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INVESTIGATION OF PATTERN RECOGNITION TECHNIQUES FOR THE
IDENTIFICATION OF SPLITTING SURFACES IN MONTE CARLO

PARTICLE TRANSPORT CALCULATIONS

by

James L. Macdonald

Abstract

Statistical and deterministic pattern recognition systems are
designed to classify the state space of a Monte Carlo transport problem
into importance regions. The surfaces separating the regions can be
used for particle splitting and Russian roulette in state space in order
to reduce the variance of the Monte Carlo tally.

Computer experiments are performed to evaluate the performance of
the technique using one and two dimensional Monte Carlo problems., Addi-~
tional experiments are performed to determine the sensitivity of the
technique to various pattern recognition and Monte Carlo problem dependent
parameters.

A system for applying the technique to a general purpose Monte
Carlo code is described. An estimate of the computer time required by the
technique is made in order to determine its effectiveness as a variance
reduction device. It is recommended that the techmique be further in-

vestigated in a general purpose Monte Carlo code.

xiii



I. Introduction

The Monte Carlo method of particle transport was originally
developed by Fermi, Ulam,and von Neumann during the mid 1940's.' As
digital computers became larger the method became more practical. Be-
cause of the large running times zncountered on early computers, the
method gained the reputation of being extremely time consuming. As a
result, the Monte Carlo method has often been referred to as "a method
of last resort."? The current generation of digital computers, such as
CDC 7600,has reduced the running time of problems previously taking in
the hours or days to only a few minutes. As a result, for the Monte
Carlo problems run today the method is hardly considered a 'method of
last resort" and in many cases is the '"only method of resort.” A des-
cription of Monte Carlo code development and the current state of the
art at the Los Alamos Scientific Laboratory is given in Section 1.1.

When the Monte Carlo method is used to solve a transport prob-
lem,the calculated answer is based on the sampling of statistical proc-
esses. Because of this, the answer has associated with it a prcbabilis-
tic error based on the statistical behavior of the answer. The purpose
of a Monte Carlo calculation is to calculate an answer that has a

variance below some acceptable level. As a result there have been

the

numerous techniques devised to accelerate the reduction of the variance.

These techniques and their corresponding problems are discussed in

Section 1.2.



The purpose of this thesis is to allow the computer to assist
in the reduction of the variance by using pattern recognition tech-
niques. The field of pattern recognition is very new, beginning with
the introduction of large computers in the 1940's. Pattern recognition
is discussed briefly in Section 1.3.

Sections 1.4, 1l.5,and 1.6 describe the purpose, scope, and out-

line of the dissertation respectively.

1.1) Monte Carlo Developrent

The development of the Monte Carlo method as an accepted dis-
cipline and research tool began during the second World War from
weapons development work.! These early applications are usually attrib-
uted to the work of Fermi, von Nevmann, and Ulam® and involved the
simulation of neutron diffusion in fissile material. Even at this
early stage the techniques of "splitting" and "Russian roulette" were
being used for variance reduction;1 however, the more rigorous
development of importance sampling was performed by Harris and Herman
Kahn in 1948.°

The first open discussions of Mo;te Carlo applications work took
place in 1949 at a symposium sponsored by the RAND Corporation.3
Since computer machinery did not exist at that time, calculations were
usually performed by hand. In the course of describing the usefulness

of an alignment chart for making calculations, Spim:adl+ states



«+.it also enables the computer to work

completely on one sheet of paper, only

interrupting his vision when a new random

number is required...
where the term "computer' refers to the person performing the calcula-
tion and the random numbers were provided from tables by RAND Corpora-
tion’. Desk top calculators helped speed up calculations some; how-

ever, these early calculators could only add, subtract, multiply, and

divide.

At Los Alamos, the first semi-useful equipment for performing Monte
Carlo calculations were IBM accounting machines.® The development of
MANIAC I resulted in the first computer application of Monte Carlo at
LASL.® However, each problem had to be programmed separately, in
machine language. Examples of some of these early problems are given

in reference 7.

As Monte Carlo developed in the 50's, it quickly became a "fad"
as is described in reference 1:

...There was an understandable attempt to
solve every problem in sight by Monte Carlo,
but not enough attention paid to which of
these problems it could solve efficiently
and which it could only handle inefficiently;
and proponents of conventionzl numerical
methods were not above pointing to those
problems where Monte Carlo methods were
markedly inferior to numerical analysis...

However, the same author' notes when referring to the 60's:

...In the last few years Monte Narlo methods
have come back into favor. This is mainly
due to better recognition of those problems
in which it is the best, and sometimes the
only, available technique...



The problems for which Monte Carlo is best suited have increased in

number for the following reasous:

¢y

(2)

3

Improved variance reduction techniques have made Monte
Carlo more efficlent where before it was very inefficient.
Computer machinery has improved so as to make previously
unsolvable problems solvable in a reasonable amount of
time.

Increasing demands for details to be included in a problem
have in some cases eliminated solution by numerical tech-
niques which required many simplifying assumptions., Ex-
amples of this are particle transport involving mixed
diffusion and streaming effects, three-dimensional complex

geometries, and requirements for non-group energy treat-

ments.

As a result of the demands for Monte Carlo calculations, group TD-6 of

the Los Alamos Scientific Laboratory has developed a number of particle

transport codes 8, Although these codes are primarily intended for

weapons development, they are often used in many other programs at LASL.

These computer codes are used on CDC 7600 computers and include the

following:

%)

MCN'2 A neutron transport code

MCG32E A gamma ray transport code

Mcp3d A general photon transport code (includes lower
energy treatment than MCG)

MCNG - A combined neutron-~gamma transport code



(5) MCNA?L A neutron adjoint code

(6) MCK - A criticality code

(7) MCMG - A neutron-gamma multi-group transport code

(8) MCGE’% A coupled electron~photon transport code

¢D) MCGBai A gamma code with Bremsstrahlung
In the case of the neutron related codes (except MCMG) the cross-
sections are provided as pointwise data that is vead into the codes in
considerable detail. Although this greatly reduces the nutb:r of

approximations and distortions caused by cross-section reduction, it

does place a considerable burden on the computer. For example, the na-
tional Evaluated Nuclear Data File (ENDF) version of ircnm requires
50,000 words of storage. The codes handle three-dimensional geometry
involving first, second, and some fourth (elliptical tori) degree sur-
faces. All codes are programmed in FORTRAN IV, .

Although the researeh of this dissertation is applicable to
Monte Carlo codes in general, it is the above codes that are of particu-
lar interest. Thus some of the research is directly related to functions

as they are performed in these codes.



1.2) Incentive for this Research

The overwhelming majority of Monte Carlo improvements reported

in the literature are related to the reduction of the probabilistic error

or variance associated with the Monte Carlo answer or tally. The use of

these "variance reduction" techniques varies in proportion to the dif-

ficulty encountered in their iImplementation. The difficulty of imple~-

menting many of these techniques is due to:

1)

2)

3)

(4}

The complexities involved in applying the technique to real
problems. For example, many of the techniques are theoreti-
cally based on very simple geometries, etc.; whereas, actual
Monte Carlo problems usually involve complex three~dimen~
sional geometries. Many of the techniques do not “scale up"

to real applications.

Some of the variance reduction techniques proposed are "unsafe"

in that they can distort the calculations resulting in the

wrong value for the tally.

Most of the techniques require that a priori information be
provided by the user. This information is usually nuantita-
tive in nature and depends on the intuition and experience
of the user. Furthermore, 1f the user provides the wrong

information, some variance reductioa techniques can actually

consume more zomputer time than they save.

Because of the diversity of Monte Carlo problems, different

problems require different techniques. As a resuit, the



user is not sure when to use one technique as opposed to

another.

A fundamental problem of all variance reduction techniques is that if cne
were going to use z technique optimally, he would have to know all the
characteristics (including the answer) of the Monte Carlo problem being
investigated before applying the technique. Thus vwhat is needed is a
technique that instead of requiring information from the user, obtains
most of the necessary informoation during the Monte Carlo calculation.
Such learning®* techniques have been proposed in the literature
and are discussed in Chapter II. The methods of Spanieg and MacMillan®
involve learning of an optimum parameter for use with the exponential
transform techniqué '(see Section 2.3.2). This approach has the disadvantage
thet it is based on a technigue, the exponential tramsform, which can be
unsafe if used improperly. Furthermore, the technique is primzrily con-
cerned with directional variables and is difficult to apply to problexs
involving complex gecmetries. Another learning method'? has been prcposed

which learns optimum spatial quantities. Besides being limited to spatial
variables, this technique has difficulties with problems involving small
prodabilities.

The most successful techniques used in the Los Alamos Monte Carlo

1%
codes are geometry splittiné“ and Russian roulette (see Section 2.3.1).

*# A learning technicue in this dissertation refers to the ability of =z
conputer program to improve its performance in solving a problem based
on its own experience!®. This is achieved by a preplanned strategy
wherein the program podifies itself based on information gained through
experience and evaluation of its previous operations.



These techniques are popular because they are safe and simple to im-
plement. Even when not used optimally, they still yield large savings in
computer time. These methods have the disadvantage that they are con-
fined to spatial coordinates (energy splitting can be used, but only
independently of geometry splitting) and do require that quantitative
information be supplied by the user prior to implementation.

What is needed is a technique which is as safe and simple to use
as splitting and Russian roulette, involves all variables of the Monte
Carlo problem (spatial, directional, energy, and time) as a whole instead
of independently, and relieves the user of the task of providing quanti-
tative information. The development of such a technique using pattern

recognition is the subject of this research.

1.3) Pattern Recognition

Before the introduction of large digital computers pattern recog-
nition could only be described as being a human function. Examples of

human pattern recognition are:

-~ recognition of a man from a woman
- recognition of handwritten characters
- recognition of speech

~ recognition of a dog from a cat

Pattern recognition is frequently referred to as an "artificial intelli~
gence" technique since it performs an operation on a computer which is

usually considered to require intelligence. The pattern recognition



process consists of these basic functiomns:

(1) identifying which features of the problem being analyzed

are important

(2) finding a correlation between these features and various

categories (or classes) into which the input can be sorted

(3) sorting future input into classes according to the cor-

relation determined in (2).

These operations can be performed by mathematical transforms that usually
require machine learning of some of the parameters involved. These func-

tions will be discussed in more detail in Chapter III.

1.4) Purpose of Dissertation

The purpose of this dissertation is to establish a "proof of
principle" for the application of pattern recognition techniques to the
identification of splitting surfaces in Monte Carlo particle tramnsport

calculations. This is done by:

£1) Developing a pattern recognition system that can be used to

learn splitting surfaces in Monte Carlo transport calculations.

(2) 1Investigating the performance of statistical and deter-
ministic classifiers when used to recognize splitting sur-
faces. This investigation includes a sensitivity study of

the pattern recognition parameters involved.



(3) Proposing a system for applying pattern recognition to a

general purpose Monte Carlo code.

(4) Analyzing the effectivemess that can be expected by using

pattern recognition as a variance reduction technique.

Thus the purpose of this dissertation is not to apply the technique

to a general purpose Monte Carlo code but to establish that such an

application would be profitable.

1.5) Scope of Dissertation

The scope of this dissertation is limited in two areas: (1) the
selection of a pattern recognition system and (2) the selection of
Monte Carlo problems used for demonstration.

There have been many pattern recognition systems developed for a
large range of problems. This research investigates two basic techniques
(one statistical and one deterministic) which are suitable for the type
of information generated in a Monte Carlo calculation. These techniques
are used with as little modification as possible from the basic algorithms
found in the literaturd®/!®. Thus the purpose of this research is not tc
design an optimum pattern recognition system.

The Monte Carlo problems used in this research have been chosen
50 as to minimize computer time while gtill being useful models for
demonstrating the operations of the pattern recognition system. Since
many Monte Carlo runs are necessary in research of this type (600 to 700

runs were performed), the computer time would be prohibitive (at least 10
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times as great) using a general purpose code with complex problems.

The majority of parameter tests and classifier evaluation experi-
ments were performed using a one-dimensional, one-region, homogeneous
slab Monta Carlo problem. Although such a model is simplified, it still
exhibits the characteristics necessary for the application of pattern
recognition. Computational experiments are also performed using a one-
dimensional multi-region slab and a two-dimensional (distance and direc-
tion) multi-region slab. It is found that the only modification to the
pattern recognition system necessary for increasing the dimensionality of

the problem is to increase the dimensionality of the various vectors

involved.

1.6) Outline of Dissertation

It is assumed in this dissertation that the reader is familiar
with statistical terminology (i.e., mean, variance, probability distribu-
tion, etc.) but is not familiar with either the Monte Carlo method or
pattern recognition theory. The next two chapters are intend:d to
introduce the reader to these topics.

Chapter II introduces the basic principles of Monte Carlo and how
statistical errors are calculated. In addition variance reduction tech-
niques are described and the incentives for state space splitting are
presented. Finally, a means for measuring the success of a variance re-
duction technique is described.

Chapter III discusses the general operations of a pattern recog-

nition system. Particular attention is given to the classification

11



techniques that are used in this research. The problem of feature
selection is only described as it relates to the Monte Carlo problem.

In Chapter IV a pattern recognition system is developed for
identifying splitting surfaces and performing various parameter tests
(items (1) and (2) of Section 1l.4). 1In this chapter a scheme is pre-
sented for learning a single splitting surface and is implemented on a
one-dimensional one-region slab, a one-dimensional multi-region slab,
and a two-dimensional slab Monte Carlo problem. Several parameter tests
are made in this chapter and comparisons are made between the different
classifiers used. The computer programs used in Chapter IV are given
in the Appendices. Although these programs are not implemented on a
general purpose Monte Carlo code, several of the timing parameters involved
are approximated.

Chapter V considers the practical problem of implementing the
technique for full scale applications. A system suitable for general
applications is designed and required user input is noted. Finally, an
analysis is performed to determine the effectiveness of the technique.
Thus Chapter V treats items (3) and (4) of Section 1.4.

Chapter VI states the conclusions of this research and makes
recommendations for implementing this research on a full scale in a

general purpose Monte Carlec code.
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II. The Monte Carlo Method and Variance Reduction

Although the Monte Carlo method is applied to a wide range of
problems, the emphasis of this research will be on particle transport cal-
culations., It is the purpose of this chapter to describe in very general
terms how Monte Carlo sampling is performed and how statistical errors
are determined (Section 2.1). For further details of the sampling used
for neutron transport, the reader is referred to Appendix A. Section 2.2
contains a description of variance reduction in general and Section 2.3
surveys some of the more common variance reduction techniques including
those which involve learning. A method is then proposed which requires
learning during the Monte Carlo calculation in order to reduce the vari-
ance (Sextion 2.4). Finally, in Section 2.5 effectiveness of Monte Carlo

calculations will be defined so that the effect of variance reduction can

be measured.

2.1) The Monte Carlo Method for Particle Transport

2.1.1) Basic Principles

The transport problem in this research consists of estimating the
probability that particles leaving a source and undergoing various pro-
cesses (capture, escape, etc.) will finally terminate in a specified
category or tally., Decisions as to which processes occur are made by

sampling the appropriate "probability distribution" functions as described

below.

13



The probability that a variable s lies between s znd s+ds is given

by p(s)ds uliore p(s) is defined as the probability density function e

An exanple of such a function is shown in Figure 2.1 for s ranging froo

0 to 3. In this research it is always assumed that p(s) has been normalized

so that
fp(s)ds =1

where the integral is over all possible s.

p(s) |

Figure 2.1 A Probability Density Function

13

The integral of p(s) is defined as the probability distribution function:
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P(s) = p(s')ds' (2.1)

The distribution function of the example in Figure 2.1 is shown

in Figure 2.2.

P(s) "

Figure 2.2 A Probability Distribution Function

The probability distribution function is sampled by choosing a random

number, r, between 0 and 1 and setting r equal to P(s) as given by

r= p(s')ds' (2.2)

15



The s that satisfies this equality is used as the sampled value, The
values of s sanpled in this rammer can be shown to have the probabilicy
density p(s).*

As an example cf this sa=pling process, consider the case of o
neutron enicted from one side of 2 slab (see Figere 2.3) in the 4 divece

tion.

Sourcel.ge dircction of
art

e %

Figure 2.3 Sazpling Distance to Collision

The probability that this neutron hzs a collision betwcen x and xidx is

given by 18

plx)dx = & e Bex dx

wvhere Xt the total macroscopic cross saction

p(x)

[}

the probability density function fer a collision
at xl

16



The probability distribution function for this process is given by

P(x) = p{x*)dx"’

o

x
. wEox!
) Jlﬁ ice e dx
0

-Etx
Pix} » 1 «¢

Note that if x=, P(x)}=l and if x=0, P(x)=0. Setting a random number, r,

(0Sr<1l) equal to the probability distribution function gives

-Ecx
r=Px)=1-¢

v = in{r)
. L

e

where (1-r) has been replaced by r.
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The value of x for a given r is the sampled value for the distance to a
collision. In Monte Carlo transport calculations many processes are
sampled similar to the example above. Appendix A describes the sampling

process in more detail for the case of neutron transport.

Eventually, after undergoing numerous events as determined by the
appropriate probability distributions,a particle is lost to the system.
This occurs when the particle is either captured, leaves the system being
considered, falls below the energy range of interest, etc. At this point
the contribution, x;, of the i'th particle to the tally under study is

calculated. Thus, for N particles the average contribution to the tally

is

d=1 (2.3)

This x is the statistical approximation used to estimate the physical

quantity of interest.
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2.1.2) Estimate of Statistical Errors

The mean value of N samples, ;; is given by Equation 2.3. The

. 17 - . .
variance of the N samples with respect to the sample mean x is given by

N

760 = }_, (x; -~ 02 (2.4a)
=

2@ = o |2 - 2| (2.4b)

17 .,
The true mean of x is given by

x(s)p(s)ds (2.5)

<xD

where p(s) is the probability density function of s. The mean <{x)> is
often referred to as the "expecLed"I%alue of x(s). For an unbiased!’

estimate X,

(D =& 2.6)
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The true variance of x(s) is defined as the second moment of x(s) about

{x> as given by

-]

0% (x) = (x(s) - (x))z p(s)ds (2.7)

b~ ~}

It can be shown (see Appendix B) that the variance of the samples X, about

the true mean <x) is given by

o2 = T (2.8)

Since in practice neither <x> or o?(x) is known, they are approxi-
_ 2 —
mated by x and ¢ (x)? Making these substitutions and assuming large N

results in

-2 =
@ = 1&") ~ E2 = X2 (2.9)
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as an estimate of the var .

7
The Central Limit Theoreﬁ {see Appendix B) states that

Prob IQE(x) <(x -<¢xM <ﬁE(x)l ~L [ & Cac. (2.10)

For an=-1 and £ =1, Equation 2.10 means that there is a 68.3% probability
that the estimated mean is within *0(x) of the true mean.
Frequently in Monte Carlo calculations it is helpful to express

. 19 .
the error in terms of relative error as given by

(2.11)

Equation 2.11 exhibits a very important characteristic of Monte Carlo

calculations-- that the error of the sample mean varies as 1A/N .
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2.2) Variance Reduction

In order to decrease the error of a Monte Carlo calculation (see
Equation 2.11), one must either increase N or decrease ECE). The effec-
tiveness of increasing N to reduce the error is illustrated in Figure 2.4.
From this figure it is apparent that as N increases, the decrease in Re,
ARe, for a given increase in N, AN, decreases. For example, increasing the
number of particles from N=100 to N=10,000 reduces the error by a factor
of 10; however, increasing N from 10,000 to 20,000 reduces the error
by a factor of only /2, Although computer time spent per particle
history is an extremely problem dependent parameter, in many cases run-~
ning time becomes prohibitive after a sample of 10,000 to 100,000 par-
ticles, If the relative error is still unacceptably large after several
10,000 particles, additional histories are far too costly for the small

amount of error reduction gained.

Relative Error,Re

Number of Histories, N

Figure 2.4 Reducing Error by Increasing the Number of Histories
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Because of this problem variance reduction techniques are often
required to reduce the variance of the sample mean., As seen by Equation
2.4a,the only way to do this is to sample values of Xy which are closer
to x.

One technique frequently used for doing this is the im-
plementation of particle "weights"7*!! with the elimination of capture.
The weight of a particle can be thought oi as representing a fraction
of a particle. For example, a3 weight of 1.0 represents an entire particle
vhereas a weight of 0.5 represents only half a particle., When a particle
undergoes a reaction, it is never "killed" by a capture but instead its
weight is multiplied by the factor Zna/Et (Zna = non-absorption cross

section, Zt = total cross section) and the particle history is continued

with reduced weight.

Example. Consider a Monte Carlo problem in which 100 neutrons
are started from a source. Of these neutrons 30% leak
out of the system without a collision and 30% are cap-
tured at their first collision. The remaining neutrons
undergo one scattering collision after which they are
tallied with a value of xi=1. Using no weights and
assuming neutrons behave exactly as the above percentages

indicate, one arrives at:

100
X,
i
—_  i=1 40x1.0 + 60x0.0
X="300 ~ 100 = .

100

- - 1 —
2@ = o5 Z (xy-0? = s [60x(.4)2 + 40x(.6)2] - .24
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Using weights and assuming that each neutron that does
not escepe undergoes one collision and is thern tallied

results in:

100
E xiwi
- =1 _ 30x0.0 + 7034/7
X = 7100 = 100 = .4
100
20y o L N2 1 ) 2 2
o?(x) = 755 1-2;1 (%)% = 755 [303(.4) + 70x(.17) ] = .0686

A nzme applied to a family of variance reduction techniques is

“irportence sampling"!®»??,

In transport problems, importznce sampling
refers to preferentially sampling those particles which are more likely
to contribute to the tally being investigated. From a probability

density function p(x) the mean value of a function f(x) is given by

<f (x)) = jrf (x)p(x)dx (2.12)

In izportance sampling an alternate distribution pA(x) is used and the

function f(x) is multiplied by w{(x) where

24



wix) = R (2.13)

Using this alternate distribution gives a mean of

<fA(x)> = ffA(x)pA(x)dx = ﬁ(x) [Eﬁ'g—::‘;']PA(x)dx = <f(x)> (2.14)

Thus the mean is unchanged. However, the second moment of fA(X) is given

by

]

./.fi(x)pA(x)dx =fl';§%}%]f2(x)p(x)dx

fx(x)fz(x)p(x)dx, (2.15)

=

- = p(x)
where I(x) [pA(x)] .

This 1is not the same as the second moment of the unaltered distribution

which is
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(fz(x)> =ff2(x)p(x)dx (2.16)

In Equation 2.15 <fi(x)> can be reduced by decreasing I(x) where p(x)
is large. This requires that I(x) be increased where p(x} is small.

In the ideal case p,(x)= fEfé(é?i resulting in

02(£,()) = (fi(x)) - <f<x>>2

= £ (x)-RLX) _ <f(x)> Zp (x)dx = 0 (2.17)
f[ py (%) A

However, before this zero variance p,(x) can be found, the mean < f(x)>
must be known, which of course is never the case. In the following section

several techniques based on importance sampling will be discussed.

2.3) Survey of Variance Reduction Techniques

During the development of Monte Carle, there have been numerous
techniques proposed to reduce the variance of the Monte Carlo tally. How-
ever, wheu one looks at the major Monte Carlo codes, he finds that only
very few of these techniques are used. One of the reasons for this is that

many methods are "unsafe'" to use because they may bias the answer or may
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actually consume more computer time than they save. Other methods are
rarely used because they are too complex to implement. The majority of this
section will be devoted to the description of splittingl" and Russian

* which are perhaps the most widely used variance reduction

roulette!
techniques. A brief description of some other popular techniques will

also be given. In Section 2.3.3 techniques which require ''learning”

during the calculations will be discussed.

2.3.1) Splitting and Russian Roulette

Splitting accompanied by Russian roulette is one of the most
commonly used variance reduction techniques? It consists of dividing
the geometry of the problem into regions and assigning an importance to
each region. This "importance" is selected so that particles in a region
of high importance have a higher probability of contributing to the tally.
A particle going from a region of low importance to one of greater im-
portance is split at the boundary between the regions into two or more
particles (the number depends on the ratio of the importinces) with each
new particle having a reduced weight. A particle entering a region of
lesser importance is terminated or "killed" with a probability determined
by the ratio of importances. If the particle survives the Russian
roulette, its weight is increased proportionately.

Figure 2.5 shows an example of splitting planes and importance
regions used with aninfinite slab of thickness T. For problems in which
T iz many mean free paths, splitting and Russian roulette can be very

effective and often lead to several orders of magnitude reduction in
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computer time.

-splitting planes

planar —®™ l
source
l le— tally particles
crossing this
, surface
|

I=Importance

— — e——— —— a—
— — —

Figure 2.5 Splitting Planes in One Dimension

Splitting and Russian roulette can also be used in energy space
for problems in which particular energy regions are more important than

others. An example of "emergy splitting”'“ is the tallying of y235

thermal fission. In this case, one ould separate energy space into
regions which increase in importance as thermal energies are approached

as shown in Figure 2.6.
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I=Importance

U-235 O¢

Energy

Figure 2.6 Energy Splitting

The popularity of the above techniques can be attributed pri-
marily to the ease of their implementation. In most cases only a very
rough guess based on intuition will lead to a large savings in computer
time. Usually the importance regions specified are already geometrically
defined by the problem (different materials, densities, and shapes) and

the user only has to provide the importances.

2.3.2) Other Techniques

A very simple technique commonly used is source biasing’>1*.
In source biasing important particles are produced more frequently but

with reduced weights. An example of source biasing is showm in Figure 2.7.
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particles
crossing this >
surface are lost

thin slab source
[ —tally particles

crossing this

f=2,u=.75 surface

R

w

1O 0 OGS 00D 0.9 0.0.9.0.9.9.9.0:1

r-n‘ —%

w=particle weight
f=frequency of
emission

N

Figure 2.7 Source Biasing

In this example twice as many particles are started to the right as to the

left. However particles to the left have twice as much weight.
Another method used to increase the number of particles in im-
11,14, 30

portant regions is the exponential transform This technique

transforms the transport equation, resulting in the replacement of Zt

by I, - w where w is the direction cosine of the line of flight of the
particle with the preferred line of flight. Figure 2.5 shows the case
where the desired line of flight is the x-axis. The weight of a particle

entering a collision is multiplied by
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— o ~Ows (2.18)

where s is the distance traveled before collision.
A problem in using many importance sampling techniques is that

of choosing near optimum biasing parameters. This is frequeuntlyvy done by

rough calculations or maybe even a few preliminary Monte Carlo calculaticns.

14,20

Another method is to use the solution to the adjoint of the problem

to estimate these parameters. The computation of importance sampling
functions has also been automated by other means.

Other variance reduction techniques include stratified samplingl,
antithetic variatesll, scattering angle biasingzx, method of expected

11,29 32

11, correlated sampling ; and others”“.

values

2.3.3) Variance Reduction Through Learning

In all of the previously mentioned techniques, importance samp-
ling parameters had to be provided prior to the execution of the Monte
Carlo calculations. In this section techniques will be described which
allow the variance reduction technique to improve during operation by
learning from early histories of the calculations.

Spanier9 applies a learning technique to the exponential trans-
form using a one-dimensional slab as an example. The parameter g (see
Section 2.3.2) is optimized by making estimates of <f§(x)> for several

values of o while histories are being generated on the basis of the

31



parameter value &. An @ which minimizes <f§(x)> can then be used in
another iteration as the next &. This process continues until satisfactory
agreement is reached between two stagas. In the examples given three
iterations were sufficient and led to a greatly reduced variance.
MacMillan'® suggests a refinement on Spanier's method involving estimates

of the first and second derivatives of <f§(x)> with respect to & and

using these estimates to improve the approximation of & in going from

one iteration to another.

A multistage self-improving Monte Carlo method!? has been des-
cribed which divides space into volumes V; and assigns each volume a
weight p; where Py determines the amount of sampling for associated Vi,
The Monte Carlo calculation then proceeds in stages after which p; and
V; are altered in such a way as to reduce the variance. This method is
analogous to learning the optimum importances for different geometry
regions only in this case the extent of the regions is variable. For
small probability problems the range of the tally is enlarged to increase
the probability until suitable V4 and p; are learned after which the tally
is reduced to its original specifications. Running times have been re-
duced as much as a factor of 100 using this method over the crude Monte
Carlo'?.

