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1 Abstrat

Mixture models with (multivariate) Gaussian omponents are a popular tool in model-based lustering. Suh

models are often �tted by a proedure that maximizes the likelihood, suh as the EM algorithm. At onvergene,

the maximum likelihood parameter estimates are typially reported, but in most ases little emphasis is plaed on

the variability assoiated with these estimates. In part this may be due to the fat that standard errors are not

diretly alulated in the model-�tting algorithm, either beause they are not required to �t the model, or beause

they are di�ult to ompute. The examination of standard errors in model-based lustering is therefore typially

negleted.

Sampling based methods, suh as the jakknife (JK), bootstrap (BS) and parametri bootstrap (PB), are

intuitive, generalizable approahes to assessing parameter unertainty in model-based lustering using a Gaussian

mixture model. This paper provides a review and empirial omparison of the jakknife, bootstrap and parametri

bootstrap methods for produing standard errors and on�dene intervals for mixture parameters. The performane

of suh sampling methods in the presene of small and/or overlapping lusters requires onsideration however; here

the weighted likelihood bootstrap (WLBS) approah is demonstrated to be e�etive in addressing this onern

in a model-based lustering framework. The JK, BS, PB and WLBS methods are illustrated and ontrasted

through simulation studies and through the traditional Old Faithful data set and also the Thyroid data set. The

MlustBootstrap funtion, available in the most reent release of the popular R pakage mlust, failitates the

implementation of the JK, BS, PB and WLBS approahes to estimating parameter unertainty in the ontext of

model-based lustering.

The JK, WLBS and PB approahes to variane estimation are shown to be robust and provide good overage

aross a range of real and simulated data sets when performing model-based lustering; but are is advised when

using the BS in suh settings. In the ase of poor model �t (for example for data with small and/or overlapping

lusters), JK and BS are found to su�er from not being able to �t the spei�ed model in many of the sub-samples

formed. The PB also su�ers when model �t is poor sine it is reliant on data sets simulated from the model upon

whih to base the variane estimation alulations. However the WLBS will generally provide a robust solution,

driven by the fat that all observations are represented with some weight in eah of the sub-samples formed under

this approah.

keywords: mlust, MlustBootstrap, Preision, Standard Errors, Variane Estimation.
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2 Introdution

The bootstrap (BS) and jakknife (JK) methods of re-sampling originated as a non-parametri means of estimating

the variability of parameter estimates, or of estimating the parameters themselves (Quenouille, 1956; Tukey, 1958).

These methods have sine been doumented and studied in great detail, in a wide range of modeling senarios, suh

as regression (Wu, 1986), generalized linear models (Moulton and Zeger, 1991) and time series analysis (Bühlmann,

1997). The literature inludes appliations of the jakknife or bootstrap in isolation (see for example Efron and Stein

(1981) and Efron and Tibshirani (1993) respetively) as well as appliations of both methods together, exploring

the synergy between them (Efron, 1981). This synergy enompasses the fat that the methods are asymptotially

equivalent, as well as the fat that both methods derive from the same basi idea. Therefore, while the algorithms

for the two methods have traditionally been presented separately, it is important to note their shared objetive:

onstruting new samples from the original data that allow us to gauge the variability of parameter estimates for

the estimated model.

The methods an be helpful either in ases where the robustness of the parametri assumptions is in question,

or when the seond moments of the sampling distribution of the parameter estimates are di�ult to ompute. The

former problem often arises when analyzing �small� data sets. The latter issue is often present in more di�ult model

settings, suh as model-based lustering, where the log-likelihood an beome intratable for omplex distributions.

Indeed this may help to explain the lak of attention paid to the variability of point estimates under this approah

to statistial modeling, ompared to other standard methods suh as regression or ANOVA.

The JK, BS and PB methods provide fast and aurate ways to irumvent suh problems and generate variane

estimates for maximum likelihood parameter estimates. This paper provides a review and empirial omparison

of the JK, BS and PB methods for produing standard errors and on�dene intervals for mixture parameters in

the ontext of model-based lustering with multivariate Gaussian omponents. The performane of suh sampling

methods in the presene of small and/or overlapping lusters requires onsideration however; here, the weighted

likelihood bootstrap (WLBS) approah is demonstrated to be e�etive in addressing this onern. The proedures

are illustrated when lustering using a mixture of Gaussian distributions in simulation studies and in the ase of

the Old Faithful and Thyroid data, well-doumented multivariate lustering test ases. In partiular, the methods

are onsidered within the ontext of the widely used R pakage mlust (R Core Team, 2017; Fraley and Raftery,

2002; Fraley et al, 2012), whih failitates model-based lustering by onsidering a range of parsimonious mixtures

of Gaussian distributions. The JK, BS, PB and WLBS methods presented here are easily implemented in the most

reent release of the mlust pakage, through the MlustBootstrap funtion, for whih sample ode is provided.

The remainder of the paper is strutured as follows. Setions 3 provides a uni�ed summary of the JK, BS

and PB methods of variane estimation. The similarities and di�erenes between the approahes are identi�ed as

they arise, in Setions 3.1 and 3.2. The motivation for and the details of the WLBS are disussed in Setion 3.3.
Setion 4 presents the illustrative data sets used � the data sets employed in the simulation studies and the Old

Faithful and Thyroid real data sets. In Setion 5 the results obtained for the illustrative data sets are presented and

the artile onludes in Setion 6 with a disussion of variane estimation in model-based lustering. Appendix A

ontains pairs plots for the variables from one of the simulated data sets tested and Appendix B ontains additional

parameter estimates and standard errors for the Thyroid data set along with the R ode used to generate them.

3 Sampling based approahes to variane estimation in model-based

lustering

In a model-based lustering setting eah p-dimensional multivariate observation xi belongs to one of G lusters.

The matrix of i = 1, . . . , n observations is denoted by X = (x1, x2, . . . , xn). The parameter τg is the probability

that the observation omes from luster g, where
∑G

g=1
τg = 1. The data within group g are modeled by omponent

density f(xi|θg). For a mixture of Gaussian distributions, θg omprises of the luster means µg and the ovari-

ane matries Σg. The observed data likelihood is the funtion to be maximized, however alulating maximum

likelihood estimates is ahieved more easily using the expeted omplete data likelihood. A lassi�ation vetor

zi = (zi1, . . . , ziG) is assumed to exist for eah observation i = 1, . . . , n where zig = 1 if observation i belongs to
luster g and zig = 0 otherwise. The omplete data likelihood under a �nite mixture of Gaussians an be expressed

as:

Lc =

n
∏

i=1

G
∏

g=1

[τgf(xi|µg,Σg)]
zig

(1)
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The observed data likelihood is maximized via the widely used EM algorithm (Dempster et al, 1977), whih

iteratively maximises the expeted omplete-data log-likelihood. Extensive literature is available on �tting a Gaus-

sian mixture model with a variety of eigendeomposed ovariane strutures via the EM algorithm (Fraley and

Raftery, 1998, 2002), as is onsidered within the popular R pakage mlust. It must be noted that mlust pro-

vides only a loal optimum of the likelihood, not a global optimum, with aompanying parameter estimates. Hene

the resampling methods and parameter standard error estimation tehniques detailed must be onsidered in this

ontext.

While the EM algorithm an provide an e�ient means of parameter estimation in the mixture modeling

ontext, the default output of the EM algorithm does not provide estimates of the unertainty assoiated with the

parameter estimates. Several approahes have been onsidered to failitate the provision of standard errors within

the ontext of the EM algorithm; MLahlan and Krishnan (1997) and MLahlan and Peel (2000) provide thorough

reviews. Most existing methods for assessing the ovariane matrix of MLEs obtained via the EM algorithm are

based on estimating the observed information matrix (Meilijson, 1989; MLahlan and Krishnan, 1997; Meng and

Rubin, 1989, 1991). However, while estimating the ovariane matrix of the MLEs via the information matrix is

valid asymptotially (Boldea and Magnus, 2009), in the ase of mixture models large sample sizes are required

for the asymptotis to give a reasonable approximation. Efron (1994) highlights that standard errors are likely

to be underestimated under suh approahes. Also, none of the existing information matrix based approahes

are generalisable in that model spei� alterations to the EM algorithm are required. The mixture of Gaussians

approah to model-based lustering typially features non-di�erentiable orthogonal matries for some ovariane

strutures, whih prohibits implementation of an information matrix-based approah. Furthermore, in ertain

(typially high dimensional) settings, use of the information matrix is infeasible due to singularity issues (Ford and

Silvey, 1980; Stoia and Söderström, 1982; Titterington, 1984).

Sampling based approahes promise an alternative, fast and generalisable approah to providing standard errors.

