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ABSTRACT The erasure encoding scheme creates multiple coded data and parity fragments to protect the

data from the losses. Nowadays, most storage systems like cloud storage utilize the erasure coding scheme

to attain superior data consistency, reliability, and availability. Most of the existing literature focuses on

either the cost of recovery or overhead due to the redundant storage without considering the interests of

the users, such as high reliability and lower storage cost. We believe that the storage service provider should

choose an appropriate encoding scheme with optimal values of two encoding parameters, i.e., data fragments

and parity fragments. The values of these encoding parameters depend on the size of the input data and the

Quality of Service (QoS) requirements of the users, such as storage efficiency, availability, and recoverability.

These parameters play a crucial role in providing higher reliability and lower storage costs. Therefore, in this

paper, we investigate to identify optimal parameters to provide higher reliability and lower storage cost while

considering the user’s preferences. We present the analysis of the Reed-Solomon coding scheme from the

perspective of storage overhead, the probability of data availability, data recoverability, and storage efficiency

to identify the optimal values of encoding parameters. We performed the experiments on the Reed-Solomon

encoding schemes, and results are reported.

INDEX TERMS Cloud computing, cloud storage, availability, storage cost, Reed-Solomon, erasure coding,

reliability.

I. INTRODUCTION

Cloud storage service providers such as Dropbox, Microsoft,

Google, and Amazon allow storing of the massive amount

of data for both individual and enterprise customers in

their datacenters [1], [2]. However, the storage systems

may often experience the unavailability of customers data

due to hardware and software failures. The erasure encod-

ing scheme [3] creates multiple coded fragments of data

and parity to protect the data from such losses. Nowadays,

many Cloud Service Providers (CSP) employ Erasure Cod-

ing (EC) to reduce unexpected faults and minimize the data

unavailability [4], [5]. However, the EC encoding scheme

makes an encoding decision based on the static threshold

value. The usage of such a static threshold-based encoding

The associate editor coordinating the review of this manuscript and

approving it for publication was Cristian Zambelli .

may suffer from storage overheads and fragility in a dynamic

demand scenario.

The main focus of the work in this paper is to study how

effectively to provide the services benefiting both CSP and

customers. We believe that any cloud system is cost-effective

and productive if CSP deploys optimal encoding parameters

(as suggested in our approach). To maximize their service

performance and availability, minimize the impact of service

failures, and enhance the business continuity, the reliability

and performance are two crucial issues in cloud storage that,

in turn, will influence the service quality [6]. In case CSP

tweaks the parameters, the storage systems may experience

the unavailability of customer’s data mostly during peak

times, and may lead to loss of customers, which may, sub-

sequently, impact the business metrics [6], [7]. In the absence

of the optimal strategy, the total operational and storage costs

may relatively increase for providing the services to the users.
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And, it is more profitable if CSP adopts our strategy. For

the expansion and leveraging of their business and improving

users’ trust, CSP should promise to incorporate the optimal

strategy in the storage service, which helps in cost reduction.

A. MOTIVATION

CSPs store the user data in their datacenters. Since these

datacenters are located geographically across the world, users

often may encounter data unavailability. Moreover, the CSPs

need to select the appropriate encoding parameters for dif-

ferent sized data to fulfill the dynamic demands of the users

and to optimize the overall system costs while providing high

reliability. The selection of suitable parameters is crucial,

and the criteria for selecting these parameters depend on

the size of input data and other Quality-of-Service (QoS)

requirements such as storage efficiency, availability, recov-

erability. Keeping these points in mind, in this paper, we aim

to select the optimal parameters to achieve data availability

and recoverability.

B. CONTRIBUTIONS

The main contributions of this research are highlighted

below:

• We propose an algorithm for investigating the optimal

encoding parameters that meet the users’ expectations.

• We explore the QoS requirements and summarize the

findings according to the user’s requirements and file

size.

• We perform extensive experiments in real-time and dis-

cuss the performance analysis of the operations.

C. ORGANIZATION

The rest of the paper is organized as follows. The notations

and function definitions are defined in Section II. Section III

introduces erasure coding techniques and summarizes the

related work. Section IV discusses the aspects of select-

ing the optimal encoding parameters for erasure coding.