The Spanier and MacMillan techniques are primarily concerned with
the directional variables of a Monte Carlo problem and since they are
based on the exponential transform, they can be unsafe to use. The multi~
stage technique is concerned primarily with spatial variables. Further-
more, this technique has disadvantages when used with Monte Carlo problems
with low probability.
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2.4) Splitting and Russian Roulette in State Space

Consider the general Monte Carlo problem in which particles are

characterized by the following state variables:

~ Spatial coordinates-x,y,and z

=~ Angular coordinates-u,v, and w, where these values are
the cosines of the particle line of flight with the
x,y, and z axis respectively.

~ Energy-E

-~ Time-t

In Section 2.3.1 splitting and Russian Roulette were described primarily
as applied to the spatial coordinates. Independent application was also
mentioned with respect to the energy variable.

Theoretically,it would be quite effective if splitting could be
used in the entire state space. In other words all variables would be
considered to determine which regions in state space are more important
than others. A practical problem arises in determining the importances
of these state space regions. Users have trouble enough with the three
spatial coordinates; the complexity involved in determining splitting
surfaces in eight dimensions would certainly confuse even the most

experienced user.

As has been seen in the previous sections, there is a considerable
amount of information generated during a Monte Carlo calculation which
can be used to accelerate the calculation. However, utilization of this
information can become costly in terms of computer time and storage. In

this research, pattern recognition techniques are used to
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learn these splitting surfaces during the calculations.
Such a technijue would be an improvement over the learning

techniques described in Section 2.3.3 for two reasons:

(1) All state space parameters would be considered, not just

directional or spatial quantities.

(2) The technique is based on the splitting and Russian
roulette techniques which have proven to be the most

popular and useful techniques.

2.5) Effectiveness of Variance Reduction Techniques

Although it is certainly useful in Monte Carlo calculations to
reduce the variance, the primary goal is to reduce the amount of computer
time spent on a calculation. It is quite possible to use variance re-
duction to decrease 0 for a given N but in so doing to increase the time
spent per particle to such an extent that it would be cheaper just to
run more particles. Therefore, the parameter to minimize is the time

required to obtain the desired relative error as given by

tc = NeAte (2.19)
where: N, = number of histories required to obtain
the desired Re (see Equation 2.11)
At, = time spent per neutron history
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Variance reduction techniques decrease Ne but increase Ate. If tc*, Ne*,
and Ate* are the parazeters of a calculation without using variance re-
duction, then the relative effectiveness of a technique can be defined

as

- [ xe‘Lte
F. =

R t o Y *lt &* (2-20)
Cc e Tre

.

It should be recembered that ER is relative to the following factors:

(1) the cozputing machinery being used,

(2) the efficiency of the Monte Carlo calculation without
veriance reduction,

(3) the characteristics of the particular problen under
study and,

{4) the progre-—=ming efficiency used to implement the technique

(i.e., assexzbiy language vs. FORTRPAN etc.).

Of the above, point three is the most important since the effectiveness
of a technique is strongly dependent on the problem to which it is being
applied.

Computer time spent during a calculation is not the only measure
of performance for evaluating variance reduction techniques. Another
parameter is the amount of human effort (and sometimes additional com-
puter time) required to implement a technique. The majority of techuiques

in use require a certain amount of a priori information. Thus the
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implementation of some techniques is an art in itself requiring con-

siderable ingenuity and experience on the part of the user. In addition

some techniques require that calculations be performed in order to deter-

mine importance parameters, etc. Figure 2.8 illustrates the operations

and times required in implementing a variance reduction technique. The

importance attributed to time spent on each of these operations is an ex-

tremely subjective function yet it certainly influences the overall

acceptability of a technique.

Determine
Variance
Reduction
Parameters

l

—
e
problem . Monte Carlo
description . Calculation
—
Variance
Reduction
Calculations

T

Prepare Data
for Variance
Reduction

Calculations

user time
spant

Monte Carlo
Estimate

computer time
spent

user time
spent

Figure 2.8 Implementation of Variance Reduction Techniques
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III. Pattern Recognition

The field of pattern recognition includes an extremely broad range
of topics including engineering applications, artificial intelligence
studies, biological systems, and others. Because of its diffuse appli-
cation, a general theory of pattern recognition is difficult to separate
from its applications. To confuse matters further, it appears that even
the introductery textés’16’22’23’2h’§3’§§ttern recognition do not agree
on a unified framework for describing pattern recognition systems. As
a result, a novice in the field frequently encounters a variety of new
vocabulary words describing types of pattern recognition systems including
such terminology as statistical, parametric, non~parametric, sequential,
distribution free, stochastic, nonsupervised, supervised, error-correcting,
Bayesian, etc.

The purpose of this chapter is not to explain all facets of pattern
recognition to the reader, but only to provide him with the tools nec~
essary to understand how pattern recognition is to be used in this re-
search.

A general pattern recognition system will be explained in Section
3.1 in terms of the basic operations performed. The different types of
pattern classification algorithms will then be classified according to
the type of input data they require . Sections 3.2 and 3.3 describe in
more detail the type of pattern classification algorithms to be used in
this research. Section 3.4 discusses the problem of feature selection

with emphasis on the Monte Carlo transport problem. Finally, Section 3.5

expands the previous explanations to multiclass problems.
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3.1) The General Pattern Recognition Problem

3.1.1) Fundamentals

The primary difficulty with understanding the fundamentals of a
pattern recognition system is due to the terminology used. This section
introduces pattern recognition terminology by relating the concepts to

the simple example of weather prediction as given below:

Example. Given the following information -
(1) barometric pressure,
(2) temperature, and |

(3) percent cloud coverage,

predict whether it will
(1) rain, or

(2) not rain.

The input ~ output relationship of a system to perform this task is showm

in Figure 3.1.

Input Output

Pressure e——— o Weather
Temperature —_— PrEdlftlon e Rain or
System No Rain

Cloud Coverage ~

Figure 3.1 Input-Output Model of Weather Prediction
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A coordinate system defined by the input variables of Figure 3.1

is shown in Figure 3.2

x3 = cloud coverage

(XlaXZsXB)

X; = pressure

Xp= temperature

Figure 3.2 Pattern Space

and is referred to as pattern space. The vector drawn from the origin of

pattern space to the point (xl,xz,x3) in Figure 3.2 is called the pattern

vecter and in this dissertation will be designated by
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vhere R is the dimension of pattern space (R=3 for the example shown in
Figure 3.2). The purpose of the pattern recognition system in this ex~
ample is to divide pattern space into two regions: (1) those X which

indicate rain and (2) those X which indicate no rain. The options rain

and no rain are called classes and are referred to as Cl and C2 where

C, = rain and
Cz = no rain.

In general, the purpose of a pattern recognition system is to classify
attern vectors into their appropriate classes Cy,Cs,....,Cy where K is
p P 1s%2» K

the number of classes (see Figure 3.3).

Pattern Vector, X : Classification
X TF
X2 Pattern
. —> Recognition S Ck =l,... K
. . System
* .
R g

Figure 3.3 Input-Qutput Model of a Pattern Recognition System

The structure of a pattern recognition system can often be sim-

plified if pattern space is transformed into a more efficient configuration.
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For instance, if in the weather prediction example,it is found that the
temperature is of no value for predicting rain (i.e. there is no correla-
tion between temperature and rain) and that the probability of rain in-
creases in proportion to the square of the percent cloud cover, then it

would be more efficient to use the coordinate system shown in Figure 3.4.

Yo = (x3)2= (cloud coverage)2

(Yl ,yz)

¥y = X; = pressure

Figure 3.4 Feature Space

This new coordinate system is referred to as feature space. The vector from

the origin of feature space to the point (y;,yj) is called the feature

vector and in this dissertation is designated by




where N is the dimensionality of feature space. The process of trans-

forming a pattern vector into a feature vector is called feature selecticen®.

The input - output relationship of a feature selector is shown in Figure

3.5 vhere in general <R,

Pattern Vector, X Feature Vector, Y

*1 ® > 1
x Yeature

2" —— Y7
. . Selector . .
 — e

Figure 3.5 Feature Selection

The feature selection operztion is highly problem dependent and will be
discussed further in Section 3.4.

The operation of classifying the feature vecter into classes

Cl’CZ""’CK is called pattern classification. Thus the pattern recog-

nition system consists of two major components: feature selection and

pattern classification (see Figure 3.6).

* In this dissertation any cperation performed on the pattern vector prior

to classificaticn is considered to be a feature selection operation.
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Figure 3.6 A Pattern Recogniticn Svstem
Given functions 3. (Y), k=1,2,...,K, of the feature vector, Y,
such that

(¥) > g, (¥) i=1,2,....,K  ifk (3.1)

[N
&)
00

then Y is placed in clzss C, by the pattern classifier. The function gk(Y)
K

If K=2,as in the wveather fore-

=N

c

funeticn o

rr

K

is called the discrizinan
casting example, a discriminant functicn 8, 2(Y) can be defined such
?

that
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g1,2(1) = g, (1) - g (V) . (3.2)

In this case,

if gl,z(Y) > 0, then Y belongs to Cp (3.3)

if 81,2(Y) < 0, then Y belongs to Cy .

The surface for which

g (1) = g; (V) k=1,2,....K (3.4)

is called the decision surface between Cj and Cj. The decision surfaces

separate feature space into K regions. The Y's in each region belong to

the same class., For a two class problem the decision surface is given by

81,21 =0 . (3.5)
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Such a surface (a line in this case) is shown in Figure 3.7 for the

weather forecasting example.,

81,2(Y) = discriminant
function

Y1

g1,2(Y) = 0
decision surface

Figure 3.7 Decision Surface

The previous discussion is concerned with how features are

classified and is true for pattern classifiers in general. How-
ever, before the classifier can operate, the form of the discrimi-

nant functions, gk(Y), must be known. How the gk(Y) are arrived
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at for different pattern classifiers is the subject of the next

section.

3.1.2) Types of Pattern Classifiers

Every feature vector has associated with it a probability of be-
longing to a given class. This probability will be denoted by P(CiIY)
which is the probability that feature vector Y belongs to class Cj. For

a two-class problem, if one class can be uniquely associated with each

pattern such that

(3.6)

I
(=]

if p(Cy[Y) > O then p(Cy|Y) =

[
o

if p(Cy|Y) > O then p(Cy|Y) =

then the classes are said to be non-overlapping. If patterns can belong
to one class sometimes and the other class at other times, the classes are
said to be overlapping. Examples of these two different types of dis-

tributions are shown in Figure 3.8 using the weather prediction example.
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y rain y
2 rain sometimes 2

rain
no rain
no rain
Y1 Yy
(a) Overlapping (b) Non-Overlapping

Figure 3.8 Overlapping and Non-Overlapping Classes

Classifier input data and the schemes they require can be separated
into different cases depending on what is known about P(CilY) and the in-
27
put data . There are basically four types of information of which one or

more may be available to the classifier. These information types are?’:

(1) Functional form of p(Ci,Y) is known. For example it may be
known that both p(C;|Y) and p(Cy| Y) are Gaussian but with

unknown means and variances.

(2) Parameters of p(Ci'Y) are known. Parameters include the

mean, variance, etc.

(3) Sample pattern vectors with known classification are given.

Each pattern vector with its classification is called a pro-

totype. These prototypes serve as a training set for the classi-
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(4) Sample pattern vectors of unknown classification are given.

Depending on which of the above information is available, six major kinds

. . 27
of pattern classifiers can be defined” .

(1) Case A: Information types 1 and 2 are given

(2) Case B: Information types 1 and 3 are given

(3) Case C: Information types 1 and 4 are given

(4) Case D:; Information type 3 is given,Deterministic methods
are used

(5) Case E: Informaticn type 3 is given, Statistical methods
are used

(6) Case F: Information type 4 is given

In Case A all the in*ormation required to make an analytical solu-
tion for g(Y) is known. In Case B the classified Y's must be used to make
an approximation of the required parameters after which the classifier
becomes a Case A. Cases C and F are often referred to as '"learning without
a teacher" or unsupervised learning'® and usually consist of a type of
clustering technique.l6

In Case D the basic idea is to find a g(¥Y) which operates "satis-
factorily" on the samples of known classification. This type of approach,
sometimes referred to as "distribution free"ls:liakes no assumptions con-
cerning the p(CiIY). Instead the data is assumed to be separable by a
given form of g(Y), i.e., linear, quadratic, etc. One drawback of such an
approach is that it places an additional burden on the feature selector

in order to produce feature vectors which satisfy the assumptions made on

g(¥).
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Case E consists of using statistical techniques tc minimize classi-
fication errors. These techniques are theoretically more useful for over-
lapping data since they allow for the existence of error. Frequently in

the statistical approach P(CilY) is expanded in a series?®

J
p(Ci|Y) = Zaij $5(V), i=1,2 (3.7)

jz

where the aij's are approximated by using prototypes. A simpler approach
is similar to the deterministic approach and consists of assuming a form
for g(Y)%8 However, unlike the deterministic classifier, the input data
need not conform to the assumptions made on g(Y) since in this case g(Y)

is approximated by the statistical behavior of the data in order to mini-
mize the number of misclassifications.

Classification techniques for Cases B through F can be further
characterized as sequential23 or non-sequential techniquesls. In sequential
techniques the prototypes are presented one at a time and approximatioms
are made concerning g(Y) or p(CilY) as each prototype is presented. In
non-sequential techniques a finite number of prototypes 1is presented at
once to the classifier and an optimum g(Y) or P(CiIY) is fitted to these
prototypes.

In summary, the selection of a pattern classification scheme
depends upon the information available (Cases A-F), whether the
p(CiIY) are overlapping, and the manner in which the prototypes are pre-

senced (sequential or non-sequential). Because of the characceristics
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of Monte Carlo problems,only Case D and E classifiers will be investigated
in this study. A more detailed description of these classifiers using

sequential learning methods is presented in Sections 3.2 and 3.3.

3.2) Sequential Deterministic Classification Techniques (Case D)

In this section several deterministic techniques are described for
classifying patterns when prototypes of known classification are presented
sequentially. This approach consists of assuming a form for g(Y) and
using the prototypes to learn the necessary parameters. Two class problems
(K=2) are assumed resulting in 2 single discriminant function g(Y)Egl,z(Y)

(see Equation 3.2).

3.2.1) Linear Discriminant Functions

The general form of a linear discriminant function for N dimen-

sional feature space is given by

g(¥) = wyy; + wayp + ...... wyYy * oWl = Wlyx (3.8)
1 (Wl
Y2 2
where Y* = . , W=
N
1 W
- i N+H
W= the transpose of W

50



and the vector W (the weizht vector) must be obtained from information

[}

contained in the prototypes. The vector Y* is called the augmented16

feature vector znd is of dimensicn X+1. The use of g(Y) as given by

Equaticen 3.8 assumes that feature space is linearly separgble. For two-
dimensional featuve space this means that all feature vectors belonging

to C; can be separated by a linear decision surface (a straight line for N=2)
from all feature vectors belonging to C,. Figure 3.9 illustrates linearly
and non-linearly separable feature vectors. Note that for the lirearly
separable data shown (Figure 3.92), there 1is an infinite number of de-
cision surfzces which satisfactorily sepearate feature space. For the datsz
of Figure 3.9b there is nc linear g(Y)=0 that will separate the classes.

The cocrdinate systen created oy the components of the weight vec-

‘-
4

- . . - . . 15 .
tor, W (see Equztion 3.8), is referred to as weight space zind is frequently
used to explezin the behavier of deterministic classifiers. Weight space
for two-dimensional feature space is shown in Figure 3.10,where the vector

it

from the origin to the point (w;,wy,w3) is called the weight vector.

should be noted that weight space is of dimension M1 when feature space

is of dimension N.

Consider the one-dimensional feature space shown in Figure 3.11

vhere

if -5<y <3 y belongs to Cq

if 10 <y <15 vy belongs to C, .
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Figure 3.9 Linearly and Non-Linearly Separable Classes
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(Wl »Wo ,W3)

Weight Vector = W

w1
Y3
Figure 3.10 Weight Space
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Figure 3.11 One Dimensional Feature Space
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If a decision surface is located at point y', then for this example

g(Y) = 0 =wy' +wy

and

Wy = —wly' . (3.9)

1ss1¢
The surface given by Equation 3.9 is called a pattern hvperplane in weight

space and divides weight space into two regions: (1} that region for

which g=(wly‘+v2)> 0 znd (2) that region for which g=(wly'+w2)< 0. Pattern
hyperplanes for y'=2,3, and 10 are shown in Figure 3.12 where the + and -
signs indicate the sign of g on the different sides of the hyperplane.

o

Tbz shaded region of Figure 3.12 is that region of weight space for which

g>0 if y! 2_10
and

g<0 if y' < 3

54



pattern
hyperplanes -

-10

WA

Solution Region

Figure 3.12 Pattern Hyperplanes in Weight Space
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and is called the solution region. Any W in the solution region results
£ y g

in a discriminant function which satisfies Equation 3.3,

Tlie training of a linear classifier consists of first guessing
en initial weight vector, wl. The classifier is then presented with
prototypes, Y;, of known classification. If g(Y;) gives the correct

clzssification for Yi, Wis unchanged. If g(Yi) gives the incorrect

. 15
clzssification then W is corrected as follous:

if g(¥y) >0 and Y; belongs to C (3.10)

T, = /.=cY%
1'1‘!‘1 "ll C&.i

if g(Y3) <0 and Y; belongs to C,

Wiqp = Wyteyd

where ¢>0

The effect of the above procedure may be varied depending on the value
of ¢, the correction increment. The above scheme will always move W in

a direction normal to the pattern hyperplane®*. The size of c determines

16

< .
how far the W is moved. Three rules'®s commonly used to determine

the vealue of ¢ are:

*w 1s moved along the direction of the vector ("1+1‘“ )—_cl The
equation for all h)perplhnes perpendicular to the vector (‘c\l) is

K. (zeYs ) =r; or W.Yj=rj vhere r; and ry can be any scalar values?®,

Kow cver, the equation of the h)pern ane corresponding to the prototype
Yy is W- 1=0- Thercefore, using rZ—O W7 is moved normal to the pattern
hyperplane in weight space.
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)

(2)

3)

Fixed Increment Rule: ¢ is taken to be any fixed increment

greater than zero. In this case the weight adjustment may
or may not correct the misclassification of the prototype,
depending on the value of W-Y* in relation to c.

Absolute Correction Rule: c¢ is the smallest integer greater

than |W-Y*|/ Y*.Y*. Thus after one adjustment with this

rule W will be on the correct side of the pa.tern hyperplane.

Fractional Correction Rule: c¢ is chosen such that W is moved

a fractional distance, A, towards the pattern hyperplane.
The distance from the weight vector W to the pattern hyper-

plane defined by Y is given by

W Y*
D= lIY*li = JfézTJ (3.11)

Therefore, using

’wi+1‘wil= C,Y*’ = AD

c is given by

AD MeD!
€= Tex] T JyxevE| (3.12)
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If A >1, W;4y will be on the correct side of the hyperplane. Throughout

this study A will be referred to as the learning parameter since it con-

trols the rate of learning by the classifier. Figure 3.13 illustrates the
behavior of these thrce rules using the problem illustrated in Figure 3.11
and the following prototypes (prototypes are presented to the classifier

in the order presented below)

(1) y=-2 and belongs to C;

]

@) vy

3) vy

10 and belongs to Cy

2 and belongs to C3

Figure 3.13 Example of the Fixed Increment, Absolute Correction, and
Fractional Correction Rules
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The X:5Yy and z, are the positions of W after the i'th prototype has been
presented using the fixed increment (c=1), absolute correction, and frac-

tional correction rules (A=1) respectively.

3.2.2) Quadratic Discriminant Functions

The general form of a quadratic discriminant function for a two

class problem with N dimensional feature vectors is given by

A quadratic discriminant function has M=(N+1) (N+2)/2 weights. This type
of g(Y) can be treated in exactly the same manner as the linear g(Y) if
the feature vector is first operated on by a "quadric processor"!'® as
shown in Figure 3.14. The quadric processor behaves as a feature selez-
tor except that the dimensionality of the data is increased from N to M
instead of decreased. The same techniques described in Section 3.2.1
can be used to learn the W vector corresponding to g(F). This same

procedure can also be performed for any g(Y) which depends linearly on

the W]sWoeoo Wy resulting in
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Figure 3.14 Quadratic Discriminant Functions

g(Y) = wlfl(Y) + wsz(Y) + ... + waM(Y) + Vel

Such a g(Y) is frequently referred to as a ¢ function’S.

3.3) Sequential Statistical Classification Techniques (Case E)

The main incentive for using a statistical approach in pattern

classification is that many processes can best be characterized in

statistical terms. It is also often desirable to evaluate a pattern

classifier in terms of its statistical performance. The statistical
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classifier investigated in this research is similar to the deterministic
classifier described in Section 3.2 in that a form of g(Y) is assumed
(i.e. g(¥Y)=f(4,Y)). The following notation will be used when referring

to the statistical nature of pattern classifiers:

p(YICi) = the probability density function of those vectors
Y which belong to Ci
P(Ci) = the probability of class Ci occurring (P(Cl)+P(C2)=l)
p(¥) = p(YICl)P(Cl)+p(YIC2)P(C2) = the probability density
of Y
p(CiIY) = p(Y|Ci)P(Ci)/p(Y) = the probability of the vector

Y belonging to class Ci'

3.3.1) Linear Discriminant Functions

In Section 3.2.1 the feature vectors were assumed to be linearly
separable. By use of statistical techniques, linecar discriminant func-
tions (i.e. g(Y)=W:Y*) can be used with non-linearly separable data in
a least error sense.

Let the function S(N,Y,Cilck) be defined as the loss incurred!®
when a pattern or feature vector, Y, actually belonging to class Cy, is
placed in class Ci (note that S is a function of the weight vector W).

A vector Y is said to belong to class Ck if

61



P(C|Y) > p(Cs M) for iZk.

This loss function provides a means of weighing specific classification
errors more heavily than others. For example the distance from a mis-

classified prototype to the decision surface (see Figure 3.15) as given

by

a@,y) = Jﬁ%_ii (3.13)

2=location
Of CZY

1=location

Figure 3.15 Misclassification Distance

where W' is the weight vector W with w_,.=0, is frequently used as a loss

N+1

function?® which for two classes results in
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S(W,Y,Cq[Cy) = 5(d,Cq]C,) = d(W,Y),

S(W,Y,Cy[C) = s(d,Cylc;) =0,

S(W,Y,Cy[Cy) = 5(d,C,[C,) = 0, and

S(W,Y,Czlcl) S(d,C2[C1) = d(W,Y), (3.14)

The variable d is frequently referred to as the "misclassification

distance'"?® and should not be confused with the distance, D, as given

by Equation 3.11. The average loss!® L(W,Y,C;) as given by
i

L(W,Y,C3) = S(W,Y,C;[C)p(Cy|¥) (3.15)

can be interpreted as the average S(W,Y,CiICk) associated with vector Y
and class Ci' If L(W,Y,Ci) is integrated over all feature space, the

result is the risk'® associated with each class:

R(W,C.) =./r£(W,Y,Ci)p(Y)dY i=1,2
* k=1,2
i#k
R(W,C;) = _/g(w,Y,ci|ck)p(cily)p(y)dy ' (3.16)



The total risk in the classification problem is the sum of the risks

involved in each class:

R(W) = R(W,Cl) + R(W,Cz) (3.17)

The purpose of the pattern classifier is to minimize the risk with re-
spect to W. Assuming R(W) is differentiable and has a global minimum

with respect to W, the optimum W is the solution of VR(W)=0. However,

as seen by

VR(W) = VJ p(¥)L(W,Y,C,)dY + q/;(Y)L(w,Y,cz)dY (3.18)

P(Cy) p(Y[Cl)VS(W,Y,CliCZ)dY

+ P(Cy) p(chz)Vs(w,Y,czlcl)dY,

this requires that p(YlCi) be known. This problem can be alleviated if

R(W) is approximated by a summation over prototypes

2 Ny
Rw) = E L E S(W,Y5,C. [ C, ) i=1,2 (3.19)
My n’ ik k=1,2
k=1 n=1 ,

k#i
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I

no. of prototypes in class Cy

where Mk

YE = nth misclassified prototype of class k
Nk = number of misclassified prototypes in C}

rather than an integration over densities. Using this approximation for

R(W), W can be incremented proportional to the negative of YK(W) as given

by

if g(Yi) > 0 and Y, belongs to Cy (3.20)

or

if g(Yi)-< 0 and Yi belongs to C2

then
W =W - AV B(W)
— -
9
Swl
V= | 9
9
3wN+l
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where M\ is a proportionality constant or learning parameter similar to

the X described in Section 3.2.1 and

2 Ng
5y o _5_; 1 _s_ k 3
VR(W) = = vs{w,Y ,C.|C,) i=1,2 (3.21)
Mk n*"i! Tk .
k=1 n=1 k=1,2
k#i

3.3.2) Quadratic Discriminant Functions

Quadratic discriminant functions using statistical techniques are
treated the same as linear discriminant functions except that the feature

vector is first processed by the quadric processor described in Section

3.2.2,

3.4) Feature Selection

The objective of feature selection is to retain that information
necessary for classification and to eliminate that information which is
not. Feature selection often results in greatly reducing the demands on the
classifier. For example,a feature selector may process non-linearly

separable data into linearly separable data as shown in Figure 3.16.
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Figure 3.16 Linearization by Feature Selection

Unfortunately, the operation of feature selecticn is far less
defined mathematicalily than that of pattern classification. Although a
human can implement feature selection with ease, the techniques used are
heuristic in nature and usually highly problem depeandent. At the present
time, selection decisiong trivial to a human may take a great deal of
effort to model and even then may take a large amount of computer time to
implement. Thus this research will rely upon the heuristic techniques of

the user to supply the feature selection process.
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The pattern space of a particle transport problem consists at most

of eight basic parameters:

- three position parameters (x,y,z)

three angular parameters#x (u,v,w)

energy (E)

time (t)

Certainly,if a problem independent of time is under investigatiom it is
much easier for the human user to remove t from feature space than it is
for a computer based selection system to recognize that there is no cor-
relation between time and classification. Another case is a problem in-
volving spherical symmetry in the geometry in which three variables

25,2 2).

(x,y,z) can be replaced by one, r{ r= x“4+y“+z This not only reduces

the dimensionality of the problem but can also linearize the feature
space. Such a substitution is easily specified by the user but would

take numerous operations tc recognize computationally.

3.5) Multiclass Problems

The previous sections have considered pattern recognition prob-
lems involving two classes. In this research discriminant functions are

learned for two classes at a time* resulting in a single discriminant

finction for classes i and i+l (see Equation 3.2)

# The reasoun for this will become apparent in Chapter V.

*% Only two of the angular parameters are independent.
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g ¥) = gi+l(Y) - gi(Y) i=1,...,J-1 (3.22)

i,i+l

where J is the total number of classes. These classes are ordered such

that

if Y) <0
g 1W<,
then Y must belong to a class Cj where j=1,...,1i

then . must belong to a class Cj where j=i+l,...,J

Because of this characteristic, the class of a prototype can be deter-

mined as shown by the flow diagram in Figure 3.17.
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i=0
i=i+1 inJi—
0
0
Class=C,

Figure 3.17 Multi-Class Problems
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IV. Recognition of Splitting Surfaces

In Section 2.4 splitting in state space was described and it
was suggested that pattern recognition be used for the identification
of the splitting surfaces. It is the purpose of this chapter tu de-
scribe how pattern recognition can be implemented and to investigate
the performance of the technique.

Since the purpose of this dissertation is to demonstrate proof
of principle, the technique is not applied to a general purpose Monte
Carlo code. The Monte Carlo problems investigated in this research
have been chosen for their simplicity and their minimal use of computer
time. These sample problems include: (1) a one-dimensional one-
region homogeneous slab, (2) a one-dimensional multi-region slab,
and (3) a two-dimensional, multi-region slab. These problems illustrate
the basic treatment of distance and direction variables in a Monte
Carlo problem.

