows that similar lipid metabolism features are

shared among the similar tissue origin tumors. For
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Fig. 1 Alterations in the lipid metabolism pathways and the crosstalk with other pathways. a Heatmap of the enrichment significance score

(colored by FDR) of lipid metabolism pathways from the KEGG pathways in pan-cancer. b, (c) and (d) Heatmaps of differentially expressed genes

(blue: down-regulation; red: up-regulation) related fatty acid metabolism, cholesterol metabolism and arachidonic acid metabolism in pan-cancer.

Significantly differentially expressed genes were highlighted with * (FDR < 0.05). e The network of lipid metabolism pathways with other pathway

with shared differentially expressed genes. Pathways were colored by their pathway categories
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example, the pan-kidney cancers or tumors from urologic

organism show similar lipid metabolism pattern including

the significantly altered cholesterol metabolism, PPAR sig-

naling pathway and arachidonic acid metabolism (Fig. 1a).

The lung cancers such as LUAD and LUSC also show simi-

lar lipid metabolism pattern.

We next analyzed the gene expression landscape of the

key altered lipid metabolism pathways. It can be observed

that the fatty acid metabolism process shows common fea-

tures among various tumor types. Unsupervised clustering

of genes expression alterations in fatty acid metabolism

pathway reveals that genes which regulate the beta oxida-

tion process in mitochondrion are dominantly

down-regulated in most of the cancer types. Inversely, the

genes specific for fatty acid biosynthesis were dominantly

up-regulated in tumor samples compared to adjacent nor-

mal samples (Fig. 1b), suggesting an accumulation of fatty

acid in tumor cells. The gene expression in the cholesterol

metabolism pathway showed tumor specificity. Clustering

pan-cancer based on the cholesterol metabolism pathway,

three sub-groups can be classified, including the

pan-kidney cancer (KICH, KIRC and KIRP) group, the

pan-gynecological (BRCA, UCEC) and pan-gastrointestinal

cancers (STAD, COAD and READ) group, and the third

group including LUAD, LUSC, HNSC, PRAD, ESCA, LIHC

and THCA (Fig. 1c). The alteration of arachidonic acid me-

tabolism pathway also shows strong tissue specificity in dif-

ferent cancers. The arachidonic acid metabolism pathway

can be divided into four sub-processes, including the gener-

ation of arachidonic acid catalyzed by phospholipase A2

(PLA2), and the production of downstream products by

various enzymes, including the production of prostaglan-

dins by the catalysis of cyclooxygenases (COXs), the pro-

duction of leukotriene and hydroperoxyeicosatetraenoic

acids (HETEs) by lipoxygenases (LOXs) and the production

of several HETEs and epoxyeicosatrienoic acids (EETs) by

cytochrome P450 (CYP450) epoxygenases enzymes [11].

Our results revealed that in the arachidonic-acid-producing

process, the key regulation gene PLA2G10 was significantly

up-regulated in KIRC, KICH, THCA, BRCA, UCEC and

LUAD, while down-regulated in COAD, READ and LUSC

(Fig. 1d). Regarding the effects of PLA2, we found that in

LIHC, only significantly up-regulated genes were observed

in arachidonic acid producing process, suggesting the

over-production of arachidonic acid in LIHC. For the pro-

duction of HETEs and EETs, CYP450 family genes play im-

portant roles. In HNSC, ESCA, STAD, LIHC and the

pan-kidney tumors, CYP450 family genes were dominantly

down-regulated, indicating the functional reduction of the

HETEs and EETs production. These results reveal different

types of lipids show different expression features in

pan-cancer.

To further investigate the potential influence of lipid me-

tabolism in cancer, we investigated the crosstalk between the

four widely significantly altered pathways and other pathways

by comparing the shared differentially expressed genes. We

found that the alteration of the lipid metabolism pathways

can affect metabolism, signaling transduction and immunity.

