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1 Abstra
t

Mixture models with (multivariate) Gaussian 
omponents are a popular tool in model-based 
lustering. Su
h

models are often �tted by a pro
edure that maximizes the likelihood, su
h as the EM algorithm. At 
onvergen
e,

the maximum likelihood parameter estimates are typi
ally reported, but in most 
ases little emphasis is pla
ed on

the variability asso
iated with these estimates. In part this may be due to the fa
t that standard errors are not

dire
tly 
al
ulated in the model-�tting algorithm, either be
ause they are not required to �t the model, or be
ause

they are di�
ult to 
ompute. The examination of standard errors in model-based 
lustering is therefore typi
ally

negle
ted.

Sampling based methods, su
h as the ja
kknife (JK), bootstrap (BS) and parametri
 bootstrap (PB), are

intuitive, generalizable approa
hes to assessing parameter un
ertainty in model-based 
lustering using a Gaussian

mixture model. This paper provides a review and empiri
al 
omparison of the ja
kknife, bootstrap and parametri


bootstrap methods for produ
ing standard errors and 
on�den
e intervals for mixture parameters. The performan
e

of su
h sampling methods in the presen
e of small and/or overlapping 
lusters requires 
onsideration however; here

the weighted likelihood bootstrap (WLBS) approa
h is demonstrated to be e�e
tive in addressing this 
on
ern

in a model-based 
lustering framework. The JK, BS, PB and WLBS methods are illustrated and 
ontrasted

through simulation studies and through the traditional Old Faithful data set and also the Thyroid data set. The

M
lustBootstrap fun
tion, available in the most re
ent release of the popular R pa
kage m
lust, fa
ilitates the

implementation of the JK, BS, PB and WLBS approa
hes to estimating parameter un
ertainty in the 
ontext of

model-based 
lustering.

The JK, WLBS and PB approa
hes to varian
e estimation are shown to be robust and provide good 
overage

a
ross a range of real and simulated data sets when performing model-based 
lustering; but 
are is advised when

using the BS in su
h settings. In the 
ase of poor model �t (for example for data with small and/or overlapping


lusters), JK and BS are found to su�er from not being able to �t the spe
i�ed model in many of the sub-samples

formed. The PB also su�ers when model �t is poor sin
e it is reliant on data sets simulated from the model upon

whi
h to base the varian
e estimation 
al
ulations. However the WLBS will generally provide a robust solution,

driven by the fa
t that all observations are represented with some weight in ea
h of the sub-samples formed under

this approa
h.

keywords: m
lust, M
lustBootstrap, Pre
ision, Standard Errors, Varian
e Estimation.
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2 Introdu
tion

The bootstrap (BS) and ja
kknife (JK) methods of re-sampling originated as a non-parametri
 means of estimating

the variability of parameter estimates, or of estimating the parameters themselves (Quenouille, 1956; Tukey, 1958).

These methods have sin
e been do
umented and studied in great detail, in a wide range of modeling s
enarios, su
h

as regression (Wu, 1986), generalized linear models (Moulton and Zeger, 1991) and time series analysis (Bühlmann,

1997). The literature in
ludes appli
ations of the ja
kknife or bootstrap in isolation (see for example Efron and Stein

(1981) and Efron and Tibshirani (1993) respe
tively) as well as appli
ations of both methods together, exploring

the synergy between them (Efron, 1981). This synergy en
ompasses the fa
t that the methods are asymptoti
ally

equivalent, as well as the fa
t that both methods derive from the same basi
 idea. Therefore, while the algorithms

for the two methods have traditionally been presented separately, it is important to note their shared obje
tive:


onstru
ting new samples from the original data that allow us to gauge the variability of parameter estimates for

the estimated model.

The methods 
an be helpful either in 
ases where the robustness of the parametri
 assumptions is in question,

or when the se
ond moments of the sampling distribution of the parameter estimates are di�
ult to 
ompute. The

former problem often arises when analyzing �small� data sets. The latter issue is often present in more di�
ult model

settings, su
h as model-based 
lustering, where the log-likelihood 
an be
ome intra
table for 
omplex distributions.

Indeed this may help to explain the la
k of attention paid to the variability of point estimates under this approa
h

to statisti
al modeling, 
ompared to other standard methods su
h as regression or ANOVA.

The JK, BS and PB methods provide fast and a

urate ways to 
ir
umvent su
h problems and generate varian
e

estimates for maximum likelihood parameter estimates. This paper provides a review and empiri
al 
omparison

of the JK, BS and PB methods for produ
ing standard errors and 
on�den
e intervals for mixture parameters in

the 
ontext of model-based 
lustering with multivariate Gaussian 
omponents. The performan
e of su
h sampling

methods in the presen
e of small and/or overlapping 
lusters requires 
onsideration however; here, the weighted

likelihood bootstrap (WLBS) approa
h is demonstrated to be e�e
tive in addressing this 
on
ern. The pro
edures

are illustrated when 
lustering using a mixture of Gaussian distributions in simulation studies and in the 
ase of

the Old Faithful and Thyroid data, well-do
umented multivariate 
lustering test 
ases. In parti
ular, the methods

are 
onsidered within the 
ontext of the widely used R pa
kage m
lust (R Core Team, 2017; Fraley and Raftery,

2002; Fraley et al, 2012), whi
h fa
ilitates model-based 
lustering by 
onsidering a range of parsimonious mixtures

of Gaussian distributions. The JK, BS, PB and WLBS methods presented here are easily implemented in the most

re
ent release of the m
lust pa
kage, through the M
lustBootstrap fun
tion, for whi
h sample 
ode is provided.

The remainder of the paper is stru
tured as follows. Se
tions 3 provides a uni�ed summary of the JK, BS

and PB methods of varian
e estimation. The similarities and di�eren
es between the approa
hes are identi�ed as

they arise, in Se
tions 3.1 and 3.2. The motivation for and the details of the WLBS are dis
ussed in Se
tion 3.3.
Se
tion 4 presents the illustrative data sets used � the data sets employed in the simulation studies and the Old

Faithful and Thyroid real data sets. In Se
tion 5 the results obtained for the illustrative data sets are presented and

the arti
le 
on
ludes in Se
tion 6 with a dis
ussion of varian
e estimation in model-based 
lustering. Appendix A


ontains pairs plots for the variables from one of the simulated data sets tested and Appendix B 
ontains additional

parameter estimates and standard errors for the Thyroid data set along with the R 
ode used to generate them.

3 Sampling based approa
hes to varian
e estimation in model-based


lustering

In a model-based 
lustering setting ea
h p-dimensional multivariate observation xi belongs to one of G 
lusters.

The matrix of i = 1, . . . , n observations is denoted by X = (x1, x2, . . . , xn). The parameter τg is the probability

that the observation 
omes from 
luster g, where
∑G

g=1
τg = 1. The data within group g are modeled by 
omponent

density f(xi|θg). For a mixture of Gaussian distributions, θg 
omprises of the 
luster means µg and the 
ovari-

an
e matri
es Σg. The observed data likelihood is the fun
tion to be maximized, however 
al
ulating maximum

likelihood estimates is a
hieved more easily using the expe
ted 
omplete data likelihood. A 
lassi�
ation ve
tor

zi = (zi1, . . . , ziG) is assumed to exist for ea
h observation i = 1, . . . , n where zig = 1 if observation i belongs to

luster g and zig = 0 otherwise. The 
omplete data likelihood under a �nite mixture of Gaussians 
an be expressed

as:

Lc =

n
∏

i=1

G
∏

g=1

[τgf(xi|µg,Σg)]
zig

(1)
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The observed data likelihood is maximized via the widely used EM algorithm (Dempster et al, 1977), whi
h

iteratively maximises the expe
ted 
omplete-data log-likelihood. Extensive literature is available on �tting a Gaus-

sian mixture model with a variety of eigende
omposed 
ovarian
e stru
tures via the EM algorithm (Fraley and

Raftery, 1998, 2002), as is 
onsidered within the popular R pa
kage m
lust. It must be noted that m
lust pro-

vides only a lo
al optimum of the likelihood, not a global optimum, with a

ompanying parameter estimates. Hen
e

the resampling methods and parameter standard error estimation te
hniques detailed must be 
onsidered in this


ontext.

While the EM algorithm 
an provide an e�
ient means of parameter estimation in the mixture modeling


ontext, the default output of the EM algorithm does not provide estimates of the un
ertainty asso
iated with the

parameter estimates. Several approa
hes have been 
onsidered to fa
ilitate the provision of standard errors within

the 
ontext of the EM algorithm; M
La
hlan and Krishnan (1997) and M
La
hlan and Peel (2000) provide thorough

reviews. Most existing methods for assessing the 
ovarian
e matrix of MLEs obtained via the EM algorithm are

based on estimating the observed information matrix (Meilijson, 1989; M
La
hlan and Krishnan, 1997; Meng and

Rubin, 1989, 1991). However, while estimating the 
ovarian
e matrix of the MLEs via the information matrix is

valid asymptoti
ally (Boldea and Magnus, 2009), in the 
ase of mixture models large sample sizes are required

for the asymptoti
s to give a reasonable approximation. Efron (1994) highlights that standard errors are likely

to be underestimated under su
h approa
hes. Also, none of the existing information matrix based approa
hes

are generalisable in that model spe
i�
 alterations to the EM algorithm are required. The mixture of Gaussians

approa
h to model-based 
lustering typi
ally features non-di�erentiable orthogonal matri
es for some 
ovarian
e

stru
tures, whi
h prohibits implementation of an information matrix-based approa
h. Furthermore, in 
ertain

(typi
ally high dimensional) settings, use of the information matrix is infeasible due to singularity issues (Ford and

Silvey, 1980; Stoi
a and Söderström, 1982; Titterington, 1984).