The proposed methodology is presented in the Section V.

The results and analysis with experimental setup are pre-

sented in section VI. Finally, we conclude the paper in

section VII.

II. PRELIMINARIES

In this section, Table 1 summarizes the notations used

throughout the paper and then describes the set of function

definitions that are used in our proposed work.

A. FUNCTION DEFINITIONS

• κ ←− getFileCategory(̥) : This function takes the

file ̥ as input. It computes the size of ̥, and then

determines and returns the file category (κ) based on its

size, i.e, small, medium, and large.

• δ(α,β) ←− getEncodingPairs(ρ, κ): This function

takes user preferences and file category as an input, and

TABLE 1. Notations.

then determines and returns the optimal encoding pair(s)

from the set of suitable encoding pairs (refer to Table 7).

• (α, β) ←− selectOptimalEncodingPair(δ(α,β), κ):

This function determines and returns the optimal encod-

ing pair from the set of suitable encoding pairs by calling

Algorithm 1.

• δγ ←− executeErasureCoding(α, β): This function

calls the EC encoder with input α and β values to

generate and return the set of fragments δ which contains

γ (= α + β) number of encoded fragments.

• (δα, δβ ) ←− getSeparateFragments(δγ ): This function

splits the input set δγ into two parts say δα and δβ where

δα is the set of α number of data fragments and δβ is the

set of β number of parity fragments.

• count ←− getPairsCount(δ(α,β)) : This function counts

and returns the number of pairs existing in the set of

encoding pairs.

• (α, β) ←− getPair(i, δ(α,β)): This function returns the

ith pair of the set δ(α,β).

• (α, β) ←− getAveragePair(δ(α,β)): This function com-

putes the average number of γ (= α + β) values in the

pairs from the set δ(α,β) and then selects (conflicts may

be resolved on FCFS basis) and returns an encoding pair.

• (α, β) ←− getLargePair(δ(α,β)): This function com-

putes the maximum number of γ (= α+β) values in the

pairs from the set δ(α,β) and then selects (conflicts may

be resolved on FCFS basis) and returns an encoding pair.

III. BACKGROUND AND RELATED WORK

In this section, first, we discuss the Erasure Coding (EC)

scheme and its variants, and then we review the related works

based on EC mechanisms.
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FIGURE 1. A typical storage system with EC.

A. ERASURE CODING

EC technique generates the input data D into α number of

data fragments (D0,D1,D2, . . . ,Dα−1) and β number of

parity fragments (C0,C1,C2,. . ., Cβ−1) with a total of γ

(= α + β) fragments. Maximum Distance Separable (MDS)

[8], [9] property of the EC provides error recovery and data

reconstruction in spite of any β number of unavailable frag-

ments [10]. The recovery process uses the parity fragments

to reconstruct the corrupted/unavailable fragments using rest

of the data and parity fragments. We use the phrase fragment

unavailable to indicate data loss, failure, corruption, or stor-

age server unreachable.

The following section presents the widely used Reed −

Solomon [11] and Cauchy Reed-Solomon [12] erasure codes

that are used in this work for comparison and analysis of

encoding pairs.

B. REED-SOLOMON (RS) CODES

Consider a typical storage system as shown in Figure 1 in

which the symbol Di denotes the data disks where 0 ≤ i < α

and Cj denotes the parity disks where 0 ≤ j < β. It must

satisfy the condition γ ≤ 2w + 1 [11] where every strip is

a w-bit word having w ∈ {8, 16, 32, 64}. Each word is a

number between 0 and 2w − 1. It applies γ × α generator

matrix which operates in a Galois Field GF(2w) to perform

several operations like addition, subtraction, multiplication,

and division on these words [9].

A Vandermonde matrix is used to construct the Generator

Matrix (GM). It computes a codeword by multiplying GM

with the α data words and β coding words as in Figure 2.

The recovery process performs the inverse operation and

multiplication operation which are used for solving the set

of independent linear equations. The addition operations in

GF(2w) are done by performing bitwise XOR, but the multi-

plication operations are bit complex and expensive [9], [11].

C. CAUCHY REED-SOLOMON (CRS) CODES

CRS [12] replaces the Vandermonde matrices by the Cauchy

matrices and also reduces the expensive multiplications

FIGURE 2. RS coding for α = 4 and β = 2 [13].

operation of RS codes. CRS uses an additional XOR opera-

tions to minimize the number of multiplications of RS codes.