Specifically, the alteration of fatty acid degradation is also

companioned with other metabolism pathways such as

amino acid metabolisms and xenobiotics, as well as the

cAMP signaling pathway. The alteration of arachidonic acid

metabolism can not only affect other metabolism process,

but also accompanied the alteration of signaling pathway

such as the MAPK signaling pathway. The differentially

expressed genes in the cholesterol metabolism pathway can

also modulate multiple signaling pathways such as PI3K-Akt

signaling, calcium signaling, cGMP-PKG signaling pathway

etc., impling its important role in signaling modulation. The

alteration in the cholesterol metabolism pathway may also

side with the ECM-receptor interaction and the immune sys-

tems (e.g. Hematopoietic cell lineage), revealing its role in

cell attachment and immune-effects. As a key modulation

signaling pathway, the PPAR signaling can modulate the fatty

acid metabolism, arachidonic acid metabolism and choles-

terol metabolism (Fig. 1e).

The regulation of lipid metabolism pathways

(methylation/ mutation/transcription)

To examine the molecular mechanisms underlying the

transcriptional regulation of the lipid genes in cancer, we

further integrated DNA methylation, somatic mutation and

mRNA expression data. We mainly focused on how fatty

acid metabolism, arachidonic acid metabolism, cholesterol

metabolism and PPAR signaling pathway were altered in

pan-cancers in multiple omics level. Firstly, we explored

the effect of DNA methylation on gene expression for the

lipid metabolism genes. Based on the same tissue samples,

we detected differentially methylated sites comparing the

DNA methylation profiles in tumor with the adjacent nor-

mal tissues. A former study has shown that abnormal DNA

methylation in the promoter region has a more important

regulatory effect on gene expression than non-promoter re-

gions [12], and cis-regulation was dominated by the nega-

tive correlation between promoter methylation and gene

expression [13]. We detected the differentially methylated

CpG sites (q-value < 0.05, dbeta > 0.1) that mapped on the

promoter regions and significantly negatively correlated

with the differentially expressed genes. Averaging of differ-

ential methylation sites located on the same gene that were

negatively correlated with the expression of the differen-

tially expressed genes in the four pathways were shown in

Fig. 2a. It can be observed that some of the differentially

expressed lipid metabolism genes were regulated by DNA

methylation. i.e., APOA1, which has anti-inflammatory and

antioxidant properties [14], was reduced in gene expression

associated with hyper-methylation of its promotor region in

cholesterol metabolism pathway, which could accelerate
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tumor growth and metastasis primarily via modulation of

innate and adaptive immune responses in tumors [15, 16].

PLA2 (PLA2G4F), which catalyzes the hydrolysis of mem-

brane phospholipids to release arachidonic acid (AA), was

up-regulated in BRCA and UCEC (pan-gynecological) ac-

companied with DNA hypo-methylation, inversely,

down-regulated in KIRC and KIRP (pan-kidney) accom-

panied with hyper-methylation in the promoter regions, re-

spectively. The differential methylation pattern supports

the tissue specific expression landscape of lipid metabolism

pathways.

Next, we identified somatic alternations that potentially

regulated lipid metabolism. (See Additional file 2) depicted

the lipid genes with mutation frequency of more than 2%

and differently expressed in the four significantly altered

lipid-metabolism pathways in pan-cancer. More

high-frequency-mutated genes were observed that accom-

panied with dysregulated mRNA expression in UCEC,

while fewer genes were observed in KICH, KIRC and

KIRP. Notably, some genes with high frequency mutation

also showed consistent gene differential expression pat-

terns across pan-cancer. i.e., ACACB and RXRG were

Fig. 2 Multiple mechanisms contribute to dysregulation of lipid metabolism genes in cancer. a Pearson correlation estimation (p < 0.05) of the

association between mRNA expression and DNA methylation in the promoter region across pan-cancer. b Gene mutation versus its mRNA

expression (red color represents there is significant (wilcox test, p < 0.05) difference of the mRNA expression between the mutated group and the

non-mutated group, while grey color represents that no significant difference observed between the mutated group and the non-mutated

group. To perform statistic testing, the number of samples in either the mutated group or the non-mutated group should be greater or equal to

three. The white color represents the gene is with less than three mutated samples.). c Transcription factor mutation versus targets expression

