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Abstract: Aluminum metal matrix composites are potential materials for aerospace and automobile
industrial applications due to their enhanced mechanical and tribological properties. Aluminum rein-
forced with silicon carbide particles has been developed with enhanced mechanical and tribological
behavior, but it lacks wettability between matrix and reinforcement causing weak bonding, which
reduces the degree of enhancement. The objectives of this study were to fabricate aluminum-based
metal matrix composites with enhanced wettability at varying stirring speeds (350, 450, 550 rpm),
stirring time (5, 10, 15 min), weight percentage of SiC (0, 5, 10 wt.%), and weight percentage of MoS2

(0, 2, 4 wt.%). Nine samples were fabricated using stir casting based on Taguchi L9 orthogonal array.
Hardness, tensile strength, and wear rate of the developed composite were investigated and analyzed
as a single response characteristic using Taguchi’s signal-to-noise ratio and as a multi-response
characteristic using hybrid Taguchi–grey relational analysis (HTGRA). The results revealed that the
addition of SiC in the composite produced better hardness, tensile strength, and wear rate. The
addition of MoS2 in the composite showed better hardness and tensile strength only up to 2 wt.% of
MoS2, and in the case of wear rate, the addition of MoS2 in the composite up to 4% showed better
wear resistance. Al–SiC–MoS2 hybrid composite shows better enhancement in hardness, tensile
strength, and wear resistance than the Al–SiC composite.

Keywords: metal matrix composites; GRA; Al/SiC/MoS2; Al 6061; silicon carbide; stirring time;
stirring speed; multi-response optimization

1. Introduction

Aerospace and automobile industries require a lightweight, harder, stronger, stiffer,
and wear resistant material [1,2]. In nature, no material satisfies this requirement; a
composite is the only material that fulfills this industrial requirement [2,3]. Composite
material combines two or more dissimilar materials to create a material with better behavior
than either of the originals alone [4,5]. The combination of materials must have two
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main phases, a matrix phase and a reinforcing phase [6,7]. There are three basic types of
composites based on the matrix phase: metal matrix composite, ceramic matrix composite,
and polymer matrix composite [8,9]. Metal matrix composite (MMC) has hard particles for
reinforcement and metal matrix to enhance the mechanical and tribological behavior of the
composite. The matrix material has to be lightweight, have high strength-to-weight ratio,
and high modulus-to-weight ratio. The materials that satisfy this behavior are aluminum,
titanium, and magnesium [1,2,7].

Metal matrix composites, therefore, can be aluminum alloy-based composites [9,10],
magnesium alloy-based composites [6,11], or titanium alloy-based composites [4]. The materi-
als used as reinforcement in the production of MMCs are aluminum oxide (Al2O3), silicon
carbide (SiC), titanium bromide (TiB2), titanium carbide (TiC), titanium nitride (TiN), and
boron carbide (B4C) [12,13]. Of all MMCs, aluminum alloy-based composites have shown
better improvement in the mechanical and wear properties needed by industries [14,15].
Aluminum alloys are termed versatile materials to be used for numerous engineering
applications because of their better machining, joining, and processing properties [16,17].
In addition, the low cost, increased strength-to-weight ratio, and other environmentally
friendly characteristics of aluminum alloys make them preferable materials in engineering
applications [11,14,15]. There are several series of aluminum alloys (e.g., 1xxx, 2xxx, 5xxx,
6xxx, 7xxx, and others) used in the production of composites. Among aluminum alloys, the
6xxx and 7xxx series have good machinability and extrudability and are mostly used as a
matrix material in the production of AMMC aerospace industry, architectural construction,
marine industries, and automotive applications [3,18,19].

Taguchi method is a technique for designing and performing experiments to investi-
gate processes where the output depends on many factors. Taguchi uses the signal-to-noise
(S/N) ratio to measure the quality of characteristics deviating from the desired value. Three
categories of signal-to-noise ratios (larger is better, smaller is better, and the nominal is best)
are used to find the optimal parameters, and the signal-to-noise ratio of each parameter
level must be assessed for each output function [19,20]. Grey relational analysis is widely
used for optimizing multi-response parameters by converting multi-responses into a single
response. This method has been applied by several researchers to optimize the control
parameters having multi-responses through grey relational grade.

2. Materials and Methods
2.1. Materials

Al 6061 is used in this paper due to its corrosion resistance and moderate strength,
and its composition is tabulated in Table 1. Al 6061 is extensively used because of its low
weight, low cost, and good formability and weldability. Silicon carbide particle (53 µm)
reinforcement was used to develop this composite, and it certainly improves the overall
strength of the composite. The processing parameters to manufacture the desired samples
are given in Table 2. Aluminum MMC reinforced with SiC particles has an improvement in
mechanical behavior compared to unreinforced aluminum matrix alloy [12]. Molybdenum
disulfide (MoS2) is used as a dry or solid lubricant to improve the poor wettability that
occurs between Al 6061 and SiC because of its low coefficient of friction [9]. Table 3 depicts
the experimental parameters and their levels. Table 4 represents the experimental design
for composite fabrication.