This alteration converts the Generator matrixGT from a γ×α

matrix of w-bit words to awγ×wαmatrix of bits. CRS coding

performs multiplication operation on all the strips rather than

a single w-bit data words.

Each strip contains w fragments where w should satisfy the

constraint γ ≤ 2w. The fragment size must be a multiple

of the machine word size to achieve high performance. This

encoding process involves only XOR operations. Therefore,

the coding fragment is constructed as the XOR of all data

fragments that have one bit in the coding fragment row ofGT .

The process is depicted in Figure 3, which illustrates how

the last coding fragment is created as the XOR of all data

fragments identified by the last row of GT [12].

D. RELATED WORK

Several techniques are proposed in the literature for efficient

cloud storage. A three-way replication technique [2], [10]

supports easy access and repairability in storage, but it

increases storage overhead cost. It requires two-thirds of

the raw storage capacity to store redundant data. Whereas,

Erasure Coding technique minimizes the Mean Time To Data

Loss (MTTDL) and redundancies in storage. See [14], [15],

and [16] for more understanding.
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FIGURE 3. CRS coding example for α = 4 and β = 2 [13].

Many authors proposed several EC schemes (e.g., [11],

[12], [17], [18]) to achieve the fault tolerance and reliability

in the storage systems. Schnjakin et al. [13] compared sev-

eral EC schemes while providing their supporting libraries

such as [19]–[21]. They determined an appropriate encod-

ing algorithm for the Cloud-RAID system. Schuman and

Plank [22] presented the encoding and decoding operations

performance of a few erasure codes. While several authors

evaluated the performance based on bandwidth and memory

operations, others targeted to reduce the number of accesses

to reconstruct the original data. Few others focused on some

aspects such as read performance (e.g., [14], [23], [24]), cod-

ing performance (e.g., [22], [25]), fault tolerance (e.g., [26],

[27]), proof of retrievability (e.g., [28]–[30]), and reliability

(e.g., [31], [32]). Table 2 presents the summary of various

works that employs erasure coding in their research for dif-

ferent purposes.

The reliability performance of erasure codes and its variant

for several storage systems is studied in [14], [15], [33]–[37].

The reliability of erasure codes is evaluated in [16], [34], [38]

based on Markov model. The estimation of Mean Time To

Data Loss (MTTDL) for reliability analysis is studied in [16].

However, Greenan et al. [39] scrutinized the feasibility issues

with the modeling of the modern storage systems for relia-

bility analysis using the MTTDL and Markov model. Based

on their study, they introduced the NOrmalized Magnitude

of Data Loss (NOMDL) metric for reliability analysis. This

metric is based on the failure and repair characteristics of the

servers.

The work proposed in this paper, to achieve reliability,

we rely on the data partitioning and fragment placement

according to the encoding parameters of erasure codes. The

partitioning of the input data is performed in order to min-

imize the impact of data loss. Each fragment is placed on

a distinct server to maximize the tolerance against server

failures.

In summary, we reviewed the most relevant literature

related to erasure coding. However, most of the existing

works have focused on the repair bandwidth, read latency, and

storage overheads. But, our work focused on investigating

optimal encoding parameters of erasure codes depending on

various aspects like parameter selection and user preferences.

To the best of our knowledge, the existing literature has not

explored towards the identification of appropriate encoding

parameters for efficient cloud storage. Therefore, our goal

in this paper is to analyze and pick the optimal encoding

parameters of erasure codes.

IV. ASPECTS OF PARAMETERS SELECTION

The optimal parameter value selection plays a crucial role

to attain better storage efficiency, reliability, and availability

in addition to the reduction in storage cost. In this section,

we discuss the criteria to select the optimal encoding param-

eters for erasure coding.

The basic aspects of parameter selection to provide the

quality of service to the users expectations depend on

the number of fragments created, the size of each frag-

ment, and the file size. Hence, we incorporate, primarily,

the input file size and user preference to investigate the

optimal value of the encoding parameters to achieve the QoS

requirements. We classify the input files into three differ-

ent categories based on their sizes such as small(256 KB),

medium(512KB or 1024KB), and large(256MBor 512MB).