Sampling based approa
hes promise an alternative, fast and generalisable approa
h to providing standard errors.

Su
h methods are detailed in the literature: Diebolt and Ip (1996) employ a 
onditional bootstrap approa
h to

MLE 
ovarian
e estimation; the EMMIX software by M
La
hlan et al (1999) o�ers parametri
 and nonparametri


bootstrap fa
ilities for standard error estimation; Turner (2000) dis
usses non/semiparametri
 bootstrapping for

obtaining the standard errors in a mixture of linear regressions problem as well as estimation of the observed

information matrix in this setting; Basford et al (1997) and Peel (1998) 
ompare bootstrap and information matrix

approa
hes for Gaussian mixtures; and Nyamundanda et al (2010) employ the ja
kknife for standard error estimation

in the 
ontext of mixtures of 
onstrained fa
tor models. In a related area, M
La
hlan (1987) avails of the bootstrap

to aid model sele
tion when 
lustering. Here, the JK, BS and PB sampling methods, within the 
ontext of the

well utilised R pa
kage m
lust, are reviewed and empiri
ally 
ompared. Their potentially poor performan
e in

the presen
e of small 
lusters is e�e
tively addressed through the introdu
tion of a weighted likelihood bootstrap

(WLBS) approa
h.

3.1 The ja
kknife and bootstrap methods

The ja
kknife and bootstrap methods are well known approa
hes to obtaining estimates of the varian
e asso
iated

with parameter estimates. Both are sampling based methods and are straightforward to implement, regardless of

the model under 
onsideration. Here, they are 
onsidered within the 
ontext of model-based 
lustering. By default,

m
lust 
lusters observations by �tting a range of mixture of Gaussian models (in terms of number of mixture


omponents and the type of 
ovarian
e stru
ture), and 
hooses the optimal model using the Bayesian Information

Criterion (S
hwarz, 1978). However, the user may spe
ify any 
ovarian
e stru
ture and number of groups G that

they wish to �t. In this setting, the algorithm for the bootstrap and ja
kknife varian
e estimation te
hniques

pro
eeds as follows:

(i) Identify the optimal model stru
ture for the full data setX, denoted by M̃ , using m
lust. This model provides

the number of groups, G, and the maximum likelihood posterior group membership probability matrix ẐM̃ .

The value ẑig is the posterior probability that observation i belongs to group g. Note that this step has not

been 
arried out in the subsequent simulations, rather the true model has been assumed to be known.

(ii) Form B samples 
omprising of observations from the original data X.

� Under the JK approa
h, ea
h of the BJK = n samples 
ontains (n− 1) observations. Ja
kknife sample

Xj denotes the sample of the original observations X with observation j omitted, j = 1, 2, . . . , n.

� Under the BS, ea
h of the BBS samples 
ontains n observations, where the observations are sampled with

repla
ement from X. In this study BBS = 999 was used (the m
lust default) to ensure robust varian
e
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estimation for ea
h of the illustrative data sets. It is 
omputationally feasible to run a greater number

of bootstrap samples if required. See Andrews and Bu
hinsky (2000) for a formal guide to 
hoosing the

number of bootstrap samples a
ross a range of appli
ations.

(iii) For ea
h sample b = 1, 2, . . . , B, 
onstru
t the asso
iated initialization matrix of group membership probabil-

ities Ẑb. This is populated with the values from the ẐM̃ matrix formed using the full data that 
orrespond to

ea
h observation sampled. This 
ir
umvents the problem of label swit
hing (the problem that the likelihood

is invariant under a permutation of the labels assigned to the mixture 
omponents) that would otherwise have

to be expli
itly undone at the end of the algorithm. It 
an be veri�ed that this step su

essfully negates the

possibility of label swit
hing by 
he
king the ordering of the sizes of the τ and µ 
omponent probability and

mean parameter estimates that emerge from ea
h JK, BS, PB and WLBS sample �tted versus those of the

optimal model. A
ross all data sets tested, this post pro
essing step never failed to verify that label swit
hing

had been avoided through use of the ẐM̃ matrix for initialization purposes and that the original 
omponent

orderings remained unaltered.

(iv) For ea
h sample, 
al
ulate the MLEs of τg and θg under model M̃ . Initialization using the ẐM̃ matrix, as

detailed in step (iii), greatly improves 
onvergen
e times for ea
h sample and the speed of the method as

a whole. Empiri
al study showed that using random starts to initialize �t on resampled data sets makes

minimal di�eren
e versus using the matrix ẐM̃ from the original �t, with 
onvergent log likelihood values and

parameter estimates in agreement under either approa
h. Use of the matrix ẐM̃ from the original model �t

is merely preferred for purposes of 
omputational e�
ien
y and to 
ir
umvent the threat of label swit
hing.

It should be noted that, te
hni
ally, starting the algorithm from the original �t is invalid, be
ause it uses

information that is not available when running the original Gaussian mixture maximum likelihood estimator

on the data.

(v) Estimate the (
o)varian
e of any model parameter ψ:

� The ja
kknife estimate of a parameter's varian
e, σ2

JK(ψ), is equal to the sample varian
e of the BJK

values of ψ multiplied by the 
onstant term

(n− 1)

n
, where ψJK denotes the ja
kknife sample mean.

A move from the delete-1 ja
kknife to the general delete-d ja
kknife means that ea
h sample formed


ontains fewer observations than in the delete-1 
ase: (n− d) versus (n− 1). However, there is a larger

number of samples available in the delete-d 
ase:
(

n
d

)

as opposed to n. The net e�e
t is that the delete-d
approa
h 
an produ
e superior estimates of varian
e for non-smooth statisti
s su
h as the median or

quantiles. However, for estimating varian
e of smooth statisti
s su
h as the mean, 
ovarian
e elements

and proportions required in a model-based 
lustering 
ontext, the delete-1 variant is reliable and is

markedly faster and more straightforward to implement (Shi, 1988):

σ2

JK(ψ) =
(n− 1)

n

BJK
∑

m=1

(ψm − ψJK)2. (2)

� The bootstrap estimate of a parameter's varian
e, σ2

BS(ψ), is equal to the sample varian
e of the BBS

values of ψ 
al
ulated a
ross the bootstrap samples, where ψBS denotes the bootstrap sample mean:

σ2

BS(ψ) =
1

(BBS − 1)

BBS
∑

m=1

(ψm − ψBS)
2. (3)

The bootstrap and ja
kknife estimates of 
ovarian
e between parameter estimates 
an be 
al
ulated using

analogous formulae.

Using m
lust to �t the pre-spe
i�ed model M̃ to ea
h JK or BS sample, and using the full data model ẐM̃

matrix for initialization (as des
ribed in step (iv)), means the algorithm provides a qui
k and a

urate way of

estimating parameter (
o)varian
es. It must be noted that the inferen
e proposal and estimation of parameter

standard errors is 
onditional on the method of model sele
tion. If the user 
hooses the 
orre
t model in advan
e,

there is no validity problem. However the 
onverse situation where the model sele
tion pro
ess uses the data, whi
h

arises 
ommonly in statisti
al modeling, is not without peril - inferen
e ignoring prior model sele
tion is te
hni
ally

invalid (Leeb and Pöts
her, 2005). Nonetheless, it represents the standard approa
h a
ross the existing methods

of varian
e estimation detailed in Se
tion 3 and a
ross the wider spe
trum of statisti
al inferen
e.
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Bootstrapping 
an be asymptoti
ally 
onsistent but does not provide general �nite-sample guarantees. However,

it is a viable option for obtaining 
on�den
e limits in 
ases where a normal approximation of a parameter's dis-

tribution is not appropriate (Davison and Hinkley, 1997). On the other hand, by de�nition, the bootstrap density


arries redu
ed inferential information about the underlying parameter sin
e not all observations are represented

in a typi
al sample and estimates of variability based upon the samples are less reliable (Pawitan, 2000). This is

related to the fa
t that for nonparametri
 resampling the distribution of a parameter estimate is dis
rete, even

though it may be approximating a 
ontinuous distribution, leading to �fuzziness� versus a parametri
 approa
h.

However the support of the distribution tends to be fairly dense for samples of any reasonable size and hen
e

the dis
rete approximation 
an often be viewed as relatively benign (Davison and Hinkley, 1997). A further im-

pediment to asymptoti
 
onsisten
y of bootstrapping in this appli
ation is the fa
t that model sele
tion is not

performed on ea
h bootstrap sample, but rather the full data optimal model is �tted a
ross all samples (Andrews

and Guggenberger, 2009). However empiri
al testing suggests that this has limited impa
t be
ause in most 
ases

the full data model remains the optimal one in the samples formed. This is parti
ularly true under the JK, BS

and PB approa
hes. The fa
t that it has some impa
t in terms of not always being able to �t the model under the

BS approa
h 
onstitutes a further 
riti
ism of this method of varian
e estimation versus the JK, PB and WLBS

methods.