Suh methods are detailed in the literature: Diebolt and Ip (1996) employ a onditional bootstrap approah to

MLE ovariane estimation; the EMMIX software by MLahlan et al (1999) o�ers parametri and nonparametri

bootstrap failities for standard error estimation; Turner (2000) disusses non/semiparametri bootstrapping for

obtaining the standard errors in a mixture of linear regressions problem as well as estimation of the observed

information matrix in this setting; Basford et al (1997) and Peel (1998) ompare bootstrap and information matrix

approahes for Gaussian mixtures; and Nyamundanda et al (2010) employ the jakknife for standard error estimation

in the ontext of mixtures of onstrained fator models. In a related area, MLahlan (1987) avails of the bootstrap

to aid model seletion when lustering. Here, the JK, BS and PB sampling methods, within the ontext of the

well utilised R pakage mlust, are reviewed and empirially ompared. Their potentially poor performane in

the presene of small lusters is e�etively addressed through the introdution of a weighted likelihood bootstrap

(WLBS) approah.

3.1 The jakknife and bootstrap methods

The jakknife and bootstrap methods are well known approahes to obtaining estimates of the variane assoiated

with parameter estimates. Both are sampling based methods and are straightforward to implement, regardless of

the model under onsideration. Here, they are onsidered within the ontext of model-based lustering. By default,

mlust lusters observations by �tting a range of mixture of Gaussian models (in terms of number of mixture

omponents and the type of ovariane struture), and hooses the optimal model using the Bayesian Information

Criterion (Shwarz, 1978). However, the user may speify any ovariane struture and number of groups G that

they wish to �t. In this setting, the algorithm for the bootstrap and jakknife variane estimation tehniques

proeeds as follows:

(i) Identify the optimal model struture for the full data setX, denoted by M̃ , using mlust. This model provides

the number of groups, G, and the maximum likelihood posterior group membership probability matrix ẐM̃ .

The value ẑig is the posterior probability that observation i belongs to group g. Note that this step has not

been arried out in the subsequent simulations, rather the true model has been assumed to be known.

(ii) Form B samples omprising of observations from the original data X.

� Under the JK approah, eah of the BJK = n samples ontains (n− 1) observations. Jakknife sample

Xj denotes the sample of the original observations X with observation j omitted, j = 1, 2, . . . , n.

� Under the BS, eah of the BBS samples ontains n observations, where the observations are sampled with

replaement from X. In this study BBS = 999 was used (the mlust default) to ensure robust variane
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estimation for eah of the illustrative data sets. It is omputationally feasible to run a greater number

of bootstrap samples if required. See Andrews and Buhinsky (2000) for a formal guide to hoosing the

number of bootstrap samples aross a range of appliations.

(iii) For eah sample b = 1, 2, . . . , B, onstrut the assoiated initialization matrix of group membership probabil-

ities Ẑb. This is populated with the values from the ẐM̃ matrix formed using the full data that orrespond to

eah observation sampled. This irumvents the problem of label swithing (the problem that the likelihood

is invariant under a permutation of the labels assigned to the mixture omponents) that would otherwise have

to be expliitly undone at the end of the algorithm. It an be veri�ed that this step suessfully negates the

possibility of label swithing by heking the ordering of the sizes of the τ and µ omponent probability and

mean parameter estimates that emerge from eah JK, BS, PB and WLBS sample �tted versus those of the

optimal model. Aross all data sets tested, this post proessing step never failed to verify that label swithing

had been avoided through use of the ẐM̃ matrix for initialization purposes and that the original omponent

orderings remained unaltered.

(iv) For eah sample, alulate the MLEs of τg and θg under model M̃ . Initialization using the ẐM̃ matrix, as

detailed in step (iii), greatly improves onvergene times for eah sample and the speed of the method as

a whole. Empirial study showed that using random starts to initialize �t on resampled data sets makes

minimal di�erene versus using the matrix ẐM̃ from the original �t, with onvergent log likelihood values and

parameter estimates in agreement under either approah. Use of the matrix ẐM̃ from the original model �t

is merely preferred for purposes of omputational e�ieny and to irumvent the threat of label swithing.

It should be noted that, tehnially, starting the algorithm from the original �t is invalid, beause it uses

information that is not available when running the original Gaussian mixture maximum likelihood estimator

on the data.

(v) Estimate the (o)variane of any model parameter ψ:

� The jakknife estimate of a parameter's variane, σ2

JK(ψ), is equal to the sample variane of the BJK

values of ψ multiplied by the onstant term

(n− 1)

n
, where ψJK denotes the jakknife sample mean.

A move from the delete-1 jakknife to the general delete-d jakknife means that eah sample formed

ontains fewer observations than in the delete-1 ase: (n− d) versus (n− 1). However, there is a larger

number of samples available in the delete-d ase:
(

n
d

)

as opposed to n. The net e�et is that the delete-d
approah an produe superior estimates of variane for non-smooth statistis suh as the median or

quantiles. However, for estimating variane of smooth statistis suh as the mean, ovariane elements

and proportions required in a model-based lustering ontext, the delete-1 variant is reliable and is

markedly faster and more straightforward to implement (Shi, 1988):

σ2

JK(ψ) =
(n− 1)

n

BJK
∑

m=1

(ψm − ψJK)2. (2)

� The bootstrap estimate of a parameter's variane, σ2

BS(ψ), is equal to the sample variane of the BBS

values of ψ alulated aross the bootstrap samples, where ψBS denotes the bootstrap sample mean:

σ2

BS(ψ) =
1

(BBS − 1)

BBS
∑

m=1

(ψm − ψBS)
2. (3)

The bootstrap and jakknife estimates of ovariane between parameter estimates an be alulated using

analogous formulae.

Using mlust to �t the pre-spei�ed model M̃ to eah JK or BS sample, and using the full data model ẐM̃

matrix for initialization (as desribed in step (iv)), means the algorithm provides a quik and aurate way of

estimating parameter (o)varianes. It must be noted that the inferene proposal and estimation of parameter

standard errors is onditional on the method of model seletion. If the user hooses the orret model in advane,

there is no validity problem. However the onverse situation where the model seletion proess uses the data, whih

arises ommonly in statistial modeling, is not without peril - inferene ignoring prior model seletion is tehnially

invalid (Leeb and Pötsher, 2005). Nonetheless, it represents the standard approah aross the existing methods

of variane estimation detailed in Setion 3 and aross the wider spetrum of statistial inferene.
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Bootstrapping an be asymptotially onsistent but does not provide general �nite-sample guarantees. However,

it is a viable option for obtaining on�dene limits in ases where a normal approximation of a parameter's dis-

tribution is not appropriate (Davison and Hinkley, 1997). On the other hand, by de�nition, the bootstrap density

arries redued inferential information about the underlying parameter sine not all observations are represented

in a typial sample and estimates of variability based upon the samples are less reliable (Pawitan, 2000). This is

related to the fat that for nonparametri resampling the distribution of a parameter estimate is disrete, even

though it may be approximating a ontinuous distribution, leading to �fuzziness� versus a parametri approah.

However the support of the distribution tends to be fairly dense for samples of any reasonable size and hene

the disrete approximation an often be viewed as relatively benign (Davison and Hinkley, 1997). A further im-

pediment to asymptoti onsisteny of bootstrapping in this appliation is the fat that model seletion is not

performed on eah bootstrap sample, but rather the full data optimal model is �tted aross all samples (Andrews

and Guggenberger, 2009). However empirial testing suggests that this has limited impat beause in most ases

the full data model remains the optimal one in the samples formed. This is partiularly true under the JK, BS

and PB approahes. The fat that it has some impat in terms of not always being able to �t the model under the

BS approah onstitutes a further ritiism of this method of variane estimation versus the JK, PB and WLBS

methods.

3.2 The parametri bootstrap

The parametri bootstrap estimate of a parameter's variane, σ2

PB(ψ), is alulated in a similar manner to the

bootstrap estimate of the parameter's variane. However, in the ase of the parametri bootstrap, the BPB

values of ψ required to estimate its variane are not generated via resampling of the original data, but rather

through simulation of BPB new data sets from the �tted model. For initialization purposes ẐM̃ is again used when

generating eah simulated data set, to improve onvergene speed and prevent the issue of label swithing. For eah

new simulated data set, the original �tted model is applied to the observations and the value of ψ is determined for

that data set. Then σ2

PB(ψ) is alulated as the sample variane of the BPB values of ψ. The mlust default is to
set BPB = 999. This ould be inreased, if neessary, to handle ases where some lusters are sparsely populated -

ensuring a su�ient number of observations is simulated from suh lusters to allow robust variane estimation for

their distributional parameters (albeit at inreased omputational overhead). Clearly the auray and validity of

the parametri bootstrap approah relies on the assumption that the �tted model provides a good approximation

to the true mehanism that generated the original data set (Efron, 1982), with its preision delining substantially

as the model deviates from the orret model (Mita et al, 2012). The parametri bootstrap an be used to simulate

large numbers of observations from the spei�ed model, ensuring that a su�ient number of observations from

small lusters arise to permit variane estimation for their assoiated parameters.