Typically, the size or the number of categories can be variant.

A. USER PREFERENCES

The users specify their preferences in terms of availability

of the resources, efficiency of the performance, the recover-

ability of the data, and acceptable overhead of storage. These

preferences, predominantly, influence the cost of the storage

for the users. So, the users notify the current demand of these

preferences as HIGH, AVERAGE, or LOW. For example,

if the user’s preference for availability is HIGH, then proba-

bly, it will influence the storage cost. If the user’s preference

for the efficiency is HIGH, then probably, it will influence

the storage overhead. So, we experimented with different

possible cases for the user preferences with the combinations
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TABLE 2. Summary of existing work that employs erasure coding.
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of the current demand including HIGH, AVERAGE, and

LOW.

To investigate the effectiveness of the encoding parameters

and to satisfy the current demand of the users, we study the

performance of EC in Section VI based on the decisive factors

discussed in the following section.

B. DECISIVE FACTORS

(i) Data Availability

The probability of data availability (Pavail) [10] can be

computed using Equation 1.

Pavail =

γ−α
∑

i=0

(

M
i

)(

N−M
γ−i

)

(

N
γ

)
. (1)

In this equation,
(

M
i

)

denotes the number of ways

in which we can organize inaccessible fragments on

unavailable servers;
(

N−M
γ−i

)

is the number of ways in

which we can organize accessible fragments on avail-

able servers, and
(

N
γ

)

is the total number of ways in

which we can organize the γ fragments on total servers.

Generally CSPs store two absolute copies that can pro-

vide availability of data with the probability 0.99 [10].

Assume that N = 105, and M = 4500, applying EC

with γ = 24 fragments and r = 1/2 computes the

probability of availability,Pavail , to be 1. In this paper,

we analyzed the availability for various (α, β) pairs to

maximize availability.

(ii) Rate of Encoding

The data encoding rate (r) [10] can be calculated as

the number of data fragments (α) divided by the total

erasure code fragments (γ ), where γ > α.

r =
α

γ
. (2)

The number of redundant fragments β represent the

fault tolerance capability of the encoding parameters.

Moreover, this encoding rate increases the storage cost

by a factor of f = 1
r
, called as boost factor.

(iii) Storage Efficiency

The storage efficiency (η) can be calculated as the ratio

of the number of data fragments (α) and the total erasure

code fragments (γ ). In this paper, we evaluated the

efficiency of various (α, β) pairs to analyze the perfor-

mance of EC.

η =
α

γ
× 100% = r × 100%. (3)

(iv) Recoverability

The optimal number of redundant fragments is another

important parameter that provides recoverability. The

EC encoding generates γ fragments and can recover

actual data from any α fragments. Therefore, it can

tolerate up to the β = γ − α number of unavailable

fragments. We used the recoverability metric to max-

imize data reliability and minimize the impact of data

loss.

(v) Storage Overhead

The EC encoding includes certain fragments overhead

for the data recovery purpose. This overhead is caused

by the padding of β fragments. The estimated storage

overhead is computed by the ratio of the number of

redundant fragments and the number of data fragments.

Estimated Storage Overhead =
β

α
× 100%. (4)

However, the erasure coding generates γ fragments of

the same size corresponding to the given data size.

Hence, the resulting fragment size is the multiplication

of one fragment size and γ . Practically, using these

fragments size and data size, we can compute the space

overhead which is computed as:

Soh = (
ψ × γ

DataSize
− 1)× 100%. (5)

In our experiments, we used Equation 5 to measure the

storage overhead.

V. PROPOSED METHODOLOGY

This section presents the investigation procedure of the opti-

mal encoding parameters, followed by the fragments genera-

tion procedure.

In this approach, a user is expected to provide the input

file along with the preferences to the CSP for the selection

of optimal encoding parameters and generation of coded

fragments, which is shown in Figure 4. The following steps

show the corresponding sequence of operations.

1) The CSP, first, sends the file as an input to both the

investigation process module and EC block. The inves-

tigation process module, initially, calculates the size of

the input file, and then it uses the preferences to decide

the encoding (α, β) pair.

2) The EC block gets the input optimal pair values from the

investigation process to encode the input file.