3.2 The parametri
 bootstrap

The parametri
 bootstrap estimate of a parameter's varian
e, σ2

PB(ψ), is 
al
ulated in a similar manner to the

bootstrap estimate of the parameter's varian
e. However, in the 
ase of the parametri
 bootstrap, the BPB

values of ψ required to estimate its varian
e are not generated via resampling of the original data, but rather

through simulation of BPB new data sets from the �tted model. For initialization purposes ẐM̃ is again used when

generating ea
h simulated data set, to improve 
onvergen
e speed and prevent the issue of label swit
hing. For ea
h

new simulated data set, the original �tted model is applied to the observations and the value of ψ is determined for

that data set. Then σ2

PB(ψ) is 
al
ulated as the sample varian
e of the BPB values of ψ. The m
lust default is to
set BPB = 999. This 
ould be in
reased, if ne
essary, to handle 
ases where some 
lusters are sparsely populated -

ensuring a su�
ient number of observations is simulated from su
h 
lusters to allow robust varian
e estimation for

their distributional parameters (albeit at in
reased 
omputational overhead). Clearly the a

ura
y and validity of

the parametri
 bootstrap approa
h relies on the assumption that the �tted model provides a good approximation

to the true me
hanism that generated the original data set (Efron, 1982), with its pre
ision de
lining substantially

as the model deviates from the 
orre
t model (Mita et al, 2012). The parametri
 bootstrap 
an be used to simulate

large numbers of observations from the spe
i�ed model, ensuring that a su�
ient number of observations from

small 
lusters arise to permit varian
e estimation for their asso
iated parameters.

3.3 The weighted likelihood bootstrap

For 
ases where one or more of the 
lusters in the data set 
ontain relatively few observations, it is likely that su
h


lusters will be under-represented in some of the BS and PB (and potentially JK) samples formed. In extreme


ases su
h 
lusters may be 
ompletely unrepresented in some of the samples formed. Consequently the estimation

of parameter standard errors 
orresponding to these 
lusters via su
h sampling based methods will either be highly

unstable or not possible. The weighted likelihood bootstrap (WLBS) approa
h is proposed here as an e�e
tive

remedy in su
h 
ir
umstan
es.

The weighted likelihood bootstrap (Newton and Raftery, 1994) originated as a way to simulate approximately

from a posterior distribution. In the 
ontext of a sampling based approa
h to varian
e estimation, the WLBS di�ers

from the JK and BS in that every observation in the data set X is `present' in ea
h WLBS sample formed. The

degree to whi
h ea
h observation is present is measured by its asso
iated `weight'. Ea
h weight wi (i = 1, . . . , n)
is simulated. As in Newton and Raftery (1994), the uniform Diri
hlet distribution is employed for the purposes of

simulating the weights here. The impli
ation of using the uniform Diri
hlet in this 
apa
ity is that the weights are

e�e
tively being simulated from an exponential distribution, with s
aling provided by the mean of the exponential

draws. Other weighting distributions for observations 
ould alternatively be used, for example those based on the

number of observations present in the 
luster to whi
h an observation belongs, but were found to yield inferior

performan
e in terms of attributing su�
ient weight to 
lusters with few observations to allow stable and robust

parameter estimation versus the full data model.

The shift to the weighted likelihood bootstrap approa
h requires that when �tting the model M̃ from the full

data to the WLBS sampled data, a weighted form of the 
omplete data likelihood (1) is now maximized:
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Lwc =

n
∏

i=1

G
∏

g=1

[τgf(xi|µg,Σg)]
zigwi

(4)

As with the original bootstrap method, outlined in Se
tion 3.1, 999 weighted likelihood bootstrap samples are

formed for ea
h of the illustrative data sets by sampling 999 weight ve
tors w = (w1, . . . , wn); this ensures robust
varian
e estimation. Ea
h sample formed again 
ontains n observations, but sampling with repla
ement is no longer

employed � all n original observations are present in ea
h of the 999 samples formed, but ea
h observation has

asso
iated weight wi. Hen
e, the WLBS resolves the under-representation of small 
lusters that arises in the BS

(and potentially JK) 
ases, as ea
h WLBS sample in
ludes all observations.

Varian
e estimates of model parameters are 
al
ulated under the WLBS approa
h in the same manner as in the

BS method outlined in the algorithm in Se
tion 3.1 � with the ex
eption that at step (ii) BWLBS = 999 samples

are formed by sampling weight ve
tors from the uniform Diri
hlet distribution. Thus, the WLBS also provides a

qui
k and a

urate way of estimating parameter varian
es, even in the presen
e of small/overlapping 
lusters. As

su
h, the WLBS approa
h provides a robust nonparametri
 alternative to the parametri
 bootstrap approa
h.

4 Illustrative Data Sets

The appli
ation and performan
e of the JK, BS, PB and WLBS approa
hes to varian
e estimation detailed in

Se
tion 3 are demonstrated through three simulation studies and through the use of two well established 
lustering

data sets, the Old Faithful data and the Thyroid data.

4.1 Simulated data sets

Three simulation settings are used to illustrate the proposed sampling based approa
hes to varian
e estimation,

and to assess and 
ompare their performan
e and 
omputational e�
ien
y.

4.1.1 Simulation Setting One and Simulation Setting Two.

Two illustrative simulation settings are 
onsidered here to 
learly expose the proposed sampling based approa
hes

to varian
e estimation, and to assess and 
ompare their performan
e. Both simulation settings 
onsider a mixture

of Gaussians model, one in whi
h G = 2 and one in whi
h G = 3. In both settings, for illustrative purposes, the

number of variables p = 2, and in order to thoroughly test performan
e a small sample size of n = 150 was used.

Within ea
h simulation setting, four di�erent models are 
onsidered, as illustrated in Figures 1 and 2. In brief, the

four models examined in ea
h setting 
onsider di�erently sized 
lusters with di�erent degrees of 
luster separation.

The 
ovarian
e stru
ture used varies between 
lusters in all instan
es (i.e. the `VVV' m
lust model is used).

The true 
luster 
ovarian
e matri
es, ΣTRUE
1 and ΣTRUE

2 , for G = 2 in Simulation Setting One, for models M1,

M2, M3 and M4 are:

ΣTRUE
1 =

(

0.12 0.09
0.09 0.12

)

ΣTRUE
2 =

(

0.47 0.13
0.13 0.11

)

The true 
luster 
ovarian
e matri
es, ΣTRUE
1

, ΣTRUE
2

and ΣTRUE
3

, for G = 3 in Simulation Setting Two, for

models M5, M6, M7 and M8 are:

ΣTRUE
1 =

(

0.12 0.09
0.09 0.12

)

ΣTRUE
2 =

(

0.39 0.15
0.15 0.10

)

ΣTRUE
3 =

(

0.53 0.20
0.20 0.09

)

4.1.2 Simulation Setting Three

For illustrative and reporting 
larity the simulation settings des
ribed in Se
tion 4.1.1 are low dimensional in

nature. A further simulation study is also 
ondu
ted whi
h involves higher dimensional s
enarios. The purpose of

this additional simulation study is to further explore the performan
e and 
omputational features of the JK, BS,

PB and WLBS approa
hes to parameter varian
e estimation, in more 
omplex s
enarios.

A mixture of Gaussians model in whi
h the number of 
lustersG = 5 is 
onsidered, where the 
luster probabilities
are set to be τ = (0.07, 0.07, 0.22, 0.27, 0.37)′. Two settings for the number of observations n are 
onsidered (n = 500
and n = 700). The number of variables p 
onsidered is high within the 
ontext of dimensionality that the popular
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Figure 1: S
atter plot for a single simulated data set (n = 150) from ea
h of the four models ((a) M1, (b) M2, (
)

M3 and (d) M4) 
onsidered in the G = 2 simulation setting. M1 and M2 
onsider the 
ase where a small 
luster is

present; M3 and M4 
onsider more equally sized 
lusters. M1 and M3 
onsider non-overlapping 
lusters whereas

M2 and M4 
onsider overlapping 
lusters. True parameter settings are detailed above ea
h �gure.
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Figure 2: S
atter plot for a single simulated data set (n = 150) from ea
h of the four models ((a) M5, (b) M6, (
)

M7 and (d) M8) 
onsidered in the G = 3 simulation setting. M5 and M6 
onsider the 
ase where small 
lusters are

present; M7 and M8 
onsider more equally sized 
lusters. M5 and M7 
onsider non-overlapping 
lusters whereas

M6 and M8 
onsider overlapping 
lusters. True parameter settings are detailed above ea
h �gure.

R pa
kage m
lust (R Core Team, 2017; Fraley and Raftery, 2002; Fraley et al, 2012) 
an reasonably handle in

terms of 
omputational speed. Here three settings (p = 15, p = 20 and p = 25) are 
onsidered. Within ea
h setting

the 
ovarian
e stru
ture used varies between 
lusters in all instan
es (i.e. the `VVV' m
lust model is used), and

some small 
lusters are present. There is also overlap between the 
lusters; Figures 7, 8 and 9 in Appendix A

illustrate this to some degree through pairs plots from a single simulated data set for whi
h n = 500, p = 25 and

G = 5.

4.2 The Old Faithful data

The frequently utilised Old Faithful data set is 
omprised of bivariate observations for 272 eruptions of the Old

Faithful geyser in Yellowstone National Park (Azzalini and Bowman, 1990). Ea
h observation re
ords the eruption

duration and the waiting duration until the next eruption, both measured in minutes; the data are illustrated in

Figure 3. This is a 
lassi
 test 
ase for any 
lustering methodology be
ause the data are multimodal. However,

there are no `true' group labels available � the presen
e of various numbers of groups has been suggested, depending

on the 
lustering rule applied.
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Figure 3: S
atter plot of the Old Faithful data.