3.3 The weighted likelihood bootstrap

For ases where one or more of the lusters in the data set ontain relatively few observations, it is likely that suh

lusters will be under-represented in some of the BS and PB (and potentially JK) samples formed. In extreme

ases suh lusters may be ompletely unrepresented in some of the samples formed. Consequently the estimation

of parameter standard errors orresponding to these lusters via suh sampling based methods will either be highly

unstable or not possible. The weighted likelihood bootstrap (WLBS) approah is proposed here as an e�etive

remedy in suh irumstanes.

The weighted likelihood bootstrap (Newton and Raftery, 1994) originated as a way to simulate approximately

from a posterior distribution. In the ontext of a sampling based approah to variane estimation, the WLBS di�ers

from the JK and BS in that every observation in the data set X is `present' in eah WLBS sample formed. The

degree to whih eah observation is present is measured by its assoiated `weight'. Eah weight wi (i = 1, . . . , n)
is simulated. As in Newton and Raftery (1994), the uniform Dirihlet distribution is employed for the purposes of

simulating the weights here. The impliation of using the uniform Dirihlet in this apaity is that the weights are

e�etively being simulated from an exponential distribution, with saling provided by the mean of the exponential

draws. Other weighting distributions for observations ould alternatively be used, for example those based on the

number of observations present in the luster to whih an observation belongs, but were found to yield inferior

performane in terms of attributing su�ient weight to lusters with few observations to allow stable and robust

parameter estimation versus the full data model.

The shift to the weighted likelihood bootstrap approah requires that when �tting the model M̃ from the full

data to the WLBS sampled data, a weighted form of the omplete data likelihood (1) is now maximized:
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Lwc =

n
∏

i=1

G
∏

g=1

[τgf(xi|µg,Σg)]
zigwi

(4)

As with the original bootstrap method, outlined in Setion 3.1, 999 weighted likelihood bootstrap samples are

formed for eah of the illustrative data sets by sampling 999 weight vetors w = (w1, . . . , wn); this ensures robust
variane estimation. Eah sample formed again ontains n observations, but sampling with replaement is no longer

employed � all n original observations are present in eah of the 999 samples formed, but eah observation has

assoiated weight wi. Hene, the WLBS resolves the under-representation of small lusters that arises in the BS

(and potentially JK) ases, as eah WLBS sample inludes all observations.

Variane estimates of model parameters are alulated under the WLBS approah in the same manner as in the

BS method outlined in the algorithm in Setion 3.1 � with the exeption that at step (ii) BWLBS = 999 samples

are formed by sampling weight vetors from the uniform Dirihlet distribution. Thus, the WLBS also provides a

quik and aurate way of estimating parameter varianes, even in the presene of small/overlapping lusters. As

suh, the WLBS approah provides a robust nonparametri alternative to the parametri bootstrap approah.

4 Illustrative Data Sets

The appliation and performane of the JK, BS, PB and WLBS approahes to variane estimation detailed in

Setion 3 are demonstrated through three simulation studies and through the use of two well established lustering

data sets, the Old Faithful data and the Thyroid data.

4.1 Simulated data sets

Three simulation settings are used to illustrate the proposed sampling based approahes to variane estimation,

and to assess and ompare their performane and omputational e�ieny.

4.1.1 Simulation Setting One and Simulation Setting Two.

Two illustrative simulation settings are onsidered here to learly expose the proposed sampling based approahes

to variane estimation, and to assess and ompare their performane. Both simulation settings onsider a mixture

of Gaussians model, one in whih G = 2 and one in whih G = 3. In both settings, for illustrative purposes, the

number of variables p = 2, and in order to thoroughly test performane a small sample size of n = 150 was used.

Within eah simulation setting, four di�erent models are onsidered, as illustrated in Figures 1 and 2. In brief, the

four models examined in eah setting onsider di�erently sized lusters with di�erent degrees of luster separation.

The ovariane struture used varies between lusters in all instanes (i.e. the `VVV' mlust model is used).

The true luster ovariane matries, ΣTRUE
1 and ΣTRUE

2 , for G = 2 in Simulation Setting One, for models M1,

M2, M3 and M4 are:

ΣTRUE
1 =

(

0.12 0.09
0.09 0.12

)

ΣTRUE
2 =

(

0.47 0.13
0.13 0.11

)

The true luster ovariane matries, ΣTRUE
1

, ΣTRUE
2

and ΣTRUE
3

, for G = 3 in Simulation Setting Two, for

models M5, M6, M7 and M8 are:

ΣTRUE
1 =

(

0.12 0.09
0.09 0.12

)

ΣTRUE
2 =

(

0.39 0.15
0.15 0.10

)

ΣTRUE
3 =

(

0.53 0.20
0.20 0.09

)

4.1.2 Simulation Setting Three

For illustrative and reporting larity the simulation settings desribed in Setion 4.1.1 are low dimensional in

nature. A further simulation study is also onduted whih involves higher dimensional senarios. The purpose of

this additional simulation study is to further explore the performane and omputational features of the JK, BS,

PB and WLBS approahes to parameter variane estimation, in more omplex senarios.

A mixture of Gaussians model in whih the number of lustersG = 5 is onsidered, where the luster probabilities
are set to be τ = (0.07, 0.07, 0.22, 0.27, 0.37)′. Two settings for the number of observations n are onsidered (n = 500
and n = 700). The number of variables p onsidered is high within the ontext of dimensionality that the popular
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Figure 1: Satter plot for a single simulated data set (n = 150) from eah of the four models ((a) M1, (b) M2, ()

M3 and (d) M4) onsidered in the G = 2 simulation setting. M1 and M2 onsider the ase where a small luster is

present; M3 and M4 onsider more equally sized lusters. M1 and M3 onsider non-overlapping lusters whereas

M2 and M4 onsider overlapping lusters. True parameter settings are detailed above eah �gure.
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Figure 2: Satter plot for a single simulated data set (n = 150) from eah of the four models ((a) M5, (b) M6, ()

M7 and (d) M8) onsidered in the G = 3 simulation setting. M5 and M6 onsider the ase where small lusters are

present; M7 and M8 onsider more equally sized lusters. M5 and M7 onsider non-overlapping lusters whereas

M6 and M8 onsider overlapping lusters. True parameter settings are detailed above eah �gure.

R pakage mlust (R Core Team, 2017; Fraley and Raftery, 2002; Fraley et al, 2012) an reasonably handle in

terms of omputational speed. Here three settings (p = 15, p = 20 and p = 25) are onsidered. Within eah setting

the ovariane struture used varies between lusters in all instanes (i.e. the `VVV' mlust model is used), and

some small lusters are present. There is also overlap between the lusters; Figures 7, 8 and 9 in Appendix A

illustrate this to some degree through pairs plots from a single simulated data set for whih n = 500, p = 25 and

G = 5.

4.2 The Old Faithful data

The frequently utilised Old Faithful data set is omprised of bivariate observations for 272 eruptions of the Old

Faithful geyser in Yellowstone National Park (Azzalini and Bowman, 1990). Eah observation reords the eruption

duration and the waiting duration until the next eruption, both measured in minutes; the data are illustrated in

Figure 3. This is a lassi test ase for any lustering methodology beause the data are multimodal. However,

there are no `true' group labels available � the presene of various numbers of groups has been suggested, depending

on the lustering rule applied.
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Figure 3: Satter plot of the Old Faithful data.

4.3 The Thyroid data

The Thyroid data set is omprised of data on �ve laboratory tests administered to a sample of 215 patients. The tests
are: perentage T3 resin uptake test (RT3U); total serum thyroxin as measured by the isotopi displaement method

(T4); total serum triiodothyronine as measured by radioimmuno assay (T3); basal thyroid-stimulating hormone as

measured by radioimmuno assay (TSH); maximal absolute di�erene of TSH value after injetion of 200mirograms

of thyrotropin-releasing hormone as ompared to the basal value (DTSH). The tests are used to predit whether a

patient's thyroid an be lassi�ed as euthyroidism (normal thyroid gland funtion), hypothyroidism (underative

thyroid not produing enough thyroid hormone) or hyperthyroidism (overative thyroid produing and sereting

exessive amounts of the free thyroid hormones T3 and/or thyroxine T4). Diagnosis of thyroid operation was based

on a omplete medial reord, inluding anamnesis, sans and other methods and is inluded in the data set. The

data are illustrated in Figure 4. Observations in navy denote the �normal� diagnosis of eurothyroidism, while those

in purple and pink denote diagnoses of hypothyroidism and hyperthyroidism respetively. See Coomans et al (1983)

for further details.