3) The EC scheme encodes the input file based on the

selected encoding (α, β) pairs to generates the α number

of data and β number of parity fragments.

The selection of optimal encoding parameters and the gen-

eration of fragments are divided into two phases, as discussed

below.

A. PHASE I: INVESTIGATION PROCEDURE

In this phase, an optimal encoding pair is selected among the

set of suitable pairs which is shown in Algorithm 1.

Algorithm 1 takes the set of encoding pairs δ(α,β) and file

category κ as an input, and it returns the optimal encoding pair

(α, β). The algorithm performs the following operations:

i. Initially, it calls the function getPairsCount , which takes

δ(α,β) as an input and returns the number of pairs exists

in the input set.

ii. In case of only a single pair exist in the set δ(α,β) or file

belongs to the small size category then it returns first pair

of the input set by calling getPair(1, δ(α,β)) function.
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FIGURE 4. Selection of optimal encoding parameters and generation of
coded fragments where numbers in red represents the sequence of
operations.

Algorithm 1 Selection of Optimal Encoding Pair

Input : Set of Encoding Pairs δ(α,β), File Category κ
Output: Encoding Pair (α, β)

1 begin
2 count = 0
3 Let count denotes the number of elements in the Set δ(α,β)
4 count ←− getPairsCount(δ(α,β))

/* Returns number of pairs in the input

set */

5 if (count == 1 || κ == "small") then
6 return getPair(1, δ(α,β))

/* Returns 1st pair of the Set δ(α,β)

*/
7 end
8 else if (count == 2) then
9 return getPair(2, δ(α,β))

/* Returns 2nd pair of the Set δ(α,β)

*/
10 end
11 else if (count == 3) then
12 if (κ == "medium") then
13 return getPair(2, δ(α,β))

/* Returns 2nd pair of the Set

δ(α,β) */

14 end
15 else
16 return getPair(3, δ(α,β))

/* Returns 3rd pair of the Set

δ(α,β) */

17 end
18 end
19 else if (count > 3) then
20 if (C == "medium") then
21 return getAveragePair(δ(α,β))
22 end
23 else
24 return getLargePair(δ(α,β))
25 end
26 end
27 end

iii. In case of only two pairs exist in the set δ(α,β) then

it returns second pair of the input set by calling

getPair(2, δ(α,β)) function.

Algorithm 2 Generation of Data and Parity Fragments

Input : Preference ρ, File ̥
Output: Set of Data and Parity Fragments (δα, δβ )

1 begin
2 Let κ denotes the category of the file i.e. small,

medium, and large
3 κ ←− getFileCategory(̥) /* Determines and

returns the file category */

4 δ(α,β) ←− getEncodingPairs(ρ, κ) /* returns the

set of encoding pairs */

5 (α, β) ←− selectOptimalEncodingPair(δ(α,β), κ)
/* Call Algorithm 1 */

6 δγ ←− executeErasureCoding(α, β) /* returns

the set of γ fragments; where

γ = α + β */

7 (δα, δβ ) ←− getSeparateFragments(δγ )
8 return (δα, δβ )
9 end

iv. In case of only three pairs exist in the set δ(α,β) and file

belong to themedium size category then it returns second

pair of the input set by calling getPair(2, δ(α,β)) function,

otherwise (file belongs to large size category) it returns

the third pair of the input set by calling getPair(3, δ(α,β))

function.

v. In case of a set δ(α,β) contains more than three

pairs and file belong to the medium size category

then it returns average pair from the input set by

calling getAveragePair(δ(α,β)) function, otherwise (file

belongs to large size category) it returns the large

pair of the input set by calling getLargePair(δ(α,β))

function.

B. PHASE II: FRAGMENT GENERATION PROCEDURE

Phase II executes Algorithm 2 which generates the

coded fragments based on user’s preference and input

file.