This chapter is concerned only with the laarning of the split-
ting surface. A description of how to use the splitting surface and
what surfaces are desirable as splitting surfaces is given in Chapter V.

Section 4.1 describes in general how pattern recognition is
used to identify splittirg surfaces. In Section 4.2 both deterministic
(see Section 3.2) and statistical (see Section 3.3) classifiers are
used to identify splitting surfaces for a one-region slab Monte Carlo
problem and studies are made to determine: (1) the effects of slab

thickness and class overlapping, (2) the improvement due to the use of
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buffer zones,(3) the best choice of a loss function (see Section 3.3.1)
for the statistical classifier, (4) computer time spent for pattern
recognition, and (5) the sensitivity of the classifiers to the learning
parameter A. In Section 4.3 the same classifiers developed in

Section 4.2 are used to identify surfaces for multi-region problems
and again the sensitivity to A is investigated. Section 4.3 also in-
cludes a study of the sensitivity of the classifiers to the selection
of initial conditions (i.e., the initial guess for W). Section 4.4
increases the pattern space to two dimensions, distance and angle,
thus requiring ncrmalization of the feature vector. Studies of the
learning parameter and initial conditions are then repeated for the
two-dimensional problem. Section 4.5 summarizes the results of the

chapter.

4,1) Basic Principles

The purpose of this section is to relate the pattern recogni-
tion system described in Chapter III to the problem of identifying
Monte Carlo splitting surfaces as described in Chapter II.

In Section 3.1.2, the concept of "prototypes” or "training
sets'" was introduced. This concept is very important in this research

and is discussed with respect to Monte Carlo calculations in Section

4.1.1.

Althcugh feature selection is not discussed until Chapter V,
Section 4.1.2 does describe how feature selection relates to the simple

Monte Carlo problems of this chapter.
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Two pattern classification systems are investigated in this
chapter: (1) the Case D deterministic classifier using . fractional
correctior rule (see Section 3.2) and (2) the Case E statistical
classifier (see Section 3.3). The structure of these classifiers and
the operations performed for learning a splitting surface are described
in Section 4.1.3.

In Chapter III, the term "learning parameter"” was introduced
for both deterministic and statistical classifiers. This parameter,

A, plays an important role in this research. Its importance is ex-
plained in Section 4.1.4.

In order to evaluate different classifiers and classifier

parameters, one must be able o measure the performance of the classi~-

fier. The performance measures used in this dissertation are described

in Section 4.1.5.

4,1.1) Prototypes from Monte Carlo Calculations

Prototﬁﬁes were described in Section 3.1.2 as being pattern
vectors with known classification. The prototypes allow Case B, D,
and F classifiers to learn a diseriminant function, g(¥), (see Section
3.1.1) which is necessary before classification can take place.

In Section 3.14 it was stated that for the general Monte Carle
problem pattern space consists of 8 variables:

- three position parameters (%,V,z)

- three direction parameters (u,v,w)
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- energy (E)

- time (t)
As a particle travels through a material region, it undergoes numerous
collisions. At each collision point a new set of (x,y,z,u,v,w,E,t) is
calculated for the particle (see Appendix A). This new set of values
consists of a point in state space (see Section 2.4) and can be repre-

sented by the state space vector X as given by

ol

«

jrtHme<en

This vector X is also a pattern vector; therefore,

state space vector = pattern vector
and

state space T pattern space.

Thus pattern vectors are created in a Monte Carlo problem wherever a
particle undergoes a collision.

Before the pattern vectors can be used as prototypes, their
classification must be known. In Section 3.5 it was stated that
discriminant functions are learned for two classes at a time. There~
fore, before the pattern vector, X, can be used as a prototype, it must
be known to which class, Ci(i==1,2), the vector belongs. This is domne

by introducing the concept of "importance'.
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In this research the importance of the vector X in state space
is defined as the average contribution to the tally by particles which
pass through X divided by the average weight (see Section 2.2) that
particles have at X. If the importance were known for all X, there
would be little reason to solve the Monte Carlo problem since the aver-
age importance of the source particles would be equivalent to the
desired tally., Therefore, only approximations to the importance as
defined above will be used. The approximation to the importance at X

of a single particle passing through X is given by

N _ T
I(X) = T (4.1)
where T = the contribution of the particle to the tally

Wt(X) = the weight of the particle when it existed at X.

Using Equation 4.1 for the importance, one can classify the pattern

vector X as follows:

if I(X)<I, X belongs to c, (4.2)

if I(X)>T, X belongs to C2 s
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where T is an importance which is used to discriminate between Cl and
C2 (I will be discussed later).

Thus prototypes, X, are created at collision points with their
classification determined by Equation 4.2. The following example il-

lustrates the creation of prototypes.

Example: Consider the problem of the one-~dimensional homogene-
ous slab shown in Figure 4.1 with a unidirectional source at x=0
and a tally of particles as they cross the surface at x=L. A
single particle is shown traversing the slab and undergoing five
collisions before it is tallied. The absorption probability at
each collision is .2; thus, the weight of the particle is multi=~
plied by .8 at each collision. When the particle is tallied
approximations of the importances at the various collision points

can be found by

N o We(L)
1) = Wt(x) *

where I(x) = importance of a particle at x
We(l) = tally contribution of the particle=
weight of the particle at x=L, and
Wt (x) = weight of the particle at x.
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The values of I(x) for the five collisions shown in Figure 4.1

are given in Table 4.1. If 1=.75, the pattern vectors are

classified as shown in Table 4.1.

\/\

<t— Unidirectional Tally across =
Source at x=0 this Surface

We=1 =.8 =,064 =.51 =,41 =.33

o\ N AN N\ rar 1y

Xi=.33

it =.15 =,3 =,5 =,75 =.90

L

x=0 \/\ x=L

Figure 4.1 Prototypes from a One-dimensional Slab Monte Carlc Problem
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4.1.2) Feature Selection

Sections 4.2 and 4.3 use one dimensional slab Monte Carlo
problem and thus pattern space consists of the single variable x, where
x 1s the distance from the source (see Figure 4.1). For this problem

feature space will be the same as pattern space; thus

The two dimensional problem of Section 4.4 will be treated

similariy. In this case

-
1
H

<
]
[}

Table 4.1 Prototypes for Problem Illustrated in
Figure 4.1 and I=.75

X

L Wt (x I(x) _i
.15 .8 .41 1
.30 .64 .51 1
.50 .51 .64 1
.75 .41 .8 2
.90 .33 1.0 2
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where ¢ will be defined in Section 4.4. Some experiments are also made

in Section 4.4. for which X#Y.

4.1.3) The Pattern Classifier

The classifiers used in this research assume a linear form for
g(Y) as described in Sections 3.2.1 and 3.3.1 and operate in two
stages:
(1) prototypes are used to learn the weight vector W for the
linear discriminant function g(Y) =W+ Y* (see Equation 3.8)
(2) the discriminant function g(Y) is used to classify the
feature vector Y where Y is of unknown classification.
This chapter is concerned only with the first operation. The second
operation is discussed in Chapter V.
The learning of the weight vector, W, consists of:
(1) selecting an initial value of W and
(2) 1incrementing W (using Equations 3.10 and 3.20) whenever
a prototype belonging to class Ci (as determined by
Equation 4.2) is classified into Cj (j#1) as determined
by the sign of g(W).
The sensitivity of the classifier to the initial selection of W is
investigated in Section 4.3.1.
The incrementing of W is the major operation of the learning
process. The classification of a feature vector according to Equation

4.2 is referred to as the "teacher". The classification according to
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the pattern classifier is determined by Equation 3.3 which is repeated

here as
it g(¥)<0 Ybﬂm@stocl
if g(¥) >0 Y belongs to ¢,

The classification according to Equation 3.3 is referred to as the
"student". Thus whenever the student disagrees with the teacher, the
student is corrected by adjusting W. This process continues until the
agreement between student and teacher meets some threshold value., At
this point the classifier has learned the desired V.

The intersection of the discriminant function g(Y) with state
space 1s called the decision surface (see Section 3.1.1) and is given
by g(¥) =0. This surface separates state space into two regions:

(1) X for which g(¥)> 0 and {2) X for which g{Y)<0. Since this 1s the

purpose of a splitting surface, it follows that

decision surface = splitting surface.

These two terms will be used interchangeably throughout the remainder

of this dissertation.

80



4.1.%4) The Learning Parameter, )

The weight adjustment algorithm using the deterministic classi-

fier znd the fracticnal correction rule is given by (see Equations 3.10

.4
1
-
i
5 t
“
0

i+l

For the statistical classiiier the adjustment algorithm is given by

n both cases the azocunt of the adjustment of wi is determined by the

learning parezmeter, X.

khen a pattern claszifier is presented with overlapping distri-
butions* (see Section 3.1.2), the selection of an optimum A becores
Before usinz the adjustment algorithims, the classi-

quite ccmplex.

fier —ust be tcld te which class a feature vector belongs.

2 produced by Monte Czrlo will be overlapping since the proto-

assificaticn is determined by Equation 4.2 and I(X) is cnly

e estinate of the true value of the importance at X. Over-
will be discussed further in Section 4.2.

*
e
-
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2]
o
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m Hld

@
u
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When Y can belong to either class with probability p(Cl]Y) and p(CZIY)

(see Section 3.1.2) the classifier should be told

if p(CllY) >p(CZ!Y) Y belongs to Cl

if p(CzlY) >p(clfY) Y belongs to G,

In this research tue p(Ciff) are unknown. As a result, when the classi-

fier is told that Y belongs to C2’ it may be that

p(C, D) >p(c,[V) .

In such a case, the classifier should not adjust the weights if g(V)<O0,
since it is the prototype classification that is wrong, not the classi-
fier. However, since the p(Ci|Y) are not known, it is impossible to

determine which classification is right.

As the confidence in a prototype's classification becomes small,

i.e, as

p(C;]|¥) > .5 and p(CzlY) +.5
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a smaller value of A should be used than when the confidence becomes

great, i.e., as

p(ci[Y)-»1 i=1 or 2

Thus, it would be beneficial to use a A that is a function of

AY) =1 - |p(c, |V - plc, D]

which is not possible since A(Y) is unknown. If the average value of

A(Y) is known for a problem as given by

_ Iaqwyay

A Tdy

a "semi-optimal" constant A can be chosen for each problem such that
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For Monte Carlo problems, the value of K is not known. There~
fore a single A must be used for all problems which from the above
discussion is definitely sub-optimal. One of the purposes of this dis-
sertation is to determine the sensitivity of classifier performance to

A so that a suitable A can be chosen for a large range of problems.

4.1.5) Classifier Performance

Two parameters are used in this dissertation to measure the

performance of the various classifiers: misclassification rate and

variability. In addition the classifiers are timed in order to esti-
mate how much computer time is spent in learning a splitting surface.
A prototype is sgaid to be misclassified if the student disagrees

with the teacher (see Section 4.1.3). This can be summarized as fol-

lows:

if I(Y)<T and g(Y) >0
or

if I(Y¥)>T and g(Y) <0 |

then the prototype Y has been misclassified. The misclassification

rate used in this dissertation is given by
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N, + XN

_ 1 2
Rec ™ M T,
where Ni = number of prototypes belonging to Ci (accorcing to

the teacher) that are nisclassified into Cj (i#j)ard
Mi = number of prototypes belonging to Ci (according to
the teacher),

It is important to note that the above misclassification rate is that

seen by the teacher. Because of this the misclassification rate can

never be lowver thzn the misclassification rate of the teacher. Therefcre,

a prcolem in which the class distributions, p(CiIY), overlap by 307 will
never have a misclassification rate below .3. Similarly a problea in which
the p(Ci[Y) have no overlap can theoretically have a misclassification rate
of zero. Because of the Monte Carlo problem dependence of the misclas-
sification rate znother parameter, the variability, is used to measure
performance.

The variability is a measure of the amount of fluctuation of

the decision surface. The decision surface after the j'th prototype

for the one dimensionzl problem is given by

-wz

i+ Wy §41
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where Sl the initial selection of the decision surface

w = the i'th component of the weight vector Wj+1 that

1341
exists after the j'th prototype

the initial selection of W

=
1]

The mean value of the decision surface after J prototypes is given by

The variability of the decision surface as used in this dissertation

is given by

1/2

1
n] =
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The variability can be thought of as the relative error of the
decision surface. As the decision surface converges the variability
decreases. The variability of the statistical classifier approaches
zero; howsver, as will be seen, this is not true for the deterministic
classifier,

The misclassification rate and variability can also be used by
the classifier to determine when a decision surface has been learned.
This can be done by first setting a threshold on the misclassification
rate and variability. Once the misclassification rate threshold has
been reached, the classifier continues until! the variability threshold
is reached. The values to use as thresholds will require experience
with a general purpose Monte Carlo code; however, an indication of
those values is given in this research.

Because the purpose of using pattern recognition is to save
computer time, it is important to know how much computer time is used
by the classifier to learn a splitting surface. This is dore in this
research by using the timing routine described in Reference 36. It
should be noted that the FORTRAN programming used in this research is
in no way optimized. Therefore, the timing data should be considered
as an upper limit to the values that could be obtained using optimized
FORTRAN or assembly language programming. It is also important to
realize that the relative difference between timing values for differ-
ent operations, quoted in this research could also change depending on
the programming used. Thus when i: is stated that operation x is
quicker than operation y, it should be remembered that this is relative

to the programming techniques used in this research.
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4.2 One-Dimensional Cre-PRegion Slat

The Monte Carlo problem used in this section consis*s of calcu-
lating the transmission probability through a homoseneous slab of
thickness L (see Figure 4.2). At each collision the particle's weieht
is reduced by the absorption probability and then allowed to continue
in the forward direction only. The computer code for this problem is

shown in Appendix C. The analytical solutions for the transmission

probability to x and the importance at x are ¢iven by

TP = e-Zax and (4.2a)

I=elall—%) (4.2b)

Figure 4.3 shows the distribution of importances obtained from
Monte Carlo runs of 200 particles for various thickness slabs and
macroscopic cross sections of Et==.5 and ES==.4. The discrete behavior
of this distribution can be attributed to the fact that only an integer

number of collisions can occur resulting in importances given by

I(x) = (.8)" (4.3)
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Figure 4.2 The One=Dimensional, One-Region, Homogencous Slab

wvhere n is the number of collisions a particle has undergone between

the time It leaves x and is tallied. Because these importance distri-
butions are unknown prior to the beginning of a Monte Carlo calculation,
the mean or median must be learned during the initial staees of the

run. This value can then be used as the I mentioned in Section &.1.

RBefore applying pattern recognition it is helpful to observe
the probability densities, p(Ci]Y), of the two classes separated by 1.
These densities are shown in Figure 4.4 for several thickness slabs

using the mean importance for T and cross sections of Et= .5 and

89



06

.
[ ol

.
L

Probapility
~N

.1
0. |_._.__Jl_‘ 1
0. .2 04 .6 !9 ll
Inportance
(3) L=$ (me¢ian=.8, mean=.787)
.06 -
oy
=
3,04 N
[
=1
[+]
[
o
.02 i o
0. l { ]
0. .2 A .6 .8 1.
Inportance
{c) L=25 {median=,2621,necanw, 367
Figure 4.3

20 T [ 1 1
.15 I~ "
)
wd
()
-l
2,10~ .
Bal
[2]
LY
Fa
05 l ‘ =
o. A Ll “ 1 1 1
.0 2 b .0 .8 1.
Importance
(b) L=10 (median=. 64 ,mean=,632)
.20 T 1 T |
015 " p
>
o
-l
~
210 -
L]
o
©
[
[
05 -
0. «“m l ’ J i 1' i
0. o2 A .6 .8 1.
Importance
(d) L=50 (medLan~.0359,meann.199)

Importance Distributions fer Several Slab Thicknesses



16

1.

| T I T 1.
. (c, v TGRS |
. - .8
;:.6 -_ ;.“6 -
e .
%) e
P — &4 -
2 ] .2 —
0. ] 0. | |
v 2 10 0 5 10 15 20 )
x
(b) L=~25(T=.367)
1. T 1. | | i
p(Cll‘r)
.8l- -
-8 ] PIC,[¥) —\~
h.6 - o Y fad -
b= —
--;.‘ U.,.‘
) ~
.4 N VY ) B -
.2 -] 21— -
0. | 0. 1 | i
0 10 20 30 40 50 0 50 100 150

Figure 4.4

X — X —
(c) L=50(X=.199) (d) L»200(1=.052)

Class Distributions for Several Siab Thicknesses

260



™~

s==.4. For this problem p(Y) is constant (except at »=0) since the
particles are never killed but allowed to continue througlt the sla“
until they are tallied. Therefore, since the P(Ci) are also constant,

the p(Y[Ci) will have the same shape as the p(Ci!Y) only different

magnitudes relative to each other.

The overlapping of the class distributions is dve te the fact
that prototypes created at x do not all have the same importance T(x),
but instead have a distribution of importances (with a mean importance
of f(x) as is shown in Figure 4.5 for a slab with I =10 and values of
x=0, 5, and 9). If all tk2 prototypes created at x had the same impor-
tance, T(x), then these prototypes would all belong to the same class
depanding on whether I(x) is greager or less than 1. However, since
prototvpes are distributed about Tkx), prototypes originating from the
same X can belong to both classes depending on the location of T within
the distribution. This point is illustrated by Figure 4.5 where the
classes are separated by T=.632 {shaded regions =C1, unshaded = CZ)'
As T(x) approaches I, the split of the distribution of prototypes at x

into two classes becomes more pronounced (this is illustrated by

Figure 4.5 where x=5).

The remainder of this section investigates the behavior of both
deterministic and statistical pattern classification procedures when
applied to this problem. 1In all cases the initial decision surface will

be chosen at L/2 (w1=1.0, wz=-L/2).
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Figure 4.5 Distribution of Importances at x= 0,5, and $ for L=10 and I=.632
( 600 prototypes are sampled for each x )
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4.2.1)

Deterministic Techniques

Figure 4.4 illustrates the fact that this problem does not

produce linearly separable data since the p(CifY) are overlapping.

Deterministic techniques will never converge to a single g(Y) since

there exists no W which will correctly classify all Y's.

However, if

one is willing to use a g{(Y) which satisfies a large percentage of the

Y's, then deterministic techniques can be used to find an appropriate

g(Y).

In the case of linearly inseparable data Fquation 3.6 cannot

be used directly but must be replaced by the following

if g(Yi) >0 and Yi belongs to class Cl’

N2
v =W-c N—Y*i or
1/ 3

if g(Yi) <0 and Yi belongs to class CZ’

V'=WHeYE

where Ni = number of prototypes in class 1.
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Equation 4.4 prevents the class with the most prototypes from influenc-
ing the selection of W simply because it has more prototypes and not be-

cause it has a higher percentage of misclassified prototypes.

In this study the fractional correction rule will be used since
it_allows for a more controlled convergence when used with cverlapping
distributions (i.e., the correction increment can be controlled through
A). Therefore,as given in Section 3.2.1, c==l|g!/Y* * Y%, The FORTRAN
coding necessary to use the fractional correction rule with this prob-

lem is shown in Appendix D.

The results after 100 source particles for several slats cof
varying thickness and four values of A are summarized in Table 4.2,
The behavior of the decision surface as a function of the number of
source particles and a plot of weight space is shown in Figure 4.6 for
a A of .5. As is seen from the data of Table 4.2 the value of A has
only a small effect on the misclassification rate; however, it can
greatly decrease the variability of the decision surface. This is
useful since it is desirable to stop calculating the discriminant
function once a suitable W has been found. Thus the variability can
be used as an indicator of when to use the present discriminant func-

tion and stop adjustment of the weights.

The misclassification of prototypes after convergence is

primarily due to the overlapping of the distributions shown in Figure
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Misclassification

L Rate Mean
Slab Learning c c C.+C Decision
Thickness Parameter 1 2 1 72 Surface Variability

10 A=.05 .357 .181 .259 3.57 .128
A=.2 .397 .174 273 3.64 .235
=.5 .371 177 .263 4,02 .364
A=1,0 .348 .181 ,255 4,63 446
50 A=.05 116 .079 . .104 32.01 .086
A=.2 103 .077 .094 32.76 .105
A=.5 115 .051 .09%4 32.92 .148
A=1.0 .140 .052 .112 32.33 .194
200 A=.05 L043 034 041 167.4 .048
A=,2 .040 .021 .037 169.1 .050
A=.5 057 .026 ,052 166.7 .082
A=1.0 .089 ,026 .080 162.7 .125

Table 4.2 Results of A and L Variations After 100 Source Particles
Using the Deterministic Classifier
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4.4, This overlapping is measured in terms of the error rate as given

by

100 x L
Error Rate = Er = _/.p(CzlY)dx +.l.p(C1|Y) (4.5)
0 -
X
where F.r = 7 misclassification of prototypes due to overlapping
of P(Ci[Y)
L = slab thickness
X = the value of x for which p(CllY)==p(C,]Y)

Since the majority of misclassified prototypes come from an importance
close to I, much of the error can be eliminated by the introduction of
a "buffer zone".. A buffer zone consists of a band of importances from
I, to I2 (Il'<Ez<12). Any track which has an importance I such that
Il<i[<12, is not placed in either class and W is left unchanged. Re-
sults of using various buffer zones on the P(CifY) distributions are

shown in Figure 4.7. The reduction in the overlapping area is given

in Table 4.3 along with results obtained by using various buffer zones.
As can be seen from this data, the buffer zones have the effect of lower-
ing the misclassification rate considerably. The variability is lowered
in some cases, but raised in others. This is due to the fact that the

majority of variability is caused by prototypes outside the buffer
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Mean

Buffer E Misclassification Decision
Zone r Rate Surface Variabiiity
L=10
none 23.0 .259 3.572 .128
.6-.75 14.1 .240 3.929 .089
.5-.85 4.2 .153 4,532 .056
L =50
none §.85 .104 32.01 .086
.18-.22 6.72 .086 32.97 .085
.15-.28 3.87 .064 33.04 .089
.10~.45 .89 ,045 31.80 .101
L =200
none 2.96 .041 167.4 .048
.025-.12 .64 .024 167.0 .054
.010-.30 .04 .024 161.3 .059

Table 4.3 FEffect of Buffer Zones on the Performance of the
Deterministic Classifier after 100 Source Particles
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zone. These misclassifications thus have more effect since there are

fewer prototypes* in the buffer zone runs.

In conclusion, deterministic techniques work satisfactorily if
A is kept small (A =.05 is sufficient) and buffer zones are used. One
interesting characteristic is that the larger L, the better the classi-

fier performs. This is quite favorable since it is for large L that one

needs variance reduction the most.

4.2.2) Statistical Techniques

In Section 3.3 the statistical approach to pattern recognition
was described in which weight adjustments were made based on the aver-
age behavior of the prototypes. In this section Fquations 2.20 and
3.21 are used to adjust the weights for several different loss funections,
S(W,Y,CiICk). Table 4.4 lists the loss functions which are investigated
and their corresponding VS components. A description of these loss
functions and the derivation of the VS components are given in Appendix

E. From Equation 3.20 the weight vector, W, is incremented according

to

*Feature vectors fzlling within the buffer zone are not counted as
prototypes since their classification is not determined.
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BS(W,Y,czlcl)* as(w,v,czlcl)*

S(W,Y,Cilcj) By ow,
42 lel "2 L
vy w12 "1
(o[l 533 2) (5/3)
\/"1 “’12 2ViE AN
2
. & _ 2 [21a) 1 f2lgl
i" = —3 A 1\"1
L 1 /
D= L >
Vf1+y2 /1+y2 1+y?
*For all loss functions
35(W,¥,C,lc)) -3s(w,Y,¢, |c,)
awl awl
CEICR NSRRIV N T
awz = awz

Table 4.4 Tloss Functioneg and VS Components
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1 ———
N avy

wi+1 = wi - VR(W) = = Y (4.6)
Y2 Y2 . ELS
i+l i 3w2

Appendix F contains a listing of the FORTRAN code used to implement

Fquation 4.6. The risk as defined by Fquation 3,1¢ is given by

Ran = ﬁ(w,cl) + ﬁ(w,cz)

\
I\'1

n’

4.7

\y
)
vl e lc 2‘2
S{W,Y_,C,|C)) s S(W,Y_,C,[Cy)
n=1
* {

M M,

where: Ni total number of misclassified prototypes in

class Ci
Mi = total number of prototypes in class Ci
Yi = the n'th misclassified feature vector of class Ci
S(W’Yi’cilcj) = the loss incurred when feature vector

Yi is misclassified into class Ci'
The loss S is evaluated using the value
of W that exists at thes time Yi is

misclassified.
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By using Fquation 4.7 and the S(W,Y,Cilcj) given in Table 4.4,
k(W) can be evaluated for different values of W. This was done for
the prototypes created by the slab Monte Carlo problem of Figure 4.2
(with L =10 and T = mean importance = .632) using 12 different values of
a fixed decision surface (decision surface 1ocation==-wzlw1==constant
=1,3,3.5,4,4.5,5,5.5,6,7,8,9,10) for each loss function. For these
calculations w1==1 resulting in ~Y, being equal to the above decision
surface locations. Fach estimate of R(W) was determined by using 200
source particles (1024 prototypes). The resulting 12 values of R(I)
for each loss function were then fitted37 with a second order poly-
nomial. The resulting curves are illustrated in Figure 4.8 for the

loss functions of Table 4.4 as well as the loss functiom

S(w,Y,CiICj) = constant

Each curve has been normalized to its minimum risk, ﬁmin(w), resulting
in a relative loss function. The location of the decision surfaces for

minimum risk, x . , as determined by the fitted polynomials are:

min
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Risk/Minimum Risk
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Figure 4.8 Relative Risk as a Function of a Decisioen Surface
lLocation for Various Loss Functions
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Loss Function

Constant

Va

*This estimated error is for the 15 level and includes only
irtroduced by the least squares curve fitting procedure’®’.

Decision Surface Location
for Minimum Risk (xmin)

5.11

4.50

4,73

4.89

3.78

Equation 4.7 is equivalent to the following:

~ o
[ [
(<) 7]
[ tan
] ]
~ 2
[
[= N
=)
[
+
~
[\
=)
[\

Risk Rl(;—) + RZ(;E)

Risk =

|
~
=

where Ry misclassification rate for Ci = Ni/Mi

2
I

for loss

for loss

for loss

for loss

for loss
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Constant

= no. of misclassified prototypes for Ci

Error*

.187

074

.022

.104

442

the error



M, = total no. of prototypes for Ci
d, = average d of misclassified prototypes of Ci

average Jﬁ-of misclassified prototypes of Ci

3

(di)= average d2 of misclassified prototypes of Ci
Di = average D of misclassified prototypes of Ci
i=1,2

The decision surface location for which

p(C |1 = p(c,[M

minimizes the total misclassification rate as given by

N, + N
% "

but does not minimize the risk as given by
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unless the median is used for T'(i.e., M1==M2). Therefore, the minimum
risk location for loss =constant is not the same as the p(Clle =p(CZIY)
location of Figure 4.4a. The other loss functions further affect the
optimum iocatien by introducing the average value of a function of d or
D. Of these, the risk using loss =D has the smallest Xnin® This is be-
cause the Y1 =x) in the denominator of the expression for D (See Table
4,4) causes misclassified prototypes with small x to be weighed more
heavily than those with large x. This causes the optimum decision
surface to move so as to decrease g(Y) for smaller x {(i.e., it moves to
a smaller xmin)' As L becomes large, the p(Ci]Y) become more symmetric
and (when the mean importance is used for T) the p(CllY)==p(CzlY) loca-
tion increases (see Figure 4.4). These two effects cause the X oin of

different loss functions to approach the same value. It was found that

for the case where L =200, the differences in xmin are indistinguishable

as far as the classifier is concerned.