5 Results

The appliation and performane of the JK, BS, PB and WLBS approahes to variane estimation are illustrated

using the data sets outlined in Setion 4. For both the simulation study and the Old Faithful and Thyroid data

sets parameter estimates are presented, as are their assoiated standard errors omputed under the JK, BS, PB

and WLBS methods using a mixture model where eah omponent is multivariate Gaussian.

5.1 Simulation study

The simulation settings desribed in Setion 4.1 serve as a means of assessing the auray of the sampling-based

approahes to parameter variane estimation, in di�erent lustering senarios.
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Figure 4: Pairs plots of the Thyroid data aross the �ve laboratory tests administered. Observations in navy denote

the �normal� diagnosis of eurothyroidism, while those in purple and pink denote diagnoses of hypothyroidism and

hyperthyroidism respetively.

5.1.1 Simulation Setting One: G = 2.

For the �rst simulation setting, where two lusters are present, Table 1 presents the luster probability estimates

and assoiated standard errors, based on a single simulated data set under eah of the models M1, M2, M3 and

M4 with n = 150, for the JK, BS, PB and WLBS methods. These luster probability estimates are the mean

values of τ for eah group aross all resampled versions of the data onstruted, for eah of the four resampling

methods onsidered. It is lear that, for models M1, M3 and M4, all methods produe luster probability estimates

that are very lose to the true values and that the standard errors are relatively small. Results are poor however

for the more hallenging model M2, in whih a small luster is present and the lusters overlap. All approahes

over-estimate the number of observations belonging to the smaller luster in this ase, and the standard errors are

larger than in model M1, whih also has a small luster present. Also notable is that, when moving from M3 to

M4, while parameter estimates appear unhanged, the standard errors inrease due to the inreased luster overlap

and the resulting poor lustering performane (in terms of mislassi�ation rate). Similar observations arose when

examining the luster mean and ovariane estimates and standard errors for the four models.

Under the BS and PB, a total of BBS = BPB = 999 samples was requested in this study. Here, under models

M1 and M2, a number of additional samples was required in order to ahieve this total, attributable to the inability

to �t the optimal model M̃ to some of the sampled data sets. Inability to �t a model is aused by non-onvergene

of the EM algorithm resulting from reahing a set of parameter estimates where the ovariane matrix annot be

inverted. This is attributable to the random nature of the data seleted to form the a�eted samples. It partiularly

a�ets the BS approah sine, by design, many of the original observations may not be inluded in any given sample

formed. Resampling may produe samples that have no or few observations from the small luster present in the

M1 and M2 model settings. Likewise, a BS sample may inlude the same observation multiple times. Finally, the

optimal model may not be a good �t to the underlying data generating mehanism and thus �tting it to a sampled

data set may not be possible (whih an greatly ompromise the PB approah). Any one of these issues, or a

ombination of them, an lead to the omputational instability desribed. Empirial study shows that this issue
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annot be overome using a di�erent initialization method, suh as random initializations, for the EM algorithm,

sine the issue is inherent to the data seleted. Suh non-�tting issues an potentially our in the JK and WLBS

approahes (but empirially do so muh less frequently in the JK ase, and never in the WLBS ase).

Hene it is appropriate to also onsider and report the e�etive number of samples (EB) drawn. In the BS,

PB and WLBS ases, EB is de�ned to be the number of sampled data sets onstruted in order to ompute the

variane estimates using the requested BBS , BPB and BWLBS) number of samples. To avoid entering an in�nite

loop of drawing non-estimable bootstrap samples an upper limit of BBS × 10 = 9990 is set (and likewise for the PB

and WLBS); one this number of non-estimable samples has been drawn the algorithm is terminated and reported

variane estimates are based on the suessfully estimated models only. In the JK ase, drawing more than n
samples is learly not feasible and so non-estimable samples are disarded. Thus in the JK approah EB denotes

the atual number of sampled data sets involved in the �nal omputation of the reported variane estimates. Table

1 shows that the BS and PB require an EB slightly above the default 999 data sets for models M1 and M2. No

omputational issues requiring additional samples to be drawn are enountered for any of the other models and

variane estimation methods onsidered.

Table 1: Cluster probability estimates (with assoiated standard errors) for a data set simulated under eah of

the four models detailed in Figure 1 where there are G = 2 multivariate Gaussian omponents, under eah of

the variane estimation approahes.

†
For M1, EBBS = 1001 and EBPB = 1002. ‡

For M2, EBBS = 1005 and

EBPB = 1000. The true values are 0.05 and 0.95 for M1 and M2 and 0.4 and 0.6 for M3 and M4.

τJK τBS τPB τWLBS

M1 {0.07 (0.02), 0.93 (0.02)} {0.07 (0.02), 0.93 (0.02)}

†
{0.07 (0.02), 0.93 (0.02)}

†
{0.08 (0.03), 0.92 (0.03)}

M2 {0.13 (0.04), 0.87 (0.04)} {0.13 (0.05), 0.87 (0.05)}

‡
{0.14 (0.05), 0.86 (0.05)}

‡
{0.14 (0.05), 0.86 (0.05)}

M3 {0.38 (0.04), 0.62 (0.04)} {0.38 (0.04), 0.62 (0.04)} {0.38 (0.04), 0.62 (0.04)} {0.38 (0.04), 0.62 (0.04)}

M4 {0.38 (0.06), 0.62 (0.06)} {0.38 (0.08), 0.62 (0.08)} {0.37 (0.06), 0.63 (0.06)} {0.38 (0.09), 0.62 (0.09)}

To further assess the performane of the methods, 1000 data sets were generated under eah of the models M1,

M2, M3 and M4. For eah data set an approximate 95% on�dene interval (mean ±2 standard errors for the BS,

PB and WLBS approahes and using pseudo-values for the JK approah) was formed for eah model parameter.

The number of data sets for whih the on�dene interval ontained the true parameter value was reorded; these

overage results are presented in Table 2 for the �rst group membership probability parameter τ1.
Coverage results are good aross all the sampling based approahes under models M1, M3 and M4. This is

not the ase for M2 where overage delines markedly for all four resampling methods, due to the presene of a

small, overlapping luster. The JK fares best for M2, followed by the WLBS. The BS and PB both perform poorly.

Similar trends were observed when examining the overage results for the other model parameters.

The BS and PB again have �tting di�ulties with models M1 and M2 beause resampling and simulation

respetively produe samples to whih it was not possible to �t the optimal model M̃ in some instanes. However,

good overage results are obtained for M1 (but not M2) after drawing additional samples until the required BBS =
BPB = 999 �ts are ahieved. To a muh lesser extent the JK also has di�ulties with models M1 and M2 where

it is again not possible at all times to �t the required model to the sampled data set; drawing additional samples

is learly not possible in the JK setting. While the WLBS appears to perform onsistently well in terms of �tting

ability, it should be noted that even if the BS approah needs to draw additional samples due to non-�tting issues,

in low dimensional settings the BS is typially omputationally more e�ient than the WLBS approah beause

the latter requires the omputation of the log-likelihood as a weighted sum of densities for eah data point.

The auray of the standard errors obtained under the sampling based approahes an be assessed by a

omparison to the true analytially derived standard errors when they are available. The missing information

priniple (MIP) (Tanner, 2012) is used to analytially derive the true standard errors in a tratable and illustrative

one dimensional setting. A Newton-based numerial method (NM) is also employed to ompute standard errors as

an additional omparison. Furthermore, numerial derivatives and Hessians are available via the popular �exmix

pakage (Grün and Leish, 2007), as supported by the theory of Hong et al (2015). The hallenging simulated data

setting of model M2, variable 2 is hosen for these omparisons � one of the two underlying lusters is small and

the lusters overlap in this variable. Table 3 reports the standard errors omputed under the JK, BS, PB, WLBS,

MIP, NM and �exmix approahes. The sampling based approahes perform well, in that the standard errors they

return are very lose to those obtained analytially and numerially. The standard errors returned by all four

sampling based approahes are very lose to the truth for the larger luster 2 (i.e. for parameters µ2 and σ2); in
the ase of the small luster 1, the WLBS and PB approahes sometimes report smaller standard errors than the
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Table 2: Coverage results (i.e. the proportion of data sets for whih the true probability of membership of luster

1 is within the JK, BS, PB and WLBS 95% on�dene intervals for the models M1, M2, M3 and M4) where there

are G = 2 multivariate Gaussian omponents. The �rst olumn (`M̃ Fits') reports the number of simulated data

sets to whih it was possible to �t the optimal model M̃ ; a total of 1000 data sets were simulated under eah model

setting. The `Non-�t' olumns detail the average number of resamples that did not onverge within eah sampling

proedure, with standard deviations of the ounts given in parentheses. Note that in this study BJK = n = 150
and BBS = BPB = BWLBS = 999.