Algorithm 2 takes the user’s preference ρ and file ̥ as

an input, and returns the pair which contains a set of data

and parity fragments. The algorithm performs the following

operations:

i. It calls the function getFileCategory with an input file̥

to get the file category κ .

ii. Then it calls the function getEncodingPairs functionwith

preference ρ and file category κ as an input to get the set

of encoding pairs δ(α,β).

iii. Then it selects the optimal encoding pair (α, β) ∈ δ(α,β)
by calling selectOptimalEncodingPair function.

iv. Then it calls the function executeErasureCoding

with input α and β values to generates the set of

γ fragments.

v. Now, the getSeparateFragments function is executed

which separates the set of data and parity fragments

(δα, δβ ) from the set δγ .

vi. Finally, the algorithm returns the pair (δα, δβ ) containing

the set of data and parity fragments.
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TABLE 3. Probabilities of data availability at M = 10%.

VI. RESULTS AND ANALYSIS

In this section, first, we discuss the experimental setup with

packages and libraries, followed by several performance anal-

ysis and results.

A. EXPERIMENTAL SETUP

The experimental setup comprises of a desktop machine

with Intel R© CoreTM i7-3770 CPU @ 3.40GHz processor

of 8 cores, 8 GB RAM, installed with Ubuntu 14.04 64-bit

operating system and Python2.7 − dev package, and other

connected python libraries. We have employed the Erasure

Coding module using PyECLib − 1.2.0 library with the

liberasurecode− dev and libjerasure− dev packages.

B. DATASETS

We construct testing datasets for analyzing the cost of the

operations. These datasets contain multiple files with a set of

distinct file flavors. A typical file sets are considered having

different sizes, 256KB, 512KB, 1024KB, 256MB, and 512MB.

Further, we determine the total of 66 pair values that satisfy

the conditions: 1 < α ≤ 12 and 1 < β ≤ α. For practical

consideration, we conduct the tests on the erasure coding with

a set of following selected (α, β) pair values: {(3, 2), (5, 3),

(6, 4), (8, 3), (8, 4), (10, 3), (10, 4), (12, 6), (12, 8), (12, 10),

(12, 12)}. These specific pairs are selected to analyze the

Reed-Solomon codes which are arranged in chronological

order according to the number of data fragments. In our

experiment, we exploit Reed − Solomon schemes such as RS

and CRS, and further present the comparison between them.

However, RS scheme use the liberasurecode − dev package

and Jerasure RS & CRS use the libjerasure−dev package for

evaluation of the results.

C. DATA AVAILABILITY ANALYSIS

The data availability computation is shown in Equation 1 and

the corresponding results are presented in the Tables 3 and 4.

We analyze the data availability for various input (α, β)

pair values with N =
∑9

i=2 10
i number of total existing

servers andM% of currently unavailable servers whereM =

{10,20,30,40,50}. Table 3 demonstrates the data availability

for different values of N = {105,106, 107} and the average

availability at M = 10%. Since the ranges are overlapping,

we have taken the average of N values to see how they

get impacted due to M with {10, 20, 30, 40, 50}, which

is summarized in Table 4. We choose a large number of

unavailable servers to determine availability. The probability

of data availability for N = 105, 106, and 107 is nearly

the same. Hence, we deduce that the data availability is

unrestrained from the total number of existing servers, and

further, it achieves the equilibrium state. The relatively better

availability is achieved at M = 10% which lies between

0.9658393 and 0.9999999.

Figure 5 summarizes the data availability probability of

erasure encoding parameters at M = 20% corresponding to

the total number of servers, and the results display the higher

availability at EC(12, 12) & EC(12, 10).

D. RELIABILITY ANALYSIS

The important consideration in cloud storage are the data

recoverability metric, minimizing the impact of data loss,

and server failures. The increase in the number of redundant

fragments increases the recoverability of the corrupted frag-

ments to build a durable system. Each fragment can be placed

on a distinct server to maximize the tolerance against server

failures. To recover the corrupted fragments, it requires to

retrieve α number of fragments from the storage. To capture

the probability of data loss and normalized magnitude of data

loss, we use a discrete-event simulator SimECD [48] with its

default configuration of 4TiB disk capacity per node. The

simulation is based on the generation of failure and repair

events in a production datacenter. It measures the probability

of data loss (PDL) based on the number of permanently lost
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TABLE 4. Average probabilities of data availability at M = {10%, 20%, 30%, 40%, 50%}.

FIGURE 5. Availability probability of erasure encoding parameters at M = 20%.

fragments over an expedition period (10 years in our case).