For the general loss function given by

Loss = dk 4.2)

as k> the maximum of the misclassification distances are minimized

and as k+0 the percentage of misclassified patterns is minimized. This
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is illustrated in Figure 4.8 by the high ratio of ﬁ(w)/ﬁmin(w) for

-

loss = dz and the lower ratio for loss = Jﬁl

The misclassification rate and variability of the decision
surface are shown in Figure 4.9 and 4.10 respectively for the different
loss functions over a range of A. These plots are for the problem
described earlier in Sectiovn 4.2,using a slab thickness of 200 and a
source of 1000 particles. For all loss functions, the final value of
the decision surface was between x =166 and x=167. These tests illus-
trate two important phenomena: (1) there is not a great amount of
difference between the performance of the different loss functions
after 1000 particles (i.e., when using optimum values of A for each)
and (2) the performance of the pattern classifier is dependent on the
value of A. TFor each loss function there is a range of A (approxi-
mately three decades wide) over which the performance is relatively
constant. A A below this range leads to decreased performance because
of the increase in convergence time it requires. A A above this range

leads to poor performance since it overcompensates for the correction.

The misclassification rate as a functioa of source particles
started is shown in Figure 4.11. The values of A used in these runs
were chosen from Figures 4.9 and 4.10 so as to optimize performance

‘and are
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tith the cxception of loss =,/f, all less functions lead te converzence
iy approeximately the same nunbor of sarticles with lnsssedz hoing
alightly quicker. Recause of the smunll difference In performance of
the shove lose functions, loxs »d appears to be the most attractive
hocause of fis computational simplicity. In all cases the statistical
approachk results in oscillations about the eptirmum decision surface.
Although the technique is guaranteed to convergo,31 runs made with as
pany as 20,000 source particles still show the presence of this oscil-

lacion although it does decrease in amplitude.

To alloviate this oscillacion, buffer zones are introduced.
The effect of using buffer zones on the risk is illustrated in Figures
4.12a and 4.12b., Fipgure 4.12a indicaces that buffer zones have the
same effect as increasing k in Equation 4,8; however, Figure 4.12b shows
that although the relative risk is increased, the absolute risk is
actually decreased. Figure 4.13 shows the effect of the buffer zones
on the misclassification rate and the variability of the decision

surface. Although the variability is less for the buffer zone rums
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during the initial approach to the decizion surface, after this ap-
proach the variability of the non-buffer zone vua is less. This be-
havicr is consistent with the deterministic buffer runs of Sectien 4.2.1
and indicates that although the ?i that lie in the buffer zone¢ are not
classified, they should be counted as prototypes when calculating the
variability in order to obtain a true measure of the convergence. The
swmoothing of the convergence due to buffer zones is illustrated by

Figure 4.14 for the problem used earlier in this section.

In summary, the statistical approach produced satisfactory re-
sults which do not depend greatly upon the selection of the loss func-
tion. A loss function proporcional to tiie misclassification distance
appeats to be the most attractive since it rzquires fewer computations.
Although the statistical approach does converge with time, it appears
that like the deterministic approach,a decision surface will have to be
selected prior to a firal convergence. The use of buffer zones reduces
the error after the initial approach and the variability (as calculated)
during the initial approach. The increase in variability after the
decision surface has begun to converge,when buffer zones are used, can be
reduced by treating buffer zone feature vectors as protetypes when cal-
culating the wariability. Buffer zones are also attractive since by
reducing the number of weight adjustments, they reduce the amount of

computer time used.
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4,2.3) Comparison of Deterministic and Statistical Technigues

In the previous two sections statisticzl and deterministic
techniques have been implemented on different thickness slabs using a
range of learning parameters (A) and different buffer zones. Fipure
4.15 compares deterministic and statistical classifiers using L =200,
.*“.t =.5, Zs= .4, no buffer zones, and an T=.05. Both runs use an
optimum } for the specific technique (2 = .05 for deterministic and
A= ,00008 for statistical). Although the deterministic classifier
leads to slightly fewer misclassifications in the early stages of the
run, as the decision surface begins to converge (after about 40 parti-
cles) the two techniques are very competitive.

The variability of the decision surface appears to be consider~
ably lower for the deterministic case. The reason for this can be seen
from Figure 4.16 in which the average decision surface and the decision
surface are plotted as a function of particles started. 1In the deter-
ministic case a single prototype can cause the decision surface to be
altered in a given direction. However, for the statistical classifier,
the decision surface is altered in the direction indicated by the aver-
age properties of the prototypes. This behavior leads to a buildup of
misclassification in the other direction. Although the variability of
the decision surface does appear greater for the statistical classifier
during the early stages, the final variability of the deterministic

classifier will never go to zerojwhereas for the statistical, it is

guaranteed.
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The computer time spent for the two techniques can be compared

by using Equation 4.9

T o= N(t, ot £+ F), (4.9)

where T = total computer time spent for pattern recognition,

N = total number of prototypes produced,

tA = time required to determine the classification of a
prototype,

tL = time required to determine if a prototype is mis-
classified,

t, = time required to adjust weights,

C

fC = fraction of classifiable prototypes which are mis-
classified , and

fL = fraction of prototypes which are classifiable (lie

outside the buffer zone),

Using suitable timing schemes results in the values shown in Table 4.5.
The following results are obtained for T after 40 particles are started

(resulting in N=4013) with no buffer zone (i.e., f17=1.0).

Statistical (fc==.050)

2 2

2 + .21 x 10 = 2.26 x 10

2

T =1.65 x 10 ° + .40 x 10~
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Time in Seconds

Statistical Deterministic
te 10.5 x 1070 3.5 x 107°
e 1.0 x 1078 1.0 x 1078
N 4.1 x 1078 4.1 x 1078

Table 4.5 Timing Parameters for the
One Dimensional Problem

peterministic (fc = ,051)

2 2

T=1.65x 1072 + .40 x 1072 4 .07 x 1072 = 2.12 x 10°

From these results it is seen that the two techniques are comparable
since the majority of time spent is not for weight adjustment but for
class identification. However, since the variability is less for the
deterministic classifier, the statistical classifier requires more
prototypes (greater N) to get the same results. Thus the deterministic
classifier appears to be the must advantageous with respect to time.
The above times can be reduced by the use of buffer zones as

shown below for a buffer zone of .01 to .30 (fL= .85).

Statistical (fC = ,051)

2 2

2 2

T=1.65x10 4+ .34 x 10°° + ,17 x 10 < = 2.16 x 10
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AL AT

Deterministic (fC = .048)

2 2 2 2

T=1,65%10 "+ .34 x 10 “ + .06 x 10 = 2.05 x 10~
The optimum A's found in previous sections are a function of
slab thickness, thus requiring normalization of the correction algo-

rithms. This is done by replacing the augmented feature vector Y#* by

Y' as given by

x
X L
unnormalized Y* = normalized Y' = (4.10)
1 1
L
This results in
wy = wy * c¢'x' and (4.11)
C'
= + —
b T B A

1
where c' = ——X-.-{.g._'-—w = Lc

'
g' = wlx' + w2/L
x' = x/L
L = slab thickness
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g

for the correction algorithms. Similarly, for the statistical classi-

fier the following should be used:

Woq = W - A" VR, (4.12)

where A' = A/L and

[ iR T |m—wZL-1
w
1 2
_ Wl
IR =L
g w,L
L"‘\’ZJ _Jl J

In summary,for the one-dimensional homogeneous slab the deter-
ministic approach appears to have an advantage over the statistical
approach because of its reduced variability at early stages. Further-
more, if the variability is used as a threshold for using a decision
surface shortly after the approach to such a surface, the deter -
ministic classifier also presents a savings in computer time. However,
the variability of the deterministic classifier is bounded by a minimum
(depending on the amount of overlapping of the class distributions);
whereas the statistical classifier has a variability which is guaranteed

to approach zero.
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4.3) Multi~Region Slab and Initial Conditions

In the previous section a one region slab was used to demon-
strate the type of behavior which might be expected when pattern recog~
nition is used to identify splitting surfaces. Although convenient for
demonstratior. purposes, such problems are little challenge to the
skilled Monte Carlo user as far as identifying splitting planes is
concerned. If one considers the problem of a muiti-region slab con-
sisting of several layers of different materials, the problem becomes
much more difficult for the "human intuition" approach. This section
considers this slightly more complex problem using the identical pat-
tern recognition techniques described in the previous section.

The problem is illustrated in Figure 4.17 for a slab consist-
ing of four materials. The FORTRAN coding for the Monte Carlo program
used to solve this problem is shown in Appendix G. Figure 4.18 shows
the importance distributions for several different combinations of ma-
terials (see Table 4.6). Each region is 50 cm thick and has a total
macroscopic cross section of Zt= .5/cm. The variety of distributions
results from rearranging the sequence of the materials and in one case
even leads to a bi-modal distribution. The class distributions for
these same problems is shown in Figure 4.19 where the median importance
has been used for I.

Because Zt is the same for all four cases, the collision points
of each Monte Carlo run are identical (since each Monte Carlo run uses

the same set of random numbers). Therefore the set of feature vectors
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Figure 4.17 The Multi-Region Slab Problem

Yi,used for prototypes is identical for each case, The variation in

results of the four cases can therefore be attributed solely to the

effect of different class and importance distributions as caused by the

different Zs's.

Because particles are allowed to continue through the slab,

there is an equal probability throughout the slab of having a collision

(and thus a prototype created) between x and x+dx. As a result for

half the prototypes

= <
y; =% 100
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Caso 1 Case 11 Case TI1 Case 1V

x () .40 .49 .45 .49
x_(2) 45 .47 .49 .45 .
) .47 .45 .47 .40 “
T_(4) .49 .40 .40 .47

Tally 6.7 % 107° 7.6 x10°  7.5x10° 7.0 x 107°

Median 1 112 .00035 .00105 U011

Mean I 288 .0502 .0508 140

Er# 3.2 12.6 19.1 5.6

%Using Median I for I

Table 4.6 Multi~Region Sample Problems

and for the other half

= >
y, = x 100.

Therefore the optimum position to locate the splitting surface (using

the median T) is the same for 2all four cases and is located at x = 100.
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An additional set of computational experiments is performed in
this section to determine the sensitivity of the pattern classifiers to

the selection of an initial decision surface, Sl. wvhere Sl==—w2/w1 for

the initial selection of vy and Wy

4.3.1) 1Initial Conditions

In Section 4.2, the midpoint of the slab was used as the initial
location of the decision surface. 1In this section, the effect of the
initial location, Sl, on the performance of several pattern classifiers

is analyzed using Case 1. Several computation experiments are made

using different classification algorithms and different learning param-
eters, A. The initial location can be varied in two ways: (1) varia--

tion of the initial value of vy and (2) variation of the initial deci-

sion surface location (i.e., -wz/wl).

4.3.1a) Deterministic Classifier. The location of the decision surface

after the j'th prototype belonging to Ck has been misclassified is giv-

en by
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(x"+1)
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5 (4.13)
(x"+1) - Xx(x-Sj)

where x is the feature, , of the j'th misclassified prototype. Since
Y1 I yP

i1

any given Sj has no effect upon the behavior of the classifier. There-

does not depend on Wy (independently of Sj)’ the value of Wy for

fore the initial selection of vy (for any given Sl) causes no change in
classifier performance. The effect of varying the initial decision
surface, Sl’ after 1000 source particles is demonstrated in Figure 4.20
for 1074<A<1 and six different S,- This figure illustrates that
after 1000 source particles the pe-“ormance 1s relatively independent
of initial conditions and A for A>1J'2.

The performance as a function of the number of source particles

is shown in Figure 4.21 for runs using A =.05. 1In these runs it was

found that when Sl is selected below the final decision surface

location, (i.e. Sl=l,10,50), the decision surface converges monotonically
to the final location. This behavior is reflected iv Figure 4.2la by
the monotonically decreasing misclassification rate when Sl=l, 10, and

50. However, when S; is started above the final decision surface
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location (i.e., S]==150, 190, 199), it was found that the decision
surface very quickly (in less than 10 source particles) moved past the
optimum location and then converged to its final location from below.
This behavior causes the misclassification rate to increase when the
decision surface overshoots the optimum location; however, as the sur-
face begins its final convergence, the misclassification rate decreases.
This behavior is demonstrated by the Sl==150, 190, and 199 curves of
Figure 4.21. Thus although two S1 may be located equidistant from the
optimum surface location (for example: Sl_=10 and Sl==190) the Sl lo-
cated above the surface leads to better classifier performance. This
behavior is explained by investigating Equation 4.13 and noting that
the change in Sj’ ASj, is affected by the value of the feature x as
well as the misclassification distance, A = [x-—Sj[. Contours of

ASj = |Sj+1"sj’ using Equation 4.13 are shown in Figure 4.22% for A=10,
20 and A= .01, .,05. This figure iilustrates that for misclassifications
in class Cl’ ASj-+O as Sj-*O which explains the slow convergence when
Sl<< 100. The increasing slope of ASj as Sj-*100 from the right as
opposed to the decreasing slope as Sj-*100 from the left explains why

the decision surface overshoots and ther approaches from below when

Sl==150, 190, and 199.

*#Because of overlapping classes the curves shown in Figure 4.22 actually
extend across S; =100. However, the class 1 misclassification curve has
been plotted oniy for Sj <100 and class 2 curve only for Sj >100.
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These results indicate that for the deterministic classifier

there is a very distinct advantage to locating S, above the optimum

1

locatiomn.
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4.3.1b) Statistical Classifier with Loss=d. The decision surface lo-

cation after the i'th prototype belonging to €, has been misclassified
~ - } oy o k

is derived in Appendix K and is given by

[ - A
A2 -1k ]
o T - y Q
] ) J Sj\.l + 7, ( 1k+1) Wy (\[k+l) { .1
j+l - Ak (—l)k+lS ‘
1. A ,-J
w, — AT, - +
1 i 1 (}1k+1) vy (Mk+l)
. J .
J
where M‘k = nunber of prototypes in the k'th class (not count-

ing the last misclassified prototype)

X,

< W

_ ik 2
My = D z (——-2)
n=1 \¥} /p

N
_ k+1 1
A'k,2 = D z (wl>
n

n=1

Ty =41 8

= +
Ty =81, %

N, = nurber of misclassified prototypes in the k'th

class (not counting the last misclassified

prototype)
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Unlike the deterministic classifier, § 1 depends on the selec-

j+
tion of an initial Wy However, by proper selection of A(i.e., by keep-
ing A/wi==constant),this effect can be cancelled. The effect of vary-
3 2 T 3 1 = = = =
ing A/w1 is shown in Figure 4.23a for the case where Tl--T2 Ai,j M, 0.

Although, in general Mk32>0, this figure does illustrate the relative

2
1

Once the decision surface has converged to a final location,

effects of Sj and A/w, on the convergence of the classifier.

T1 and T2 approach zero. However, due to the overlapping of classes,
Ak’iapproaches a value proportional to the amount of overlapping. Fig-
4,23b illustrates that this overlapping has very little influence on
AS.. This is to be expected since this term of Equation 4.14 varies as
l/Mi,whereas the other terms vary as l/Mk (qﬁ,iitself varies as 1/Mk).
When the decision surface is still approaching a final loca-
tion, T1 and T2 will not be zero. If the surface is approaching the
optimum location from below (i.e., Sl'<100), Tl and T2 are positive.
The behavior of ASj for this case is illustrated in Figure 4.23c for

T1=0, 1, 10, T, = .OlTl, and M.k=100, 1000. Similarly the case for

2
~100 is illustrated in Figure 4.23d. These figures illustrate the

51
relative effects of two factors: (1) the statistical effects of past
prototypes reflected in T1 and T2 and (2) the effect of the last mis-
classified prototype (the 1/w1 and Sj/w1 terms of Equation 4.14).

As the misclassification rate of past prototypes becomes large

compared with the effects of the last misclassified prototype,
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Ay 2 -kt
T.|>> +
|74 a6 1) v, 4 D)
and
ITll 77 (Mk+1) * W) (Mk+1)

which using Equation 4.14 results in

_ A(T2+Tls,)

AS, =8,,.-S, =
i j+1 7] vy ATl

(4.15)

If it is further assumed that “ﬁ_>>AT1’ and T2<<TlSj Equation 4.15

reduces to

AT,
AS, ~ =il (4.16)
3 Wy

Thus AS, varies linearly with Sj as is demonstrated in Figures 4.23c

1
and 4.23d by the curves for which |T1| = 10.
When past misclassification becomes small (i.e., after

convergence)
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k+1

Ak,l (—1) Sj

|7l " A DAY TR

and

k+1
,T , L | Ak)2 + (_l)
2 (Mk+1) wl(Mk+1)

And since in general

@, +1) w, @ 1)
Ae2 - 1
(M.k+1) vy (Mk+1)

Equation 4.14 results in

~1¥ 1 452
AS, = J
i 2 k
J wy (4, +1) - (-1) ASJ.
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If it is further assumed that ?§>> 1 and wi(Mk+1) >>ASj, Equation 4.17

reduces to

A(_l)k+ls?
AS, =

5 (4.18)
J Wl(Mk+l)

Equation 4.18 indicates that as Ti+0 (i=1,2), ASj varies quadratically
with Sj. However, unlike Equation 4.16, the ASj given by Equation 4.18
goes to zero as Mk increases. This behavior is illustrated by the curves

in Figures 4.23c and 4.23d for which T .=0. For these curves, the effect

1
of Mk is much more pronounced than the curves for which ITII =10. Al-
though ASj as given by Equation 4.18 varies quadratically with Sj as
opposed to linearly for Equation 4.16, the coefficient of sz is much
smaller than the coefficient of Sj’ and the linear term dominztes.
Thus in Figures 4.23c and 4.23d, the ASj for lel =10 is much greater
than for ]Tll =0,

When neither the past misclassification term nor the current
misclassified prototype term is dominant, ASj varies proportional to
the difference between the two effects. This is illustrated by the
[Tll =1 curves in Figures 4.23c and 4.23d.

The performance of the classifier after 1000 source particles

for six different S1 is shown in Figure 4.24 for a range of )\ from 10-6
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to 10_1. Unlike the deterministic classifier there is no value of X
for which the performance is acceptable for all Sl'

The performance as a function of the number of source particles
is shown in Figure 4.25 using A = .0001 (for Sl==50, 150, 190, 199) and

A= .,00001 (for S, =1, 10). The behavior of the curves for Sl< 100 can

1

be explained as follows. When Sl is very small, ASj is also very small
as explained in the previous analysis of Equation 4.14. For many itera-
tions there is little change in Sj and thus the misclassification rate
remains approximately constant (see Sl==1, 10 curves of Figure 4.25a).
Although ASj is small, the variability increases since Sj is also very
small (see Sl==1, 10 curves of Figure 4.25b). Eventually vy is de-
creased to such an extent that 1/w1 and llwi begin to increase rapidly,
resulting in large ASj which eventually leads to a large overshoot of
the optimum surface location. The magnitude of the overshoot and the
following oscillations about the optimum decision surface location de~
pends upon the value of Sl' The variability is a good indicator of
when this overshoot occurs. Figure 4.25b illustrates that for: (a)
Sl==50, the overshoot occurs between 20 and 40 source particles (b)
Sl==10, although Sj is increasing rapidly the overshoot does not occur
until after 200 source particles (c) S1 =1, Sj has not even begun its

approach to the overshoot.

The primary reason for this difficulty is that Equation 4.14 is
not dependent upon the location, x or ISj-xl, of the prototype but is
strongly dependent on the current location of the decision surface, Sj‘

1uis problem can be alleviated by using a A that varies with the
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location of Sj; however, this would lead to other compliexities and
would involve the use of more computer time. Because of this diffi-
culty another statistical classifier is investigated which uses a

different loss function.

4.3.1c) Statistical Classifjer with Loss =D. The derivation of Sj+l

with 1loss=D (see Table 4.4) is similar to that of Sj+l using loss=d

(see Appendix K) and results in

[ [ el |
+
A2 G20 I
Sjwp t ATy - Mk+l) (1, +1) /;+XZJ
S.Jrl = 9 c A >, (4.19)
] v -l - A1 4+ - x(1)
1 1 (Mk+1) (Mk+1)\/1-+x2
L L JJ.
j
N

% ()

h =
where Ak,2 Mk .

3 ()

=1
Mk » and

A1

b
1

v, = distance from the source,
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and all other parameters are identical to those found in Equation 4.14.
Unlike the statistical classifier with loss =d, Sj+1 for this classi-
fier depends on the location of the prototype, x, as well as the cur-
rent position of the decision surface, Sj' The dependence of Sj+1 on

an initial selection of Wy can be eliminated by keeping A/w1 constant.

When past misclassification effects are large

-A X
k,2 (-1) "x
T.| >> +
|l (M, +1) (1 +1) V1 +x2| 2
BRI S L
1 (M +1) (1, +1) V1 +%2

and Equation 4.19 can be reduced the same as for the loss =d classifier
resulting in Equation 4.16. Thus for the initlal approach to the de-

cision surface, this classifier behaves the same as the loss =d

classifier.

When the decision surface is converging to a final surface

_Ak 2 (—l)kx
T, << 2=+ d
I 2| (M 1) 0 +1) V1 +;2| o
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In] << |y + R
1 4 1) (4, +1) 1+x2

Through the assumptions that

| oA RS
2 << d
l (1) g +1) Viex® | an
el [
(M +1) M +1) V1i+x g

Equation 4.19 can be reduced to

X(-l)k+l(l'+ij)
AS, = =
J wl(Mk+1) Vi-+xz- A(—l)k+1x

and under the further assumptions that

ij >> 1, V1+x® = x, and A <<Iw1(Mk+l)l
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it can be reduced to

K(—l)k+15.
ASj i ;I?ﬁziiyl (4.21)

A comparison of Equation 4.21 with Equation 4.18 shows that using
loss =D linearizes the dependence of ASj on Sj for the case
when the decision surface is undergoing the final convergence. How-
ever, Equation 4.21 indicates that the dependence of ASj on Sj on X
(as shown by Equation 4.19) cancels out (based upon the assumptions made
to obtain Equation 4.21). A plot of Equation 4.19 for Ak’i==Mk==0
is shown in Figure 4.26 for three values of vy and A= .05. The dis-
continuity of these curves is caused by the -\ term in the denominator
of Equation 4.20 and becomes less pronounced as Wl(Mk+l) >> AL

Plots of Equation 4.19 for various values of Ak,i’ Mk, etc. are
not presented here but are very similar to the plots of Figure 4.23c
and 4,.23d. This is because, like the loss =d classifier, the coeffi-
cient of 5, in Equation 4.21 is small compared with the coefficient of Sj
in Equation 4.16.

The performance of the loss =D classifier is shown in Figure 4.27
for several Sl and a range of A, 10_6=<A=£10. Although the misclassifi-
cation rate is similar to the loss =d case, the variability for small S1

has increased considerably.
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10 T
L /

Figure %.26 Eehavior of Sj+jfor the St
Classifier with Leoss =

Figure 4.28 shows the performance for the first 200 source par-
ticles using A =.,05. The extreme oscillations for tﬁe S1 =1 curve can
be explained as follows., During initial operation, ¥y is initially de-
creased. Like the loss=d classifier as ¥y decreases, Lwl, increases.
This positive feedback can lead to an instability as wl-*O and W, can
actually become negative. 1In this case Sj changes sign which leads to

a very large variability as seen by Figure 4.28b,
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In summary, although by using loss =D, ASj, has been made to
depend on x, the dependence is very weak. The classifier is therecfore

no iImprovement over the loss =d classifier for small Sl.

4.3.1d) Sum.ary. It has been found in this section that the performance

of the various classifiers does depend strongly on the choice of an
initial Sy- The deterministic classifier is far superior to the statis-
tical ones with regard to initial condition selection below the final
decision surface. However, when Sl is chosen above the final surface,
the deterministic and statistical techniques are competitive.

It has also been found that the statistical techniques do depend

. . 2
on w However,by using an appropriate (for loss=d, )\/wl = constant;

1’
for loss =D, X/wl==constantl the effect of selecting an initial w; can
be eliminated.

It should be noted that although the statistical classifier ap-
pears to perform poorly for small Sl’ this effect can be eliminated by
using the distance from the detector (L - x) instead of the distance from
the source (x) in the feature vector prototypes. This would necessitate
changing the initial weight to correspond to the new feature space.

This will be done for the two-dimensional problem of Section 4.4. This

new feature selection would allow the initialization of splitting sur-

faces at the origin (Sj==0); however, it would prohibit originating at
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4.3.2) Multi-Region Slab Variations

In this section, three different classifiers (deterministic,
statistical with logss =d, and statistical with loss=D) will be used to
identify splitting planes or decision surfaces for the four Monte Carlo
problems described in Table 4.6. The median importances of the distri-
hutions shown in Figure 4.18 will be used to separate the classes re-
sulting in the class distributions shown in Figure 4.19. In the pre-
vious section it was found that a high value for the initial decision
surface is better than a low one. Therefore an s, of 200 will be used
in all cases.

Because of the different types of distributions that can occur
(see Figures 4.18 and 4.19) the optimal A for different problems varies
(see Figures 4.29 and 4.30). If two classes are entirly non-overlapping,
a A which is large enough to compensate completely for a misclassified
prototope is desirable since no prototype will ever appear to belong to
more than one class. However, as classes begin to overlap, the amount
of correction and thus ) must be decreased because falsely labeled proto-
types could lead to a large variability of the decision surface. This
phenomonon is apparent from Figures 4.29 and 4.30 which show the re-
sults after 100 particles. 1In the deterministic case the misclassifi-
cation rate decreases for increasing A,but the variability increases.
In Cases II and IIT the overlapping of classes results in a high vari-
ability which is understandable since the deterministic classifier is
not designed for overlapping classes. The statistical classifier leads

to a large improvement in variability for Cases I1 and III but only a
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small improvement for Cases I and IV. Of the two statistical techniques
the loss function using d results in slightly better performance al-
though the difference is small.

Because a pattern classifier must be able to operate on a large
range of problems without alteration, a single A must be chosen for each
classifier. For the purpose of this investigation, A's of 10-1, 10—4,
and 10-2 will be used for the deterministic, statistical (loss=4d), and
statistical (loss =D) classifiers respectively. Although this selec~
tion has not been optimized, these values are at least a reasonable
compromise as is seen from Figures 4.29 and 4.30 {or decreasing the
error while keeping the increase in variability down.

For these values of A, the performance for the first 100 parti-
cles is shown in Figures 4.31 and 4.32. It is interesting to note that
in all cases the deterministic classifier leads to a smaller misclassi-
fication rate. Because the prototypes in these problems are presented
in the order that they occur (i.e., for a single source particle
x1‘<x2<fx3...<:xN, where N is the number of collisions) and because
the deterministic classifier responds only to a single prototype at a

time, it has an advantage over the statistical technique. For example,

consider the following prototypes and a current Si==100:

= ...9, 10, 11, 12, 13, 14, 15...

He
i

]
]

...75, 83, 91, 97, 109, 114, 119...

Class = "'Cl’ C2, C2, C2, C2, C2, C2...
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If A=1, and X0 is presented to the deterministic classifier,
the new S.+1==83 which in turn makes X311 and X, correctly classified.
For A <1, the deterministic classifier still has this effect to some
degree. The statistical classifier may or may not decrease S, in this
case depending on the value and sign of Tl and T2 (see Equations 4.14
and 4.15). Although this appears to be an advantage of the determinis-
tic classifier, it may actually be a disadvantage since the objective
is to minimize the number of misclassified prototypes according to
their average importances and not the importance encountered for each
prototype. Thus the misclagsification rate shown in Figure 4.29 may
be a "false misclassification" rate since this is the misclassification
rate as seen by observing prototypes one at a type instead of looking
at the average importance of each prototype. This phenomenon is often
referred to as "learning from a teacher who makes mistakes" since the
classifier must use prototypes which are misclassified part of the time.

In summary, the deterministic classifier performs better for
non-overlapping or slightly overlapping classes. However, as the over-

lapping increases statistical techniques become increasingly more at-

tractive because of their lower variability.

4.4) Distance and Angle, A Two-Dimensi. ial Problem

In previous sections of this chapter the pattern space has con-
sisted of one dimension--distance. In this section the Monte Carlo.
problem consists of the multi-region problem shown in Figure 4.17

except that after each collision, a scattering angle is calculated
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(see Figure 4.33). For the purposes of this research, scattering is
assumed isotropic in the lzboratory system. The FORTRAN coding used

for the calculations in this section is shown in Appendix H.