Table 1. Chemical weight composition of Al 6061.

Elements of Al 6061 wt.%
Si Mn Mg Cr Zn Cu Fe Ti Al

0.7 0.05 0.9 0.3 0.2 0.30 0.6 0.1 96.85
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Table 2. Properties of Al 6061 and silicon carbide (SiC).

Property Value

Formula Al 6061 SiC

Density 2.71 g/cm3 3.21 g/cm3

Melting point 605 ◦C 2730 ◦C

Modulus of elasticity 70 GPa 410 GPa

Tensile strength (σt) 115 MPa 3900 MPa

Poisson’s ratio (ν) 0.33 0.14

Form Rod Powder

Particle size - 270 mesh (53 µm)

Hardness 30 Kg/mm2 2800 Kg/mm2

Table 3. Experimental parameters and their levels.

S. No Process Parameters Levels Units

1 Stirring time (A) 350 450 550 rpm

2 Stirring time (B) 5 10 15 min

3 wt.% of SiC (C) 0 5 10 %

4 wt.% of MoS2 (D) 0 2 4 %

Table 4. Experimental design for composite fabrication.

S. No A (rpm) B (min) C (wt.%) D (wt.%) Designation

1 350 5 0 0 S1

2 350 10 5 2 S2

3 350 15 10 4 S3

4 450 5 5 4 S4

5 450 10 10 0 S5

6 450 15 0 2 S6

7 550 5 10 2 S7

8 550 10 0 4 S8

9 550 15 5 0 S9

2.2. Experimental Process Parameters and Design of Experiments

Fabrication of the composite was achieved based on the basic input variables of process
parameters (stirring speed, stirring time, and weight percentage of SiC and MoS2) at the
same pouring temperature (730 ◦C) for each fabrication.

Taguchi L9 orthogonal array experimental design was used for fabrication based on
the given factors and levels. In the design of the experiment table for fabrication, the letters
A, B, C, and D are used to represent the process parameters of stirring speed, stirring time,
wt.% of SiC, and wt.% of MoS2, respectively, to indicate the optimization of S/N ratio plot.

2.3. Conducted Testing

Hardness testing was conducted as per ASTM using the Vickers hardness tester
machine shown in Figure 1a and the sample shown in Figure 1d. The sample used for
hardness testing was a cylindrical form with a size of 20 mm in length and 20 mm in
diameter. Tensile strength testing was conducted based on the ASTM E8 standard us-
ing Shimadzu (Kyoto, Japan) AG-X plus TM 50 kN universal testing machine as shown
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in Figure 1b and the sample shown in Figure 1e. The sample size has gauge length
(G = 43.75 mm), R = 6.25 mm, overall length (L = 82.5 mm), parallel length (A = 50 mm),
and grip width (C = 14 mm) as shown in Figure 1g. Wear rate testing was conducted
based on ASTM G99-05 using pin-on-disc (DUCOM TR-20 MICRO) equipment as shown
in Figure 1c and the sample shown in Figure 1f. The sample used for wear testing was a
cylindrical form with a size of 12 mm in length and 6 mm in diameter.
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2.4. Analysis of Particle Distribution in Matrix

The microstructural image was analyzed by determining the grain particle size area
from the scaled dimension of each grain particle using ImageJ software. ImageJ software
considers and counts all grain particles in the Al matrix of the composite and determines the
volume fraction of the particles in the Al matrix. The data recorded from this software were
the total cross-sectional area of the analyzed images, the total number of grain particles, the
total area of the grain particles, the average area of grain particle size, and grain particle
volume fraction in the matrix. In the analysis, there are two phases, as indicated by red
and white in Figure 2. The red color indicates the total area of grain particles in the matrix
obtained from the total area of the analyzed image.
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Figure 2. Optical microscopic images showing particle distribution.

From the analysis, the volume fractions of grain particles were proportional to each
other’s (i.e., the higher reinforcement weight of contents in the matrix, the higher the
volume fraction). Sample 3, which has the higher weight percentage of SiC and MoS2,
shows the higher volume fraction; Sample 1, which has no weight percentage of SiC
and MoS2, shows the smaller volume fraction in the microstructural analysis as shown
in Table 5.
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Table 5. Determination of volume fraction of grain particles in the composite.

Designation Total Area of Images
(µm2)

Total Counted Grain
Particles

Total Grain
Particle Area (µm2)

Average Area of Grain
Particle (µm2)

Volume Fraction
Grain Particle Size (%)

S1 624,679.7 500 9264 18.528 1.483

S2 1261,693 1809 134,875 74.558 10.690

S3 1,970,589.4 2930 369,052 125.956 18.728

S4 1,360,391.2 998 155,071 155.382 11.399

S5 1,866,556.6 2551 248,700 97.491 13.324

S6 1,281,421.4 1762 56,075 31.825 4.376

S7 1,697,183.9 2091 239,863 114.712 14.133

S8 1,628,568.9 1930 95,369 49.414 5.856

S9 837,422.7 1846 75,837 41.082 9.056

3. Results

Table 6 shows the experimental results of hardness, tensile strength, and wear rate of
the developed composite.
Table 6. Experimental results of hardness, tensile strength, and wear rate values.