4.3 The Thyroid data

The Thyroid data set is 
omprised of data on �ve laboratory tests administered to a sample of 215 patients. The tests
are: per
entage T3 resin uptake test (RT3U); total serum thyroxin as measured by the isotopi
 displa
ement method

(T4); total serum triiodothyronine as measured by radioimmuno assay (T3); basal thyroid-stimulating hormone as

measured by radioimmuno assay (TSH); maximal absolute di�eren
e of TSH value after inje
tion of 200mi
rograms

of thyrotropin-releasing hormone as 
ompared to the basal value (DTSH). The tests are used to predi
t whether a

patient's thyroid 
an be 
lassi�ed as euthyroidism (normal thyroid gland fun
tion), hypothyroidism (undera
tive

thyroid not produ
ing enough thyroid hormone) or hyperthyroidism (overa
tive thyroid produ
ing and se
reting

ex
essive amounts of the free thyroid hormones T3 and/or thyroxine T4). Diagnosis of thyroid operation was based

on a 
omplete medi
al re
ord, in
luding anamnesis, s
ans and other methods and is in
luded in the data set. The

data are illustrated in Figure 4. Observations in navy denote the �normal� diagnosis of eurothyroidism, while those

in purple and pink denote diagnoses of hypothyroidism and hyperthyroidism respe
tively. See Coomans et al (1983)

for further details.

5 Results

The appli
ation and performan
e of the JK, BS, PB and WLBS approa
hes to varian
e estimation are illustrated

using the data sets outlined in Se
tion 4. For both the simulation study and the Old Faithful and Thyroid data

sets parameter estimates are presented, as are their asso
iated standard errors 
omputed under the JK, BS, PB

and WLBS methods using a mixture model where ea
h 
omponent is multivariate Gaussian.

5.1 Simulation study

The simulation settings des
ribed in Se
tion 4.1 serve as a means of assessing the a

ura
y of the sampling-based

approa
hes to parameter varian
e estimation, in di�erent 
lustering s
enarios.
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Figure 4: Pairs plots of the Thyroid data a
ross the �ve laboratory tests administered. Observations in navy denote

the �normal� diagnosis of eurothyroidism, while those in purple and pink denote diagnoses of hypothyroidism and

hyperthyroidism respe
tively.

5.1.1 Simulation Setting One: G = 2.

For the �rst simulation setting, where two 
lusters are present, Table 1 presents the 
luster probability estimates

and asso
iated standard errors, based on a single simulated data set under ea
h of the models M1, M2, M3 and

M4 with n = 150, for the JK, BS, PB and WLBS methods. These 
luster probability estimates are the mean

values of τ for ea
h group a
ross all resampled versions of the data 
onstru
ted, for ea
h of the four resampling

methods 
onsidered. It is 
lear that, for models M1, M3 and M4, all methods produ
e 
luster probability estimates

that are very 
lose to the true values and that the standard errors are relatively small. Results are poor however

for the more 
hallenging model M2, in whi
h a small 
luster is present and the 
lusters overlap. All approa
hes

over-estimate the number of observations belonging to the smaller 
luster in this 
ase, and the standard errors are

larger than in model M1, whi
h also has a small 
luster present. Also notable is that, when moving from M3 to

M4, while parameter estimates appear un
hanged, the standard errors in
rease due to the in
reased 
luster overlap

and the resulting poor 
lustering performan
e (in terms of mis
lassi�
ation rate). Similar observations arose when

examining the 
luster mean and 
ovarian
e estimates and standard errors for the four models.

Under the BS and PB, a total of BBS = BPB = 999 samples was requested in this study. Here, under models

M1 and M2, a number of additional samples was required in order to a
hieve this total, attributable to the inability

to �t the optimal model M̃ to some of the sampled data sets. Inability to �t a model is 
aused by non-
onvergen
e

of the EM algorithm resulting from rea
hing a set of parameter estimates where the 
ovarian
e matrix 
annot be

inverted. This is attributable to the random nature of the data sele
ted to form the a�e
ted samples. It parti
ularly

a�e
ts the BS approa
h sin
e, by design, many of the original observations may not be in
luded in any given sample

formed. Resampling may produ
e samples that have no or few observations from the small 
luster present in the

M1 and M2 model settings. Likewise, a BS sample may in
lude the same observation multiple times. Finally, the

optimal model may not be a good �t to the underlying data generating me
hanism and thus �tting it to a sampled

data set may not be possible (whi
h 
an greatly 
ompromise the PB approa
h). Any one of these issues, or a


ombination of them, 
an lead to the 
omputational instability des
ribed. Empiri
al study shows that this issue
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annot be over
ome using a di�erent initialization method, su
h as random initializations, for the EM algorithm,

sin
e the issue is inherent to the data sele
ted. Su
h non-�tting issues 
an potentially o

ur in the JK and WLBS

approa
hes (but empiri
ally do so mu
h less frequently in the JK 
ase, and never in the WLBS 
ase).

Hen
e it is appropriate to also 
onsider and report the e�e
tive number of samples (EB) drawn. In the BS,

PB and WLBS 
ases, EB is de�ned to be the number of sampled data sets 
onstru
ted in order to 
ompute the

varian
e estimates using the requested BBS , BPB and BWLBS) number of samples. To avoid entering an in�nite

loop of drawing non-estimable bootstrap samples an upper limit of BBS × 10 = 9990 is set (and likewise for the PB

and WLBS); on
e this number of non-estimable samples has been drawn the algorithm is terminated and reported

varian
e estimates are based on the su

essfully estimated models only. In the JK 
ase, drawing more than n
samples is 
learly not feasible and so non-estimable samples are dis
arded. Thus in the JK approa
h EB denotes

the a
tual number of sampled data sets involved in the �nal 
omputation of the reported varian
e estimates. Table

1 shows that the BS and PB require an EB slightly above the default 999 data sets for models M1 and M2. No


omputational issues requiring additional samples to be drawn are en
ountered for any of the other models and

varian
e estimation methods 
onsidered.

Table 1: Cluster probability estimates (with asso
iated standard errors) for a data set simulated under ea
h of

the four models detailed in Figure 1 where there are G = 2 multivariate Gaussian 
omponents, under ea
h of

the varian
e estimation approa
hes.

†
For M1, EBBS = 1001 and EBPB = 1002. ‡

For M2, EBBS = 1005 and

EBPB = 1000. The true values are 0.05 and 0.95 for M1 and M2 and 0.4 and 0.6 for M3 and M4.

τJK τBS τPB τWLBS

M1 {0.07 (0.02), 0.93 (0.02)} {0.07 (0.02), 0.93 (0.02)}

†
{0.07 (0.02), 0.93 (0.02)}

†
{0.08 (0.03), 0.92 (0.03)}

M2 {0.13 (0.04), 0.87 (0.04)} {0.13 (0.05), 0.87 (0.05)}

‡
{0.14 (0.05), 0.86 (0.05)}

‡
{0.14 (0.05), 0.86 (0.05)}

M3 {0.38 (0.04), 0.62 (0.04)} {0.38 (0.04), 0.62 (0.04)} {0.38 (0.04), 0.62 (0.04)} {0.38 (0.04), 0.62 (0.04)}

M4 {0.38 (0.06), 0.62 (0.06)} {0.38 (0.08), 0.62 (0.08)} {0.37 (0.06), 0.63 (0.06)} {0.38 (0.09), 0.62 (0.09)}

To further assess the performan
e of the methods, 1000 data sets were generated under ea
h of the models M1,

M2, M3 and M4. For ea
h data set an approximate 95% 
on�den
e interval (mean ±2 standard errors for the BS,

PB and WLBS approa
hes and using pseudo-values for the JK approa
h) was formed for ea
h model parameter.

The number of data sets for whi
h the 
on�den
e interval 
ontained the true parameter value was re
orded; these


overage results are presented in Table 2 for the �rst group membership probability parameter τ1.
Coverage results are good a
ross all the sampling based approa
hes under models M1, M3 and M4. This is

not the 
ase for M2 where 
overage de
lines markedly for all four resampling methods, due to the presen
e of a

small, overlapping 
luster. The JK fares best for M2, followed by the WLBS. The BS and PB both perform poorly.

Similar trends were observed when examining the 
overage results for the other model parameters.

The BS and PB again have �tting di�
ulties with models M1 and M2 be
ause resampling and simulation

respe
tively produ
e samples to whi
h it was not possible to �t the optimal model M̃ in some instan
es. However,

good 
overage results are obtained for M1 (but not M2) after drawing additional samples until the required BBS =
BPB = 999 �ts are a
hieved. To a mu
h lesser extent the JK also has di�
ulties with models M1 and M2 where

it is again not possible at all times to �t the required model to the sampled data set; drawing additional samples

is 
learly not possible in the JK setting. While the WLBS appears to perform 
onsistently well in terms of �tting

ability, it should be noted that even if the BS approa
h needs to draw additional samples due to non-�tting issues,

in low dimensional settings the BS is typi
ally 
omputationally more e�
ient than the WLBS approa
h be
ause

the latter requires the 
omputation of the log-likelihood as a weighted sum of densities for ea
h data point.