Source _\//\‘ fally Surface

Figure 4.33 The Two Dimensional Monte Carlo Problem
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Because the number of regions in the slab does not affect the
structure of the pattern classifier, a single region will he used with
% =.5 and Zs = .4, A slab thickness of five mean-free-paths (L =10) is
chosen for this example in order to keep computer time at a minimum
while still maintaining the characteristics of a two-dimensicnal prob-
lem,

A significant difference between this problem and the previous
one-dimensional problems for which L =200 is the number of prototypes
(equal to the number of collisions). The one-dimensional problem
creates 100 prototypes per source particle, whereas the two-dimensicnal
problem of this section produzed only 11. Consegquently the two-dimen-
sional problem investigated in this section requires more source parti-
cles to learn a splitting surface. An important characteristic of the
two-dimensional problem is that particles are allowed to escape from
the system without contributing to the tally. As a result the distribu-
tion of track importances consists of a distribution of importances
created by non-zero tallies plus a number of track importances equal to
zero. This is a common feature of the majority of Monte Carlo problems.
Because of this, one wishes to locate splitting surfaces so as to get
particles from regions of zero importancé inﬁo regions of non-zero
importance, Therefore, the T described in the introduction to this

chapter is equal to zero.
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In the sample problem of this section approximately 59% of all
tracks have zerc importance. The distribution of the remaining 41% is
shown in Figure 4.34a. The probability distribution of prototypes,
p{(Y), as a function of x is shown in Figure 4.34b for three different
contours through x-¢ space and in Figure 4.34c as a function of ¢.

The decreasing probability of prototypes with increasing x iz a result
of fewer particles penetrating the slab and thus fewer prototypes occur
deep within the slab. The flat distribution with respect to cos¢ re-
sults from isotropic scattering.

Given the feature vector Y=[x ¢], the probability that Y belongs
to class Ci is given by p(CilY), (see Section 3.3). Plots of p(Ci[Y)
for the same contours used in Figure 4.34b and c are shown in Figure
4,35, The symmetry of the class distributions is due to isotropic scat-
tering and the single material region. The intersections of the dis-
tributions define the decision surface. A particle with coordinates on
this decision surface has an equal probability of being tallied or
escaping. Unlike the one-dimensional problem the probability densities
of each class, P(chi) are not proportional to p(Ci[Y) since p(Y) is
not constant. The misclassification rate due to the overlapping of
p(CilY) is 29% (i.e., Er =29 where Er is defined by Equation 4.5).

In Section 4.2.3 normalization was achievgd by multiplying the
feature vector Y by 1/L and altering the adjustment algorithms according-~
ly. This is not possibié for two-&imensional pattern space since both

variables ¢ and x must be normed with respect to each other. This is
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done by normalizing both angle and distance to one. Thus, pattern space

is transformed to feature space as shown by Equation 4.22.

x x v, x/L
X = = Y = = (4.22)
*2 ¢ Y2 (cos ¢ +1)/2

In the one-dimensional slab problem the performance of the
classifier is measured in terms of the misclassification rate and the
variability of the decision surface. The misclassification rate will
be used unchanged; however, the variability of the decision surface (a

line in two dimensgions) is given by

Ux0¢
Variability = ~p= == (4.23)
¢" +x
where $'= the mean value of the decision surface with the Y,

{(cos ¢+ 1)/2] axis

the mean value of the decision surface with the

»l
]

yl(x/L) axis
o, = standard deviation of the mean x
0¢ = gtandard deviation of the mean 3
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In additiun to investigating learning parameter influence, this
section studies the effects of initial ceonditions as was done in
Section 4.3.1 for the one~-dimensional case. For one-dimensional feature
space the initial condition coasists of a single variable Sl==-w2/wl.
The choice of an initial Wy was found to have ne effect provided the
aroper A were selected. Thus by keeping 2 =constant, an initial w1==1
could be used without loss of generality. Figure 4.36 illustrates the
decision surface for normalized two-dirmensional feature space. From
this figure it is seen that two parameters are required to specify the
decision surface, -w3/w2 and -w3/w1. A third parameter (in this case

let it be wl) determines the slope of the discriminant function and

like the one-dimensional case can be set equal to 1 provided that X

[l

V] 1 ~w3/wy 2
Figure 4.36 Decision Surface for the Two Dimensiona! Problenm
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remains constant. A simplifying assumption made only for the purposes
of this research is to use w2==w1=:1.0 which results in a decision
surface (line) oriented at 45° to the y. and y2 axes. Using this
assunption, the initial conditions consist of specifying Vi, wvaere —wy
is the Yy and Yy intercept.

It was demonstrated in Scection 4.3.1 that an initial decision
surface near the origin lezds to decreased performance and it was
recormmended that this problea be alleviated by changing the feature x
te L-x., This situation zlso occurs in the two~dimensional problen.
Therefeore, several runs will be made using ¥y = 1-x/L and

=1~ (cosd+1)/2. TFor these runs w, =w,=-1.0 and Vg vill be chosen

¥y 1~ %2

to correspond to an equivalent Vg in x/L, (cos?+1)/2 space. To
illustrate this feature ceoaversion two equivalent decision surfaces are

shown in Figure 4,37. 1In the following sections a negative value of v,
implies wl=w2=1 (as in Figure 4.37z2), a positive va inplies ¥ =w2=-1

(as in Figure 4.37b).

3 i 3
R €2 x
i
c, —g(\')=0;
0 1
(cosi+l)/2 1-{cosi+l)/2
(a) wl=w2=1, w3=—.5 (b) w1=w2=-1, w3=1.5

Figure 4.37 Feature Vector Conversion
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4.4.1 Deterministic Classifier

The algorithm for weight adjustment is the same as given bLy
Equation 4.4 except that the dimension of the vectors W and Y§ is in-
creased from two to three. The FORTRAN coding of this classifier is
shown in Appendix H. The effect of the learning parameter, X is illus-
trated in Figures 4.38a and 4.38c for several di ferent initial cendi-
tions after 5000 source particles., The behavior of the classifier as
a functionof A is similar to that illustrated in Figures 4.29 and 4.30
for the problems in which the class distributions have a large arcunt
of overlap (Cases II and III)., The misclassification rate drops with
increasing X while the variability increases. The fact that the nis-
classification rate drops below that due to overlapping classes (297)
indicates the effect of ''false misclassification" described in Secticn
4.3.2.

The misclassification rate aud variability for runs started
near the origin (w3==—.25, ~.05) are higher than the other runs (sce
Figures 4.39a and 4.40a). Vhen feature space is converted (w3==l.75,

1.95) the same prototypes lead to much better performance.

4.4,2 Statisticul Classifier

The correction vector for the two-dimensional problem with a

loss function equal to d is given by
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TRoe | =22 (4.24)
W ‘3/2
2 w -+ W 2‘
1 2/
1
*-—'—;'_ ('_ 2+'_ 2)1/2
- J L 1 2 -

The FORTRAN coding for the statisticzl classifier is given in Appendix
I. Tne misclassification rate after 5000 particles is relatively flat
for X's between 10_3 and 1 (ses Figure 4.38L); however, the variability
has a ninimua at l==10‘1. Unlike the deterministic classifier, normali-
zation affects the optimun . The misclassification rate (see Figure
4.390) is more spread than the deterninistic classifier due to the sen-
sitivity of the statisticazl classifier toan initial decision surface
rnear the origin. The variabdility is also rmore spread (see Figure 4.40b)
since initial surfaces nearer the origin (w3==-.25, -.05, .5) performed
considerably worse than theii counterparts away frea the origin

(w3==1.75, 1.95, -1.5). Thus the statistical classifier behaves the

same as previously illustrated in one dimension,

4.4.3) Summarv

Aside from the normalization procedure the two-dimensional prob-

lem behaves sinilar to the one dimensional cace. Once again the classi-

172



fiers perform better when net operating near the origin and, as has been
shown, inversion of the feature vector can be used to alleviate this
problem.

The time spent by the two techniques can be compared by using
Equation 4.9 and the timing parameters given in Table 4.,7. The time
required for normalization of features is not included in this data
since it is a feature selection process and will be treated in Chapter V.
The time to determine classification, tyo is unchanged since it does not
involve the dimensionality of Y. The increase in t is due to the addi-
tional terms necessary to calculated g(Y). The weight adjustment times
increase by 1007 for the statistical case and by 667 for the determinis-
tic case. Thc example times given below are for 300 source particles
(3,590 prototypes), an initial w3==1.95 (see Figures 4.39 and 4.40, runs

E) and no buffer zones,

Time in Seconds

Statistical Deterministic
£, 21.5 x 107° 5.8 x 107°
t, 1.7 x 107° 1.7 x 107°
t, 4.1 x 1075 4.1 % 1078

Table 4.7 Timing Parameters for the Two
Dimensional Problem



Deterministic (fC==.327)

2 2 2

T = 1.47 x 102 + .61 x 1072 + .68 x 1072 = 2.76 x 102

Statistical (fc==.330)

T=1.47 x 1072 4 .61 x 1072 + 2.55 x 1072 = 4.63 x 10”2

Unlike the one dimensional case of Section 4,2.3 the differcnce
between the two techniques is significant. This difference is due
primarily to the increase in the amount of class overlap (from 4% to the

1-D case to 29% for 2-D) which causes the effect of t. to be more pro-

C

nounced in the two-dimensional case.

4,5 Sumaary

In this chapter statistical and deterministic classifiers have
been used to learn splitting surfaces for several different Monte Carlo
problems. The conclusions drawn from these numerical experiments are
listed below for each topic.

Slab Thickness and Class Overlaonping. It was found in fection

4.2 that the smaller the distance variable (in this case slab thickness)
is in terms of mean free paths, the greater is the amount of class

overlapping. Because class overlapping decreases classifier performance,
geometries of many mean free paths are easier problems as far as pattern

recognition is concerned.
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Buffer Zones. Buffer zones decrease the misclassification rate

of the classifier by removing prototypes which are very close to class
boundaries (according to the teacher). However, if prototypes falling
within the buffer zone arec not used as prototypes, the variability can
be increased since the variability is proportional to the inverse of the
number of prototypes. Therefore, prototypes within the buffer zone
should be considered as correctly classified prototvpes. A further
benefit of buffer zones is that they decrease the amount of computer
time necessary for pattern recognition.

Loss Functions. Although there was no great difference in per-

formance for the loss functinns used, loss =d appears to be the most
attractive since it is the simplest computationally.

Learning Parameter,A. It is desirable to use a single ) for

all problems since this greatly simplifies the classification process.
As has been seen in previous sections 2 range of A does exist for both
statistical and deterministic classifiers over which the performance is
relatively constant. If a XA below this range is used, the convergence
of the classifier is slowed down requiring additional time for the
misclassification rate to decrease sufficiently. A X above this

range causes the variability to increase although it may actually de-
crease the misclassification rate. This range is uvaffected by normali-
zation for the deterministic classifier but is strongly affected for
the statistical classifier. The following appear to be reasonable val-

ues of A that are suitable for a wide range of problems.
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Deterministic .01SX<,1

Statistical {normalized to 1.0) .01<A<1

Problens with a large amount of overlap require A's in the lower part
of this range (small overlap, the upper part). Monte Carlov problems
affect the choice of > only because of differences in the amounz of
class overlap. Values of .05 and .1 can be used for the deterministic
and statistical classifiers respectively without greatly penalizing
performance generality.

Initial Conditions, Although both techniques are sensitive

to the selection of an initial decision surface, this selection is far
more critical for the statistical classifier. The problem can be al-
leviated by altering the feature vector and thus changing from the re-~
gion near the origin to a region near the point (yl,yz,...yn)

= (1,1,...,1). As will t> seen in the next chapter decision surfaces
will be started at the origin; therefore, this alteration of feature

space is mnecessary.

Computer Time, Although programming efficiency has been over-

locked in the construction of the classifiers, some conclusions can be
dravn from the timing data. These values can then be used as an upper
limit for the time spent in pattern classification. ﬂThe time to deter-
mine prototype classification, tA’ is a major contributor to tire spent
on pattern classification, amounting to about 4,1 10—6 seconds per
prototype. Using Tables 4.5 and 4.7 and extrapolating to feature space

of N dimensions results in



6

£ ~1.0%1070 & (x-1) .7x107® (4.25)

L

Perforning the ssme extrapolation for te results in

Deterninistic: tC =~ 3.5><10—6 + (N-1) 2.3>110-6 (4.26)
Statistical: tc,=10.5 x 10_6 + (N-1) 11.x 10_6 (4.27)

Both the one-dizensional and two-~dimensional problems require about the
same number of prototypes (3 to 4 thousand) until couvergence. However,
due to difference in the overlapping of class distributions, the one-
dimensional case converges to a nisclassification rete of =57% whereas the
two-dinensional case converges to a rate of =~30Z%.

Normalization. The normzlization of feature space for nulti-

dimensional feature vectors has been accomplished by normalizing the
feature space to a 1x1 coordinate system.

Deterministic vs. Statistical. Although the statistical clas-

sifier has the advantage that it is guaranteed to converge in the
presence of overlapping class distributions, this advantape 1s not
great since the decision surface will be used prior to final conver-
gence. The deterministic classifier appears to be the most attractive
because: (1) its performance (variability and misclassification rate)

is usually better than the statistical classifier (2) it uses less
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cemputer time (3) its learning parameter, A, is not afrected by norma-
lization and {4) it is nuch less affected by the initial seleczion of

a decision surface. .
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Chapter V. Discussion of General Application

Many practical considerations remain before the techniques of
Chapter IV can be applied to a multi-purpose particle transport code.
The purpose of this chapter is to describe and analyze these considera-
tions. The first problem is that given the ability to recognize sur-
faces, what surfaces are desirable, and in what order should those
surfaces be learned. Tnis problem is analyzed in Section 5.1 for a

single tally, the point detector tally, and multiple-tallies.

Section 5.2 describes the problems encountered in feature se-
lection and suggests a scheme for implementing the feature selection
process in a general purpose code. Section 5.3 investigates the amount
of time required for pattern recognition and its related operations and
its effectiveness as a variance reduction techniques. The limitations
of the pattern recognition system in reducing variance are discussed

in Section 5.4. Finally, Section 5.5 summarizes the chapter.

5.1) Implementation

The first requirement of implementation is to make prototypes
available to the classifier. In this research prototypes are created

after each collision;* however, not until after a particle is lost to

*Prototypes could alsc be created when entering a new geometric regiom;
however, energy and angle variables will be unchanged from the previous

prototype.
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the system or is tallied can the importance be determined (this is nct
true for the point detector, see Section 5.1.3). TFigure 5.1 {llus-
trates when the infer—ation for the prototypes is extracted from the
Monte Carlo problez &nd Figure 5.2 shows when pattern recognition is
performed. Unlike the Monte Carlo problems used in Chapter IV, for
many protlenms a single source particle can lead to rultiple contribu-
tions to the tally. Such a case is illustrated in Figure 5.3 vhere the
track length in region 2 is tzliied. Due to scattering in region 1,

it is possible for a particle to pass through region 2 (and thus be
tallied) any nucher of times before leaving the system. Because of
these multi~contributicns the pattern classification loop of Figure 5.2

can be entered many tizss during the trace of a2 single source particle.

The pattern ciessifiication block can be considered to be a FORTIRAN
subroutine. Sections 5.1.1, 5.1.2, and 5.1.3 discuss the structure of
this subroutine for & single tally, amultiple tallies, and a point de-

tector tally, respectively, using the information gained in Chapter IV.

5.1.1) Single Tallw

The majority of Monte Carlc problems which require importance
sampling to reduce the variance are characterized by a seldom occurring
tally. Thus thermajcrity of prototype importances will be zero. The
problem with zero importance prototypes is that they contain nuch less
information than a non-zero tally (i.e.,all prototypes with zero impor-

tances look the same to the classifier whereas non-zero importances can
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Region 1 4\\\\— Region 2

Figure 5.3 Multiple Contributions to a Tally

be classified among themselves). Therefore the first splitting surface
to be learned i1s the surface separating zero from non-zero importance

regions.

The initial location of this first splitting surface should be
well within the class 1 (zero importance) region. Default*values may
be used to locate this surface; however, if the user can supply more

information, it should be used in order to speed up convergence. Suit-

able default values for the components of W are

= ~1.0 i=1,...,N (5.1)

# A default value is one which is supplied automatically by the computer

program; however, the program also allows for the user to provide a dif-

ferent value. If the user provides a value, it is used; if he does not,
the default value is used.
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where it has been assumed that the feature selector has normalized all
feature components to an interval from zero to one (see Section 5,2)

such that importance decreases as yi(i =1,...,N) increases.

Once this initizl location has been set, prototvpes can then be
used as the Monte Carlo caleculation progresses. This splitting suriace
can be utilized while ¥ is being learned. By doing this more protetypes
are introduced cm the class 2 side which will accelerate the conver-
gence. Vhen the classifier attains a suitable misclassification rzte
and variability (as set by the user or default), weight adjustment on
the first splitting surface can be stopped. During this first phase,

the number of prototypes in each class, My (i=1,2) is cealculated. This

1y

variable can be used in tne following expression

) 12 -
if FZ = EE;EE >R (5.2)

then no more splitting surfaces are learned
\

to deternrine if.rore splitting is necessary where R is determined by

the user. The first splitting surface (between zero and non-zero impor-
tances) divides state space into two regions - in one region
particles have a probability >50% of contributing to the tally, in the
other region the particles have a probability >507 of not contributing

to the tally. As F2 increases less splitting is necessary.
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1f F2<R then an additional surface within class 1 is necessary
to get more prototypes into the important regions of the problem.
However, since all prototypes in class 1 have zero importance, a sub-
goal or sub-tally must be used for classification. One such choice is
to observe when a particle enters class 2 according to the student.
This is done by checking the sign of g(Y) after each collision (this is
already done since g(¥) is being used to split particles). If it is
found that a particle is entering 02 (i.e., g(Y) > 0), the particle is
tallied (only for the pattern classifier). The prototypes are then
sent to the pattern classifier. After the classification process, the
particle continues the random walk. Fowever, prototypes are not
created until the particle re-enters Cl (i.e. the "No" learning branch
of Figure 5.1 is used). 1f the particle re-enters Cl’ prototypes are
again saved until the particle either enters C2 cr is lost to the
system. Like the Cl-C2 splitting surface, a single snurce particle can
contribute several “sets" of prototypes (one set for each tally).
Unlike the Cl--C2 splitting surface, prototypes are not created after
each collision, but only after collisions occurring within Cl. With
this procedure, class 1 can be subdivided into two sub-classes, class 3
and class 4 where class 4 particles have a 50% or greater chance of
becoming a class 2 particle and class 3 particles have less than 50%.
The choice of an initial w for the second splitting surface can be made

by using Equation 5.3
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2(Wyuq)
oy L1 I=1,...,5 (5.3)
2YN+1 P!

21 1¥1

1
M =2 Q¥ t oM

where .w, = initial weight of new discriminant function

11
i initial weight of previous discriminant function
¥y = final weight of previous discriminant function

which results in a splitting surface located mid-way between the first
and last positions of the class 1-2 decision surface. When the second
splitting surface has been identified a check is again made on Fz. If

F, <R, three things can be done: (1) class 3 can be subdivided (2)

2
class 4 can be subdivided (3) class 3 and 4 can be subdivided at the

same time. If F2<<R, then the third choice is needed since a consid-
erable amount of splitting is necessary to make Fz larger. Otherwvise

the choice between 1 and 2 is decided as shown by relation 5.4 with

1=a3, J=4,

1f MI > MJ, subdivide class I.

If MJ > HI, subdivide class J. (5.4

This process continues until either a maximum number of surfaces have
been identified or F2=>R. A flow diagram of the above process is shown
in Figure 5.4. Table 5.1 lists the eight regions formed by the first

4 splitting surfaces. |
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Table 5.1

Class Probability of Tally
1 <50%
2 =50%
3 <25%
4 225%, <507
5 <12.5%
6 =12.5%, <257
7 =25%, <37.5%
8 =37.5%, <507

5.1.2) Multriple Tallies

In the previous section only the splitting surface between
classes 1 and 2 depended upon the importances, I, of the prototypes (this
is not true if class 2 is subdivided). The problem of multiple tallies
consists of defining what is meant by I when more than one tally is
considered. This section considers only the Cl—C2 splitting surface.
Subdivision of class C, is discussed in Section 4.1.2 and subdivision
of class C; is identical to that described in Section 5.1.1.

The importance I, (i=l,...,ni n=no. of tallies) is the importance
relative to a particular tally. Therefore each prototype actually has n
importances for n tallies. One could assign a g(Y) for each tally; however,
this would consume n times as much computer time. An easier solution is

to assign a probability, pj», to each tally such that

188



n
1=261 (5.5)

i1
i=]
where 61 = 1 with probabilicy Py
61 = 0 with probability (l-pi)
I, = importance with respect to i'th taliy

overall importance of prototype.

This results in a tally with a high Py having more particles directed
towards it. Although the user can aasign the Py» it is possible to
have this done automatically by using the wvariance of each tally during
the Monte Carlo calculation. The Py of tallies with high variances
should be increased, with low variances decreased. This splits parti-
cles so as to produce 2 uniform variance for all tallies. Although
this process affects only the Cl--C2 surface directly, since all other

subclasses of C1 are related te this surface, they are also affected

indirectly.

5.1.3) The Point Detector Tally

The point detector tally described here assumes the same struc-
ture as is used in the MCN c¢ode at Los Alamos Scientific Labora-

tory!® , usually used for the tallying of flux at a point. This tally
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differs from other tallies in that after each collision, the contribution

to the tally, x, ., given by
1,]

.. = WE, 5.6
xlsJ i,j Pj ¢ ‘
where x, 5= contribution to the tally of the i'th
’
particlg after the j'th collision
(x, = Z %, . where J=no. of collisions)
i y 1,j
J=
wt, F = weight of the i'th particle before the
?

j'th collision
p-: = (probability of scatter) X (the probability
of scattering toward and being detected

by the point detector at the j'th collision)

is calculated. Unlike other tallies each prototype has a non-zero impor-
Itance which eliminates the Cl-C2 surface as described in previous sections.
Instead an appropriate T must be selected which falls within the distribu-
tion of Ij's. (Ij = importance of the j'th prototype, not to be confused
with Ii of Equatjon 5.5 which is the importance of a prototype wich
respect to the i'th tally). The median is a good choice for T since it

is a measure of the number of prototypes. The mean is a less useful
measure since it can be strongly influenced by the value of Ij (i.e. a

few very large I-j affects the mean I more than a much larger number of
prototypes with small Ij). For some cases {especially when the distribu-

tion of I, is over many orders of magnitude) the mean falls at the tail

3
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of the distribution which would not be very useful for splitting.

Another possible value for T is the logarithmic mean (see Equation 5.7)

N
&~ log. I,
I = logarithmic mean = J-l———ELQQl— (5.7)
where N = number of prototypes
Ij = importance of the j'th prototype

which compensates for distributions that cever many orders of magni-
tude. An important consideration in the choice of an T is the computer
time required. Thus, although the median is the best choice from a
statistical point of view (it creates classes which originally have

the same number of prototypes in each class) it is also expensive

calculationally,

The initial stages of the Monte Carlo calculation are used to
calculate I. During this initial stage weight adjustment is allowed
with the initial W chosen the same as described in Section 5.1.1. The
splitting surface is not used until a final T has been determined.

This prevents splitting from influencing the selection of I. Wher the
first splitting surface has converged,F2 is checked (see Equation 5.2).

If F, <R then the procedure continues as illustrated by Figure 5.4.

2
As described in Section 5.1 this process continues until either F22>R

or a maximum number of surfaces has been created.
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The importance of a prototype for multivle point detectors is

determined by

n

I= Zlmi Ii (5.8)
1=

m; = weight of the i'th detector

Ii = importance relative to the i'th detector (same as
Equation 5.53)
n = number of detectors

The weights, m;, Serve two purposes. First of all they are used to
normalize tallies, This is required when tallies with different units
are used (for example fissions at a point, captures at a point, flux at
a point) and must be normalized to 0< Ii‘<l. The second purpese of
my is to direct particles towards certain tallies. This is done by in-

creasing ny for tallies to which more particles are needed in the same

manner as was suggested for the py (see Section 5.1.2). Also like py,

optimum m; can be learned during the calculations or can bs supplied by

the user.

5.2) Feature Selecticn

As stated in Section 3.4, feature selection is best served for
this research if it remains a human function. This can easily be done
if the feature selector ceonsists of a user supplied subroutine in much
the same was as for source subroutineslg. The function of the feature
selection subroutine is shown in Figure 5.5. The user must supply the

following informatien:
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f = the functional form of the i'th components of feature
space (e.g., f; = r = x2+y2+z2)

u min _ the minimum value encountered for the i'th component
of feature space

u,"@* = the maximum value encountered for the 1'th component
of feature space

d = 41, 1f the importance increases as vy (see Figure 5.5)

increases

= -1, if the importance decreases as vy increases

The selection of the fi can do more to improve the behavior of
the pattern recognition system than any other user input. As users
gain experience they will undoubtedly gain skill in the selection of

f The following heuristics® or rules of thumb should prove of value

i

in this process.

(1) Omit any variables which are not used in the problem.

(2) Make use of any symmetries in the problem.

(3) 1If a variable spans several orders of magnitude, use the
logarithm of the variable.

(4) Limit the span of a pattern vector component to that range

* Hewristics are non-analytically derived rules usually gained through
insight or experience and are used when analytical techniques are in-

. 8
adequate or non-existent®
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over vhich splitting surfaces are likely to occur. This
min

is done by specifying the range (ui

. uimax) to be srall-

er than the actual range of variable u, .

(5) 1If the icportance varies very weakly with a varizble, omit
the variable.

(6) Detercine what vzriables are icportant froz the "tally point
of view".

(7) Select features for vhich the importances either monoton-

ically increases or decreases.

Beuristics 1, 2, and 5 are aized primarily at reducing the dicension-
ality of feature space. Heuristices3 and 4 are used to prevent surfaces
froa being too close to each other in feature space. The results of
these heuristics is to expané the space in the vicinity of splitting
surfaces. The purpose of heuristic 6 is to select optimum fezture
cozponents for splitting., Eeuristic 7 is aimed at preventing class
‘distributions which cannot be treated with linear discriminant functions.
Suggestions for each pattern vector conponent are given below using the

above heuristics as guidelines.

Tire: A great nurber of transport problems are concerned only

with steady state situations. For these problems time should be omit-
ted from all fi (heuristic 1). Problems which do involve time often
involve several decades, 1In this case heuristics 3 and 4 should be

used. Time will usuvally no*t be combined with any other variadles to

forn a new ¥g but will be used alone.
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Energy: Most transport problems of interest are usually

strongly dependent on energy due to the energy dependence of nuclear

cross sections. An example of this is the fission cross section which
varies from a few barns in the Mev region to several hundred barns in

the ev region. Therefore the probability of a fission occurring varies
by two orders of magnitude due to energy alone. Heuristics 3 and 4 are
almost always necessary unless dealing with only a very small energy
interval. There are problems in which,over the energy range of interest,
the cross sections of the materials involved (for example, carbom) are
relatively flat. 1In such cases heuristic 5 should be c:xecuted. Like

time, the energy variable will seldom be combined with other variables.

Spatial Coordinates x,y,z: Heuristic 2 is intended primarily

for the spatial coordinates. For example, if the geometry of a problem

is symmetric about an axis, cylindrical coordinates should be used for the
features. Once the geometry has been transformed to cylindrical coordi-
nates, it may be found that the importance does not vary with y or 6 (see
Figure 5.6). Then by using fi =r = x2 + 22, three components (x,y,z)
have been reduced to one. An analogous situation exists for spherically

symmetric problems. Figure 5.7 illustrates a case where heuristic 7 is

necessary. By transforming x as given by

£ = l(xel)I 5.9)
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a linear discriminate function can be used. In general the distance

to a tally is the best choice of a spatial coordinate (heuristic 6)

as given by

£, =d= /(x—xd)z + (y-yd)z + (z—zd)z (5.10)

vhere xd, yd, zd are the coordinates of the tally

Such a choice also reduces the number of features. Spatial features

will usually not require the use of heuristics 3 and 4.