Designation
Experimental Result

Hardness (HV) Tensile Strength (MPa) Wear Rate (×10−9 Kg/m)

S1 123 75 10

S2 183 129 7

S3 204 171 1

S4 174 105 6

S5 199 181 4

S6 180 90 9.002

S7 208 194 3

S8 163 82 9

S9 180 119 8

The hardness test was performed using a Vickers hardness tester machine. From
Table 6, the highest and lowest values of hardness were 208 HV and 123 HV, respectively.
When the wt.% of SiC increases (at a higher level) and wt.% of MoS2 is at 2 wt.%, the
hardness of the composite increases. In contrast, the lowest hardness was recorded as the
wt.% of SiC, and wt.% of MoS2 is lower (at a lower level). The hardness of the composite
increased due to increasing content of SiC particles and strong bonding between SiC
particles and matrix due to enhanced wettability with the addition of MoS2. SiC particles
increase the grain boundaries in composites and the grain size of the composites are reduced.
Dislocation mobility will be restricted or challenged to move from grain to grain due to
increased grain boundaries (decreased grain size) since grain boundaries act as a barrier
to the motion of dislocation. Moreover, SiC particles have an extremely low coefficient of
thermal expansion and how they strain the atomic lattice of the aluminum matrix, resulting
in a dramatic increase in dislocation density. Dislocation density is the average distance
between dislocation decreases and the dislocation starts blocking the motion of each other.
The addition of MoS2 also shows an enhancement in hardness up to 2 wt.% and shows a
decrement with 4 wt.%, which means the role of MoS2 is only facilitating the wettability, so
only a small amount is enough to enhance the wettability and bonding between both matrix
and reinforcement to each other, and further increment leads to decreasing the hardness of
the composite.
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The tensile strength testing was performed using the universal testing machine (UTM).
The largest values of tensile strength were indicated in sample number seven and the
lowest value in sample number one with values of 194 MPa and 75 MPa, respectively.
When the wt.% of SiC increases (at the higher level) and wt.% of MoS2 is at 2 wt.%, the
tensile strength of the composite increases. In contrast, the lowest tensile strength was
recorded as the wt.% of SiC, and wt.% of MoS2 is lower (at the lower level). The tensile
strength of the composite is increased due to increasing contents of SiC particles and strong
bonding between SiC particles and matrix due to enhanced wettability with the addition
of MoS2. SiC particles increase the grain boundaries in composites and the grain size of
the composites are reduced. Dislocation mobility will be restricted or challenged to move
from grain to grain due to increased grain boundaries (decreased grain size) since grain
boundaries act as a barrier to the motion of dislocation.

Moreover, SiC particles have an extremely low coefficient of thermal expansion and
how they strain the atomic lattice of the aluminum matrix, resulting in a dramatic increase
in dislocation density. The addition of MoS2 also shows an enhancement in tensile strength
up to 2 wt.% and shows a decrement with 4 wt.%, which means the role of MoS2 is only
facilitating the wettability, so only a small amount is enough to enhance the wettability and
bonding of both matrix and reinforcement to each other and further increment leads to
decrease the tensile strength of the composite.

The wear rate test was performed using pin-on-disc apparatus testing machine. The
wear rate study was conducted based on the mass loss analysis. The largest of the wear rate
values was indicated in sample number three and the lowest value was in sample number
one, with the values of 10 × 10−9 kg/m and 1 × 10−9 kg/m, respectively. When the wt.%
of SiC increased (at the higher level) and wt.% of MoS2 increased (higher level), the wear
rate of the composite decreased. In contrast, the highest wear rate was recorded as the wt.%
of SiC, and wt.% of MoS2 is lower (at the lower level). The wear resistance of the composite
is increased due to the increasing content of SiC particles and MoS2 reinforcement because
the wear resistance of carbides is very high, and the hard-reinforcing particles work to
resist wear on the surface of the cast hybrid composite samples. Another reason for the
improved wear resistance of the cast AMC is the adequate interfacial bonding between
the hybrid reinforcement and the aluminum matrix due to the addition of MoS2, which
resists the pull-out of the hybrid reinforcement during the relative movement between two
contacting surfaces. The addition of MoS2 reinforcement in Al 6061/SiC composites as a
hybrid reinforcement further increases the wear and friction resistance of the composite.