The a

ura
y of the standard errors obtained under the sampling based approa
hes 
an be assessed by a


omparison to the true analyti
ally derived standard errors when they are available. The missing information

prin
iple (MIP) (Tanner, 2012) is used to analyti
ally derive the true standard errors in a tra
table and illustrative

one dimensional setting. A Newton-based numeri
al method (NM) is also employed to 
ompute standard errors as

an additional 
omparison. Furthermore, numeri
al derivatives and Hessians are available via the popular �exmix

pa
kage (Grün and Leis
h, 2007), as supported by the theory of Hong et al (2015). The 
hallenging simulated data

setting of model M2, variable 2 is 
hosen for these 
omparisons � one of the two underlying 
lusters is small and

the 
lusters overlap in this variable. Table 3 reports the standard errors 
omputed under the JK, BS, PB, WLBS,

MIP, NM and �exmix approa
hes. The sampling based approa
hes perform well, in that the standard errors they

return are very 
lose to those obtained analyti
ally and numeri
ally. The standard errors returned by all four

sampling based approa
hes are very 
lose to the truth for the larger 
luster 2 (i.e. for parameters µ2 and σ2); in
the 
ase of the small 
luster 1, the WLBS and PB approa
hes sometimes report smaller standard errors than the
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Table 2: Coverage results (i.e. the proportion of data sets for whi
h the true probability of membership of 
luster

1 is within the JK, BS, PB and WLBS 95% 
on�den
e intervals for the models M1, M2, M3 and M4) where there

are G = 2 multivariate Gaussian 
omponents. The �rst 
olumn (`M̃ Fits') reports the number of simulated data

sets to whi
h it was possible to �t the optimal model M̃ ; a total of 1000 data sets were simulated under ea
h model

setting. The `Non-�t' 
olumns detail the average number of resamples that did not 
onverge within ea
h sampling

pro
edure, with standard deviations of the 
ounts given in parentheses. Note that in this study BJK = n = 150
and BBS = BPB = BWLBS = 999.

M̃ JK BS PB WLBS

Fits Non-�t Coverage Non-�t Coverage Non-�t Coverage Non-�t Coverage

M1 977 0.04 (0.31) 0.969 130.93 (369.86) 0.957 41.02 (90.07) 0.949 0.00 (0.00) 0.948

M2 1000 0.02 (0.21) 0.748 46.20 (208.55) 0.508 9.73 (45.77) 0.488 0.00 (0.00) 0.601

M3 1000 0.00 (0.00) 0.953 0.00 (0.00) 0.945 0.00 (0.00) 0.948 0.00 (0.00) 0.947

M4 1000 0.00 (0.00) 0.935 0.01 (0.13) 0.980 0.00 (0.00) 0.968 0.00 (0.00) 0.983

truth, whereas the JK and BS approa
hes return slightly in�ated standard errors throughout. The performan
e of

the �exmix approa
h is similar to that of the WLBS and PB, indi
ating its suitability as a good 
ompetitor to

the sampling based approa
hes to varian
e estimation.

Table 3: Comparison of standard errors 
omputed under sampling based approa
hes (JK, BS, PB and WLBS)

using a mixture of multivariate Gaussians model, using numeri
al derivatives and Hessians (�exmix), 
omputed

numeri
ally via a Newton based method (NM), and 
omputed analyti
ally via the missing information prin
iple

(MIP). The data are from model M2, variable 2.

τ1 µ1 µ2 σ2
1

σ2
2

JK 0.015 0.116 0.029 0.037 0.012

BS 0.016 0.126 0.030 0.038 0.012

PB 0.017 0.109 0.029 0.027 0.012

WLBS 0.016 0.090 0.031 0.018 0.013

�exmix 0.017 0.090 0.030 0.021 0.013

NM 0.015 0.096 0.029 0.029 0.014

MIP 0.015 0.096 0.029 0.029 0.014

5.1.2 Simulation Setting Two: G = 3.

A se
ond, similar simulation setting was used to analyze performan
e for a larger number of 
lusters i.e. G = 3
multivariate Gaussian 
omponents. Table 4 presents the 
luster probability estimates and asso
iated standard

errors, based on a single simulated data set under ea
h of the models M5, M6, M7 and M8 with n = 150, for the
JK, BS, PB and WLBS methods. The performan
e of the four approa
hes in the G = 3 multivariate Gaussian


omponents 
ase is similar to that summarized at the end of Se
tion 5.1.1. Interestingly, the standard errors are

larger for M5 (non-overlapping 
lusters) than for M6 (overlapping 
lusters), whi
h upon examination was due to

poor 
lustering performan
e for the parti
ular data set simulated under M5.

Again, 1000 data sets were then generated under ea
h of the models M5, M6, M7 and M8. For ea
h data set an

approximate 95% 
on�den
e interval was formed for ea
h model parameter. Table 5 reports the number of data sets

for whi
h the 
on�den
e interval 
ontained the true τ1 value. Clearly 
overage performan
e is poorer in the G = 3
setting than in the G = 2 setting (Table 2), possibly attributable to the small number of observations (n = 150)
and the 
hallenging simulation parameter settings. The JK approa
h performs best in this 
ontext, parti
ularly for

models M5 and M6 where the other approa
hes struggle in terms of 
overage performan
e. The WLBS performs

slightly better than the BS and PB in terms of 
overage. Both the BS and the PB 
ommonly yield non-�tting

issues, whi
h do not a�e
t the JK and WLBS approa
hes.
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Table 4: Cluster probability estimates (with asso
iated standard errors) for a data set simulated under ea
h of the

four models detailed in Figure 2 where there are G = 3 multivariate Gaussian 
omponents, under ea
h of the four

varian
e estimation approa
hes. † For M5, EBS = 1017 samples were drawn in order to su

essfully �t the model

the requested number of times (BBS = 999). ‡ EJK = 149. ∗EBS = 1838. ∗∗EPB = 1142. ∗∗∗EBS = 1002. For

M5 and M6 τTRUE = {0.05, 0.05, 0.9}. For M7 and M8 τTRUE = {0.3, 0.3, 0.4}

τJK τBS

M5 {0.15 (0.03), 0.15 (0.06), 0.70 (0.07)} {0.15 (0.03), 0.15 (0.08), 0.70 (0.08)}

†

M6 {0.03 (0.01), 0.12 (0.03), 0.86 (0.03)}

‡
{0.03 (0.01), 0.12 (0.03), 0.85 (0.03)}

∗

M7 {0.29 (0.04), 0.32 (0.04), 0.39 (0.04)} {0.29 (0.04), 0.32 (0.04), 0.39 (0.04)}

M8 {0.28 (0.13), 0.35 (0.07), 0.37 (0.09)} {0.28 (0.08), 0.35 (0.07), 0.37 (0.06)}

∗∗∗

τPB τWLBS

M5 {0.15 (0.03), 0.15 (0.08), 0.70 (0.08)} {0.15 (0.03), 0.15 (0.08), 0.70 (0.08)}

M6 {0.03 (0.01), 0.12 (0.03), 0.85 (0.03)}

∗∗
{0.03 (0.01), 0.12 (0.03), 0.85 (0.03)}

M7 {0.29 (0.04), 0.32 (0.04), 0.39 (0.04)} {0.29 (0.04), 0.32 (0.04), 0.39 (0.04)}

M8 {0.28 (0.07), 0.35 (0.06), 0.37 (0.06)} {0.28 (0.09), 0.35 (0.07), 0.37 (0.06)}

Table 5: Coverage results i.e. the proportion of data sets for whi
h the true probability of membership of 
luster

one is within the JK, BS, PB and WLBS 95% 
on�den
e intervals for the models M5, M6, M7 and M8, where

there are G = 3 multivariate Gaussian 
omponents. The �rst 
olumn (`M̃ Fits') reports the number of simulated

data sets to whi
h it was possible to �t the optimal model M̃ ; a total of 1000 data sets were simulated under ea
h

model setting. The `Non-�t' 
olumns detail the average number of resamples that did not 
onverge within ea
h

sampling pro
edure, with standard deviations given in parentheses. Note that in this study BJK = n = 150 and

BBS = BPB = BWLBS = 999.

M̃ JK BS PB WLBS

Fits Non-�t Coverage Non-�t Coverage Non-�t Coverage Non-�t Coverage

M5 997 0.16 (2.15) 0.616 94.63 (398.59) 0.117 15.38 (73.33) 0.126 0.00 (0.00) 0.166

M6 996 0.05 (0.48) 0.651 100.52 (355.51) 0.276 23.55 (74.72) 0.269 0.00 (0.00) 0.331

M7 1000 0.00 (0.00) 0.978 0.00 (0.00) 0.974 0.00 (0.00) 0.976 0.00 (0.00) 0.967

M8 1000 0.00 (0.00) 0.953 1.05 (14.73) 0.974 0.158 (3.22) 0.959 0.00 (0.00) 0.953

5.2 Simulation Setting Three: higher dimensional s
enarios.

To assess performan
e of the the JK, BS, PB and WLBS methods in higher dimensional s
enarios, Table 6 re-

ports the 
luster probability estimates and asso
iated standard errors based on a single simulated data set under

ea
h of the settings for n, p and G = 5 as des
ribed in Se
tion 4.1.2. Note that for ea
h setting τTRUE =
(0.07, 0.07, 0.22, 0.27, 0.37)′.

Adhering to the default settings in the M
lustBootstrap fun
tion in m
lust, BBS = BPB = BWLBS = 999
samples are drawn for the BS and WLBS approa
hes respe
tively. By de�nition BJK = n. In su
h higher

dimensional settings the bootstrap in parti
ular often has di�
ulty in su

essfully �tting a model to some of the

BBS = 999 samples drawn; this problem also o

urs under the PB approa
h, but was never observed to o

ur

under the WLBS approa
h as all observations are in
luded (with some weight) in all samples. Thus Table 6 also

details the e�e
tive number of samples (EB) drawn for ea
h approa
h.