M̃ JK BS PB WLBS

Fits Non-�t Coverage Non-�t Coverage Non-�t Coverage Non-�t Coverage

M1 977 0.04 (0.31) 0.969 130.93 (369.86) 0.957 41.02 (90.07) 0.949 0.00 (0.00) 0.948

M2 1000 0.02 (0.21) 0.748 46.20 (208.55) 0.508 9.73 (45.77) 0.488 0.00 (0.00) 0.601

M3 1000 0.00 (0.00) 0.953 0.00 (0.00) 0.945 0.00 (0.00) 0.948 0.00 (0.00) 0.947

M4 1000 0.00 (0.00) 0.935 0.01 (0.13) 0.980 0.00 (0.00) 0.968 0.00 (0.00) 0.983

truth, whereas the JK and BS approahes return slightly in�ated standard errors throughout. The performane of

the �exmix approah is similar to that of the WLBS and PB, indiating its suitability as a good ompetitor to

the sampling based approahes to variane estimation.

Table 3: Comparison of standard errors omputed under sampling based approahes (JK, BS, PB and WLBS)

using a mixture of multivariate Gaussians model, using numerial derivatives and Hessians (�exmix), omputed

numerially via a Newton based method (NM), and omputed analytially via the missing information priniple

(MIP). The data are from model M2, variable 2.

τ1 µ1 µ2 σ2
1

σ2
2

JK 0.015 0.116 0.029 0.037 0.012

BS 0.016 0.126 0.030 0.038 0.012

PB 0.017 0.109 0.029 0.027 0.012

WLBS 0.016 0.090 0.031 0.018 0.013

�exmix 0.017 0.090 0.030 0.021 0.013

NM 0.015 0.096 0.029 0.029 0.014

MIP 0.015 0.096 0.029 0.029 0.014

5.1.2 Simulation Setting Two: G = 3.

A seond, similar simulation setting was used to analyze performane for a larger number of lusters i.e. G = 3
multivariate Gaussian omponents. Table 4 presents the luster probability estimates and assoiated standard

errors, based on a single simulated data set under eah of the models M5, M6, M7 and M8 with n = 150, for the
JK, BS, PB and WLBS methods. The performane of the four approahes in the G = 3 multivariate Gaussian

omponents ase is similar to that summarized at the end of Setion 5.1.1. Interestingly, the standard errors are

larger for M5 (non-overlapping lusters) than for M6 (overlapping lusters), whih upon examination was due to

poor lustering performane for the partiular data set simulated under M5.

Again, 1000 data sets were then generated under eah of the models M5, M6, M7 and M8. For eah data set an

approximate 95% on�dene interval was formed for eah model parameter. Table 5 reports the number of data sets

for whih the on�dene interval ontained the true τ1 value. Clearly overage performane is poorer in the G = 3
setting than in the G = 2 setting (Table 2), possibly attributable to the small number of observations (n = 150)
and the hallenging simulation parameter settings. The JK approah performs best in this ontext, partiularly for

models M5 and M6 where the other approahes struggle in terms of overage performane. The WLBS performs

slightly better than the BS and PB in terms of overage. Both the BS and the PB ommonly yield non-�tting

issues, whih do not a�et the JK and WLBS approahes.

13



Table 4: Cluster probability estimates (with assoiated standard errors) for a data set simulated under eah of the

four models detailed in Figure 2 where there are G = 3 multivariate Gaussian omponents, under eah of the four

variane estimation approahes. † For M5, EBS = 1017 samples were drawn in order to suessfully �t the model

the requested number of times (BBS = 999). ‡ EJK = 149. ∗EBS = 1838. ∗∗EPB = 1142. ∗∗∗EBS = 1002. For

M5 and M6 τTRUE = {0.05, 0.05, 0.9}. For M7 and M8 τTRUE = {0.3, 0.3, 0.4}

τJK τBS

M5 {0.15 (0.03), 0.15 (0.06), 0.70 (0.07)} {0.15 (0.03), 0.15 (0.08), 0.70 (0.08)}

†

M6 {0.03 (0.01), 0.12 (0.03), 0.86 (0.03)}

‡
{0.03 (0.01), 0.12 (0.03), 0.85 (0.03)}

∗

M7 {0.29 (0.04), 0.32 (0.04), 0.39 (0.04)} {0.29 (0.04), 0.32 (0.04), 0.39 (0.04)}

M8 {0.28 (0.13), 0.35 (0.07), 0.37 (0.09)} {0.28 (0.08), 0.35 (0.07), 0.37 (0.06)}

∗∗∗

τPB τWLBS

M5 {0.15 (0.03), 0.15 (0.08), 0.70 (0.08)} {0.15 (0.03), 0.15 (0.08), 0.70 (0.08)}

M6 {0.03 (0.01), 0.12 (0.03), 0.85 (0.03)}

∗∗
{0.03 (0.01), 0.12 (0.03), 0.85 (0.03)}

M7 {0.29 (0.04), 0.32 (0.04), 0.39 (0.04)} {0.29 (0.04), 0.32 (0.04), 0.39 (0.04)}

M8 {0.28 (0.07), 0.35 (0.06), 0.37 (0.06)} {0.28 (0.09), 0.35 (0.07), 0.37 (0.06)}

Table 5: Coverage results i.e. the proportion of data sets for whih the true probability of membership of luster

one is within the JK, BS, PB and WLBS 95% on�dene intervals for the models M5, M6, M7 and M8, where

there are G = 3 multivariate Gaussian omponents. The �rst olumn (`M̃ Fits') reports the number of simulated

data sets to whih it was possible to �t the optimal model M̃ ; a total of 1000 data sets were simulated under eah

model setting. The `Non-�t' olumns detail the average number of resamples that did not onverge within eah

sampling proedure, with standard deviations given in parentheses. Note that in this study BJK = n = 150 and

BBS = BPB = BWLBS = 999.

M̃ JK BS PB WLBS

Fits Non-�t Coverage Non-�t Coverage Non-�t Coverage Non-�t Coverage

M5 997 0.16 (2.15) 0.616 94.63 (398.59) 0.117 15.38 (73.33) 0.126 0.00 (0.00) 0.166

M6 996 0.05 (0.48) 0.651 100.52 (355.51) 0.276 23.55 (74.72) 0.269 0.00 (0.00) 0.331

M7 1000 0.00 (0.00) 0.978 0.00 (0.00) 0.974 0.00 (0.00) 0.976 0.00 (0.00) 0.967

M8 1000 0.00 (0.00) 0.953 1.05 (14.73) 0.974 0.158 (3.22) 0.959 0.00 (0.00) 0.953

5.2 Simulation Setting Three: higher dimensional senarios.

To assess performane of the the JK, BS, PB and WLBS methods in higher dimensional senarios, Table 6 re-

ports the luster probability estimates and assoiated standard errors based on a single simulated data set under

eah of the settings for n, p and G = 5 as desribed in Setion 4.1.2. Note that for eah setting τTRUE =
(0.07, 0.07, 0.22, 0.27, 0.37)′.

Adhering to the default settings in the MlustBootstrap funtion in mlust, BBS = BPB = BWLBS = 999
samples are drawn for the BS and WLBS approahes respetively. By de�nition BJK = n. In suh higher

dimensional settings the bootstrap in partiular often has di�ulty in suessfully �tting a model to some of the

BBS = 999 samples drawn; this problem also ours under the PB approah, but was never observed to our

under the WLBS approah as all observations are inluded (with some weight) in all samples. Thus Table 6 also

details the e�etive number of samples (EB) drawn for eah approah.