4. Discussion
4.1. Analysis of Hardness

In the figure, by increasing the weight percentage of SiC, the hardness of the developed
composite increased at constant wt.% MoS2 (0%). At the higher wt.% of SiC, the higher
value of hardness is shown. Silicon carbide has the most significant effect on the hardness
of the developed composite’s mechanical properties such as tensile strength, hardness, and
impact strength, but the high amount of SiC will lead to brittleness [7]. From Figure 3, the
hardness of composites increased with increasing wt.% of SiC and the hardness values
for 0, 5, and 10 wt.% SiC at constant wt.% MoS2 (0%) are 123 HV, 180 HV, and 199 HV,
respectively. This is a better result than the previous studies by [1,2].

MoS2 is used as a solid lubricant because it does not increase the hardness of compos-
ites, but it facilitates the wettability between aluminum and silicon carbide due to its low
friction properties and robustness to enhance the hardness result. The hardness is better
when a small amount of MoS2 is added to Al–SiC composite. The hardness of the matrix
increases as the weight percentage of MoS2 increases, but only up to 2%, and after then it
declines at 4 wt.% MoS2 at constant weight percentage of SiC. The values of hardness for 0, 2,
and 4 wt.% MoS2 at constant weight percentage of SiC (0%) are 123 HV, 180 HV, and 163 HV,
respectively, as shown in Figure 3. The highest hardness value of the developed composite
was shown when the weight percentage of SiC was 10% and the weight percentage of MoS2
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was 2%, and this shows a better result than the previous studies by [2]. Al–SiC–MoS2 hybrid
composite shows better enhancement in hardness than Al–SiC composite.

Materials 2022, 15, x FOR PEER REVIEW 8 of 18 
 

 

 

Figure 3. Effect of process parameters on hardness. 

MoS2 is used as a solid lubricant because it does not increase the hardness of compo-

sites, but it facilitates the wettability between aluminum and silicon carbide due to its low 

friction properties and robustness to enhance the hardness result. The hardness is better 

when a small amount of MoS2 is added to Al–SiC composite. The hardness of the matrix 

increases as the weight percentage of MoS2 increases, but only up to 2%, and after then it 

declines at 4 wt.% MoS2 at constant weight percentage of SiC. The values of hardness for 

0, 2, and 4 wt.% MoS2 at constant weight percentage of SiC (0%) are 123 HV, 180 HV, and 

163 HV, respectively, as shown in Figure 3. The highest hardness value of the developed 

composite was shown when the weight percentage of SiC was 10% and the weight per-

centage of MoS2 was 2%, and this shows a better result than the previous studies by [2]. 

Al–SiC–MoS2 hybrid composite shows better enhancement in hardness than Al–SiC com-

posite. 

Optimization of Process Parameters for Hardness 

In the response to hardness variation for data analysis and prediction of optimum 

results, Taguchi signal-to-noise ratios were used. In this study, the effects of varying con-

trol factors (stirring speed, stirring time, wt.% of SiC, and wt.% of MoS2) on the responses 

of hardness were analyzed. As higher values of hardness were desirable, larger, better-

quality characteristic was selected to investigate the influence of factors on hardness re-

sponse.  

The delta statistics of the S/N ratio for the hardness tabulated in Table 7 show the 

ranks of the factors affecting the hardness response based on the S/N ratios. Ranks were 

assigned based on their delta value. The delta values were calculated from the difference 

between the largest and smallest value of the mean value. The analysis showed that wt.% 

SiC was assigned a rank of 1 with a delta value of 2.48, signifying that it is the predominant 

factor that affects the hardness of the composite. The wt.% MoS2, stirring time, and stirring 

speed were assigned second (1.26), third (1.15), and fourth (0.88) ranks, respectively. 

Table 7. Signal-to-noise ratio for hardness of the composite (larger is better). 

Level 
Stirring Speed 

(rpm) 

Stirring Time 

(min) 
SiC (wt.%) MoS2 (wt.%) 

1 44.42 44.33 43.72 44.31 

2 45.30 45.16 45.06 45.58 

3 45.24 45.48 46.19 45.08 

Delta 0.88 1.15 2.48 1.26 

Rank 4 3 1 2 

Figure 3. Effect of process parameters on hardness.

Optimization of Process Parameters for Hardness

In the response to hardness variation for data analysis and prediction of optimum
results, Taguchi signal-to-noise ratios were used. In this study, the effects of varying control
factors (stirring speed, stirring time, wt.% of SiC, and wt.% of MoS2) on the responses of
hardness were analyzed. As higher values of hardness were desirable, larger, better-quality
characteristic was selected to investigate the influence of factors on hardness response.

The delta statistics of the S/N ratio for the hardness tabulated in Table 7 show the
ranks of the factors affecting the hardness response based on the S/N ratios. Ranks were
assigned based on their delta value. The delta values were calculated from the difference
between the largest and smallest value of the mean value. The analysis showed that wt.%
SiC was assigned a rank of 1 with a delta value of 2.48, signifying that it is the predominant
factor that affects the hardness of the composite. The wt.% MoS2, stirring time, and stirring
speed were assigned second (1.26), third (1.15), and fourth (0.88) ranks, respectively.