The lowest PDL represents more tolerance capacity against

data corruption. It also uses Normalized the Magnitude of

Data Loss (NOMDL) by measuring the expected amount of

data loss normalized to the storage capacity. Figure 6 shows

the graph of reliability metric for various α and β value pairs

of RS codes. Since NOMDL values in the graph are very

small relative to PDL values, we scale the NOMDL by 104

in the graph.

The redundant fragment increases the capacity of data

recovery and decreases the impact of data loss or server fail-

ures. The pairs, i.e., (3, 2), (8, 3), and (10, 3) has limited num-

ber of redundant fragments. That may lead to high chances

of inaccessibility due to failures. As well, (8, 3) and (10, 3)

has the lowest probability of data availability, according to

Table 4. As can be seen in Figure 6, the pairs (3, 2), (8, 3), and

(10, 3) has relatively higher PDL than others. According to

Figure 6 and the number of parity fragments, we observe that

the pairs RS(12, 12) & RS(12, 10) has lowest PDL, NOMDL

and highest recoverability among all pairs, so that these pairs

offer better data reliability and high accessibility.

E. ENCODING EFFICIENCY AND STORAGE COST ANALYSIS

We plot the estimated storage efficiency and overheads for

various input (α, β) pair values as shown in Figure 7. Accord-

ing to the Figure 6 and Figure 7, we say that the EC(12, 12)

achieves high reliability and EC(10, 3) provides the high

efficiency and low storage overhead.

F. SPACE OVERHEAD ANALYSIS

We analyze the space overhead of the RS and CRS schemes

based on various input (α, β) values. We perform experi-

ments on various file samples of different sizes.
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TABLE 5. Execution time (in µs) of encoding operation for various input file samples.

FIGURE 6. Reliability metric for various α & β value pairs of RS codes.

The Figure 8(a) and Figure 8(b) show the space overhead

for the input files of size 256KB and 512MB respectively. The

CRS scheme is relatively expensive as compared to the RS

encoding for the smaller file as shown in Figure 8(a). The

space overheads of both the schemes are nearly the same

for the larger file, however, little higher overheads for the

smaller file. The reason lies in the fact that the encoding

library includes 80byte header to each fragment.

Figure 9 represents the overall space overhead based on the

implementation results for various input (α, β) values to RS

encoding. The results show that RS(10, 3) and RS(12, 12) has

the lowest and the highest space overhead respectively.

FIGURE 7. Estimated storage efficiency and overheads.

G. EXECUTION COST ANALYSIS

In this subsection, we analyze the execution cost for the

sample files of size 256KB, 512KB, 1024KB, 256MB, and

512MB using Python timeit module. We perform each encod-

ing operation 1000 times to evaluate the average execution

time which is summarized in Table 5.

We observe from the Table 5 that all the operations require

extremely less time, between 0.00021 to 2.41µs, for execut-

ing the encoding operation of all the sample files. Further,

we analyze the execution cost of encoding operations for the

sample files and illustrate the behavior of the small and large

file in Figure 10(a) and Figure 10(b) respectively.We observe
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FIGURE 8. (a) Space overheads for the input file 256KB. (b) Space overheads for the input file 512MB.

FIGURE 9. Space overheads for various input file samples.

FIGURE 10. (a) Execution time of encoding for the input file 256KB. (b) Execution time of encoding for the input file 512MB.
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TABLE 6. Performance analysis of EC for various input (α, β) pair values.

TABLE 7. Suitable encoding pairs based on input file size and user
preference.

that the RS scheme takes more computation time compared

to the other schemes, and the Jerasure RS and CRS schemes

require almost equal computation time. Hence we conclude

that the Jerasure RS and CRS encoding scheme is computa-

tionally better than the RS schemes.

The EC encoding operations performance for various input

(α, β) pair values on the basis of availability, recoverability,

efficiency, and storage overhead is summarized in Table 6.

We perform the availability analysis at M = 20% and we

assume the availability to be Low at 0.7, average at 0.8,

and high at 0.9. We observe the data recoverability based

on the percentage of additional fragments. We assume the

recoverability as low if percentage < 50, average if 50 ≤

percentage < 80, and high if 80 <= percentage. Similarly,

we assume the efficiency to be low if efficiency < 50, average

if 50 ≤efficiency< 65, and high if 65 <= efficiency. Further,

we assume storage overhead as low if overhead < 50,

average if 50 ≤ overhead < 70, and high if 70 <=

overhead .