To assess the omputational performane of the methods in more omplex senarios, 100 data sets were generated
under eah of the simulation settings for n, p and G. For eah data set the run time for eah method was reorded

and summaries are reported in Table 7. Aross all high dimensional settings the JK is the heapest omputationally,

however both it and the BS are prone to model �tting issues, meaning the �nal variane estimates produed are

not always based on the number of samples expeted or requested by the user. This phenomenon ours more

frequently in settings where the n/p ratio is small. The WLBS and PB are markedly more stable in terms of model

�tting, though they are slower than the JK and BS methods. That the WLBS does not often enounter �tting

issues is due to the fat that the same data set used to estimate M̃ is used in the WLBS proedure. The large

variane of 80.67 for the n = 500, p = 20 WLBS setting in Table 7 is due to one very large run time. When this

runtime was omitted the mean and standard deviation are 44.05 (2.73); the run times for the BS and WLBS for
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Table 6: Cluster probability estimates (with assoiated standard errors) for a data set from eah of the simulation

settings under eah of the variane estimation approahes. The e�etive number of samples drawn (EB) is also
reported. † The algorithm terminated as the number of non-estimable samples for model �tting reahed the limit

of BBS × 10 = 9990; only 40 samples were suessfully drawn and �tted and thus involved in the omputation of

the reported estimates.

n = 500 p = 25 G = 5 EB
τJK {0.06 (0.011), 0.08 (0.012), 0.24 (0.019), 0.26 (0.020), 0.36 (0.021)} 500

τBS {0.06 (0.009), 0.08 (0.009), 0.24 (0.020), 0.26 (0.018), 0.36 (0.018)} †
τPB {0.06 (0.009), 0.08 (0.012), 0.24 (0.018), 0.26 (0.020), 0.36 (0.021)} 1162

τWLBS {0.06 (0.010), 0.08 (0.012), 0.24 (0.019), 0.26 (0.020), 0.36 (0.022)} 999

n = 500 p = 20 G = 5
τJK {0.06 (0.010), 0.08 (0.012), 0.24 (0.019), 0.26 (0.020), 0.36 (0.022)} 500

τBS {0.06 (0.008), 0.08 (0.011), 0.24 (0.019), 0.26 (0.019), 0.36 (0.021)} 8142

τPB {0.06 (0.009), 0.08 (0.012), 0.24 (0.020), 0.26 (0.020), 0.36 (0.022)} 1069

τWLBS {0.06 (0.010), 0.08 (0.012), 0.24 (0.019), 0.26 (0.020), 0.36 (0.022)} 999

n = 500 p = 15 G = 5
τJK {0.07 (0.011), 0.07 (0.011), 0.23 (0.019), 0.25 (0.019), 0.38 (0.022)} 500

τBS {0.07 (0.011), 0.07 (0.012), 0.23 (0.019), 0.25 (0.020), 0.38 (0.022)} 1025

τPB {0.07 (0.011), 0.07 (0.012), 0.23 (0.019), 0.25 (0.020), 0.38 (0.022)} 999

τWLBS {0.07 (0.011), 0.07 (0.012), 0.23 (0.019), 0.25 (0.020), 0.38 (0.022)} 999

n = 700 p = 25 G = 5
τJK {0.06 (0.009), 0.08 (0.011), 0.22 (0.016), 0.28 (0.017), 0.36 (0.018)} 700

τBS {0.06 (0.007), 0.08 (0.010), 0.22 (0.015), 0.28 (0.017), 0.36 (0.018)} 2125

τPB {0.06 (0.009), 0.08 (0.011), 0.22 (0.016), 0.28 (0.017), 0.36 (0.018)} 2076

τWLBS {0.06 (0.009), 0.08 (0.011), 0.22 (0.016), 0.28 (0.017), 0.36 (0.018)} 999

n = 700 p = 20 G = 5
τJK {0.06 (0.009), 0.09 (0.011), 0.22 (0.016), 0.27 (0.017), 0.36 (0.018)} 700

τBS {0.06 (0.008), 0.09 (0.011), 0.22 (0.016), 0.27 (0.016), 0.36 (0.018)} 1052

τPB {0.06 (0.009), 0.09 (0.010), 0.22 (0.016), 0.27 (0.016), 0.36 (0.018)} 1022

τWLBS {0.06 (0.009), 0.09 (0.011), 0.22 (0.015), 0.27 (0.016), 0.36 (0.018)} 999

n = 700 p = 15 G = 5
τJK {0.07 (0.009), 0.08 (0.01), 0.23 (0.016), 0.25 (0.016), 0.37 (0.018)} 700

τBS {0.07 (0.010), 0.08 (0.01), 0.23 (0.016), 0.25 (0.017), 0.37 (0.019)} 1059

τPB {0.07 (0.009), 0.08 (0.011), 0.23 (0.016), 0.25 (0.017), 0.37 (0.018)} 1025

τWLBS {0.07 (0.009), 0.08 (0.01), 0.23 (0.015), 0.25 (0.015), 0.37 (0.018)} 999

this isolated simulated data set were also relatively large.

Also inluded for omparative purposes in Table 7 are summaries of the run times taken to ompute the

standard errors from a version of the information matrix following the empirial Fisher information standard error

formula as reommended in Boldea and Magnus (2009); in all ases these run times are notably larger than those

from the sampling based approahes. In terms of estimates, for example from an n = 500 and p = 25 simulated

data set, the Boldea & Magnus approah estimates the mixing probabilities and assoiated standard errors to be

τ = (0.07(0.005), 0.06(0.009), 0.24(0.009), 0.27(0.010), 0.35(0.011)), whih are not notably di�erent to those reported
in Table 6.

5.3 Old Faithful results

While Setion 5.1 demonstrated the advantages and disadvantages of the sampling based methods through a simu-

lation study, here the utility of the methods is illustrated through a real lustering problem where true parameter

estimates are unknown. For the Old Faithful data, under mlust, the optimal mixture of Gaussians model has

G = 3 omponents and ommon ovariane struture Σg = Σ aross groups, based on BIC. JK, BS, PB and

WLBS parameter estimates and assoiated standard errors for this model are presented below, along with luster

ovariane estimated values (with assoiated standard errors). The maximum likelihood parameter estimates found
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Table 7: Average run times in seonds (standard deviations in parentheses) for di�erent simulation settings in high

dimensional senarios. In all settings G = 5. The third olumn (M̃ Fits) details the number of the 100 simulated

data sets for whih it was possible to �t the optimal model M̃ . Under eah of the JK, BS, PB, WLBS and Boldea

& Magnus headings the seond olumn (Fits) details the number of the M̃ Fits data sets for whih the e�etive

number of samples EB was equal to that requested i.e. equal to BJK = n and BBS = BPB = BWLBS = 999.

M̃ JK BS PB WLBS Bol/Mag

n p Fits Time Fits Time Fits Time Fits Time Fits Time Fits

500 25 90 5.2 (0.09) 84 38.5 (5.65) 13 37.2 (8.12) 90 61.6 (2.9) 90 648.9 (3.98) 90

500 20 99 4.2 (0.26) 96 21.7 (10.63) 69 21.9 (3.67) 99 52.2 (80.67) 99 192.6 (7.26) 99

500 15 100 3.1 (0.11) 99 7.1 (2.74) 99 15.5 (1.08) 100 30.3 (0.81) 100 42.1 (0.6) 100

700 25 100 10.5 (0.12) 100 22.7 (12.94) 94 64.9 (30.97) 100 72.3 (0.41) 100 901.3 (7.39) 100

700 20 100 8.0 (0.17) 100 11.6 (0.80) 100 28.4 (5.80) 100 51.3 (1.06) 100 270.3 (0.70) 100

700 15 100 5.8 (0.17) 100 8.2 (0.16) 100 16.5 (1.91) 100 35.4 (0.53) 100 60.8 (0.35) 100

using the single best mlust model based on the full data are also inluded for omparative purposes in both ases.

τMCLUST =

(

0.46, 0.36, 0.18
)

τJK =

(

0.46 (0.04), 0.36 (0.03), 0.18 (0.04)
)

τBS =

(

0.47 (0.05), 0.36 (0.03), 0.17 (0.05)
)

τPB =

(

0.48 (0.04), 0.36 (0.03), 0.16 (0.03)
)

τWLBS =

(

0.48 (0.06), 0.36 (0.03), 0.16 (0.05)
)

µMCLUST =

(

4.48, 2.04, 3.82
80.89, 54.49, 77.65

)

µJK =

(

4.47 (0.03), 2.04 (0.03), 3.81 (0.06),
80.89 (0.47), 54.49 (0.60), 77.62 (1.18)

)

µBS =

(

4.47 (0.05), 2.03 (0.03), 3.79 (0.11)
80.86 (0.59), 54.45 (0.59), 77.37 (2.24)

)

µPB =

(

4.47 (0.03), 2.04 (0.03), 3.79 (0.06)
80.84 (0.60), 54.49 (0.59), 77.49 (1.16)

)

µWLBS =

(

4.46 (0.05), 2.03 (0.03), 3.76 (0.13)
80.81 (0.59), 54.44 (0.61), 76.97 (2.41)

)

ΣMCLUST =

(

0.08 0.48
0.47 33.74

)

ΣJK=

(

0.08 (0.01) 0.47 (0.12)
0.47 (0.12) 33.73 (2.77)

)

ΣBS=

(

0.08 (0.01) 0.46 (0.15)
0.46 (0.15) 32.88 (2.83)

)

ΣPB=

(

0.08 (0.01) 0.48 (0.12)
0.48 (0.12) 33.32 (2.76)

)

ΣWLBS=

(

0.08 (0.01) 0.45 (0.16)
0.45 (0.16) 32.94 (2.89)

)

The standard errors for all parameters under eah method are small relative to the size of the parameter estimates

themselves. The standard errors using the BS and WLBS are slightly larger than their JK and PB ounterparts

for most parameters. This is to be expeted as there is likely to be muh less variability in the estimates arising

from the JK samples than would be observed in the BS or WLBS ases, as eah JK sample di�ers only by one

observation. On the other hand the BS and WLBS samples are likely to di�er from eah other to a greater degree.