Table 7. Signal-to-noise ratio for hardness of the composite (larger is better).

Level Stirring Speed (rpm) Stirring Time (min) SiC (wt.%) MoS2 (wt.%)

1 44.42 44.33 43.72 44.31

2 45.30 45.16 45.06 45.58

3 45.24 45.48 46.19 45.08

Delta 0.88 1.15 2.48 1.26

Rank 4 3 1 2

Figure 4 shows the parametric effect S/N ratio plot and the optimal parameter combi-
nation for the higher hardness. The numerical value of the maximum point in each graph
shows the best optimum combination of the factors at that level. Therefore, the S/N ratio
plot in Figure 4 shows the maximum point in each graph is at (A) stirring speed at level 2,
(B) stirring time at level 3, (C) wt.% SiC at level 3, and (D) wt.% MoS2 at level 2, with the
corresponding values of 450 rpm, 15 min, 10% wt.% SiC, and 2% wt.% MoS2, respectively
(i.e., A2B3C3D2). The optimum prediction condition for the S/N ratio in which the higher
hardness result of the composite obtained with the term setting of A2B3C3D2 is 229 HV.
Wt.% of SiC has the greatest impact on the hardness of the developed composites and is
followed by wt.% of MoS2 (second), stirring time (third), and stirring speed (fourth).
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4.2. Analysis of Tensile Strength

In the figure, when increasing the wt.% of SiC, the tensile strength of the developed
composite increased at constant wt.% MoS2 (0%). At the higher weight percentage of
SiC, the higher value of tensile strength is shown. Silicon carbide has the most significant
effect on the tensile strength of the fabricated composite’s mechanical properties such as
tensile strength, hardness, and impact strength, but the high amount of SiC will lead to
brittleness [7].

From Figure 5, the tensile strength of composites increased with increasing the weight
percentage of SiC and the tensile strength values for 0, 5, and 10 wt% SiC at constant wt.%
MoS2 (0%) are 75 MPa, 119 MPa, and 181 MPa, respectively. This result shows a better
result than the previous studies by [1,18].
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MoS2 is used as a solid lubricant because it does not increase the hardness of compos-
ites, but it facilitates the wettability between aluminum and silicon carbide due to its low
friction properties and robustness to enhance the tensile strength. As a result, the tensile
strength is better when a small amount of MoS2 is added to Al-SiC composite.
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Tensile strength of the matrix increases as the weight percentage of wt.% MoS2 in-
creases, but only up to 2%, and after then it declines at 4 wt.% MoS2. The values of tensile
strength for 0, 2, and 4 wt.% MoS2 at constant weight percentage of SiC (0 wt.%) are 75 MPa,
90 MPa, and 82 MPa, respectively, as shown in Figure 5. The highest tensile strength value
of the developed composite was shown when the weight percentage of SiC was 10% wt. of
SiC and the weight percentage of MoS2 is 2% and this result shows a better result of tensile
strength than the previous studies by [2]. Al–SiC–MoS2 hybrid composite shows better
enhancement in tensile strength than Al–SiC composite.

Optimization of Process Parameter for Tensile Strength

In the response of hardness variation for data analysis and prediction of optimum
results, Taguchi signal-to-noise ratios were used. In this study, the effects of varying control
factors (stirring speed, stirring time, wt.% of SiC, and wt.% of MoS2) on the responses of
tensile strength were analyzed.

The delta statistics of the S/N ratio for the tensile strength tabulated in Table 8 show the
ranks of the factors affecting tensile strength responses based on the S/N ratios. Ranks were
then assigned based on their delta value. The delta values were calculated from the difference
between the largest and smallest value of the mean values. The analysis showed that wt.%
SiC was assigned a rank of 1 with a delta value of 6.90, signifying that it is the predominant
factor that affects the tensile strength of the composite. Wt.% MoS2, stirring time, and stirring
speed were assigned second (1.23), third (0.67), and fourth (0.40) ranks, respectively.

Table 8. Signal-to-noise ratio tensile strength of the composite (larger is better).

Level Stirring Speed (rpm) Stirring Time (min) SiC (wt.%) MoS2 (wt.%)

1 41.46 41.22 38.29 41.38

2 41.53 41.90 41.37 42.35

3 41.87 41.75 45.20 41.13

Delta 0.40 0.67 6.90 1.23

Rank 4 3 1 2

Figure 6 shows the parametric effect S/N ratio plot and the optimal parameter com-
bination for the higher tensile strength. The numerical value of the maximum point in
each graph shows the best optimum combination of the factors at that level. Therefore,
the S/N ratio plot shows the maximum points in each graph are (A) stirring speed at
level 3, (B) stirring time at level 2, (C) SiC at level 3, and (D) MoS2 at level 2, with the
corresponding values of 550 rpm, 10 min, 10%, and 2% (i.e., A3B2C3D2). The optimum
prediction condition for the S/N ratio in which the higher tensile strength results when the
composite obtained with the term setting of A3B2C3D2 is 201 MPa. Wt.% of SiC has the
greatest impact on the tensile strength of the developed composites followed by wt.% of
MoS2 (second), stirring time (third), and stirring speed (fourth).