Direction Coordinates (u,v,w): The direction cosines are

similar to the spatial coordinates in that they are usually better
combined. For example, the cosine of the angle betweer the present

line of flight (vectnr=vl) and the direction to the tally (vector=vy)

given by

1
fi = gos ¢ = TVIVZT (5.11)

{5 similar to d (Equation 5.10). Using the above feature also allows
lincar discriminant functions (heuristic 7). As in the case of the
spatial coordinates, cylindrical and spherical symmetry can often reduce

the nusber of angular features necessary.
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The problem illustrated in Figure 5.8 will be used to demonstrate
the proper selectifon of features. 1In this problem material 2 is highly

absorbing and material 1 is only slightly absorbing but has a moderately

Vacuum r = o

Tally current across
ar this surface
0

? Material 1 \

Vacuum
Z
Z¢
Material 2
y
Figure is drawn in
»=0 plane, +x axis
Isotropic point is out of paper
source at (0,0,0)— «,
-bi Y1 Yy ——P]
Ye £

Figure 5.8 Sample Problem for Feature Selection

high scattering cross section. An isotropic source of neutrons is lo-
cated at the origin., It is assumed that all cross sections are flat
with energy and that time is of no interest. The tally consists of

counting the number of neutrons which cross the surface located at
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=y The material regions shown are cylindrically symmetric about
¥=73¢

the line drawn through the point (O’O’Zt) and parallel to the y axis.

The following £, would be suitable for the feature vector of

i
this problem:

fl =y
f, =r = \/(zt-z)z + %2
f3 =y vd[v vdl
v = Y Ye
g min _ o max _

2 Y2 0

min max
uy = -1,0 ug = 1.0
where v = direction cosine with y axis

vy = direction cosine to point (O,yt,zt)

The previous seven heuristics relate to the above selection as follows:

Heuristic 1. Since cross sections are flat, the problem is in-

dependent of energy and as was stated time is of nco interest.
Therefore time and energy do not appear as variables in any of the

£,

Heuristic 2. The form of f2 was chosen due to the symmetry of the

problem. This reduced the number of variables and is also a more

effective variable for splitting.

Heuristic 3. Not used.
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heuristic 4. This heuristic was used to set uzmax_ For r>r,

particles z11 belong to the sazme class thus lipiting splitting to
min

are set to the linmits of the

nax
r<r,. The other u 4% and uy

problen.
Feuristic 5. ot used.

Eeuristic 6. This heuristic influenced the choice of all three

fi. If cne is &t the telly locking at contributing neutrons, al-
most &l1 the neutrons will be coning down the channel from
paterial 1 {(few coze freom material 2 since it is highly zbsorbing).
Because of this the probebility of a neutron arriving at the tally

cdepends prirerily on the fi chosen.

Heuristic 7. As fl increzses from ~¥y to yt,the probability that

it is tallied zlso increases moncotonically. This is also true for

£, and fg.

2

Although the selection of features does require user information, this
informatior is qualitative in nature as opposed to the quantitative

information required by normal geometry splitting.

5.3) Timing Considerations and Fffectiveness

The purpose of this section is to determine the factors neces-
sary for estirzating the effectiveress of state space splitting'using
pattern recognition. The only definitive way to determine the effective-

ness as given by Equation 2,16 is to apply the technique to a full scale
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Yonte Carlo Code snd use it both with and without the variance reduc-
ticn for a large nuzter of preoblems. The approach taken in this
section is to compare the varicus operations involved in state spzce
splitting as opposed to conventional splitting (Section 5.3.1). The
additional operations involved in using pattern recogniticn to icentifyw
the splitting surfaces are then described (Section 5.3.2). Altheugh
this analysis does not result in an absolute evaluation for 211
problems, some assumptions can be made concerning the effectiveress

as corpared to presently used splitting technique.

5.3.1) State Space Splittine vs, Conventional Splitting

The basis of this comparison is the current versicn of the MCX
neutron Monte Carlo ceode at Los Alazmos Scientific Laboratorﬁswhich con—
tains beth energy splitting and geometry splitting. For the exergy
splitting the user sgecifies a nucber of energy splitting sur’zces, Ei’
i=i,...,N (X=number of splitting surfaces) and the ratio for splitting
between two energy regions (separated by Ei) Ry, i=1,...,N. The energy
of the particle is checked after each collision. If the energy drops
balow an Ej, the particle is split into Ry particles with weights equal

to the particles original weight divided by Ry.

-

Each geometric cell or region (see Appendix J) is assigned an
importance Ii. Whenever a particle crosses a surface Sj which bounds
0 or more cells, a check is made to determine which cell the particle
is entering. This check is rwade by: (1) determining which cell or

cells are on the other side of Sj (2) 41f more than one cell iz on the
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other side of S, the senses (see Appendix J) are calculated with

]
respect to the bounding surfaces (with the exception of Sj) of each

cell (3) the cell for which all the senses agree is used as the next
cell (if there is only one cell, it is used). The importance of the new
cell, I,, is then compared with the importance of the previous cell,

I_, and the operations indicated in Figure 5.9 &ro performed. In the

(e R4
case »f splitting, if the ratio of importauces In/Io is a non-integer

value given by

R = In/Io -J (5.12)

where J = largest integer that will go into In/Io’

then J+1 particles are created with probability R and J particles are
created with probability (1-R). When particles are split one of the
particles is continued and the others are banked* (i.e.’the state space
description of each is saved) until the first particle leaves the sys-
tem,at which time the banked particles are continued. Of the above
process, the only time used for splitting and Russian roulette is the
time spent in the operations chown in Figure 5.9 plus the time spent in
banking particles. The average time per particle spent performing these

operations will be designated Atl’ Unfortunately, this is not the only

* The banking of a particle consists of recording its state space descrip-

tion (x,y,z,u,v,w,E,t) and its weight, wt, on a pushdown list, This list
is so constructed and maintained that the next particle retrieved from

the list 7s the last particle placed on the list.
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B Continue
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Figure 5.9 Conventional Geometry Splitting
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increase in time due to the splitting process. Because splitting is
often desired at surfaces which are not material boundaries, the user
must subdivide the already existing cells into smaller cells in order
to split at the surfaces he desires. The introduction of these new
"splitting cells and surfaces" means that more intersections will have
to be calculated and more senses will have to be checked. It also re-
quires more calculations of the distance until a col’’sion. These three
operations can consume a considerable amount of time (the majority of
computer time spent is often spent in these geometry related calcula-
tions). 1In fact, for some problems, the additional time required by
these operations can completely offset any gains due to variance reduc-
tion. The average time per particle spent due to increased geometry
calculations caused by "spliiting cells" will be denoted as Atz.

If the additional time per particle spent due to energy split-

ting is designated At3,then Equation 5.13

Atg = Atl + At2 + At3 (5.13)
vhere Atl = time to perform processes of Figure 5.9

plus banking of particles

At2 time required to perform geometry calculations

due to additional "splitting cells"

At3 time required for energy splitting

gives the total additional time spent due to the use of splitting and

Russian roulette.
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After a collisizn and
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Figure 5,10 Deternining the New Class for
State Space Splitting
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If state space splitting is used with known splitting surfaces

(i.e.,, W is known) the operations shown in Figure 5,10 are performed after

each collision. Once the new class, Jn’ has been found it is used with
the old class, Jo’ to determine the ratio of importances given by
1 /1, = 2™ AJ=J -3 (5.14)
n’ ‘o ’ n"vo
After this ratio has been calculated, the procedure illustrated in Fig-

ure 5.9 is used. Therefore, using state space splitting, the tntal

additional time per particle, Ats, is given by

Ats = At:4 + Atl (5.15)

where At4 = average time spent per particle to perform

operations of Figure 5.10

At see Equation 5.12,

1

Subtracting Equation 5.15 from 5.13 results in
Atg - Ats = (At2 + At3) - At4 (5.16)

All three of these parameters (At2, At3, and Até) are dependent upon
the amount of splitting used. The parameter At2 is also very dependent
on the number of "splitting cells" and the complexity of the surfaces
involved (higher order surfaces require more time to calculate inter-

sections)., The parameter At4 is dependent on the complexity and number
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of the fi(Y). A great deal of experimentation with manv different

Monte Carlo problems would have to be run to determine whether 1tg or

Ats is larger. It is most prohable that each technique has a class of

problens for which it operates cuicker.

If both teshnigues are used to represent the same surfaces,
the relative effectivencss can be calculated by comparing the zhove
tizes only. EKowever, this is nct the case since the conventionzl tech-

nigue splits only in energy and position space (independently) and tf

bt

e
other approach splits in state space. Furthermore, the splicting
surfaces of the comventional zpproach are the vesults of heuristic
guesses by the user; whereas, in the state space approach, the surfaces
are the result of the pattern recegnizer., Figure 5.11 demonstrates

the advantage of splitting in state space for the twe dirensionzl
problen considered in Section 4.4. The solid line indicates the splic-
tirng surface found by pattern recognition. The dached lines are a fow
of the splitting surfaces possible if geometry splitting is used alens,
As can be seen there is a2 great arnount of deviation regardless cf

vhich gecmetry splitting surfzce is chosen. The problem is caused by
the fact that cone cannot split along constant contours of I using
georetry and energy splitting only. As a result, many particles are
split which should not be. As a result, Ne {see Equation 2.15) will

in general be much smaller for state space splitting than for the con-~

ventional splitting approach.
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(1=u/1)

(i-lcoui4})/2)

Figare 5,00 Splivcing Suefaces Yor the

Problen of Section 4.4

5.3.2) Time Spent for Pattern Reecopnition

Section 5.3.1 discusaed the time requived to split particles

in state space. This section discussss the additional time required

te learn the splitting surfaces and includes:

(1) Tf = the additional time required to save prototypes (see

Figure 5.1)

(2) TP = the time required to classify patterns and adjust W

{see Sections 5.2.3, 4.4.3, and 4.5)
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(3> Tm = time required to "manage" the splitting surface

selection (see Fipure 5.4).

The above operations are different from those described in Section
5.3.1 since they are only performed while the splitting surfaces are
being learned. Because of this, the time spent for pattern recognition

is distributed only over those particles which exist while the pattern

recognizer is being used.

The discussion in this section assumes that a point detector
tally is not used and that the splitting surfaces are learned one at
a time (i.e., one surface has passed the convergence test before
another is begun) as described in Section 5.1.1. The following nota-

tion is used throughout this section:

Sk,j = the splitting surface between classes k and ] where
the k and j are defined as given by Table 5.1. The
1'th splitting surface refers to surface 521_1,21.

N, = the average number of collisions per source particle
in a particular Monte Carlo calculation before the
1'th surface is learned but after the (i-1)'th surface
is learned. (N1==Ni before any surfaces are learned)

h, = average fraction of Ni which occur in Ci before the

i'th surface is learned but after the (i-1)'th surface

is learned (h1=hi before any surface is learned =1).




Q, = the average number of times a source particle contributes

i
to the tally (or class sub-tally) while the i°’th surface
. is being learned.
Bi = number uf source particles required to learn the i'th

splitting surface.

P, = NihiBj = number of prototypes required to learm the i'th

splitting surface.
M = total number of splitting surfaces learned. Ms is either

supplied by the user or is determined by the F! test (see

Figure 5.4).

The splitting surfaces are learned in the following order:

S1,2° S3,4° 55,6 57,8""""”'SZMS-1,2MS

(saving prototypes)

The total time spent transforming vectors from pattern to

feature space is given by

M M
, s s
T=t ZNhB=tvP (5.17)
f it £ 2 1 .
i=1 i=]1

where tf = average time spent transforming one prototype

(see Figure 5.5)
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The time parameter tf depends on the number and computational complex-
ity of the fi (see Figure 5.5) involved and like the parameters Ni’ hi’

and B,, is highly problem dependent. The uy (see Figure 5.5) are often

i
already calculated within the Monte Carlo Code and therefore need only

be stored.

After the first learning surface has been identified, the
feature vector is calculated after every collision in order to utilize
state space splitting (see Section 5.3.1). Since this operation need

not be performed twice, the additional time used to transform pattern

vectors is given by the equation

T' = t_N, B (5.18)

If the additional time spent in storing the Yi is designated by Tg»

then Tf is given by the following equation

= T' =
Tf T + TS tf Nl Bl + TS (5.19)

In general Ts << t:f Nl Bl resulting in the equation

~T' =
Tf T thlBl (5.20)
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T (pattern classifier)

The time spent by the pattern classifier has been discussed in

Sections 4.2.3, 4.4.3, and 4.5 for the pattern classifiers used in this

research and are summarized in Tables 4.5 and 4.7. It should be noted

that these times indicate a maximum of the values to be expected.

Very simple changes in the FORTRAN coding can lead to large reductions

in time. Some examples of these changes are:

(1)

(2)

For non-point detector tallies where the classes are de-

termined by ""tally” or "no tally”, the importance I; need not

" "

be calculated. In such a case all prototypes in a ''set

(see Section 5.1.1) belong to the same class. The only

test necessary to determine classification is to test the
tally for zero, non-zero. For the problems run in Chapter
IV, this results in changing Equation 4.9 to Equation 5.21

thus reducing T by (N—B)tA.

A thCfL) (5.21)

where B = number of source particles

T = Bt, + N(thL +
The dot product of two vectors (W.Y* and Y*.Y%¥) can be

performed much quicker by using system functions (for

example DOTPRO’® at LASL). The larger the dimensions of W,
the more time can be saved. In thic research each vector

element was multiplied in FORTRAN.

213

TN e T T g ey g T




{(3) Vector addition (w =\ +cY*) can be perforned much
faster using system functions (such as ADDVEC at LASL)
In this research cach element was added separately using

a FORTRAN statemcnt for each element.

Since the purpose of this research is not to develop an optimum
FORTRAN program, these operations have not been used since the more
straightforward multiplication and additions are easier for the

reader to follow (see Appendices D, F, H, I).

The total time spent by the pattern classifier to learn Hs

splitting surfaces is given by Lquation 5.22,

T =T1+T2+-.----o'. TP( (5-22)
P S

M,
[
z(tL ify *te afc sfIP T Z Qs By

vhere: s t , t. are given by Equation 4.9
1fL and ifC arc the same as fL and fc of Equation 4.9
except that they refer to prototypes used

in learning the i'th splitting surface

T; = time spent learning surface i
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(splitting surface selection)

lga

The time Tﬁ includes the following operations (see Figure 5.4):

(1) 1Initial Weight Selection
{(2) Convergence testing including the calculations involved
in determining the misclassification rate and variability,

(3) Splitting Surface Selection including F2:>R test,

Operations (1) and (3) are only performed Ms times throughout the
entire Menre Carlo calculation and therefore their times will be
ignored compared to operation (2) which is orders of magnitude more
time consuming. The convergence is tested after every C, source
particles. The choice of CT depends upon the number of source parti-
cles required for convergence, Bi. However since Bi = Pi/(Nihi) and
since Pi does not vary greatly from problem to problem (Pi"4,000 from
Chapter 1IV), Bi can be approximated from the above relationship (hi
and Ni are approximated within the Monte Carlo calculaticon). As ex~
perience is gained with this technique, a suitable CT can probably be
user specified.

Calculation of the misclassification rate involves storing
the number of prototypes and the number of misclassified prototypes.
The former is already performed by the classifier for each class and
the latter consists of incrementing a counting repister every time a
prototype is misclassified. A ratio of the two is then performed

after every CT source particles.
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The calculation of the variability is more complex. For every

feature vector component, yi, there is an intercept of the decision sur-

face with the y; axis which is given by

Ai 3 = intercept with Yy axis after j'th prototype =
?
YN+, §
- = 1 =1,...,N (5.23)
1,3

where N = number of feature vector components
vy j = {1'th weight component of W&, where Wj 1s the weight
H]
vector after the j'th prototype

The variability of each intercept is given by

) b3
J 2 (5.24)
{E(Ai,j " A ] 2 2
i=] A~ A,
Cc, = = 1 1
1 —
/I A A,
i i

where J = number of prototypes

A
T = 1,3
Ai Z J
=1
- <&
Ai=jz=1__:.1j
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Thus for each i both the first and second moments of Ai 3
b4

accumulated.

must be

If the J'th prototype is misclassified the accumulated

moments are given by

J
A, , = A, .+ (n-1)(A 5,25

z 1,3 1,57 D@ G )R (5.25a)

j=1 j=1 i=1l,...,N

L, AT 2 2

z A" E AL+ (L) ) A _ ’(5.25b)

j=1 j=1 i=1l,...,N

where n = number of prototypes since the last

misclassified prototype

If the J'th prototype is not misclassified then the accumulated moments

are given by

J-n

J
E ;Ai,j = E : Ap s+l ) i=1,...,N (5.25¢)
j=1 j=1

J J-n
A | = E A2 |+ Al L) i=1 N 254
1,3 ° 1,5 7 "y, e (3.254)
571 3=1
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After every CT source particles the variability of each intercept is
found using Equation 5.24 and the accumulated values of Equation 5.25.
Each 0; can be tested separately or combined to give an overall vari-
ability as given by

0= ; . (5.26)

The time required to do these operatioms is summarized by the

relation
M_ ‘. M
&~ ¢ ——— 5.27
™% z 1fcPs tT, Z By (.27
i=1 =1
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where tI = time required per operation to store the first

and second moments of the vy intercept (Equa-

tion 5.25)

tv = time required per operation to calculate the
misclassification rate and variability and

test for convergence.

Using a FORTIRAN code to similate these operations results in
the following approximate values for tI and tv.

ty = 4.4 % 10_7N seconds (5.28a)

t, = 6.7x 107’8 seconcs (5.28b)

where N = number of features

Surmar

Combining Equations 5.20, 5.22, and 5.27 results in

Top = T+ T+ T, (5.29)
tV
M v
S (£,Q,4C)
k=~ - e ————————
EePy T ) Pyl tpafptefo (o gfyp TP F A

i=1
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The above parameters fall into the following groups:

(1) tA’ tL’ tc, tI’ tV are constants which depend only on the
programming efficiency used in the pattern classifier

(2) Ni’ Qi’ hi’ ifc’ Ms are parameters which depend primarily
on the characteristics of the Monte Carlo problem involved

(3) tes ifL’ CT are parameters whose values depend on user

specification.

The timing parameters from Section 4.5 and Equation 5.28 are summarized
in Table 5.2 for the deterministic classifier and N features. If it is
assumed that the 4000 prototypes found necessary for convergence in
Chapter IV arecharacteristic of all splitting surfaces (actually it
should be less for each new surface that is learned since the initial
guess for W improves with the number of splitting surfaces) and if no

buffer zones are used (1f1‘=1n0),Equation 5.29 reduces to

L (4.1o_i+——°'C67N)
o ernd -3 T
T, ~ 4X10%¢, +4x10 Z 0.3+1.2 £+ N(0.742.7,£.) + NE (5.30)

i=]1

If it is further assumed that:

{1) ifc =0.3 for all i (i.e. a large amount of overlap)
(2) CT = 10 (a very conservative choice considering the i
value of Pi)

(3)) N = 5 (the maximum using unreduced pattern space is 8)
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Table 5.2

t, 4,1x107°

£ 1.0x107% + (N-1).7x107°
te 3.5x1076 + (n-1)2.3x1076
£ 4.4x107N

£, 6.7x10" N

Equation 5.30 reduces to

~ 3 -
T, ™ 4X107t, + 3.28x10 2Ms + 4x10” 25

The value of Nihi will in general be greater than .SPi for initial
surfaces. However as surfaces progress this value will decrease since
splitting will cause more particles in the more important classes.
Assuming the very conservative value Nihi==.1Pi reduces Equation 5.31

to

M

S
+ 3.28 x 10’2MS +107° Z (4.1Q, + 0.335) (5.32)

~ 3
TPR-4XIO t
i=1

f

The value of Qi will seldom be over 1 (for any problem requiring

variance reduction) and therefore the third term can be ignored com-~

pared with the second resulting in

~ 3 -
Tpp~4x 10, + 3.28x 10 ZMS (5.33)
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Although Equation 5.33 is only a very rough approximation it is still
useful as an indicator of the amount of time spent for learning surf-
aces. Furthermore, the assumptions have been made in such a manner so
as to overestimate TPR' Choosing any reasonable value for tf (10_4 to
10-6) and Ms {<10) and allowing for approximation errors of a factor of
ten still results in 2 TPR on the order of 10 seconds. For Monte Carlo

runs of many minutes this time is quite small compared with the time

saved by variance reduction.

5.3.3) Effectiveness

Geometry splitting and energy splitting techniques have proven
to be quite effective techniques for a great variety of Monte Carlo
problems? Since state space splitting is closely related to these
techniques the effectiveness of learning state space splitting surfaces
by pattern recognition is described relative to conventional techniques.

This results in the relation

Ne Ate
Ey = §% AcF (5.34)
e e
where ER = effectiveness of state space splitting using
surfaces learned by pattern recognition
N_ = number of source particles required to achieve

e
the desired relative error using state space

splitting
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Nz = pnumber of source particles required to achieve the de-
sired relative error using conventional splitting
Ate = computer time required per particle when state space
splitting is used
Atz = computer time required per particle when conventional
splitting is used.

If t, is the computer time required per particle to perform the Monte

B
Carlo calculations without any form of splitting then

* = = i

Ate Atg + Aty Atl + A, + At3 + AcB {7 135)
T T

PR PR N

Ace Acs + At:B + N Ata + Acl + AcB + N (5.36j

where Atg, Atl, Atz, At, are defined by Equation 5.13.

3

Ats, At, are defined by Equation 5.15.

4
TPR is given by Equation 5.29.

Substituting Equations 5.35 and 5.36 into Equation 5.34 results in

. Ne(At4 + A§;:+ AtB) + Tpp 5.37)
* L]
R Ne(At3 + At:2 + Atl + AtB)
The amount of variance reduction is indicated by the ratio
= %
R = N_/N% (5.38)
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which measures how much more efficient for reducing the variance state
space splitting is than conventional splitting. The values of Ne and

Nz can be further reduced to

= N -
NE = K, AN, (5.39)
N = N =~
N, = N, - ANg + AN (5.40)
where NA = number of source particles required to achieve

the desired relative error if neither conven-
tional nor state space splitting 1is used

AN, = reduction of NZ due to variance reduction when
using conventional splitting

ANS = reduction of Ne due to variance reduction when
using state space splitting, assuming the split-
ting surfaces are known,gzigg_to the Monte
Carlo calculation.

AN, = increase in Ne due to the learning of split-~

ting surface.

If the state space splitting surfaces are known prior to the
Monte Carlo calculation (ANL==O), then in general R<1l. This is be-
cause state space splitting includes the advantages of conventional
splitting (i.e.,ANC) as well as the additional advantages of splitting in

time and direction space (i.e.,ANS>ANC). Through proper feature selection

optimal combinations of state space parameters can be used which further
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increases ANS.

When splitting surfaces must be learned, the value of (ANS-—ANL)
varies throughout the calculation starting at zero and increasing to
ANS for which splitting surfaces are known a priori. 1In this case R
could possibly be >1 for some Monte Carlo problems; however, by usiag
decision surfaces for splitting before they have converged, ANL can be
greatly reduced. Monte Carlo problems exist for which conventional
splitting is inadequate; whereas state space splitting appears to be
quite attractive (such problems are now usually split into two separate
problems where the tally from one provides the source to the other).
For this type of problem R<<1l, If several similar Monte Carlo problems
are being calculated,splitting surfaces can be learned in the first
problem and used in the others, thus making ANL==0 for subsequent simi-
lar problems. The value of ANL depends on the amount of learning per-
formed per source particle which in turn depends on the number of proto-
types created per source particle, Ni (see Section 5.3.2). Since proto-
types are created at collisions, problems in which the particles have a
high number of collisions before leaving the system result in converged
splitting surfaces after fewer source particles. This point is illus-
trated in Chapter IV by comparing the number of source particles until
convergence (relative to each problem) for the problems described in

Sections 4.2.3 and 4.4.3:
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No. Source Particles

Collisions/Source Particle until Convergence
(4.2.3) 100 40
(4.4.3) 12 300

Problems which do not have a large number of collisions are often prob-
lems which do not require much variance reduction if any. If a problem
containing few collisions requires variance reduction, the learning
technique can be modified to produce prototypes at surface intersections
as well as collisions. However, in general problems containing many
collisions are the most suitable for learning state space splitting
surfaces. For many problems AtB will be much greater than the other
time parameters Atl, Atz, At3, At4 and TPR/Ne thus reducing Fquation

5.37 to

E ~— = R (5.41)

For problems in which this is not true, the time parameters of
Equation 5,37 must be taken into consideration. Since these parameters
and R depend upon many problem characteristics and user supplied input,
it is ludicrous to propose that ER will always be less than 1.0. How-
ever, from the results and analysis of this chapter and Chapter IV, it
does appear that for many problems, this will be the situation. Only a
great number of computational experiments using a general purpecse Monte

Carlo code will provide the data necessary to define for which problem

types ER<<1.

226



5.4) Limitations of this Research

The research described in this thesis represents an initial
investigation into the ares of pattern recognition applied to state
space splitting surface identification. The following sub-sections

include the more important limitations of this research and the learn-

ing of state space surfaces.

5.4.1) Classifier Selection

Both the deterministic and statistical classifiers investigated
in Chapter IV are of the same construction in that they assume a linear
form of g(Y). It is very unlikely that any optimal splitting surface
in state space having overlapping distributions will be linear. It has
been assumed that in most cases a linear surface is a sufficient approx-
imation to adequately split particles. Furthermore, feature
space can be altered to improve this approximation. Experience with the
technique will be the ultimate test in determining whether or not linear

discriminant functions are sufficient.

There are many different types of classifiers for Case D and E
data (see Section 3,1.2), for example, the expansion given by Equation
3.4. Some other technique may prove more attractive for classifying
the types of distributions resulting from Monte Carlo calculations. In
Chapter IV it was found that the statistical classifier used is hindered

by its accumulated overshoot and that the deterministic classifier has
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the characteristic that for overlapping p(CilY), the variability never
goes to zero. An attractive alternative might be a hybrid classifier
that uses deterministic classification during the initial approach and

then uves statistical classification until the final convergence cri-~

terion is met.

5.4,2) User Input

One of the incentives for using pattern recognition to identify
splitting surfaces is to relieve the user of the burden of providing
a priori information to the Monte Carlo calculation. However, as
is described in Section 5.2 the user must provide the values of fi’
u:in, u?ax’ and di for the feature selector (see Figure 5.4). Once the
fi's have been selected, the values of uTi“, u?ax’ and di are deter-
mined and can be easily supplied. The main problem then is selecting
a good choice for the fi This choice will have to be based upon intui-
tion and experience using heuristics similar to those described in
Section 5.2. Although certainly a non~trivial operation, the above
selection is a qualitative decision for which humans are much more
suited than computers. Similarly, the learning of a splitting surface
using the fi is a quantitative decision for which the computer is much

better suited. In conventional splitting the user is required to per-

form both these tasks.

There is other input which could be made optional as user input

and includes:
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(1) Initial selection of W

(2) Convergence criteria for the variability and misclassifi-
cation rate

(3) A choice for R (see Equation 5.2)

(4) The limit on the number of splitting surfaces, Ms (zee

Section 5.3.2)
(5) For multiple tallies, the values of 1 (see Equation 5.5)

(6) For multiple point detector tallies, the values of m, (see

Equation 5.8)

It would be a little presumptuous to expect the general Monte Carlo

user to input all this additional information. The default values can

be chosen as described in Sections 5.1 and 5.2; however, after exper-

ience has been gained with the technique better values will undoubtedly

be found.