Similar results have been presented previously for this data set in a univariate ontext (Everitt and Hothorn, 2009,

page 139�155).

The sampling based approahes to variane estimation disussed provide not only estimates of the model pa-

rameters, but also insight as to their assoiated unertainty, whih an be graphially illustrated. Figure 5 provides
kernel density plots for the mean waiting duration and eruption duration for all three lusters. The plots indiate
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good agreement between the BS and WLBS approahes; notably the WLBS densities are �atter in some ases. In

addition, the kernel density plots for the model's ovariane parameters are provided in Figure 6. Plotting the JK

density estimates for the model parameters results in very bumpy and very narrow densities. This is due to the

similarity of the JK samples and therefore the parameter estimates themselves (neessitating the use of pseudo-

values in omputing on�dene intervals for the JK approah). The PB kernel density results were also omputed

but are extremely lose to the outomes for the BS in the ase of Figures 5 and 6 and hene for visual larity have

been omitted from the plots.

5.4 Thyroid results

For the Thyroid data, under mlust, the optimal mixture of Gaussians model has G = 3 omponents and diagonal

ovariane struture with varying volume and shape, Σg = λgAg, aross groups. The results for the estimation of

parameters and their assoiated unertainties under the optimal model are presented below using 3 multivariate

Gaussian omponents and ovariane struture Σg = λgAg. The maximum likelihood parameter estimates found

using the single best mlustmodel based on BIC are also inluded for omparative purposes. Covariane parameter

estimates and assoiated standard errors are detailed in Appendix B, along with the MlustBootstrap ode used

to obtain the results.

τMCLUST =

(

0.71, 0.16, 0.13
)

τJK =

(

0.74 (0.03), 0.15 (0.03), 0.11 (0.02)
)

τBS =

(

0.71 (0.03), 0.16 (0.03), 0.13 (0.02)
)

τPB =

(

0.71 (0.03), 0.16 (0.03), 0.13 (0.02)
)

τWLBS =

(

0.71 (0.03), 0.16 (0.03), 0.13 (0.02)
)

µMCLUST =





110.34, 9.09, 1.72, 1.31, 2.49
95.53, 17.69, 4.27, 0.97, −0.02
123.22, 3.79, 1.06, 13.91, 18.84





µJK =





110.13 (0.66), 9.11 (0.18), 1.74 (0.04), 1.35 (0.04), 2.42 (0.15)
95.05 (3.27), 18.40 (0.77), 4.46 (0.40), 0.96 (0.07), 0.00 (0.05)
124.46 (1.96), 3.32 (0.45), 0.96 (0.11), 15.03 (2.44), 20.71 (2.99)





µBS =





110.33 (0.65), 9.09 (0.19), 1.72 (0.04), 1.31 (0.04), 2.50 (0.15)
95.59 (3.37), 17.68 (0.81), 4.28 (0.43), 0.97 (0.07), −0.02 (0.05)
123.36 (0.68), 3.74 (0.19), 1.05 (0.04), 14.12 (0.04), 18.97 (0.15)





µPB =





110.35 (0.65), 9.08 (0.18), 1.72 (0.04), 1.31 (0.04), 2.50 (0.15)
95.44 (3.20), 17.68 (0.75), 4.25 (0.40), 0.97 (0.07), −0.02 (0.05)
123.27 (1.92), 3.79 (0.40), 1.06 (0.10), 13.88 (2.35), 18.87 (2.88)





µWLBS =





110.34 (0.68), 9.10 (0.19), 1.72 (0.04), 1.31 (0.04), 2.50 (0.15)
95.42 (3.38), 17.68 (0.82), 4.28 (0.42), 0.97 (0.07), −0.01 (0.05)
123.37 (1.83), 3.73 (0.40), 1.04 (0.10), 13.96 (2.37), 18.87 (2.75)





The standard errors for all parameters under eah method are small relative to the size of the parameter

estimates themselves and are approximately equal aross the variane estimation approahes onsidered. The

parameter estimates aross all methods are lose to those from the full data model, with the PB and WLBS

proving most aurate in this regard. This veri�es that the JK, BS, PB and WLBS approahes presented are

robust even in this higher dimensional real data appliation and that there is evidene to favour adoption of the

PB or WLBS approahes if a single method is to be preferred.

From a omputational perspetive, all variane estimation approahes are omputationally e�ient. The results

produed throughout Setion 5 were obtained via the MlustBootstrap funtion in the most reent version of the

R pakage mlust. In the ontext of lustering the Old Faithful data, the JK, BS, PB and WLBS approahes to

variane estimation required 0.19s, 2.45s, 5.33s and 70.47s to run respetively on a 2.8 GHz Ma OS X laptop,

where the default 999 samples were requested in the BS, PB and WLBS settings. The orresponding times for the

Thyroid data set were 0.13s, 0.77s, 4.03s and 15.32s. The inrease in the WLBS setting over the JK, BS and PB

settings for omputational time is due to the required maximization of the weighted omplete data likelihood, but
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Figure 5: Kernel density plots of the BS and WLBS estimates of the µ parameters for the Old Faithful data. The

solid blue line and the thiker solid red line represent the BS and WLBS kernel densities respetively. The dashed

lines represent the values of the MLEs from the model �tted to the full data set. The PB kernel densities are

extremely lose to the BS lines and for visual larity have been omitted.
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Figure 6: Kernel density plots of the BS and WLBS estimates of the Σ parameters for the Old Faithful data. The

solid blue line and the thiker solid red line represent the BS and WLBS kernel densities respetively. The dashed

lines represent the values of the MLEs from the model �tted to the full data set. The PB kernel densities are

extremely lose to the BS lines and for visual larity have been omitted.
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the overall omputational ost is still heap from a user perspetive. The JK and BS methods are in turn faster than

the PB due to the time required to simulate from the model under the latter approah. The MlustBootstrap

ode used to obtain the Thyroid results is provided at the end of Appendix B.

6 Disussion and further work

Although model-based lustering is now a widely used approah to lustering in a range of disiplines, espeially

through the use of the mlust pakage in R, little attention has previously been paid to providing estimates of the

variane assoiated with parameter estimates. Here, four sampling based approahes to variane estimation are

disussed in the ontext of model-based lustering. The jakknife, bootstrap and parametri bootstrap approahes

to variane estimation are basi tools in any statistiian's toolkit, but di�ulties with the bootstrap in partiular

arise in the lustering ontext when small lusters are present. The weighted likelihood bootstrap addresses this

shortoming. The WLBS has been shown to perform as well as the JK, BS and PB in general, and partiularly

well in the presene of small lusters. In terms of whih sampling based approah the pratitioner should use to

obtain variane estimates, the simulation studies and real appliations presented here suggest that when roughly

similarly sized lusters are present, all four methods perform equally well. In the presene of small lusters or in

high dimensional settings however, the JK and WLBS are more stable than the BS and PB. Although it omes with

higher, yet still user friendly, omputational ost, overall the WLBS is found to be the preferred method of variane

estimation. This is primarily beause, if the model provides a poor �t, the BS and PB will either fail and/or require

extra samples, and the jakknife samples may not well represent the full data set, whereas the WLBS will give

weight to all observations and provide a solution. This tends to our in ases of small and/or overlapping lusters.

However, the poor model �t is attributable to the nature of the data and not the fault of the sampling variane

estimation approahes themselves. Indeed, instanes of the BS and PB needing extra samples, or failing, may in

fat be evidene of poor model �t in the �rst instane, providing an additional diagnosti tool in this regard.

The standard errors alulated from the JK, BS, PB andWLBS have several pratial uses inluding formation of

approximate on�dene intervals for parameter estimates, onstrution of hypothesis tests as to whether parameters

should be inluded in the model and analysis of the bias of maximum likelihood parameter estimates versus their

JK/BS/PB/WLBS ounterparts as a means of assessing model goodness of �t. In a similar vein, the sampling

based methods disussed ould be employed as an aid to model seletion.

Further avenues of researh are plentiful and varied. For example, an appliation that would perhaps be

of interest to an mlust user would be the quanti�ation of the standard errors of the parameters onstituting

the eigenvalue deomposition of the ovariane matrix into its size, orientation and shape omponents, Σg =
λgDgAgD

T
g . This may aid in the proess of model spei�ation, namely in determining whih parameters ould

be set equal aross groups to ahieve a more parsimonious deomposition. Spei� to the weighted likelihood

bootstrap method, a more thorough investigation of alternative Dirihlet parameterisations or alternative weighting

distributions ould be onduted to examine their stability and suitability in settings where some lusters are

sparsely populated. In addition, the JK, BS, PB and WLBS ould be examined in the ontext of non-Gaussian

mixtures, suh as mixtures of t distributions or skew-t distributions (Lee and MLahlan, 2013a,b).
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A Pairs plots of a simulated data set from Simulation Setting Three.