4.3. Analysis of Wear Rate

As shown in the figure, when increasing the weight percentage of SiC, the wear rate
of the developed composite decreased. At the higher weight percentage of SiC, the smaller
value of wear rate is shown. Silicon carbide has the most significant effect on the wear rate
of the developed composites and since SiC is a wear-resistant material, the wear rate of
the composite decreases due to the addition of SiC [15]. From Figure 7, the wear rate of
the composite decreased with increasing wt.% of SiC and the wear rate values for 0, 5, and
10 wt.% SiC at constant wt.% MoS2 (0%) are 10, 8, and 4 ×10−9 kg/m, respectively. This
result shows a better result than the previous studies by [17].
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MoS2 used as solid lubricant and lubrication is one way to prevent wear. It facilitates
the wettability between aluminum and silicon carbide due to its low friction properties and
robustness to enhance the wear resistance of composite by decreasing the wear rate. The
wear rate is smaller when the weight percentage of MoS2 is increased to Al–SiC composite.

The wear rate of Al matrix decreases as the wt.% MoS2 increases. The values of wear
rate for 0, 2, and 4 wt.% MoS2 at a constant weight percentage of SiC (0%) are 10, 9.002,
and 9 × 10−9 kg/m, respectively, as shown in Figure 7. The smallest wear rate value of the
developed composite was shown when the weight percentage of SiC was 10% wt. of SiC
and the weight percentage of MoS2 was 4%. This shows a better result of wear rate than
the previous studies by [2]. Al–SiC composite shows lower enhancement in decreasing
wear rate than Al–SiC–MoS2 hybrid composite.

Optimization of Process Parameter for Wear Rate

The delta statistics of S/N ratio for the wear rate tabulated in Table 9 show the ranks
of factors affecting wear rate response based on the S/N ratios. Ranks were then assigned
based on their delta value. The delta values were calculated from the difference between the
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largest and smallest value of the mean values. The analysis showed that the wt.% SiC was
assigned a rank of 1 with a delta value of 12.196, signifying that it is the predominant factor
that affects the wear rate of the cast composite. The wt.% MoS2, stirring time, and stirring
speed were assigned second (5.152), third (3.626), and fourth (3.263) ranks, respectively.

Table 9. Signal-to-noise ratio for wear rate of composite (smaller is better).

Level Stirring Speed (rpm) Stirring Time (min) SiC (wt.%) MoS2 (wt.%)

1 −12.301 −15.035 −19.391 −16.701

2 −15.564 −16.009 −16.842 −15.177

3 −15.563 −12.383 −7.195 −11.549

Delta 3.263 3.626 12.196 5.152

Rank 4 3 1 2

Figure 8 shows the parametric effect S/N ratio plot and the optimal parameter combi-
nation for the lower wear rate. The numerical value of the maximum point in each graph
shows the best optimum combination of the factors at that level. Therefore, the S/N ratio
plot shows the maximum point in each graph at (A) stirring speed at level 1, (B) stirring
time at level 3, (C) wt.% SiC at level 3, and (D) wt.% MoS2 at level 3, with the corresponding
values of 350 rpm, 15 min, 10% wt.% SiC, and 3% wt.% MoS2, respectively (i.e., A1B3C3D3).
The optimum prediction condition for the S/N ratio in which the lower wear rate results in
the composite is obtained when the term setting of (i.e., A1B3C3D3) is 1. Wt.% of SiC has
the greatest impact on the wear resistance of the developed composites followed by wt.%
of MoS2 (second), stirring time (third), and stirring speed (fourth).
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4.4. Multi-response Optimization

For multi-response optimization purposes, hybrid Taguchi with grey relational anal-
ysis (HTGRA) was used for stirring speed, stirring time, wt.% SiC, and wt.% MoS2
process parameters.

Steps taken during optimization using GRA:
Step 1: Transformation of data into S/N ratios.
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The S/N ratio of the experimental results of hardness, tensile strength, and wear rate
of the developed composite were generated with the help of Minitab 17 software and are
tabulated in Table 10.

Table 10. Experimental results and S/N ratio of hardness, tensile strength, and wear rate values.