(Color as the same as B). d Pearson correlation estimates of association between the expression of transcript factors and their target genes across

pan-cancer. The circle size is proportional to the significance level of correlation results
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with high mutation frequency and down-expressed in

most cancer types, including UCEC, LUAD, LUSC,

COAD, BLCA and HNSC. As gene mutations commonly

occurred in a part of the tumor samples, we further inves-

tigated whether the expression of genes was directly asso-

ciated with mutations in tumor samples. Candidate lipid

genes with mutations in at least three tumor samples were

selected, grouped by gene mutations. Wilcox test was per-

formed to detect the difference between mutanted and

non-mutated groups (Fig. 2b). In BRCA, COAD and

STAD, some mutated genes are significantly correlated

with mRNA expression. Compared with mRNA expres-

sion profile, we found the over-expression of FADS2 and

ELOVL4, and the low-expression of CD36 and LRP1 in

BRCA were associated with the somatic mutations of the

same genes. The over-expression of LIPG in COAD and

PCSK9 in STAD, the low-expression of HMGCS1 in

LUAD and ACACB in STAD may also be regulated by

gene mutations.

Mutation and differential expression of transcription

factors could also be critical factors for the regulation of

lipid metabolism. In the present study, we selected tran-

scription factor and target gene pairs from TRANSFAC

[17] (Additional file 3). Firstly, we analyzed the effect of

mutations of transcription factors on the expression of

target lipid-related genes. The pan-cancer map of mutated

transcription factors significantly associated (Wilcoxon

signed-rank test) with targeted lipid genes expression is

shown in Fig. 2c. The mutations of SREBF1, SREBF2 and

TP53 show significant impacts on downstream targeted

lipid genes, especially in the downstream target genes in

cholesterol metabolism pathway. In addition, the mutation

on SREBF1 was also associated with the expression of

ACACB and SCD, which are important enzymes in fatty

acid beta-oxidation and the synthesis of unsaturated fatty

acids processes, respectively. In BRCA, HNSC, THCA and

LUSC, TP53 mutation regulated the expression of LRP1,

the up-regulation of LRP1 has been reported to be associ-

ated with the invasiveness of cancer cells by supporting

ERK and inhibiting JNK signaling pathways [18, 19].

Secondly, we analyzed the Pearson correlation of the

expression levels between the transcription factors and

downstream targets in tumor samples. Figure 2d shows

the differentially expressed transcription factors which are

significantly associated with the expression of the targeted

lipid-metabolism genes (absolute Pearson correlation >

0.2, p-value < 0.01). The expression of SREBF1 is closely

associated with targeted lipid-metabolism genes in fatty

acid metabolism and cholesterol metabolism pathway. It

indicates that the up-regulation of SREBF1 promoted the

de novo synthesis of fatty acids associated with the upreg-

ulation of ACLY, FASN and SCD, increased cholesterol

uptake into hepatocytes associated with the upregulation

of PCKS9, modulated the fatty acid oxidation in

mitochondria associated with the down-regulation of

ACACB in most cancers (Fig. 2d, Additional file 4).

Similarly, the abnormal expression of SREBF2 also signifi-

cantly affected the imbalance of cholesterol metabolism

and arachidonic acid metabolism.

Strikingly, based on the integration analysis of

multi-omics data, we found that many regulatory factors

lead to the same result. In COAD, the significant

up-regulation of TBXAS1 expression is affected by

hypo-methylation of the DNA promoter region and asso-

ciated with mutation of the upstream transcription factor

NFE2. In LIHC, the significant downregulation of LDLR

expression may be modulated by the hyper-methylation of

the DNA promoter region, the mutation of the upstream

transcription factor SP3, and the down-regulation of the

transcription factor EGR1. These results provide a more

comprehensive and illustrative mechanism of tumor lipid

metabolism abnormalities.