5.4.3) Range of Application

As with any variance reduction technique this one has the prob-
lem that the user is not certain when to use it. The result is that
problems not requiring splitting or for which splitting will not help
may be slowed down. This technique does have the advantage that by us-
ing the F2 test (see Equation 5.2), the code will stop learning surfaces
if they are not needed. However, this test is made only after the

first splitting surface has been learned.
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5.5) Summary

A systematic approach has been described in Section 5.1 for
collecting prototypes, determining classification, and managing the
selection of splitiing surfaces. The feature selection process can be
performed by a user-supplied subroutine containing the information shown
in Figure 5.5. The selection of the features (fi) is the most important ;
user input and must be based on the intuition or experience of the user.

Recommended heuristics have been given to aid in this selection. Although

an absolute statement cannot be made abrut the timing and effectiveness,
by using constants derived in this research and assuming reasonable
values for problem parameters, it does appear that the technique

should be quite attractive compared with conventional splitting tech-

niques.
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VI. Conclusions and Recommendations

In Section 1.4 four steps toward demonstrating "proof of
principle" were stated. These steps are repeated below along with

the conclusions drawn from this research.

(1) Develop a pattern recognition system that can be used to learn
splitting surfaces in Monte Carlo transpcrt calculations.

A scheme has been designed whereby pattern recognition can
be used to learn splitting surfaces in state space. Train-
ing sets or prototypes are required before the splitting
surface can be learned. These prototypes consist of points
in state space (collision points were used in this research)
with their corresponding importances. The importances are
determined by measuring the probability that a particle
leaving a given point contributes to the Monte Carlo tally
under consideration. Both statistical and deterministic
classifiers learn splitting surfaces satisfactorily. From
the examples of this research it appears that the number of
source particles required to learn a surface is small enough

to make the technique useful for practical applications.

(2) Investigate the performance of statistical and deterministic classi-
fiers when used to recognize splitting surfaces. Analyze the sen-
sitivity of the parameters involved.

The deterministic classifier using the fractional correction

rule is superior to the statistical one with respect to per-
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formance, computer time, sensitivity to the learning para-
meter, and sensitivity to initial conditions. The learning
parameter, A, affects the rate of convergence of the splitting
surface. Although the optimum choice of a value for A depends
upon the characteristics of the Monte Carlo problem under
investigation, it was found that a single A (A=.05) can be
used with the deterministic classifier without seriously pena-
lizing convergence. The convergence is also affected by the
initial guess of the splitting surface location. Initial
splitting surfaces should be located in the least important
region of state space. Each component, Yi» of feature space
should be normalized to the interval from zero to one and
should be selected so that as yi increases, the importance

decreases. As a result the least important point in feature

space is given by Y= [yl?yz,...,yN] = [l,l,...,l].

(3) Propose a system for applying pattern recognition to a general pur-
pose Monte Carlo code.
A system for implementing pattern recognition techniques in
a general purpose Monte Carlo code is given in Chapter V.

The, scheme requires the user to supply the information needed

by the feature selector. Other parameters can be supplied
by the user or by default values. Selection of these values

nust be gained from experience with the technique.
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(4) Analyze the effectiveness that can be expected by using pattern

recognition as a variance reduction technique.
The effectiveness of the technique is problem dependent and
user input dependent. The parameters involved have been
identified and values have been determined for those para-
meters which are independent of the Monte Carlo problem or
the user input. Based upon these values and reasonable
choices for the other parameters, it appears that the tech-
nique should be more useful than conventional splitting. The
problem scope and degree of effectiveness can only be deter-
mined by applying the technique to many Monte Carlo problems

using a multi-purpose code.

Based upon these conclusions, it is recommended that a multi-purpose
Monte Carlo code such as MCN at the Los Alamos Scientific Laboratory be
modified to split in state space instead of the presently used splitting.
Having done this the system described in Chapter V can be included to pro-
vide the splitting surfaces. The deterministic classifier described in
this research can be used directly except that an allowance must he made
for variable dimensioned feature vectors. The modified code should be
used on a range of Monte Carlo problems to determine many of the unknown
problem related parameters described in this research and to determine the
success of the technique for reducing computer time. The code should
then be used routinely to determine user related problems and to gain
experience with the technique, Only after such an investigation can the

success of the tecimique be determined.
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The purpose of this Appendix is to give the reader a "physical
feel" for the processes invelved in using the Monte Carlo zmethed for
neutren transpert. It is not the purﬁose of this Appendix to derive
and prove the —athe=zztical basis of Yonte Carlo. The structure of this
description of Monte Carlc is modeled after reference 7 with many of
the idezs taken from reference 3%, These references should be con-
sulted if rore details ezre desired. Section A.l presents the basic

principles of Monte Czrlo as used for neutron transport. The remain-

ing sections treat incividuzl topics of neutron transport and give

examples of how the pxysics of the problen is progra——ed into 2

statistical =odel.

Al Basic Princinles

The basic preblex of neutron transport consists of calculating
the nurber of neutrons that are enitted from a source, undergo any

number of collisions with atoric nuclei, and finally arrive at some

region of state spzce (cefined below) of interest to the persom trying
to solve the transport problem, The term state space refers to the L

complete descripticn of the physical properties of the neutrons as i

given by:




(x,¥,2,u,v,w,E,t)

where X,y,z are the coordinates of the neutron in a Cartesian Coordi-
nate System (see Figure A.1)
u,v,w are the direction cosines of the neutron with respect to
the x,y, and z axis (see Figure A.1)
E is the kinetic energy of the neutron

t is the time elapsed since the process under study has begun

Figure A.1 Geometry Coordinates

Most methods used to solve the transport equation treat all the

neutrons as a whole (i.e., they solve for the flux of neutrons) and then
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proceed to find the value of the flux at all points in state space.
The Monte Carlo method works quite differently in that neutrons are
treated one at a time independently of the others. After calculating
the behavior of many individual neutrons, the average or mean behavior
of the neutron "sample" is determined. This mean value is used as an
approximation of the value that would be obtained if an infinite num-
ber of neutrons (i.e., the total population) had been treated. Corre-
sponding to this mean estimate is a probabilistic error based upon the

statistical behavior of the neutrons.

Neutron transport is ideally suited for the Monte Carlo method
since most of the physical processes involved are probabilistic in

nature. For example:

(1) a neutron undergoes a collision per unit path length with
probability Zt.

(2) the probability of a particular nuclear reaction, i,
occurring during a collision with a nucleus is Ui/ot.

(3) the probability of scattering at an angle 8 (in the
center of mass system)’ is determined by o(6).

(4) the probability per unit time that a nucleus decays is
given by the decay constant A,

(5) the probability of a prompt fission neutron being emitted

with energy between E and E+dE is given by X(E)dE.
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Figure A.2 illustrates the major operations performed by a

Monte Carlo program when used to follow neutrons through state space.

These operations are introduced below and described in more detail in

the following sections.

@)

(2)

(3)

(4)

Source (Section A.2). The source of neutrons is usually

described as a user supplied subroutine in a Monte Carlo
program. It is the purpose of this subroutine to describe
the initial state space parameters (x,¥,z,u,v,w,E,t).
Collision or Escape Decision (Section A.3). The geometry
of any Monte Carlo problem is divided into regions or
cells which may or may not correspond to material regions.
This decision process consists of "sampling" the probabil-
ity of having a collision as determined by Zt of the
material in the given region. It is for this decision
that the majority of geometry calculations are made since
the distance from the present (x,y,z) to the next inter-
section with the cell boundary must be known.

Entering a New Region (Section A.4). This process con-

sists of determining which region the particle is entering
after leaving tlie present region.

Collision Type (Section A.5). The process for determining

which type of reaction occurs is determined by the rela-

tionship of the respective cross sections.
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Escape the ering -< » (n,0),(n,2n) ,ete
System ? More Neutrons ?
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Figure A.2 Major Monte Carlo Operations for Neutron Transport




(5) Scattering (Section A.6). Both elastic and inelastic

scattering result in a change in energy which is related
to the scattering angle (usually given in the center of
mass system). The scattering decision consists of samp-—
ling for this scattering angle. The new neutron energy
and direction cosines can then be determined from this
angle.

(6) Other Reactions (Section A.7). Many other reactions can

occur (i.e., fission, [n,2nl, etc.} and often lead to the
creation of additional neutrons. In such a case an energy
E and direction (u,v,w) must be determined for eack neutron
emitted. In addition, for fission reactions the number of
neutrons emitted can be sampled or a: average value used.

(7) Tallies (Ssction A.8). The tally of a Monte Carlo trans-

port problem consists of the "answer" that one is seeking
as determined by the mean behavior of the neutron histor-
ies followed. Examples of such tallies are: current
crossing a particular surface, flux at a point, number of
captures in a region, ete. Because of the generallty in-
volved, the information necessary to determine the tally
can be extracted from any part of the Monte Carlo calcula-
tion. Therefore, the tally operation is not shown in

Figure A.2,
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The following sections frequently refer to the choice of a
random number, r, for sampling probability distributions. The mathe-
matical description of "random" can be found in many of the refer-~
ences ****7° For the purpose of this description it is assumed that the
random number, r, has an equal probability of falling between the
value of 0 and 1 and that all subsequent random numbers are uncoire-

lated 2%,
The coordinate system used in the following description is as
shown in Figure A.l where the angles are in the laboratory system un-

less otherwise noted. Energy is also relative to the laboratory system.

A2 The Neutron Source

The sampling of a general neutron source involves the following

operations:

(1) sampling of the space coordinates (x,¥y,z)
(2) sampling of the direction cosines (u,v,w)
(3) sampling of the energy spectrum

(4) determination of the time

The above operations are performed independently and will be described
in this section by using several examples. 1In these exampies all sampling
will be performed uniformly over the quantities (surface, volume, etc.)

of interest.
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A.2.1 Space Coordinates

Two examples of sampling the space coordinates (x,y,z) are
described in this section: (1) a flat two dimensionsl surface and
(2) a right circular cylinder. Alchough these examples comprise only
a small fraction of the possible sources, the techniques used to
sample are similar for all sources and thus provide the reader with a

“"feel"™ for the processes involved.

In many Monte Carlo problems neutrons are emitted from a flat
two dimensional surface. Examples of such sources are cross sections
of a neutron beam, the side of a rectangular reactor, a spill of
radicactive liquid on a flat surface, etc. Three examples are shown
in Figure A.3 - a rectangle centered at the origin, a circle centered

at the origin, and a general function f(y,z).

Figure A.3 Sampling Two-Dimensional Sources
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The rectangular source is the easiest to sample and consists

of:

(1) choosing a point randomly along the y axis between
y = ~-a and y = +a and
(2) choosing a point randomly along the z axis between

z = ~b and z = +b,

This is done by performing the operations shown in Figure A-4 which

results in uniform sampling over the area of the rectangle.

—® y = 2ar - a —»  r z=2br - b ——
Figure A.4 Sampling a Rectangular Two Dimensional Source
The sampling of the circle 1s facilitated by using polar i
coordinates as shown by Figure A.5. This is done since one wishes to g

sample evenly over the area of the circle and the areaz of a circle is

more easily defined by polar coordinates. . :

243

T K8 ek SRR 1 et




Figure A.5 Coordinates Used for Sampling a Circle

The sampling of the circle consists of:

(1) choosing a R randomly between R = 0 and R = R1 (actually

R2 is chosen randomly between R2 = 0 and R2 = Ri)

2

(2) choosing a ¢ randomly between ¢ = 0 and ¢
(3) converting polar coordinates (R,$) to rectangular coor-

dinates (y,z)

These operations are performed as shown by Figure A.6.

. y =Rcos¢
» r —® R = Rly,; ———» r —— = 2mr -
z =Rsind

Figure A.6 Sampling a Circular Two Dimensional Source
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The sampling of the general function f(y,z) is usually best
solved by the method of "rejection”. This consists of defining a

rectangular area completely enclosing f(y,z) and:

(1) sample the rectangle the same as for the earlier case
resulting in a (y',z")
(2) test to see if this (y',z') lies within the area defined

by £(y,z). This is done by checking the sign of f(v',z").
[assuming that (y',z') which are inside f(y,z) =0 result
in f(y',2')<0]

(3) 41f (y',z') does not lie within the area defined by f(y,z)

then repeat the above steps, otherwise use the value of

(y',z").

Figure A.7 1llustrates this process.

> r ™ y'=(y1+y2)r-y2 ol r '--—bz'=(zl+zz)r—zz F_

Yes

f(y'sZ')>0

use (y'z') as sampled point

Figure A.7 Sampling by the Rejection Technique

245




A source within a right circular cylinder (see Figure A.8) is
frequently encountered in reactor related problems dealing with cylin-
drical fuel rods and pellets. This prcbiem consists of sampling a

volume as opposed to an area in the earlier examples.

NV

Figure A.,8 Right Circular Cylinder

Once again cylindrical coordinates are preferred as shown by
Figure A.5. A ¢ and R are selected as ziven by Figure A.6 followed

by the selection of x (see Figure A.9).
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—» ____.R=rR1 ] T » ¢ = 21r
y = Rcos¢

<+—{ x=hr — T |e— |
z = Rsind

Figure A.9 Sampling the Right Circular Cylinder

A.2.2 Direction Cosines

This section considers two different sources: (1) a directed
beam and (2) an isotropic source. The directed beam as shown by

Figure. A.10 has the trivial solution

Since each neutron has the same direction there is no distriobution to

sample.
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Figure A.10 The Directed Beam Source

The problem of selecting a (u,v,w) for an isotropic source is
equivalent to that of chonsing a point (u,v,w) uniformly distributed

on the unit sphere u? + w2 + w2 =17 (see Figure A.11).

The unit area on this surface is given by sin 6 d8 d¢. This
distribution can be sampled by the following operations (see

Figure A.12):

(1) select a w randomly between -1 and +1
(2) determine p (see Figure A.1ll)
(3) select a ¢ randomly between 0 and 27

(4) convert from coordinates (¢,p) to (u,v)
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1
/'
0 1
v
¢ p
1
u
Figure A.11 The Isotropic Source
—> —® w=2r -1 C=vl—w2 r
u = (cos¢
- e ¢ s
v = psind M r

Figure A.12 Sampling an Isotropic Source
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A.2.3 Energy Distribution

The energy of source neutrons is frequently a single value for
all particles and thus has no distribution. The fission spectrum is
used for some sources and is discussed in section A.7. Many times ex-
perimental data results in an energy distribution which consists of the

number of neutrons lying within specified energy intervals

) = number of neutrons having energy between

Ei and Ei+l (A.1)

where 1 = 0, ... M-1

N(E;SE

and E0 = minimum energy of neutrons

By

maximum energy of neutrons

In such a case the data must first be normalized by dividing by the

total number of neutrons

N(E
PEHEL) = W3
N(Ei
i=0

12°Ei41)

(A.2)

»Ey11)

which results in the probability of a source neutron having an energy
between Ei and Ei+l' The probability distribution is given by summing
the p(Ei’Ei+1) as given by

P( P(Ej'E3+1) (A.3)

Eypr)

B
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where P(EM) = 1,0. A random number is then selected between 0 and 1.0
and if
), i=0, ... M~1 (A.4)

<
P(Ei) <r P(Ei+1

where P(EO) = 0.0,

then the energy of the neutron lies between Ei and Ei+1' The energy
can be further specified by linearly interpolating between P(Ei) and

P(Ei+1) {see Figure A.13) resulting in

(A.5)

(xr-P,) (E,-E.)
1 2 1
E=E +
1 (P2-P1)

where r is the same random number used in equation A.4.

PEW |[—————— — T
7
7
e
P(E)) | T T
P(E) . :
| |
| |
| i
Ei Ei+1
Energy
Figure A.13 Linear Interpolation to Determine the Energy
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Source neutrons are generally considered to be emitted at

time t=0; however, there are instances in which the source is time
dependent. An example of this 1s the emission of delayed neutrons

which are emitted as

dn(t) Anoe—xtdt (A.6)

the number of neutrons emitted between

where dn(t)
time t and t+dt

ny = the number of precursor nuclei at time
t=0

A = the decay constant of the precursor

The probability that a neutron is emitted between t and t+dt is given

by
-At
p(t)dt = Ae "~ dt Aa.7)
The probsbility distribution function is given by

t A
fp(t')dt' =1-¢""t (A.8)
0
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Sampling this distribution results in

_ In(l-xr) 1in(r)
t=—027 Y (A.9)

for the time of emission.

A3 Collision or Escape from the Present Region

After a collision or after being emitted from the source a
neutron is positioned at (x,y,z) and headed in the direction indicated
by (u,v,w). The geometry of the problem is divided into cells or
regions (see Appendix J) which are bounded by surfaces. The equations

of the Ni surfaces bounding the i'th cell are given by

0.0 (A.10)

fi,l(stsz)

0.0

it

fi,z(st:z)

fi’Ni(x,y,z) = 0.0
where Ni = total number of surfaces bounding the i'th cell.
If the neutron lies in the 1'th cell then the first operation that must
be performed is to find the intersections of the neutron's present line

of flight [as given by (u,v,w) and (x,y,z)] with the Ni surfaces as
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given by Equation A.10. Only positive real intersections are of inter-

est and of these the one that ylelds the shortest distance from the

neutron's previous position is used. This distance dmax is the maximum

distance the neutron can travel before it leaves the present region.

The probability that a neutron undergoes a collision between

¢ and ¢ +dc 1is given by

~-i&C

de = d
p{c)de izt e c

(A.11)

where izt. is the total macroscopic cross section of the

material in the i'th cell

¢ is the distance as measured from the current

position (x,y,2) of the neutron to the point

of collision
Using equation A.1l the probability distribution function is given by

[
P(c) = fp(c')dc' =1 - e-ilt® (A.12)
(4]

Sampling this distribution for the distance to the point of collision

results in

c = An€) (4.13)

il

S T
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The decision as to whether the neutron either collides or escapes can

then be made as follows:

i

d

if ¢
max

then the neutron undergoes a collision at

x',y',2") (A.14)
vhere x' = x 4+ uc

y' =y +ve

z' =z + we

if ¢ > d
max

then the neutron escapes the present cell at the point

=',y',2") (A.15)

where x' = x + ud
max

1

y

y + Vdmax

z z + wd
ma

X

A4 Entering a New Region

When a neutron is crossing an intersection, the time must be

updated as given by




' =
t t + dmax/Vel (A.16)

new time

where t'

distance traveled since t was calculated

max
Vel = velocity of the neutron =\V/%£:—
n

mass of a neutron.

=9
L]

B
1]

The decision as to which region is being entered is made by comparing
the sense (see Appendix J) of the neutron's present position (x',y',z')
with the senses of points in neighboring cells (the sense with respect to
the svrface which the neutron is on is not checked). Since the senses
of a cell are unique, only one cell will agree with this sense check.

This cell and its material are used as the next cell.

A.5 Collision Type

After it has teen determined that a collision has occurred (see
Appendix A.3) the time of the particle must be updated as given by
equation A.l1 except that ¢ (see equation A.13) is used instead of dmax'

The following decisions must be made:

(1) which nuclide is the neutron interacting with (for mater-
ials composed of more than one nuclide)

(2) what type of reaction occurs.
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If the total cross section of nuclide j of the i'th cell is

given by i 'Zt’ then the probability that the neutron interacts with

»J

nuclide j is given by

i,j"t
pj - ____Z R j = 1’.._,Mi (A.17)

where 2y 1is defined by equation A,.1l and Mi is the number of nuclides
making up the material in cell i. Adding the probabilities given by

pj results in the probability distribution function

]
Pj = Z IR (A.18)
i=

The Pj is sampled by selecting a random number r and

if Pk <r < Pk+1 k = O,...,Mi-l

where P0 = 0.0

then the neutron interacts with the (k+1) nuclide.

The probability of reaction 1 occurring is given by

[e)
= el =
1=1,L, (4.19)

where L, = the number of possible reactions for the j'th

isotope
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Gj 1° the microscopic cross section of the 1'th reaction of
’
the j'th isotope
Gj e = the microscopic total cross section of the j'th isotope
*

The resulting probability distribution is given by

L
i
<

P, = Z P, (A.20)

and is sampled by the random number r where

. - < = -
if Pk r < Pk+l k O,...,Mi 1
where PO = 0,0

then the neutron undergoes the (k+1)'th reaction

A6 Scattering

In this section both elastic and inelastic scattering events
are described. A scattering event results in a new set of (u,v,w) and
a new E. These new coordinates are dependent only upon the scattering
angle of the neutron in the laboratory system, (see Figure A.14) and

the original (u,v,w). Because scattering is often isotropic in the

center of mass (COM) coordinates, the scattering angle in the COM

system, O, is usually used instead of ¢.
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Direction After
Scattering

Origin Neutron

Directiog/,/f

Figure A.l4 Scattering in the Lab System

A.6.1 Elastic Scattering

For isotropic scattering in the COM system the scattering

angle O can be sampled by

cos 6 = 2r -1

which when converted to the laboratory system results in

1 + Acosf
v AZ + 28cose + 1

cos ¢ =

where A is the mass of the target nucleus in units of

the mass of a neutron
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The angle 7 (see Figure A.1l4) is sampled by

L = 2nr (A.24)

The above [ and cos ¢ can then be converted to a new (u',v’,w') by

using suitable transformations and the (u,v,w) before the collision.
The emerging neutron energy in the lab system is given by

E' = {(1 - 0) cos 8 +1 + u] (A.25)

2
- (31

incoming neutron energy in the lab system

E
2
where o

E

In the event that scattering is not isotropic in the COM system
(i.e. 05(9) # cslén) tables of cs(e) ve. 0 are usually supplied and can
be used in the same manner as the source energy tables (see section

A.2.3). Once a value of cos O has been sampled the process is the same

as for isotropic scattering.

The above descriptions have assumed that the bombarded nucleus
is stationary in the lab system. If this is not true, a thermal scat-

tering treatment rust be used as is described in reference 9.
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A.6.2 Inelastic Scattering

The sampling of cos @ and [ is the same for inelastic scatter-
ing as it is for elastic scattering; however, since the nucleus is
excited, equations A.23 and A.25 are no longer valid. The energy of
the emerging neutron in the COM system after an (n,n') reaction is

given by

2 .
Ecom ™ (A%]T) E+Q (‘Aﬁ—l) . (4.26)

where E is the energy of the incident neutron in the lab system and Q
is the O value of the reaction (Q = rest energy of the nucleus before
collision - rest energy after). The value of Q is determined by the
particular (n,n') reactions; however, for heavy nuclei the levels of
(n,n') reactions can become very dense. As a result Q may in some
cases have to be sampled. Once EéOM has been determined, the emergent

energy in the lab system can be found by the relation

[E + 2co080 (A+l) JE E! l
*.con (4.27)

E; = E! +
Lab coM (A*1)2

and the scattering angle in the 1lab system is given by

El
COM E 1
cos ¢ = \/ T s 045 (m) 4.28)
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After determining ¢ and 7 the new (u,v,w) is found in the same way as

for the elastic scattering case.

A.7 Other Reactions

Other reactions that can occur besides scattering events are
capture, fission, (n,2n), etc. The capture event is treated differ-
ently than any other reaction and involves the concept of the neutron
“weight". The weight of a neutron can be thought of as representing
a fraction of a neutron. Although only an integer number of neutrons
can be transported, a fraction of a neutron can be represented by a
neutron with a weight less than one (weights are further discussed in
section 2.2). VFhenever a neutron undergoes a collision with a nucleus

the weight of the neutron 1s multiplied by

< (A.29)

where oc is the capturs cross section. The reason for this treatment

of capture will ke given in gsection 2.2.

Of the other possible reactions only fission will be described
in this section. Three features must be sampled for the neutrons

emitted from fission:

(1) the number of neutrons emitted
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(2) the energy of the neutrons emitted

(3) the directions of neutrons emitted.

The neutrons are emitted isotropically in the lab system resulting in

the same sampling scheme shown in Figure A.i2 for the new (u,v,w).

The average number of neutrons emitted per fission for an in-

coming energy E is given by18

V(E) = Vo * aE. (A.30C)

where vo and a are experimentally determined constants which depend on
the fissioning nucleus. It is possible to sample the distributions for
each reaction based on of(n,n), cf(n,Zn), cf(n,3n), ete. and follow the
corresponding number of neutrons. However, it is unnecessary since a

single neutron can be created with a welght equal to V(F).

The energy distribution of neutrons emitted from fission can be

approximated by }®

- v
X(E')AE' = .453e 1036 oqnn /22087 , (A.31)

where X{(E')dE' is the probability that a fission neutron
is emitted with energy between E and E'+dE'

{lab system)
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The value of E is found by sampling the probability distribution

function
E
r = fx(E')dE' . (A.32)
0

The method for performing this sampling is non-trivial! and is given

in references 41 and 42.

A.8 Tallies

A Monte Carlo tally can be anything the user wishes to specify.

Some commonly used tallies are:

(1) the current of neutrons crossing a specified surface
(2) the number of neutron collisions in a cell
(3) the number of fissions in a cell

(4) the flux of neutrons at a point.

In most cases, the neutren can contribute to the tally more than once
during its lifetime. If each contribution to the tally .f the n'th

neutron is given by X n then the total centribution of the n'th neu-
’

tron is given by

C
n
*n © z ¥tn ? (A.33)
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where Cn is the number of times the n'th neutron contributes to the
tally, 1t is the value of X, that is used to calculated the mean and

variance of the tally.

The tally X is evalugted when the newtron has escaped the
system (see Figure A.2). The system is defined as that region of
state space which is of interest to the tally or tallies under con-
sideration. For example,consider a single tally that consists of
counting the number of neutrons with energies between Ey and Ez
(E2>-E1) crossing a surface. For this example, whenever a neutron's
energy falls below El’ the neutron can no longer contribute to the

tally and therefore has left the system. Similar situations exist

for the other state space varialles.

The individual contributions X must be saved whenever they
3

occur. For the example tallies presented earlier, this is done

(1) When a neutron crosses a surface bounding two celils, this
gurface is checked. If the surface corresponds to a tally

surface, is calculated.

xi,n
{2) vhen a new cell is entered, a check is muide to see wheth-
er or not the cell is a tally cell. ~f it is, then X5 n
»
is calculated each time a collision occurs in the cell.

(3) Same as (2) except for fissions.



%)

After being emitted from the source and after each colli-
sion, the probability of being scattered toward the unit
area of the point detector is calculated. This probabili-
ty is multiplied by the probability of the neutron arriv-
ing at the point detector uncollided and weight of the
neutron prior tc the collision resulting in xi,n' (The

point detector is described further in section 5.1.3).

266




{ppendix B. Statistical Errors in Monte Carlo

Section B.l derives the expression for the variance of the

sample mean. The central limit theorem 1s discussed in sectica B.2.