Designation
Experimental Result S/N Ratio

Hardness (HV) Tensile
Strength (MPa)

Wear Rate
(×10−9 kg/m) Hardness Tensile

Strength Wear Rate

S1 123 75 10 41.8193 37.5012 −20.0000

S2 183 129 7 45.2443 42.2205 −16.9020

S3 204 171 1 46.2096 44.6721 0.0000

S4 174 105 6 44.8010 40.3906 −15.5630

S5 199 181 4 45.9989 45.1464 −12.0412

S6 180 90 9.002 45.1136 39.0617 −19.0868

S7 208 194 3 46.3738 45.7753 −9.5424

S8 163 82 9 44.2224 38.3196 −19.0849

S9 180 119 8 45.1199 41.5036 −18.0618

Step 2: Normalization of S/N values.
Normalization of S/N values is a generation of grey relational and normalized data

sequences for the experimental results within 0 and 1. The equations used were Equation (1)
for “larger is better”, i.e., for hardness and tensile strength, and Equation (2) for “smaller is
better”, i.e., for the wear rate S/N ratio response [19].

Zij = Normalized value

Zij =
Yij − min(Yij, i = 1, 2, 3, . . . .n)

max(Yij, i = 1, 2, 3, . . . .n)− min(Yij, i = 1, 2, 3, . . . .n)
(1)

(For larger is better, i.e., for hardness and tensile strength)

Zij =
min(Yij, i = 1, 2, 3, . . . .n)− Yij

max(Yij, i = 1, 2, 3, . . . .n)− min(Yij, i = 1, 2, 3, . . . .n)
(2)

(For smaller is better, i.e., for wear rate)
Equation (1) is used for normalizing the value of S/N ratio for hardness and tensile

strength, and Equation (2) is used for normalizing the value of S/N ratio for wear rate. Max
Yij and Min Yij for hardness are 46.3738 and 41.8193, respectively. Max Yij and Min Yij for
tensile strength are 45.7753 and 37.5012, respectively. Max Yij and Min Yij for wear rate are
0.0000 and −20.0000, respectively (Table 11).

Step 3: Determination of deviation sequence and grey relational coefficient (GRC).

GRCij =
∆min + ∂∆max
(∆ij + ∂∆max)

(3)

where i = 9 (number of experiments) and j = 3 (number of responses)
GRCij = GRC for the ith experiment/trial and jth dependent variable/response
Deviation sequence (∆)= (max of normalized values–corresponding normalized value)
Yoj = optimum performance value or the ideal normalized value of the jth response
Yij = the ith normalized value of the jth response/dependent variable
∆min = smallest value of ∆ and ∆max = highest value of ∆
∂ is the distinguishing coefficient (0 ≤ ∂ ≤ 1)
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Table 11. Normalized data of the experimental results.

Designation
Normalized S/N Ratio

Hardness Tensile Strength Wear Rate

S1 0 0 1

S2 0.752 0.571 0.8451

S3 0.964 0.866 0

S4 0.655 0.13 0.778

S5 0.918 0.923 0.602

S6 0.723 0.188 0.954

S7 1 1 0.477

S8 0.527 0.123 0.954

S9 0.725 0.483 0.903

Equation (3) is used for determining the grey relational coefficient. Minimum (∆min)
and maximum deviation sequence (∆max) are used. ∆min for hardness, tensile strength,
and wear rate are 0, 0, and 0, respectively. ∆Max for hardness, tensile strength, and wear
rate are 1, 1, and 1, respectively (Table 12).

Table 12. Deviation sequence and GRC of responses with ∂ = 0.5.

Designation
Deviation Sequence (∆) Grey Relational Coefficient (GRC)

Hardness Tensile Strength Wear Rate Hardness Tensile Strength Wear Rate

S1 1 1 0 0.333 0.333 1

S2 0.248 0.429 0.155 0.668 0.538 0.763

S3 0.036 0.134 1 0.933 0.788 0.333

S4 0.345 0.87 0.222 0.592 0.365 0.693

S5 0.082 0.077 0.398 0.859 0.866 0.557

S6 0.277 0.812 0.046 0.643 0.382 0.916

S7 0 0 0.523 1 1 0.489

S8 0.473 0.877 0.046 0.514 0.363 0.916

S9 0.275 0.517 0.097 0.645 0.492 0.838

Step 4: Calculation of grey relational grade (GRG) and its order of sequencing

GRGi =
1
m ∑ GRCi (4)

where m (3 in this case) is the number of responses (hardness, tensile strength, and wear
rate) (Table 13)

4.5. Optimization of Process Parameters Using GRA
Analysis of S/N Ratio for GRG

For the analysis of GRG, the larger is better signal-to-noise ratio has been used.
The delta statistics of the S/N ratio for the GRG tabulated in Table 14 show the ranks of

the factors affecting the multi-responses based on the S/N ratios. Ranks were then assigned
based on their delta value. The delta values were calculated from the difference between
the largest and smallest value of the mean values. The analysis showed that wt.% SiC
was assigned a rank of 1 with a delta value of 2.354, signifying that it is the predominant
factor that affects the GRG response. Wt.% of MoS2, stirring speed, and stirring time were
assigned second (1.624), third (1.110), and fourth (0.142) ranks, respectively.
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Table 13. GRG and their order.