Simulation Setting Three explores the performane and omputational features of the JK, BS, PB and WLBS ap-

proahes to parameter variane estimation in a higher dimensional setting featuring overlapping and small lusters.

Figures 7, 8 and 9 provide pairs plots from a single simulated data set under this setting for whih n = 500, p = 25
and G = 5. Eah of the di�erent olours/symbols in the plots denotes one of the 5 distint lusters of observations

simulated.
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Figure 7: Pairs plots of the �rst 10 variables for a single simulated data set from Simulation Setting Three (n =
500, p = 25, G = 5).
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Figure 8: Pairs plots of the seond 10 variables for a single simulated data set from Simulation Setting Three

(n = 500, p = 25, G = 5).
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Figure 9: Pairs plots of the �nal 5 variables for a single simulated data set from Simulation Setting Three (n =
500, p = 25, G = 5).
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B Covariane parameter estimates and standard errors for the Thyroid

data

Cluster ovariane estimated values are presented below using jakknife (JK), bootstrap (BS), parametri bootstrap

(PB) and weighted likelihood bootstrap (WLBS) methods (with assoiated standard errors) for the optimal mixture

of Gaussians model for the Thyroid data, group 1, where G = 3 and p = 5 and the optimal model has unequal

diagonal ovariane struture aross lusters.

ΣMCLUST, Group 1 =













66.39 0 0 0 0
0 4.82 0 0 0
0 0 0.23 0 0
0 0 0 0.22 0
0 0 0 0 3.19













ΣJK, Group 1 =













67.50 (7.82) 0 (0) 0 (0) 0 (0) 0 (0)
0 (0) 4.80 (0.63) 0 (0) 0 (0) 0 (0)
0 (0) 0 (0) 0.24 (0.03) 0 (0) 0 (0)
0 (0) 0 (0) 0 (0) 0.33 (0.04) 0 (0)
0 (0) 0 (0) 0 (0) 0 (0) 3.25 (0.36)













ΣBS, Group 1 =













66.00 (8.25) 0 (0) 0 (0) 0 (0) 0 (0)
0 (0) 4.80 (0.64) 0 (0) 0 (0) 0 (0)
0 (0) 0 (0) 0.23 (0.03) 0 (0) 0 (0)
0 (0) 0 (0) 0 (0) 0.22 (0.05) 0 (0)
0 (0) 0 (0) 0 (0) 0 (0) 3.16 (0.34)













ΣPB, Group 1 =













65.85 (7.80) 0 (0) 0 (0) 0 (0) 0 (0)
0 (0) 4.80 (0.54) 0 (0) 0 (0) 0 (0)
0 (0) 0 (0) 0.23 (0.03) 0 (0) 0 (0)
0 (0) 0 (0) 0 (0) 0.22 (0.03) 0 (0)
0 (0) 0 (0) 0 (0) 0 (0) 3.17 (0.37)













ΣWLBS, Group 1 =













65.85 (7.99) 0 (0) 0 (0) 0 (0) 0 (0)
0 (0) 4.78 (0.62) 0 (0) 0 (0) 0 (0)
0 (0) 0 (0) 0.23 (0.03) 0 (0) 0 (0)
0 (0) 0 (0) 0 (0) 0.22 (0.05) 0 (0)
0 (0) 0 (0) 0 (0) 0 (0) 3.17 (0.42)













Cluster ovariane estimated values are presented below using jakknife (JK), bootstrap (BS), parametri bootstrap

(PB) and weighted likelihood bootstrap (WLBS) methods (with assoiated standard errors) for the optimal mixture

of Gaussians model for the Thyroid data, group 2, where G = 3 and p = 5 and the optimal model has unequal

diagonal ovariane struture aross lusters.
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ΣMCLUST, Group 2 =













344.46 0 0 0 0
0 17.44 0 0 0
0 0 4.92 0 0
0 0 0 0.15 0
0 0 0 0 0.07













ΣJK, Group2 =













384.31 (101.72) 0 (0) 0 (0) 0 (0) 0 (0)
0 (0) 14.84 (3.00) 0 (0) 0 (0) 0 (0)
0 (0) 0 (0) 5.19 (1.37) 0 (0) 0 (0)
0 (0) 0 (0) 0 (0) 0.15 (0.03) 0 (0)
0 (0) 0 (0) 0 (0) 0 (0) 0.08 (0.02)













ΣBS, Group 2 =













336.73 (98.03) 0 (0) 0 (0) 0 (0) 0 (0)
0 (0) 16.85 (2.88) 0 (0) 0 (0) 0 (0)
0 (0) 0 (0) 4.77 (1.31) 0 (0) 0 (0)
0 (0) 0 (0) 0 (0) 0.15 (0.03) 0 (0)
0 (0) 0 (0) 0 (0) 0 (0) 0.07 (0.02)













ΣPB, Group 2 =













334.34 (83.28) 0 (0) 0 (0) 0 (0) 0 (0)
0 (0) 17.04 (4.45) 0 (0) 0 (0) 0 (0)
0 (0) 0 (0) 4.74 (1.15) 0 (0) 0 (0)
0 (0) 0 (0) 0 (0) 0.15 (0.04) 0 (0)
0 (0) 0 (0) 0 (0) 0 (0) 0.07 (0.02)













ΣWLBS, Group 2 =













332.50 (92.04) 0 (0) 0 (0) 0 (0) 0 (0)
0 (0) 16.71 (2.71) 0 (0) 0 (0) 0 (0)
0 (0) 0 (0) 4.81 (1.28) 0 (0) 0 (0)
0 (0) 0 (0) 0 (0) 0.15 (0.03) 0 (0)
0 (0) 0 (0) 0 (0) 0 (0) 0.07 (0.02)













Cluster ovariane estimated values are presented below using jakknife (JK), bootstrap (BS), parametri bootstrap

(PB) and weighted likelihood bootstrap (WLBS) methods (with assoiated standard errors) for the optimal mixture

of Gaussians model for the Thyroid data, group 3, where G = 3 and p = 5 and the optimal model has unequal

diagonal ovariane struture aross lusters.
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ΣMCLUST, Group3 =













95.23 0 0 0 0
0 4.26 0 0 0
0 0 0.28 0 0
0 0 0 147.06 0
0 0 0 0 231.22













ΣJK, Group 3 =













95.47 (29.87) 0 (0) 0 (0) 0 (0) 0 (0)
0 (0) 2.91 (1.10) 0 (0) 0 (0) 0 (0)
0 (0) 0 (0) 0.24 (0.06) 0 (0) 0 (0)
0 (0) 0 (0) 0 (0) 157.52 (71.60) 0 (0)
0 (0) 0 (0) 0 (0) 0 (0) 234.45 (71.18)













ΣBS, Group 3 =













90.83 (27.53) 0 (0) 0 (0) 0 (0) 0 (0)
0 (0) 3.93 (0.94) 0 (0) 0 (0) 0 (0)
0 (0) 0 (0) 0.26 (0.06) 0 (0) 0 (0)
0 (0) 0 (0) 0 (0) 143.33 (65.03) 0 (0)
0 (0) 0 (0) 0 (0) 0 (0) 222.37 (65.83)













ΣPB, Group 3 =













91.11 (25.03) 0 (0) 0 (0) 0 (0) 0 (0)
0 (0) 4.17 (1.16) 0 (0) 0 (0) 0 (0)
0 (0) 0 (0) 0.27 (0.08) 0 (0) 0 (0)
0 (0) 0 (0) 0 (0) 141.92 (38.84) 0 (0)
0 (0) 0 (0) 0 (0) 0 (0) 222.99 (61.33)













ΣWLBS, Group 3 =













92.72 (25.66) 0 (0) 0 (0) 0 (0) 0 (0)
0 (0) 3.91 (0.85) 0 (0) 0 (0) 0 (0)
0 (0) 0 (0) 0.26 (0.05) 0 (0) 0 (0)
0 (0) 0 (0) 0 (0) 139.92 (61.20) 0 (0)
0 (0) 0 (0) 0 (0) 0 (0) 219.38 (62.58)













The following ode produes all variane estimation results for the Thyroid data set, using the MlustBootstrap

funtion in mlust.

library(mlust)

data(thyroid)

objet = Mlust(thyroid[,2:6℄, G = 3)

jak = MlustBootstrap(objet, type = "jk")

boot = MlustBootstrap(objet, type = "bs")

pb = MlustBootstrap(objet, type = "pb")

wlbs = MlustBootstrap(objet, type = "wlbs")

summary(jak, what = "se")

summary(boot, what = "se")

summary(pb, what="se")

summary(wlbs, what = "se")
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