The correlation between lipid metabolism and the

immune cells in tumor micro-environment

The proportion of immune cells in the tumor microenvi-

ronments of the sixteen tumors were estimated using

CIBERSORT [20]. We found that the Macrophages M0, T

cell CD4 memory resting and Macrophages M2 were

among the highest-proportion immune cells across all the

sixteen tumor types. While, Eosinophils, Neutrophils, T

cells gamma delta, B cells memory and T cells CD4 naive

are among the lowest-proportion immune cells (Fig. 3a).

Unsupervised clustering of the immune cell proportions

can classify the pan-cancers into three sub-groups. The

pan-kidney cancer (KICH, KIRC and KIRP), LIHC and

PRAD were clustered in to one sub-group featured with

high proportion of T cells CD4 memory resting. HNSC,

COAD, LUSC, BRCA, LUAD, BLCA and THCA were clus-

tered into another subgroup featured with high proportion

of Macrophages M0, and the other cancer types including

pan-gastrointestinal (ESCA, READ and STAD) fall into the

third group. To further explore the relation between lipid

metabolism and the immuno-microenvironment, Pearson

correlation between expression values of the lipid genes

and the immune cell proportions were carried out. Genes

that are significantly correlated with at least one of the 22

immune cells and significantly differentially expressed were

further used to perform pathway enrichment analysis. The

enrichment score (FDR) of the 21 selected lipid metabolism

pathways were shown in Fig. 3b. It can be observed that the

differentially expressed lipid metabolism genes which were

significantly correlated with tumor immune environments

were enriched in the cholesterol metabolism pathway and

arachidonic acid pathway. We further selected the most sig-

nificantly correlated genes with absolute correlation coeffi-

cient greater than or equal to 0.7 in the four significantly

altered lipid metabolism pathways (Additional file 5). The
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highly correlated lipid-metabolism genes with the immune

cell proportions in the four pathways are shown in Fig. 3c,

including ANGPTL3, PLTP and LRP2 in the cholesterol

metabolism pathway, PLA2G5, CYP2B6 and GPX2 in the

arachidonic acid metabolism pathway, HMGCS2 and

FABP2 etc. in the PPAR signaling pathway, OLAH and

SCD5 etc. in the fatty acid metabolism indicating their roles

in altering the TME. We further assessed the correlation of

the expression level of transcription factors which regulate

lipid metabolism and the proportion of immune cells.

Transcription factors associated with immune cells were se-

lected with the thresholds of absolute correlation coefficient

greater than 0.5 and FDR < 0.05 in at least two tumor types,

as shown in Fig. 3d. Specifically, we found that the tran-

scription factor STAT1, which is a key regulator for the

cholesterol metabolism and arachidonic acid pathway, was

significantly correlated with the proportion of T cells CD4

memory activated, T cells CD8 and Macrophages M1, im-

plying its role in regulating the immune microenvironment

by acting on lipid metabolism.

Prognosis impacts of lipid metabolism

To investigate the prognosis impact of lipid metabolism, es-

pecially genes in the four most widely significantly altered

pathways, we classified samples from each of the sixteen

cancer types into two groups according to the median value

of the gene expression for each gene. Log-Rank test was

performed to estimate the difference between the survival

time of the two groups. The lipid-metabolism related genes

with significantly prognosis impact were shown in Fig. 4a

(p-value < 0.05). High-expression of FADS1, FADS2, FASN

and ACOT7 in the fatty acid metabolism pathway, GPX8,

PTGES3 and PTGIS in the arachidonic acid metabolism

pathway, SQLE, VDAC1, CD36, LDLR, LRP1 and VAPA in

the cholesterol metabolism pathway and MMP1, OLR1 in

the PPAR signaling pathway significantly reduced the over-

all survival of patients. While down-regulation of genes

such as CYP4A11, PLA2G4A, PLA2G3, LTC4S, CYP27A1,

HMGCS2 and PDPK1 reduced patient overall survival time

in most tumor types. Taking the differential expression be-

tween tumor and adjacent normal samples into consider-

ation, it can be observed that the lipid-metabolism related

genes, such as MMP1, HMGCS2 and AKR1C3, may not

only be diagnosis markers for tumors but also may act as

prognosis biomarkers in different tumor samples. These re-

sults indicate that abnormal lipid metabolism in tumors

may play crucial roles in patient survival.