Designation
GRC

GRG Order
Hardness Tensile Strength Wear Rate

S1 0.333 0.333 1 0.555 8

S2 0.668 0.538 0.763 0.656 5

S3 0.933 0.788 0.333 0.685 3

S4 0.592 0.365 0.693 0.550 9

S5 0.859 0.866 0.557 0.760 2

S6 0.643 0.382 0.916 0.647 6

S7 1 1 0.489 0.930 1

S8 0.514 0.363 0.916 0.598 7

S9 0.645 0.492 0.838 0.658 4

Table 14. Signal-to-noise ratio for GRG for larger is better.

Level Stirring Speed (rpm) Stirring Time (min) SiC (wt.%) MoS2 (wt.%)

1 −4.021 −3.646 −4.454 −3.711

2 −3.786 −3.504 −4.163 −2.691

3 −2.911 −3.568 −2.100 −4.315

Delta 1.110 0.142 2.354 1.624

Rank 4 3 1 2

Figure 9 shows the parametric effect S/N ratio plot and the optimal parameter com-
bination for the higher GRG responses. The numerical value of the maximum point in
each graph shows the optimum combination of the factors at that level. Therefore, the
S/N ratio plot shows the maximum point in each graph is (A) stirring speed at level 3,
(B) stirring time at level 2, (C) wt.% SiC at level 3, and (D) wt.% MoS2 at level 2, with the
corresponding values of 550 rpm, 10 min, 10 wt.% SiC, and 2 wt.% MoS2, respectively (i.e.,
A3B2C3D2) was selected. The most effective parameter of GRG response is wt.% SiC when
compared with other factors and stirring time has the least effect on the GRG. The optimum
prediction condition for the S/N ratio in which the higher (multi-response characteristics)
GRG result of the composite is obtained with the terms set at (A) stirring speed at level 3,
(B) stirring time at level 2, (C) wt.% SiC at level 3, and (D) wt.% MoS2 at level 2, with the
corresponding values of 550 rpm, 10 min, 10 wt.% SiC, and 2 wt.% MoS2, respectively (i.e.,
A3B2C3D2) (i.e., A3B2C3D2) are 0.923.
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5. Conclusions

In this experimental study, aluminum-based MMC at varying stirring speeds (350,
450, 550 rpm), stirring time (5, 10, 15 min), weight % of silicon carbide powder (0, 5,
10 wt.%), and weight % of MoS2 powder (0, 2, 4 wt.%) were prepared using stir casting.
Microstructure, hardness, tensile strength, and wear behavior of the developed composites
were studied. Based on the results, the following conclusions are drawn:

The analysis of hardness, tensile strength, and wear resistance were performed with
the help of the Taguchi S/N ratio for single response optimization and hybrid Taguchi–
grey relational analysis for multi-response optimization. Optical micrographs showed
homogenous dispersion of particles in the matrix. Porosities were found and it is higher
for reinforcement contents are higher.

From the S/N ratio analysis, the addition of SiC in the composite showed better
hardness, tensile strength, and wear resistance. Wt.% of SiC is the only and the most
significant factor affecting the hardness, tensile strength of the composite, followed by
wt.% of MoS2, stirring time, and stirring speed. In the case of wear resistance, only wt.%
of SiC and wt.% of MoS2 are the significant factors and wt.% of SiC is the most significant
factor affecting the wear rate, followed by wt.% of MoS2, stirring time, and stirring speed.
Addition of MoS2 in the composite showed better hardness and tensile strength only up to
2 wt.% of MoS2 and in case of wear rate the addition of MoS2 in the composite up to 4%
showed better wear resistance than unreinforced matrix.

Therefore, the maximum hardness = 208.30 HV has been obtained at stirring speed 450 rpm,
stirring time 15 min, 10% wt.% of SiC particles, and 2% wt.% of MoS2, maximum tensile
strength = 194.43 MPa has been obtained at stirring speed 550 rpm, stirring time 10 min,
10% wt.% of SiC particles and 2% wt.% of MoS2 and the lowest wear rate = 1 × 10−9 kg/m has
been obtained at stirring speed 350 rpm, stirring time 15 min, 10 wt.% of SiC particles and
4 wt.% of MoS2. The optimum prediction condition for the higher hardness, tensile strength,
and lowest wear rate has been obtained at A2B3C3D2, A3B2C3D2, and A1B3C3D3, respec-
tively. From the grey relational analysis for multi-response characteristics, the optimum
prediction condition for the S/N ratio has been obtained at stirring speed 550 rpm, stirring
time 10 min, 10% weight fraction of SiC particles, and 2% weight fraction of MoS2 (i.e.,
A3B2C3D2). Al–SiC–MoS2 hybrid composite shows better enhancements in hardness, ten-
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sile strength, and wear resistance than the Al–SiC composite. Therefore, the enhancement
of wettability has been achieved due to the addition of MoS2 in the Al–SiC composite.
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