We achieve high availability and high efficiency at

EC(8, 4) and EC(12, 6) with average recoverability and stor-

age overhead. Further, we achieve high efficiency and lower

storage overhead at EC(8, 3) and EC(10, 4) with average

availability. Moreover, the EC(12, 8) achieve high availabil-

ity with average efficiency, recoverability, and storage over-

head. Hence, either of the pair, (8, 4) or (12, 6), is the suit-

able choice for designing the highly available, efficient, and

fault-tolerant storage system with average storage overhead.

Based on the aforementioned findings, the input preference,

as classified below, define the user requirements for the

encoding of the file.

• Preference-I: High availability with average efficiency,

recoverability, and storage overhead.

• Preference-II: High efficiency and lower storage over-

head with an average availability.

• Preference-III: High availability and high efficiency

with average recoverability and storage overhead.

• Preference-IV: High availability and high recoverability

with average efficiency.

We have applied the following rules based on Algorithm 1

to assign the Encoding pair values to different files depending

upon the number of available encoding pair values:

• Case-I: If only one pair is available, then assign that pair

to all the files irrespective of their size.

• Case-II: If two pairs are available, then assign the

smaller pair value to small and medium size files; and

higher pair value to large size file.

75116 VOLUME 8, 2020



V. Chouhan, S. K. Peddoju: Investigation of Optimal Data Encoding Parameters

• Case-III: If three pairs are available, then assign the

smaller pair value to small files; medium pair to medium

size files and higher pair value to large size file.

• Case-IV: If more than three pairs are available, then

assign the smaller pair value to small files; higher pair

value to large files; and any one of the remaining pair

value tomedium size files depending upon the first come

first serve basis.

Table 7 illustrates the above discussed rules to assign the

encoding pair values. Suppose for given input file and user

preference, we get the multiple (α, β) pair values as (3, 2),

(5, 3), (6, 4), (12, 8) for encoding a particular file. Therefore,

we select the minimum number of γ (= α + β) fragments

from the offered pairs for small file, average number of

γ fragments for medium file, and maximum number of γ

fragments for large file. Thus, we choose the encoding pair

values (3, 2), {(5, 3) or (6, 4)}, and (12, 8) for small, medium,

and large files respectively.

VII. CONCLUSION

The CSPs provide Storage-as-a-Service to the end-users.

To prevent data unavailability due to server failures and soft-

ware or hardware faults, they use the EC concept. The encod-

ing scheme provides a durable and recoverable system with

high reliability and low storage cost based on the dynamic

selection of encoding parameters as per the user preferences.

Our findings provide direction towards the selection of opti-

mal encoding pairs of erasure coding suitable to the specific

user’s requirements. The investigation revealed that the prob-

ability of availability achieved up to 0.9999999 when ten per-

cent of the servers were unavailable. It is also observed that

the encoding operations require extremely less time, between

0.00021 to 2.41µs, for all the sample files. On the other

hand, we explored the QoS requirements and summarized

the findings according to the user’s requirements and file

sizes. RS(12, 12) & RS(12, 10) provided high reliability and

also offered better data recovery and high accessibility. How-

ever, the results showed that both RS(12, 12) & RS(12, 10)

have the highest space overhead. Though, we achieved high

availability and high efficiency at EC(8, 4) and EC(12, 6)

with average recoverability and storage overhead. Further,

we achieved high efficiency and low storage overhead at

EC(8, 3) and EC(10, 4) with average availability. Also,

EC(12, 8) achieved high availability with average efficiency,

recoverability, and storage overhead. Hence, either of the

pairs, (8, 4) or (12, 6), is the suitable choice for designing the

highly available, efficient, and fault-tolerant storage system

with average storage overhead, on a specific user’s spec-

ifications. These choices may change based on the user’s

preferences. The results indicate that utilizing the optimal

selection of encoding values. We can significantly reduce

the unnecessary space overhead and computation overhead,

and fulfill the user QoS requirements while providing higher

availability and reliability. Essentially, reducing the overall

system cost.
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