Furthermore, we found three lipid-metabolism related

genes HMGCS2, GPX2 and CD36 associated with the

tumor immune microenvironment were significantly cor-

related with prognosis (Fig. 4b, c and d). Low expression

of HMGCS2 was associated with poorer survival time in

KIRC. High expressions of GPX2 and CD36 were associ-

ated with poorer survival in KIRP and BLCA, respectively.

Fig. 3 The correlation between lipid metabolism and the immune cells in tumor micro-environment. a Heatmap of the average proportion of

the immune cells (colored by proportion) in pan-cancer. b Heatmap of enrichment significance of lipid metabolism related pathways from KEGG

pathways for the differentially expressed lipid metabolism genes which are significantly related immune in pan-cancer (colored by FDR, red

represented significant enrichment (FDR < 0.05) and grey represented the non-significant enrichment (FDR > = 0.05)). c Pearson correlation

between the expression of differentially expressed lipid metabolism related genes and the proportion of immune cell in pan-cancer. d Pearson

correlation between the expression of differentially expressed transcription factors and the proportion of immune cell for pan-cancer
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These results may provide important biomarkers for the

potential prognosis and treatment of cancers from an im-

mune aspect.

Discussion
This comprehensive integrated analysis of pan-cancer en-

hances our understanding of the lipid metabolism dysregula-

tion molecular events relevant to multiple cancer types. Our

analysis highlights the most widely significantly perturbed

lipid metabolic pathways in cancers, including PPAR signal-

ing, fatty acid degradation, arachidonic acid metabolism

pathway and cholesterol metabolism pathway. The synthesis

and degradation of fatty acids which provide the material

and energy base for tumors, the metabolism of arachidonic

acid produces different inflammatory cytokines, the choles-

terol metabolism may influence many signaling pathways

and the PPAR signaling pathway can directly regulate other

lipid metabolism pathways. Based on the analysis of gene ex-

pression profiling for multiple tumors, the metabolic pro-

cesses of fatty acids appeared to be altered in a more

consistent way in most tumors, including the attenuation of

fatty acid beta oxidation process in mitochondrion and en-

hancement of fatty acid de novo biosynthesis in tumor sam-

ples, suggesting an accumulation of fatty acid in tumor cells,

which support the synthesis of cell membranes and cell

division requirements. The alteration of arachidonic acid me-

tabolism pathway and cholesterol metabolism show strong

tissue specificity, which may reflect the different inflamma-

tory or immune environments in different types of tumors.

By exploring the regulation of gene expression in lipid me-

tabolism, the integrated analysis of DNA methylation, muta-

tion and the expression of transcription factors provide

further evidence for the lipid metabolism. Different expres-

sion pattern in different lipids metabolism pathways may be

influenced by their micro-environments. Further correlation

analysis between the gene expression of lipid-metabolism

genes and the immune cell proportions in the tumor im-

mune microenvironments further provides clues for the rela-

tion between lipid metabolism and the immune

microenvironments. For example, the expression of tran-

scription factor STAT1 which modulate the cholesterol me-

tabolism and arachidonic acid pathway, was correlated with

several types of immune cells in the tumor immune micro-

environment. Following prognosis analysis revealed that sev-

eral lipid-metabolism genes may not only be diagnosis

biomarkers for tumors but may also be prognosis bio-

markers, such as MMP1 and HMGCS2. It has been reported

that MMP1 overexpression has an important role in promot-

ing tumor cell invasion [21] and HMGCS2 silence promoted

tumor cells metastatic via Epithelial-Mesenchymal

Fig. 4 Prognosis impact of genes in key lipid metabolism pathways. a Genes in the four key altered lipid metabolism pathways which are

associated with prognosis. Red represents high gene expression significantly reduces the patient’s overall survival time and blue represents low

gene expression significantly reduces the patient’s overall survival time. b, (c) and (d) Kaplan-Meier survival curve for tumors stratified by high or

low expression levels of (b) HMGCS2, (C) GPX2 and (d) CD36 (the high or low expression level groups were stratified by the median expression