To assess the 
omputational performan
e of the methods in more 
omplex s
enarios, 100 data sets were generated
under ea
h of the simulation settings for n, p and G. For ea
h data set the run time for ea
h method was re
orded

and summaries are reported in Table 7. A
ross all high dimensional settings the JK is the 
heapest 
omputationally,

however both it and the BS are prone to model �tting issues, meaning the �nal varian
e estimates produ
ed are

not always based on the number of samples expe
ted or requested by the user. This phenomenon o

urs more

frequently in settings where the n/p ratio is small. The WLBS and PB are markedly more stable in terms of model

�tting, though they are slower than the JK and BS methods. That the WLBS does not often en
ounter �tting

issues is due to the fa
t that the same data set used to estimate M̃ is used in the WLBS pro
edure. The large

varian
e of 80.67 for the n = 500, p = 20 WLBS setting in Table 7 is due to one very large run time. When this

runtime was omitted the mean and standard deviation are 44.05 (2.73); the run times for the BS and WLBS for
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Table 6: Cluster probability estimates (with asso
iated standard errors) for a data set from ea
h of the simulation

settings under ea
h of the varian
e estimation approa
hes. The e�e
tive number of samples drawn (EB) is also
reported. † The algorithm terminated as the number of non-estimable samples for model �tting rea
hed the limit

of BBS × 10 = 9990; only 40 samples were su

essfully drawn and �tted and thus involved in the 
omputation of

the reported estimates.

n = 500 p = 25 G = 5 EB
τJK {0.06 (0.011), 0.08 (0.012), 0.24 (0.019), 0.26 (0.020), 0.36 (0.021)} 500

τBS {0.06 (0.009), 0.08 (0.009), 0.24 (0.020), 0.26 (0.018), 0.36 (0.018)} †
τPB {0.06 (0.009), 0.08 (0.012), 0.24 (0.018), 0.26 (0.020), 0.36 (0.021)} 1162

τWLBS {0.06 (0.010), 0.08 (0.012), 0.24 (0.019), 0.26 (0.020), 0.36 (0.022)} 999

n = 500 p = 20 G = 5
τJK {0.06 (0.010), 0.08 (0.012), 0.24 (0.019), 0.26 (0.020), 0.36 (0.022)} 500

τBS {0.06 (0.008), 0.08 (0.011), 0.24 (0.019), 0.26 (0.019), 0.36 (0.021)} 8142

τPB {0.06 (0.009), 0.08 (0.012), 0.24 (0.020), 0.26 (0.020), 0.36 (0.022)} 1069

τWLBS {0.06 (0.010), 0.08 (0.012), 0.24 (0.019), 0.26 (0.020), 0.36 (0.022)} 999

n = 500 p = 15 G = 5
τJK {0.07 (0.011), 0.07 (0.011), 0.23 (0.019), 0.25 (0.019), 0.38 (0.022)} 500

τBS {0.07 (0.011), 0.07 (0.012), 0.23 (0.019), 0.25 (0.020), 0.38 (0.022)} 1025

τPB {0.07 (0.011), 0.07 (0.012), 0.23 (0.019), 0.25 (0.020), 0.38 (0.022)} 999

τWLBS {0.07 (0.011), 0.07 (0.012), 0.23 (0.019), 0.25 (0.020), 0.38 (0.022)} 999

n = 700 p = 25 G = 5
τJK {0.06 (0.009), 0.08 (0.011), 0.22 (0.016), 0.28 (0.017), 0.36 (0.018)} 700

τBS {0.06 (0.007), 0.08 (0.010), 0.22 (0.015), 0.28 (0.017), 0.36 (0.018)} 2125

τPB {0.06 (0.009), 0.08 (0.011), 0.22 (0.016), 0.28 (0.017), 0.36 (0.018)} 2076

τWLBS {0.06 (0.009), 0.08 (0.011), 0.22 (0.016), 0.28 (0.017), 0.36 (0.018)} 999

n = 700 p = 20 G = 5
τJK {0.06 (0.009), 0.09 (0.011), 0.22 (0.016), 0.27 (0.017), 0.36 (0.018)} 700

τBS {0.06 (0.008), 0.09 (0.011), 0.22 (0.016), 0.27 (0.016), 0.36 (0.018)} 1052

τPB {0.06 (0.009), 0.09 (0.010), 0.22 (0.016), 0.27 (0.016), 0.36 (0.018)} 1022

τWLBS {0.06 (0.009), 0.09 (0.011), 0.22 (0.015), 0.27 (0.016), 0.36 (0.018)} 999

n = 700 p = 15 G = 5
τJK {0.07 (0.009), 0.08 (0.01), 0.23 (0.016), 0.25 (0.016), 0.37 (0.018)} 700

τBS {0.07 (0.010), 0.08 (0.01), 0.23 (0.016), 0.25 (0.017), 0.37 (0.019)} 1059

τPB {0.07 (0.009), 0.08 (0.011), 0.23 (0.016), 0.25 (0.017), 0.37 (0.018)} 1025

τWLBS {0.07 (0.009), 0.08 (0.01), 0.23 (0.015), 0.25 (0.015), 0.37 (0.018)} 999

this isolated simulated data set were also relatively large.

Also in
luded for 
omparative purposes in Table 7 are summaries of the run times taken to 
ompute the

standard errors from a version of the information matrix following the empiri
al Fisher information standard error

formula as re
ommended in Boldea and Magnus (2009); in all 
ases these run times are notably larger than those

from the sampling based approa
hes. In terms of estimates, for example from an n = 500 and p = 25 simulated

data set, the Boldea & Magnus approa
h estimates the mixing probabilities and asso
iated standard errors to be

τ = (0.07(0.005), 0.06(0.009), 0.24(0.009), 0.27(0.010), 0.35(0.011)), whi
h are not notably di�erent to those reported
in Table 6.

5.3 Old Faithful results

While Se
tion 5.1 demonstrated the advantages and disadvantages of the sampling based methods through a simu-

lation study, here the utility of the methods is illustrated through a real 
lustering problem where true parameter

estimates are unknown. For the Old Faithful data, under m
lust, the optimal mixture of Gaussians model has

G = 3 
omponents and 
ommon 
ovarian
e stru
ture Σg = Σ a
ross groups, based on BIC. JK, BS, PB and

WLBS parameter estimates and asso
iated standard errors for this model are presented below, along with 
luster


ovarian
e estimated values (with asso
iated standard errors). The maximum likelihood parameter estimates found
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Table 7: Average run times in se
onds (standard deviations in parentheses) for di�erent simulation settings in high

dimensional s
enarios. In all settings G = 5. The third 
olumn (M̃ Fits) details the number of the 100 simulated

data sets for whi
h it was possible to �t the optimal model M̃ . Under ea
h of the JK, BS, PB, WLBS and Boldea

& Magnus headings the se
ond 
olumn (Fits) details the number of the M̃ Fits data sets for whi
h the e�e
tive

number of samples EB was equal to that requested i.e. equal to BJK = n and BBS = BPB = BWLBS = 999.

M̃ JK BS PB WLBS Bol/Mag

n p Fits Time Fits Time Fits Time Fits Time Fits Time Fits

500 25 90 5.2 (0.09) 84 38.5 (5.65) 13 37.2 (8.12) 90 61.6 (2.9) 90 648.9 (3.98) 90

500 20 99 4.2 (0.26) 96 21.7 (10.63) 69 21.9 (3.67) 99 52.2 (80.67) 99 192.6 (7.26) 99

500 15 100 3.1 (0.11) 99 7.1 (2.74) 99 15.5 (1.08) 100 30.3 (0.81) 100 42.1 (0.6) 100

700 25 100 10.5 (0.12) 100 22.7 (12.94) 94 64.9 (30.97) 100 72.3 (0.41) 100 901.3 (7.39) 100

700 20 100 8.0 (0.17) 100 11.6 (0.80) 100 28.4 (5.80) 100 51.3 (1.06) 100 270.3 (0.70) 100

700 15 100 5.8 (0.17) 100 8.2 (0.16) 100 16.5 (1.91) 100 35.4 (0.53) 100 60.8 (0.35) 100

using the single best m
lust model based on the full data are also in
luded for 
omparative purposes in both 
ases.

τMCLUST =

(

0.46, 0.36, 0.18
)

τJK =

(

0.46 (0.04), 0.36 (0.03), 0.18 (0.04)
)

τBS =

(

0.47 (0.05), 0.36 (0.03), 0.17 (0.05)
)

τPB =

(

0.48 (0.04), 0.36 (0.03), 0.16 (0.03)
)

τWLBS =

(

0.48 (0.06), 0.36 (0.03), 0.16 (0.05)
)

µMCLUST =

(

4.48, 2.04, 3.82
80.89, 54.49, 77.65

)

µJK =

(

4.47 (0.03), 2.04 (0.03), 3.81 (0.06),
80.89 (0.47), 54.49 (0.60), 77.62 (1.18)

)

µBS =

(

4.47 (0.05), 2.03 (0.03), 3.79 (0.11)
80.86 (0.59), 54.45 (0.59), 77.37 (2.24)

)

µPB =

(

4.47 (0.03), 2.04 (0.03), 3.79 (0.06)
80.84 (0.60), 54.49 (0.59), 77.49 (1.16)

)

µWLBS =

(

4.46 (0.05), 2.03 (0.03), 3.76 (0.13)
80.81 (0.59), 54.44 (0.61), 76.97 (2.41)

)

ΣMCLUST =

(

0.08 0.48
0.47 33.74

)

ΣJK=

(

0.08 (0.01) 0.47 (0.12)
0.47 (0.12) 33.73 (2.77)

)

ΣBS=

(

0.08 (0.01) 0.46 (0.15)
0.46 (0.15) 32.88 (2.83)

)

ΣPB=

(

0.08 (0.01) 0.48 (0.12)
0.48 (0.12) 33.32 (2.76)

)

ΣWLBS=

(

0.08 (0.01) 0.45 (0.16)
0.45 (0.16) 32.94 (2.89)

)

The standard errors for all parameters under ea
h method are small relative to the size of the parameter estimates

themselves. The standard errors using the BS and WLBS are slightly larger than their JK and PB 
ounterparts

for most parameters. This is to be expe
ted as there is likely to be mu
h less variability in the estimates arising

from the JK samples than would be observed in the BS or WLBS 
ases, as ea
h JK sample di�ers only by one

observation. On the other hand the BS and WLBS samples are likely to di�er from ea
h other to a greater degree.