value). P-value indicates significance levels from the comparison of survival curves using the Log-rank test
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Transition (EMT) process and the activation of ERK/c-Jun

signaling pathway [22]. We also revealed lipid metabolism

biomarkers that were closely correlated with the tumor im-

mune microenvironment, such as CD36. Former research

investigated that the increased expression of CD36 promotes

tumor metastasis, and mediates a pro-apoptotic effect in

ovarian tumor cells [23]. Genetic depletion of the fatty acid

translocase CD36 inhibits the induction of immunosuppres-

sive function in tumor-infiltrating Myeloid-derived suppres-

sor cells (MDSC) and results in a CD8+ T cell-dependent

delay in tumor growth [24].

Our results provide a comprehensive analysis of lipid me-

tabolism in tumors and explored the association between

lipid metabolism and immune environments, which could

further provide clues for lipid-metabolism based diagnosis

biomarker discovery and prognosis biomarker develop-

ment. There are still some limitations in the present study.

The correlation analysis between the gene expression of the

lipid metabolism genes and the proportions of immune

cells implys their association, however, generating such data

is not enough to capture detailed interaction. Whether ab-

normal lipid metabolism is a driving force for immune

microenvironment formation or whether abnormal im-

mune microenvironment can lead to abnormal lipid metab-

olism still need to be validated experimentally.

Conclusion

Based on multi-omics data of pan-cancer, we found widely

alterations of fatty acids, arachidonic acid and cholesterol

metabolism and PPAR signaling in different tumors, and

similar lipid metabolism features are shared among the

similar tissue origin tumors. In the process of studying the

mechanism of abnormal regulation of expression profile,

we correlated possible causes of metabolic disorders of

lipids in tumors from several aspects: somatic mutation,

DNA methylation abnormality and regulation of tran-

scription factors. This would contribute to providing clues

to support the further molecular regulatory experiments.

Our analysis revealed potential correlation between lipid

metabolism and immune response. In addition, we also

found genes related to lipid metabolism and immune re-

sponse that are associated with poor prognosis. It is of

great significance to molecular targeted therapy for tu-

mors and development of new anti-cancer drugs. In con-

clusion, integrated analytic approaches have been applied

to multiple data platforms from a large set of clinically an-

notated multiply tumor cases to provide a better under-

standing of lipid dysregulation molecular targets that may

lead to improved therapeutic strategies.

Methods

Data acquisition

Multiple omics data including gene expression data nor-

malized by RSEM from Illumina HiSeq RNASeqV2,

DNA methylation data from the Human Methylation450

assay, DNA mutation data and clinical data were down-

loaded from Broad GDAC Firehose [25]. Sixteen solid

tumors with sample size of adjacent normal samples

over 10 were selected in this study, including BLCA,

BRCA, COAD, ESCA, HNSC, KICH, KIRC, KIRP, LIHC,

LUAD, LUSC, PRAD, READ, STAD, THCA and UCEC.

Gene expression data (Raw counts and FPKM) were

downloaded from GDC Data Portal [26]. The Human-

Methylation450 assay obtained as the DNA methylation

status (β values) range from zero to one, with scores of

“0” indicating no DNA methylation and scores of “1” in-

dicating complete DNA methylation.

Differential gene expression analysis

Genes were taken into consideration for differentially

expressed gene calculation, with a minimum sample size

with detection over six and over a quarter of the total

sample size. Differential expressed genes between tumor

and paired adjacent normal samples were detected using

edgeR [10] using the gene expression data of raw counts.

A threshold of FDR less than 0.01 and the absolute log2

fold-change greater than 1 were used for defining differ-

entially expressed genes.

Pathway enrichment analysis

Pathway enrichment analysis was performed using fisher

exact test followed by Benjamini & Hochberg test based on

KEGG pathways using the differentially expressed genes for

each tumor. Pathways with FDR less than 0.05 were consid-

ered to be significantly enriched pathways. According to

KEGG pathway categories, lipid metabolism pathways were

selected in the category of Metabolism and Organismal sys-

tems, as listed in Additional file 1. Pathway enrichment score

for the lipid metabolism pathways were plotted in Fig. 1a

using ‘pheatmap’ in R package according to the FDRs.

Differential DNA methylation analysis

To study the differentially methylated sites between tumor

and adjacent normal tissue, we used the Bioconductor

tool, minfi [27] for differential methylation analysis.

Probes which had “NA”-masked data points or located on

sex chromosomes were eliminated. For a CpG site to be

considered differently methylated, the difference in the

median value between the tumor and the paired normal

samples (dbeta) should be more than 0.1 and q value less

than 0.05 were considered statistically significant.

Integrated analysis of methylome and transcriptome

For analyzing the effect of methylation on gene expression,

only CpG sites located in the promoter region (TSS1500,

TSS200, and 5′ UTR) which showed differential methylation

were taken into consideration. For specific gene in one can-

cer type, hypo-methylation in the gene promoter region and
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over-expression, or hyper-methylated in the promoter region

and down-expression were considered as positively regula-

tions [28]. Pearson correlation between gene expression and

averaging of gene-associated probes was evaluated.

Integrated analysis of somatic mutations and transcriptome

For a specific gene, the mutations on the gene may influ-

ence its expression. To investigate the effect of somatic

mutations on gene expression, we grouped the tumor

samples according to mutations for each gene, then Wil-

coxon signed-rank test was used to identify the differ-

ence of gene expression between the mutated group and

the non-mutated group. On the other hand, gene muta-

tions in the transcription factors may also influence tar-

gets. The transcription factor and target gene pairs were

extracted from TRANSFAC database [29]. To evaluate

the effect of mutation in transcription factors to the ex-

pression of downstream targets, we classified samples

according the mutation states of specific transcription

factors. The Wilcox test was also used to identify the ex-

pression difference of the gene expression level of tar-

gets. For the above analysis, genes with mutations in at

least three tumor samples were taken into consideration.

P-value < 0.05 were considered statistically significant.

Correlation analysis between transcription factors and

targets

To investigate the effect of transcriptional regulation of

lipid metabolism, we further assessed the correlation be-

tween the expression of the transcription factors and

lipid metabolism genes. Correlations between transcrip-

tion factors and targets were assessed using Pearson cor-

relation. Significant correlations were considered as

those pairs with p-value smaller than 0.05.

Correlation analysis between tumor immune cell

proportion and lipid metabolism specific gene expression

The relative abundance of 22 immune cell types in the six-

teen cancer types was estimated using CIBERSORT [8, 20]

based on the gene expression data from TCGA. To investi-

gate the effect of lipid metabolism to immune microenvir-

onment in tumors, we assessed the correlation between the

expression of candidate lipid genes and transcription factors

collected from the literature, KEGG and TRANSFAC

databases to filter by the differentially expressed genes in

the category of lipid metabolism (Additional file 6) and

each tumor immune cells proportion in each tumor type

using Pearson correlation followed by BH adjustment.

Lipid-metabolism genes correlated with immune cell pro-

portions were selected with the threshold of FDR smaller

than 0.1. Pathway enrichment analysis of the

lipid-metabolism genes correlated with the immune cells

were performed using Fisher exact test followed by BH

adjustment based on KEGG pathways.

Prognosis analysis of differentially expressed genes

To investigate the prognostic impact of lipid metabol-

ism, we performed survival analysis on the differently

expressed genes related fatty acid metabolism, arachi-

donic acid metabolism, cholesterol metabolism and

PPAR signaling in at least three out of the sixteen tumor

types. We merged RNA differentially expressed and sur-

vival data from the clinical information file matched by

sample ID for each tumor type. The statistical signifi-

cance of survival differences in the Kaplan-Meier ana-

lysis was assessed using the Log-rank test and splitting

the tumor samples into two groups: low and high ex-

pression levels (median value used as the cut-off ), as im-

plemented in Survival-Online [30]. For survival clinical

features, Log-rank test in univariate Cox regression ana-

lysis with proportional hazards model [31] was used to

estimate the p values comparing quantile intervals using

the ‘coxph’ function from package “rms” in R.
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