Similar results have been presented previously for this data set in a univariate 
ontext (Everitt and Hothorn, 2009,

page 139�155).

The sampling based approa
hes to varian
e estimation dis
ussed provide not only estimates of the model pa-

rameters, but also insight as to their asso
iated un
ertainty, whi
h 
an be graphi
ally illustrated. Figure 5 provides
kernel density plots for the mean waiting duration and eruption duration for all three 
lusters. The plots indi
ate
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good agreement between the BS and WLBS approa
hes; notably the WLBS densities are �atter in some 
ases. In

addition, the kernel density plots for the model's 
ovarian
e parameters are provided in Figure 6. Plotting the JK

density estimates for the model parameters results in very bumpy and very narrow densities. This is due to the

similarity of the JK samples and therefore the parameter estimates themselves (ne
essitating the use of pseudo-

values in 
omputing 
on�den
e intervals for the JK approa
h). The PB kernel density results were also 
omputed

but are extremely 
lose to the out
omes for the BS in the 
ase of Figures 5 and 6 and hen
e for visual 
larity have

been omitted from the plots.

5.4 Thyroid results

For the Thyroid data, under m
lust, the optimal mixture of Gaussians model has G = 3 
omponents and diagonal


ovarian
e stru
ture with varying volume and shape, Σg = λgAg, a
ross groups. The results for the estimation of

parameters and their asso
iated un
ertainties under the optimal model are presented below using 3 multivariate

Gaussian 
omponents and 
ovarian
e stru
ture Σg = λgAg. The maximum likelihood parameter estimates found

using the single best m
lustmodel based on BIC are also in
luded for 
omparative purposes. Covarian
e parameter

estimates and asso
iated standard errors are detailed in Appendix B, along with the M
lustBootstrap 
ode used

to obtain the results.

τMCLUST =

(

0.71, 0.16, 0.13
)

τJK =

(

0.74 (0.03), 0.15 (0.03), 0.11 (0.02)
)

τBS =

(

0.71 (0.03), 0.16 (0.03), 0.13 (0.02)
)

τPB =

(

0.71 (0.03), 0.16 (0.03), 0.13 (0.02)
)

τWLBS =

(

0.71 (0.03), 0.16 (0.03), 0.13 (0.02)
)

µMCLUST =





110.34, 9.09, 1.72, 1.31, 2.49
95.53, 17.69, 4.27, 0.97, −0.02
123.22, 3.79, 1.06, 13.91, 18.84





µJK =





110.13 (0.66), 9.11 (0.18), 1.74 (0.04), 1.35 (0.04), 2.42 (0.15)
95.05 (3.27), 18.40 (0.77), 4.46 (0.40), 0.96 (0.07), 0.00 (0.05)
124.46 (1.96), 3.32 (0.45), 0.96 (0.11), 15.03 (2.44), 20.71 (2.99)





µBS =





110.33 (0.65), 9.09 (0.19), 1.72 (0.04), 1.31 (0.04), 2.50 (0.15)
95.59 (3.37), 17.68 (0.81), 4.28 (0.43), 0.97 (0.07), −0.02 (0.05)
123.36 (0.68), 3.74 (0.19), 1.05 (0.04), 14.12 (0.04), 18.97 (0.15)





µPB =





110.35 (0.65), 9.08 (0.18), 1.72 (0.04), 1.31 (0.04), 2.50 (0.15)
95.44 (3.20), 17.68 (0.75), 4.25 (0.40), 0.97 (0.07), −0.02 (0.05)
123.27 (1.92), 3.79 (0.40), 1.06 (0.10), 13.88 (2.35), 18.87 (2.88)





µWLBS =





110.34 (0.68), 9.10 (0.19), 1.72 (0.04), 1.31 (0.04), 2.50 (0.15)
95.42 (3.38), 17.68 (0.82), 4.28 (0.42), 0.97 (0.07), −0.01 (0.05)
123.37 (1.83), 3.73 (0.40), 1.04 (0.10), 13.96 (2.37), 18.87 (2.75)





The standard errors for all parameters under ea
h method are small relative to the size of the parameter

estimates themselves and are approximately equal a
ross the varian
e estimation approa
hes 
onsidered. The

parameter estimates a
ross all methods are 
lose to those from the full data model, with the PB and WLBS

proving most a

urate in this regard. This veri�es that the JK, BS, PB and WLBS approa
hes presented are

robust even in this higher dimensional real data appli
ation and that there is eviden
e to favour adoption of the

PB or WLBS approa
hes if a single method is to be preferred.

From a 
omputational perspe
tive, all varian
e estimation approa
hes are 
omputationally e�
ient. The results

produ
ed throughout Se
tion 5 were obtained via the M
lustBootstrap fun
tion in the most re
ent version of the

R pa
kage m
lust. In the 
ontext of 
lustering the Old Faithful data, the JK, BS, PB and WLBS approa
hes to

varian
e estimation required 0.19s, 2.45s, 5.33s and 70.47s to run respe
tively on a 2.8 GHz Ma
 OS X laptop,

where the default 999 samples were requested in the BS, PB and WLBS settings. The 
orresponding times for the

Thyroid data set were 0.13s, 0.77s, 4.03s and 15.32s. The in
rease in the WLBS setting over the JK, BS and PB

settings for 
omputational time is due to the required maximization of the weighted 
omplete data likelihood, but
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Figure 5: Kernel density plots of the BS and WLBS estimates of the µ parameters for the Old Faithful data. The

solid blue line and the thi
ker solid red line represent the BS and WLBS kernel densities respe
tively. The dashed

lines represent the values of the MLEs from the model �tted to the full data set. The PB kernel densities are

extremely 
lose to the BS lines and for visual 
larity have been omitted.

18



0.05 0.06 0.07 0.08 0.09 0.10 0.11

0
1

0
2

0
3

0
4

0

Variance of Eruption Time

D
e

n
si

ty

BS

WLBS

(a)

25 30 35 40 45

0
.0

0
0

.0
5

0
.1

0
0

.1
5

Variance of Waiting Time

D
e

n
si

ty

BS
WLBS

(b)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Covariance of Waiting Time and Eruption Time

D
e

n
si

ty

BS
WLBS

(
)

Figure 6: Kernel density plots of the BS and WLBS estimates of the Σ parameters for the Old Faithful data. The

solid blue line and the thi
ker solid red line represent the BS and WLBS kernel densities respe
tively. The dashed

lines represent the values of the MLEs from the model �tted to the full data set. The PB kernel densities are

extremely 
lose to the BS lines and for visual 
larity have been omitted.
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the overall 
omputational 
ost is still 
heap from a user perspe
tive. The JK and BS methods are in turn faster than

the PB due to the time required to simulate from the model under the latter approa
h. The M
lustBootstrap


ode used to obtain the Thyroid results is provided at the end of Appendix B.

6 Dis
ussion and further work

Although model-based 
lustering is now a widely used approa
h to 
lustering in a range of dis
iplines, espe
ially

through the use of the m
lust pa
kage in R, little attention has previously been paid to providing estimates of the

varian
e asso
iated with parameter estimates. Here, four sampling based approa
hes to varian
e estimation are

dis
ussed in the 
ontext of model-based 
lustering. The ja
kknife, bootstrap and parametri
 bootstrap approa
hes

to varian
e estimation are basi
 tools in any statisti
ian's toolkit, but di�
ulties with the bootstrap in parti
ular

arise in the 
lustering 
ontext when small 
lusters are present. The weighted likelihood bootstrap addresses this

short
oming. The WLBS has been shown to perform as well as the JK, BS and PB in general, and parti
ularly

well in the presen
e of small 
lusters. In terms of whi
h sampling based approa
h the pra
titioner should use to

obtain varian
e estimates, the simulation studies and real appli
ations presented here suggest that when roughly

similarly sized 
lusters are present, all four methods perform equally well. In the presen
e of small 
lusters or in

high dimensional settings however, the JK and WLBS are more stable than the BS and PB. Although it 
omes with

higher, yet still user friendly, 
omputational 
ost, overall the WLBS is found to be the preferred method of varian
e

estimation. This is primarily be
ause, if the model provides a poor �t, the BS and PB will either fail and/or require

extra samples, and the ja
kknife samples may not well represent the full data set, whereas the WLBS will give

weight to all observations and provide a solution. This tends to o

ur in 
ases of small and/or overlapping 
lusters.

However, the poor model �t is attributable to the nature of the data and not the fault of the sampling varian
e

estimation approa
hes themselves. Indeed, instan
es of the BS and PB needing extra samples, or failing, may in

fa
t be eviden
e of poor model �t in the �rst instan
e, providing an additional diagnosti
 tool in this regard.

The standard errors 
al
ulated from the JK, BS, PB andWLBS have several pra
ti
al uses in
luding formation of

approximate 
on�den
e intervals for parameter estimates, 
onstru
tion of hypothesis tests as to whether parameters

should be in
luded in the model and analysis of the bias of maximum likelihood parameter estimates versus their

JK/BS/PB/WLBS 
ounterparts as a means of assessing model goodness of �t. In a similar vein, the sampling

based methods dis
ussed 
ould be employed as an aid to model sele
tion.

Further avenues of resear
h are plentiful and varied. For example, an appli
ation that would perhaps be

of interest to an m
lust user would be the quanti�
ation of the standard errors of the parameters 
onstituting

the eigenvalue de
omposition of the 
ovarian
e matrix into its size, orientation and shape 
omponents, Σg =
λgDgAgD

T
g . This may aid in the pro
ess of model spe
i�
ation, namely in determining whi
h parameters 
ould

be set equal a
ross groups to a
hieve a more parsimonious de
omposition. Spe
i�
 to the weighted likelihood

bootstrap method, a more thorough investigation of alternative Diri
hlet parameterisations or alternative weighting

distributions 
ould be 
ondu
ted to examine their stability and suitability in settings where some 
lusters are

sparsely populated. In addition, the JK, BS, PB and WLBS 
ould be examined in the 
ontext of non-Gaussian

mixtures, su
h as mixtures of t distributions or skew-t distributions (Lee and M
La
hlan, 2013a,b).
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A Pairs plots of a simulated data set from Simulation Setting Three.

Simulation Setting Three explores the performan
e and 
omputational features of the JK, BS, PB and WLBS ap-

proa
hes to parameter varian
e estimation in a higher dimensional setting featuring overlapping and small 
lusters.

Figures 7, 8 and 9 provide pairs plots from a single simulated data set under this setting for whi
h n = 500, p = 25
and G = 5. Ea
h of the di�erent 
olours/symbols in the plots denotes one of the 5 distin
t 
lusters of observations

simulated.
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Figure 7: Pairs plots of the �rst 10 variables for a single simulated data set from Simulation Setting Three (n =
500, p = 25, G = 5).
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Figure 8: Pairs plots of the se
ond 10 variables for a single simulated data set from Simulation Setting Three

(n = 500, p = 25, G = 5).
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Figure 9: Pairs plots of the �nal 5 variables for a single simulated data set from Simulation Setting Three (n =
500, p = 25, G = 5).
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B Covarian
e parameter estimates and standard errors for the Thyroid

data

Cluster 
ovarian
e estimated values are presented below using ja
kknife (JK), bootstrap (BS), parametri
 bootstrap

(PB) and weighted likelihood bootstrap (WLBS) methods (with asso
iated standard errors) for the optimal mixture

of Gaussians model for the Thyroid data, group 1, where G = 3 and p = 5 and the optimal model has unequal

diagonal 
ovarian
e stru
ture a
ross 
lusters.

ΣMCLUST, Group 1 =













66.39 0 0 0 0
0 4.82 0 0 0
0 0 0.23 0 0
0 0 0 0.22 0
0 0 0 0 3.19













ΣJK, Group 1 =













67.50 (7.82) 0 (0) 0 (0) 0 (0) 0 (0)
0 (0) 4.80 (0.63) 0 (0) 0 (0) 0 (0)
0 (0) 0 (0) 0.24 (0.03) 0 (0) 0 (0)
0 (0) 0 (0) 0 (0) 0.33 (0.04) 0 (0)
0 (0) 0 (0) 0 (0) 0 (0) 3.25 (0.36)













ΣBS, Group 1 =













66.00 (8.25) 0 (0) 0 (0) 0 (0) 0 (0)
0 (0) 4.80 (0.64) 0 (0) 0 (0) 0 (0)
0 (0) 0 (0) 0.23 (0.03) 0 (0) 0 (0)
0 (0) 0 (0) 0 (0) 0.22 (0.05) 0 (0)
0 (0) 0 (0) 0 (0) 0 (0) 3.16 (0.34)













ΣPB, Group 1 =













65.85 (7.80) 0 (0) 0 (0) 0 (0) 0 (0)
0 (0) 4.80 (0.54) 0 (0) 0 (0) 0 (0)
0 (0) 0 (0) 0.23 (0.03) 0 (0) 0 (0)
0 (0) 0 (0) 0 (0) 0.22 (0.03) 0 (0)
0 (0) 0 (0) 0 (0) 0 (0) 3.17 (0.37)













ΣWLBS, Group 1 =













65.85 (7.99) 0 (0) 0 (0) 0 (0) 0 (0)
0 (0) 4.78 (0.62) 0 (0) 0 (0) 0 (0)
0 (0) 0 (0) 0.23 (0.03) 0 (0) 0 (0)
0 (0) 0 (0) 0 (0) 0.22 (0.05) 0 (0)
0 (0) 0 (0) 0 (0) 0 (0) 3.17 (0.42)













Cluster 
ovarian
e estimated values are presented below using ja
kknife (JK), bootstrap (BS), parametri
 bootstrap

(PB) and weighted likelihood bootstrap (WLBS) methods (with asso
iated standard errors) for the optimal mixture

of Gaussians model for the Thyroid data, group 2, where G = 3 and p = 5 and the optimal model has unequal

diagonal 
ovarian
e stru
ture a
ross 
lusters.
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ΣMCLUST, Group 2 =













344.46 0 0 0 0
0 17.44 0 0 0
0 0 4.92 0 0
0 0 0 0.15 0
0 0 0 0 0.07













ΣJK, Group2 =













384.31 (101.72) 0 (0) 0 (0) 0 (0) 0 (0)
0 (0) 14.84 (3.00) 0 (0) 0 (0) 0 (0)
0 (0) 0 (0) 5.19 (1.37) 0 (0) 0 (0)
0 (0) 0 (0) 0 (0) 0.15 (0.03) 0 (0)
0 (0) 0 (0) 0 (0) 0 (0) 0.08 (0.02)













ΣBS, Group 2 =













336.73 (98.03) 0 (0) 0 (0) 0 (0) 0 (0)
0 (0) 16.85 (2.88) 0 (0) 0 (0) 0 (0)
0 (0) 0 (0) 4.77 (1.31) 0 (0) 0 (0)
0 (0) 0 (0) 0 (0) 0.15 (0.03) 0 (0)
0 (0) 0 (0) 0 (0) 0 (0) 0.07 (0.02)













ΣPB, Group 2 =













334.34 (83.28) 0 (0) 0 (0) 0 (0) 0 (0)
0 (0) 17.04 (4.45) 0 (0) 0 (0) 0 (0)
0 (0) 0 (0) 4.74 (1.15) 0 (0) 0 (0)
0 (0) 0 (0) 0 (0) 0.15 (0.04) 0 (0)
0 (0) 0 (0) 0 (0) 0 (0) 0.07 (0.02)













ΣWLBS, Group 2 =













332.50 (92.04) 0 (0) 0 (0) 0 (0) 0 (0)
0 (0) 16.71 (2.71) 0 (0) 0 (0) 0 (0)
0 (0) 0 (0) 4.81 (1.28) 0 (0) 0 (0)
0 (0) 0 (0) 0 (0) 0.15 (0.03) 0 (0)
0 (0) 0 (0) 0 (0) 0 (0) 0.07 (0.02)













Cluster 
ovarian
e estimated values are presented below using ja
kknife (JK), bootstrap (BS), parametri
 bootstrap

(PB) and weighted likelihood bootstrap (WLBS) methods (with asso
iated standard errors) for the optimal mixture

of Gaussians model for the Thyroid data, group 3, where G = 3 and p = 5 and the optimal model has unequal

diagonal 
ovarian
e stru
ture a
ross 
lusters.
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ΣMCLUST, Group3 =













95.23 0 0 0 0
0 4.26 0 0 0
0 0 0.28 0 0
0 0 0 147.06 0
0 0 0 0 231.22













ΣJK, Group 3 =













95.47 (29.87) 0 (0) 0 (0) 0 (0) 0 (0)
0 (0) 2.91 (1.10) 0 (0) 0 (0) 0 (0)
0 (0) 0 (0) 0.24 (0.06) 0 (0) 0 (0)
0 (0) 0 (0) 0 (0) 157.52 (71.60) 0 (0)
0 (0) 0 (0) 0 (0) 0 (0) 234.45 (71.18)













ΣBS, Group 3 =













90.83 (27.53) 0 (0) 0 (0) 0 (0) 0 (0)
0 (0) 3.93 (0.94) 0 (0) 0 (0) 0 (0)
0 (0) 0 (0) 0.26 (0.06) 0 (0) 0 (0)
0 (0) 0 (0) 0 (0) 143.33 (65.03) 0 (0)
0 (0) 0 (0) 0 (0) 0 (0) 222.37 (65.83)













ΣPB, Group 3 =













91.11 (25.03) 0 (0) 0 (0) 0 (0) 0 (0)
0 (0) 4.17 (1.16) 0 (0) 0 (0) 0 (0)
0 (0) 0 (0) 0.27 (0.08) 0 (0) 0 (0)
0 (0) 0 (0) 0 (0) 141.92 (38.84) 0 (0)
0 (0) 0 (0) 0 (0) 0 (0) 222.99 (61.33)













ΣWLBS, Group 3 =













92.72 (25.66) 0 (0) 0 (0) 0 (0) 0 (0)
0 (0) 3.91 (0.85) 0 (0) 0 (0) 0 (0)
0 (0) 0 (0) 0.26 (0.05) 0 (0) 0 (0)
0 (0) 0 (0) 0 (0) 139.92 (61.20) 0 (0)
0 (0) 0 (0) 0 (0) 0 (0) 219.38 (62.58)













The following 
ode produ
es all varian
e estimation results for the Thyroid data set, using the M
lustBootstrap

fun
tion in m
lust.

library(m
lust)

data(thyroid)

obje
t = M
lust(thyroid[,2:6℄, G = 3)

ja
k = M
lustBootstrap(obje
t, type = "jk")

boot = M
lustBootstrap(obje
t, type = "bs")

pb = M
lustBootstrap(obje
t, type = "pb")

wlbs = M
lustBootstrap(obje
t, type = "wlbs")

summary(ja
k, what = "se")

summary(boot, what = "se")

summary(pb, what="se")

summary(wlbs, what = "se")
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