B.l Derivation ¢f the Sample Mean

Let x(s) be any integrable function of s and p(s) be the prob-

ability density of s. The mean or expected value of x is given by

<x> = f x(s)p(s)ds (8.1)

The variance of x is given by

o%(x) = f (x(s)-<x>)%p (s) ds

-0

2 p(s)ds

§+——18

oo oo
= f xz(s)p(s)ds -2<x> I x(s)p(s)ds + <x>
00 -0

= <x2> - 2<x>2 + <x>2

= <32> - <x> (B.2)
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When N values of the random variable s, sl,sz, """"’sn ,

are choosen according to the probability density p(s) the resulting values
of x(si) are given by x(sl),x(sz),.........,x(sN). The sample mean is given

by

- = ___1;1___ (8.3)

The expected value of the sarple mean is given by

2

5. (8£)

<x> = \ i=1
N
= % J J cieeaie I [:Si}(si)] p(sl)...p(sN)dsl...dsN
-0 - 00 i=1 (B.l;)

. b i
where each s; has been treated as an independent variable:’® Using

1 (B.5)

!3‘——ﬁ 8

o

~~

(0
[T

t

[«¥

7
[N

1]

Equation B.4 reduces to

o N
- 1
<x> E-I E (si)p(si)dsi

! o0

fl
7|
i
[
2L 2
®
~~
[0
[T
S
o
~~
w0
[ =3
S
o
®n
[T
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X
<x> -1 <x(g,)> = <x> (B.6)
N i
i=1
Using Equation B.2, the variance of the sample mean about <x>
is given by
2. =F 2
0(x) = <x > - <x> (B.7)

vhere the first term is given by

2 N 2
‘()
<x > = == i
5T Y 2
=';_2'f JJ [ZR(SQ] p(s;)e..P(s)ds .. dsy
-0 =0 00 =1

I...([Z} (si)-;-z ZX(S Yx(s, )] p(s )...p(s Yds "'dSN

j
* = (3.8)

269

0




Using Equation B.5, Equation B.8 reduces to

© N © N
—2 1
<x = -—2[ JEz(si)p(si)dsi + JZ'(si)p(si)dsi
-00 -l

{=1 i=1

8“——n8

Zhix(s )p(s, )us]
J
#

N
(2o g
J...

j#

2 2
x> (v D<x> B
Tt (8.9)

Substituting Equation B.9 into Equation B.7 results in

2 2

(x) 2 (N“l) <x> _ <x>2 - <x“s o <x>2 - 02£X) (B.10)

N N

which is the desired result.
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B.2) The Central Li=it Theorem

17
The central limit theorenm states:

If x is any random varieble which has a mean and a

variance, then for X sufficiently large, x, the mean

of a randoz sample of size N, has approxinately a

normal distribution.
A normal distribution is given by

2

{(s-':i)/c]

(N1

B = omm oy T

(B.11)

where € is the is the standard deviation and L is the nean of the

distribution. TFor Monte Carlo calculations

o= o(x)
p:(x)
s =X

The probability that x fzlls within the interval

x>+ 6o(X) < x < <x>+ Bc(X)

where a<R is given by

<x>+ Bz (%)
2

(x)vV27

<x>+ as(X)
271

1 exp { - -;— [(?S - <x>)/s(§)] dx

(B.12)
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Substituting

¢ = ;-—<x>
o (x)

and
_ dx
= <®
into Equation B.12 gives 8
prob [ao(i) < X =<x> < Bo(ii] - exp(—t2/2) dt
v/2m

which is the desired result.
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Appendix C: FORTRAN Coding for the One Dimensional Homogeneous Slab
Monte Carlo Problem

The following computer listing has had all input - ocutput and

other extraneous coding removed. The significant FORTRAN variables are

defined below.

N = number of source particles

X = distance particle has travelled since leaving the source
WIN = weight of particle
L = thickness of slab

SIGT

total macroscopic cross sectionm, Zt
FRAC = non-absorption probability, (Zt-Za)/Zt
RAT = estimate of the fraction of particles that leave the source
and cross the surface at X=T., (the Monte Carlo Tally)
RE = relative error of the estimate due to Monte Carlo statis-
tics (at the 10 level)

NMAX = maximum number of particles to be started
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SOUPMLE
CCTiNUD
R=RATF(0)
ti=liv]
Th=1.90
=0.9

TRACK LIIEGTHE
CONTINVE
R=L
LB=A
DY Ll..\.'—‘ ( L- 2

IF (D.GT.DIATD GO TO 6D
H=XN+D

CreswNPEDUCE VEIGHT BY ALSORPTION PROSAB
2] A

PAT=ANS/N
HNIABAR= ARSI

ERRCR CALCULATIONS

SIC2= (N2 DAR-PATE=2) R

Cf! TA.-0,0) SIG2:=0.0
J(‘\I(_‘,;’) PAT
CERLIIAND «:_0 To 181

CORTIARUD
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Appendix D: FORIRAN Coding for the Fractional Correction Rule
Deterministic Classifier

The following computer listing has had all input - output and
other extranecus ceding removed. The term "TEACHER" in the comment
statements refers to the classification that a track appears to belong
to after observing the importances created by the last source particle.
The term "STUDENT" refers to the classification given by the current
discriminant function. The Monte Carlo parameters are the same as those

described in Appendix C. Significant pattern recognition parameters are

given below.

INC = the number of tracks created by the last source parti-

cle (also used to number the prototypes)

WIREM(I) = the weight of the particle after the I'th collision
(the source is the first collision)

NXREM(I) = the distance from the source to the I'th collision
(source is the first collision). These values are
used as the prototypes for the pattern classifier.

G = the discriminant function, g(Y)
WI{X) = the I'th component of the weight vector, W=w;
SEP2 = upper limit of the importance buffer zomne used to
separate classes, I2
SEP1l = lower limit of the importance buffer zone used to
separate classes, Il
SUBTQOT(I) = number of prototypes belonging to the I'th class

(as seen by the "TEACHER")
275



LAMDA A

learning parexzeter,

WIN

tallied

3

SCORE Import

Lr' 'I 3
R=RASNT(
N=h+1
WiN=1.0
X=0.0

TRACK LLEGTH
CONTINTE

Ky

P=RAIF (M
D=AT0G(1. 7R} #SIGT
[NIAR=( I -

IF €D.GT.LMAXD
X=X-Db

GO TO %0

C::x‘t\'r’vP*'fl'_'CE WVETGHT BY AESORPTION PRO3

EWTR

R 1HC) = W TN
GO TO 36

Wi

TALLY

A9
ANSHWTN
2= ANS2+ VT2

i P S

ADJUST VLICHTS

Do

141 1=2,IRC

]

CALCULATE VALTE OF
G=WT( 1)k

T Ty e RESERT DISCRIMISANT
N LW

VHICIE CLASS TOE
VTN v'l”l:f:( I
SCONL.GT.50P2 1(_5{_‘, [e]2)

SCORE.LT.SEP1) 110. 140

SEE
SCO
IF¢
90 1r(

a

TEACITET

CONTINUE

STBTAT(2Y=SBTOT(2) -1,

RATOT=SULTOT( 1) 7SUBTUT(2)
IF (G) 130,130,120

SAYS CLASS
ico
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weight of the particle vwhen it is
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Appendix E : Derivation of T2 fer Varicus Loss Functioas

An approximation to the riskx wzs given by Equation 3.15

and is repeated here as

2 N
R(W) = E ;lik E S(‘-{,Yn,CiTC:{) i=1,2 i#x (E.1)
k=1 n=1

where: Mk = nuzber of orotetypes in class Ck
k ' . ces .
Yn = n'th nisclassified protetype of class Ck

k . . s k
s(w,&n,cilck) loss incurred when prototype &n actually

belonging to class Ck is placed in class Ci

The gradient of R(W) for one cizensicnal feature space is given by
R _
3wl 2 “k
VR(W) = = L TS (i,YE,C e i=1,2 ik
-—-—85 =1 ~ =1
°¥2
Nl 2:'2
1 .1 1 ey wl
- VS(x-z,an,czfcl)-!-T E -S(‘\,'!n,CI!CZ)
1 2
n=1 n=2
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[~ 1 < = 9 b
X !\.—
N 8S(1,Y ,C,1Cy) N, as(w,¥7,C )
ow 3w
~ 1 1 1
VR(W) = rll E E 1 * MZE : 1 (E.2)
1ot | . -t | oo
n= cs(.z,Yn,czlcl) n=1 os(w,\.n,cllcz)
! oW, J ! Sw, J

Equation E.2 will now be evaluated for several different loss functions.

Loss Function S=d

The distance d from a prototype , Y, to the decision surface g(Y)

= 0 in feature space is given by

[weyx |
d = —e——— (E-S)

we

vhere W' is the weight vecter W with Vg

w1 = 0 and Y* is the augumented

feature vector as given by Equation 3.5, For § = d, the gradient of

S for prototypes belonging to class C1 but misclassified into C2 is given by
ad
ow
1 38 1
VS(W,&n,CZICI) = vs(d.czlcl) =33 (E.4)
od
sz
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Substituting Equation E.3 into Equation L. and using the relationr

3S .
~d 1 (E.5)
results in
e -
wly + w2 _
3 = [ W,
ad 1 -5
) awl awl wl
vs(w,Yn,czlcl) = = = (E.6)
od W,y + w 1
N 3 2 o
2 w w1
l s ol
il awz |

vhere y is the single component of the feature vector Yi (Equation E.1)

and vy and w, are the components of the weight vector W which exist

at the time prototype Yi is misclassified. Similarly for prototypes

belonging to class C, but misclassified into class Cl’ the gradient

2
of S is given by

st‘ms

2
vs(w,Yn,cllcz) = (E.7)

z‘.||-l
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Loss Function S = d

For this loss functicn

56 _ 30/ 1
50?3 = :a - L (E.8)

For Zcuation E.3 and g=We¥%, Zguation E.8 reduces ito

1/2
2s 1/ ¥1
FT2\[E (=9
For Tcuztions E.9 and E.6, Eguation E.4 reduces to
w
1/2 |- 2
| g
w 1
01 - 1 _}.
VS(\-',\n,CZICI) =3\ 1z 1 (E.10)
1
I

Sirlarly, for prototypes belonging to class C2 but misclassified into

class C1 s the gradient of S is given by
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v | Y2
A
v 1
2 1 1
S ' = e — E.
VS(u,\_n,cllcz) 2\ 5] . (E.11)
W,
1
L. .
Loss Function S = d2
This loss function results in
od od vy ‘

winich when substituted into Equation E.4 along with Equation E.6

results in

[ vy
)
1 8 1
Vs(w,Yn,czfcl) = 2 v (E.13)
1
W
L
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and sirmilarly for class C2 prototypes

)
2

vsw,yﬁcl!cz) =2 f—l- : (E.14)
i
| "1

]
L]

lLoss Function S

The distance in weight space from the weight vector W to the

pattern hyperplane defined by Y is given by

Irews |

D= -ﬁ;.—Y*—f (£.15)

This is the same distance that is used by the deterministic fractional
correction rule as described in Section 3.2.1 and implemented in
Section 4,2.1., Using Equations E.3 and E.15 the relationship between

D and d is given by

which for one dirensional feature space reduces to
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D=4d l“’l! ¢E.17)
[ 2
y1+ 1

For yf>1 (which is usually the case for the unnormalized runs made

in this research)

pxa | (E.18)

Equation E.18 indicates that for yl>>l, when using loss=D, prototypes

with small ywill have more effect on the classifier than those with

large ¥y~

For one dimensional feature space and S = D

3D [~ 3(le1+ w2) ]
ow ———— y
1 ow 1
- -1 1 R S {E.19)
2 2
%} v}fl Bﬁﬁﬁ+wﬂ ﬁ+l 1
2 L awz J
ol
and since
28
2 = E.20
A = 1 ( )
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the resulting expression for the gradient of S is given by

and sinilarly

Y1
- _ 1
VS(v.,\n,clel) "5
v+ 1
] 1 1
2 1 -
Al =
vsu.,\n,cllcz) ;
Y+ 1
-1
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Appendix F: FORTRAN Coding for the Statistical Pattern Classifier using

Loss = d

The following computer listing has had all input

other extraneous coding removed. The parameters defined

- output a

in Appendices

C and D are the same here with the below additional parameter.

GIRISK(I) = o= (see Equation 4.6)

C“**\““kfx>*$$# ADJUST WEICGHTS = PATTERR CLASSIFIER “ssseimuiuiaiiin

P0 CONTINUE
Lo 141 I=2,INC

C CALCULATE VALUE OF PRESERT DISCRIIIRANT FURCTION
G=WT( 1) #REREN( D +WT(2)

Cc SEE WHICH CLASS THe TEACHER SAYS PARTICLE IS IW
SCOI‘\II“TJ'\‘/TF_" WD
TF(SLORE. T, "2} 108,90

20 IF(SCORE.LT.SEP1) 110, 140

C TEACEER $AYS CLASS 2
100 CCHTIRUE
SUBTOT(Z) =SUDTOT(2) +1.,
IF (G) 130,130,140

C TEACHER SAYS CLASS
110 CONTINUE
SURTOT( 1) =8U3TOT(1}+1.
113  IF(G) 140,120,120

Cc TEACIHER 8AYS STUDERT MAS
Cc ITISCLARG IT' ED CLABS 1 IKTO CLASS 2
i20 COHATINL
QC1,2)=001,2)+1./WT( D)
G, D=QC1, 1)-%WT(2) 7 WT( 1) %2
GO TO 131

TEACITER SAYS STUDERT MAS

MISCLASSIFIED CLASS 2 INTO CLASS |
130 COUTIHUL

QL2, D=2, D +HRTI2) AWT( )82

Q(2,2)=2,2)~1./¥TCD)

vl e]

131 CONTINUE
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STATIETICAL CORRECTION METHOD 1

[‘."(‘.’-U!J'i“"( l)._, ,.0 ()) Cco "0 133

f“‘(l.l)/w'\il FOTCY)

j ’01("‘) LE.0.0) 2 T0 134

(2,2)=Q2, ) /8U3TOT(2)

AEN2,13= "‘(.‘,l]/::UuHT("‘)

COLRTIRYL

(x'!"‘l"""(l) CRI‘"'((l I+GRISK( 2, 1)
n V2 HAGRIL x{(...d)
= ‘b'“‘“"ll)

VIR = WI{ 2D -LAMDAGTRISI2)

CONTIRUE

CONTITUE
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Appendix G: FORTRAN Coding ifor the One Dimensional Multi-Region Slab

The following computer listing has had all input - output and
other extraneous coding remerd. The parameter IA denotes the region
that the particle is in. The parameters FRAC(I) and SIGT(I) have the
same meaning as in Appendix C only with respect to the I'th region.

Additional parameters are listed below.

NIA = number of regions, also the number of the region
containing the tallying surface
TL(I) = the boundary of the I'th region TL(I)>TL(I-1)
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60

181

ST THUR
L= PATEC0)
R=210G(1. /70 /2 1GTC1A)

=TL(I2-X

TF (D.GT.DIAT) 6O TO 51
M=2+D

ERTER A DIFFERENT REGION
IF(TALEQ.NNTAY GO TO 60
JA=TA+1

H=X+AX

GO TO 30

I-x;_-_v STH
SZ+HTHR*2
/1
=ARE2/R

ENROR CALSULAT IO"“
S162= (X2BAR-RAT#2) /H
[1‘ (SIG2.E0. -0, o) 81G62=0.0
'-“RT("“?‘Z SHAT
(n EQ. N} GO TO i81.
GO TO 40
CORTINUE
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Appendix H:

FORTRAN Coding for the Two Dimensional Multi-Region Slab

with a Deterministic Pattern Classifier

The followirg computer listing has had all input - output and

other extraneous coding removed.

The parameters required in addition to

those described in Appendices G, D, and C are listed below.

PHI
U

NPREM(I)

I

angle of track with the x-axis, ¢ (see Figure 4.30)

cos ¢

the value of u after the I'th collision of the last

source particle (source is the first collision)

Y] S0URCE

COIITIRUE

PHI=(.Q
U=COS(PHEIY
T=hi+1

STIi—-l o

I{"T”l F(0)
D=ALOG( 1. /RY/SIST(IA)
IF(U.LT.0.0) 32,5¢

ey
C BACTTWARD DIRECTICR
IFCIAVEQ. 1) 54,33
Dilki=-{rU
IFCL.GT. DIAYD

G N9 TALLY

52 Wik=0,

G0 TO ¢o

L‘""“{— ={R-TL(1} "-l))/U
U GT. DIt 33

c Y' TEIL A DIFFERER ’\EGIO”‘

IA=1A~1

X=TL 1)

60 TOo 50

=134}
Y &)

pram  ne

3756
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FOWARD DIRECTICH
DA CTLOYA) -X) #U
IFCD.GT. DAY 531,56

ConesxxtRUN 20 VEIGHT LY ADSOPRPTION PROBABILITYw=snanw
¥ ix

R
1

EE W

H

[ AKGLE
.G
()
121
)=X
Y =W
30
C ESToR A DIFFEREST REGION
61 1F¢ ‘.’1 L0.AIA)Y CO TO 80
N=TLOIA
TA=TA1
GO TO 30
C
60
ANR2E A0 WTRRED
Cromxmgmsk:: 2% ADJUST WEIGHTS = PATTERN CLASSIFIER #uurisceaslysRmlssg
S ¥
E-": ¥
8% COLTINUE
DO 121 I=2,IKC
C VALLE OF PRESE :7‘1" DISCRIKINANT TUNCTION
= (HPRE II(I)+1 o2
T WMIERE(I) /L
(PR WRIZTH D T PREM 1Y WNT(2Y+ VT 3)
C &re TLASS TEE TEACHER SAYS PARTICLE }S IN
SCU 3
1F¢ KE.0.0) SCORE=WIN/WIRHEN(I)
IC=!
IF(SCORE.LE.EEP1) JC=1
I1F({STCRE SEP2) 1C=2
IFC1¢C-2) llO, 100, 140
C "L SAYS CLASS 2
100 ¥
=RUBTOT(2Y+).
BTOT( 1) /SUBTOT(2
130.189, 110
C TEACTTR SAYS CLASS 1o
110 COXTINUE
SUHVeT( D) =RUDTCT( 1)+ 1.
[FCSCSTOTCR) (02, 0.0) GO TO 111
RATOT=RURTOT( 13 .-SUBTOTI(2)
cQ TO 113
111 AT0T=1.0
1183 IF<G) 140,120,120
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Qo

TEACTER SAVS STURE HT HAS
MISCLAGSIFIED CLASS 1 INTO CLASS 2
120 COATINUE
C=LADATADS{G) # (UNDEM( ) 2B+ KPREMC Iy #5241 ,)
WECDY =W T( 1y = (IR 1)
WIC2)=WT(2y—-CuUPREIL 1)
WI(3) =wT(3)-C
GO TO 131

TEACULRL BAYS J3TUDEST HAS
. SRIFIZD CLASS 2 i8TO CLASS I

ATOT/CNISNHC 1) 32+ NPASH 1) 5ee2+1.)
BN B
REH(ID)

130

Cc= L‘H’D\ ABS(R)
YEC1I=WTCD) +C
YVT{2)=VWT(2)+Cmll
WTCRI=wT(3)+C

131 CCHTINUE
141 CONTINUE

o NENCORSR N

wxsiopke: END OF PATTERN CLASSIFIER

REAMRAENISRERS

RAT=ANS/N
KEBARSANS2-I

ERNO2R CALCULATICHS

S1C2=(X2DAR-NATHR2)Y 7N

P (2IGR.EQ.-U.0Q) SIG2=0.0
: .0) GO TO 142

5= S0 102 S RAT .

122 IF EQ.IM‘['\‘{) GO TO 181

(‘0 T0 40
181 CORTINUE
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Appendix I: FORTRAN Coding for the Statistical Classifier with

Two-Dimensional Pattern Space

The following computer listing has had all input - output and

other extraneous coding removed. Parameters are defined as given in

Appendices H, F, D, and C,

(v

160

130

mseemrt ADJUST WEIGHTS ~ PATTELR CLASSIFTER srmostssstiote

CONTINUE
BOo i<1 1=2,INC

CALCULATE VALUL OF PRESENT DISCRITIIRANT FUNCTION
HPRIZIICD =(I'PIE D+, 0) 73,

i . /L

D4NERCM DY WT 2 +HWT(R)

=% THZ TEACEZER SAYR PARTICLE IS IR

£ CL;
SCONT=06.0
IF(WTN.RC.0.0) SCORE=VTI/WTREM(I)
IF(SZ0RE, 1) IC=1
IF(SCORT.GT.SZF2) 1422

IFC1C~2) 110,109,149

FACUZR 8AYS CLASS 2
CONTINUE
SUBTOT(2) =SUBTOT(2)+1.
IF (G 139,139,149

ACUER 8ATS CLASS 1
CONTINUE

SURTOT( 1) =8UDRTOT(1)+1,
IF(G) 140,120,120

ER 8AYS STUDENT HAS

ASSIFIZ) CLASS 1 10HTO CLASS 2
MWTINUE

AWsSUT( 1) 2+ W2y

SRI=1,/8CTEAY

AWG=CAY

01, D201, DC-IRERCETEINMNG 1) -AWeRNT( 1))
QC1,2)=QC 1 D +SRECIPRENC D) =AWGEWT(2) )
QC1,3)=0¢C1,3)+5R!

GO TO 131

TEACHER SAYS STUDERT H S

HISCUSRSECIED CLASS 2 INTO CLASS 1
CONTINUE

AWsSWTC 1) 0ul+WT( 2) Rl

SRE=1. /8ENRTIAW)

AVT=GSAW

Q(2, =002, D=ARIE(AMRENC 1) =ATVCEWIC( 1))
Q2. 2y=QC2, 2y =3REECHPRESC 1) ~AWGERTCR))
@2, =2, -SNI
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181

133

134

-
e
S

CORTINUE

STATISTICAL CORRECTION METIOD 1
IRCATDTOT( 1Y LLELD.0) €0 TD 123
CRISIC1, D =Q01, 2 /2703T0TC 1)
FRILTNOL, 1)Y=001,1)7SUBTOTC 1)
CRIIULI, D=1, /8UBTOT( 1)
IFCRUBTOT(2) . L5.0.9) 40 10 124
RISK(2, 1)=0Q(2, 1) /SURTQAT(2)
GRISK(2,2)=Q(2,2) /SUBTQT(2)
GRISE(2,3)=Q(2,3) /7SUBTOT(2)
CORT'INUE
GITRISK( 1) =GRISK( 1, D+CGRISK(2, 1)
GTRISK(2)=GRI=X( 1, ")+Cﬂlqt\(u.~
CTRI 83 =G0} A2,
Wi =WI( -1
WM 2)=WT(2)~L
WT(3)y=Wr(3)~L:3

CONTIRUE
CORTINRUE

x*‘«"y‘:*ﬁﬂ*vv-ﬂ“u ElID OF PATITRN CLASSIFIER -+

29

ped St o

2% ade
PRI

L L T s
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Appendix J: Geometry Description Used in the Neutron Monte Carlo
Code MCN

This appendix contains a description of the geometry used in the
MCN code at Los Alamos Scientific Laboratory. The code is designed to
handle any number of first, second, and some fourth degree surfaces
(limited only by computer storage) which divide the geometry of the prob-
lem into geometric cells (a cell is defined below). |

If £(x,y,2)=0 is the equation of any surface in the problem, then
for any arbitrary point in space (xp,y(p,2p), the sign of the quantity
f(xo,yo,zo) is defined as the senge of the point (xo,yo,zo) with respect
to the surface f(x,y,z)=0.

A geometric cell is defined such that:

(1) all points within a cell must have the same sense with

respect to the bounding surfaces of that cell

(2) the senses of points within a cell must uniquely determine

that cell from all other cells.

The cell corresponding to any point in space can be determined by
comparing the senses of the point (with respect to the surfaces bounding
each cell) to the senses that define each cell. The point belongs to the
cell for which the senses agree. Cells do not necessarily correspond to
material regions and are frequently specified (along with additional sur-
faces) for the purpose of splitting and Russian roulette., Each cell is

assigned an importance which is used for splitting as described in

Section 5.3,.1.
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APPENDIX K. DERIVATION OF Sj+1 FOR THE

STATISTICAL CLASSIFIER AND LOSS = d

Let Sj be the decision surface location as determined by

Sj = Tg"-l (x.1)
1,3
where w, j (1=1,2) is the i'th component of the j'th weight vector Wj'
J

The first weight vector, Wi, is provided as an initial guess. There-

after each W is determined by (see Equation 3.16)

i+l

W3+1 = W& - AVRj+1(W) (K.2)

where ﬁj(w) is the j'th approximation to the risk (see Equation 3.19).

The welght adjustment as given by Equation K.2 is performed only after a

prototype has been misclassified. Therefore

j = (total number of misclassified prototypes) - 1

Using Equation 3.17 it follows that

1 . I 2 7
v, 28, ,,C,/C,) N EITCRS sl
ow ow
VR, (W) = ot 1 e =L 1 (K.3)
h | M]_ 3 1 MZ 3 1
) =l as(Wn. n.CZICI) ey as(Wh, n.Cllcz)
i ) i “
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and N

where Mi,j 1,1

misclassified prototypes respectively of class C

(1=1,2) are the number of prototypes and number of

after the (j-1)'th

misclassification occurred (N1 j + N2 i = j=-1). Substituting the ex-
£ ’

pressions for the partial derivatives of the loss function (see Table

4.4) into Equaticn K.3 results in

[ N
1 -
1 Z’;j ¥2,n
M 2
lsj n= wl,n
YR, (W) =
j( ) N,
1 1
Ml,j =1 1,n

where wi,

|-

=

|-

<

[N

[ 55

N

C
fler}

=
(Y]
L
[

=]

[}
[t

(K.4)

n (1=1,2) is the 1'th component of the n'th weight vector Wh

that existed when the n'th prototype of the cerresponding class was mis~

classified.

Defining the variables

2z

1,] .
1,1,] M 2
1,3 n= wl,n
2.3 /.
42.1,3 M, 3 2
n=l i,n
297
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(K.5b)
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=

1,3
1
A - —_— (K.5c)
L2y T Dl
J 1,3 n=] wlsn
N
1 2 -1
2,] n=1 1,n
Equation K.4 reduces to
A1,1,5 T A2,1,3 71,3
Vﬁj(w) = = (K.6)
41,2,1 42,2, 2,3
where Tl,j = Al,l,j + A2,1,j (X.7a)
T (K.7b)

2,3 T 41,2,5 F 42,2,

Consider the case when the j'th misclassification consists of a
prototype that has been misclassified from class ¢y into Cz. For this

case

Ag,2,541 = 22,2,3 (K.8a)

A,1,341 = %2,1,3 (K.8b)
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A -1 T2 (%.8¢c)
1,1,j+1 M +1 2
1,3 V)
n=1 sl
Nl .+l .
1
132:j+1 Ml,j+1 e Wl’n

1
-w -w, .
A S S —2n) , 2P
1,1,541 (M, .+1) 2 2
»J 1,j ) W
’ n=] l,n l,p
- 1 M, LA + K.9
o, D | LILLI T (k.9)
where p = Nl j+1' Similarly Equation K.8d becomes
t4
A P S b Y P S (X.10)
1,2,j+1 (Ml,j+l) 1, 1,2,] wl,P

Again assuming that a prototype belonging to C1 has been misclassified

into C2’ Equation K,7a becomes

A (K.11)

A 2,1,4+1

Ty,9¢1 41,50
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Substituting Equations K.9 and K.8b into K.1ll results in
1 V2, p
T = [ M., .A + === | +A
1,j+1 (Ml,j+1) l: 1,5 1,1,3 W2 ] 2,1,]
1, p

However since

Equation K.12 becomes
1 W, .
T, .,4 = 7= M. .A + =2l + A .
1,341 (M, .+1) | 1,5 1,1, 2 2,1,3
1 V1,3

Similarly T is given by

2,j+1
T = —-—1'——— [M A + L] + A
2,j+1 (Ml,j+l) 1,371,2,) wl,j 2,2,]

Substituting Equation K.15 and K.14 into Equation K.6 results in

[ 1 )
™

1,3 1,3

Vl‘i_1+1 W) =

1 1

i
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) (Ml,jAl,l.j i I B

D (“1,1A1.2,3 T )* 42,2,

-

-

(K.12)

(K.13)

(K.14)

(X.15)

(K.16)



Using Equatior K.16 and Equation K.2 gives

r -
w ={w, - A ——;L—— M A + :zg + A (X.17a)
1,j+ 1 e+ 1 f1,17 2 2,1 e
L 1 J
3
w Y Y S T OV VIR T R ‘ (K.17b)
2,5+ 2 oD (M1 f1,2 T 2,2} .
h |

where the j subscripts have been dropped on the right hand side of the

equation. Using Equations K.17a and K.17b in Equation K.l results in
L1
o 2 Tgn TTa0G D SR, My b 44, LMD
3+1 '/ w
1,j+1 _ -2
{w, () +1) - A[ay M) ;?+A2’1(M1+1)]}j
1 I s 1 R W
2 2 (M1+1) wl(M1+1)_ F
i W, - A,:'I.’ - Al’l %2 ]
A
1,2 1
+ - )
Sy¥1 A[Tz (M1+1) + wl(M1+1)]
= 4 K.18
w, ~A|T, - Al’l + Sj ( )
1 1 (Ml+1) vy (M1+1)
-3
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Equation X.18 is true only when a prototype belonging to Cl has been
misclassified. If a class C2 prototype is misclassified, a similar

treatment results in

A
2,2 1
S5%1 ”‘[Tz T " wl(M1+1)]
Sj+1 = “ —A T - AZ 1 _ Sj (K.lg)
1 10,4y wy (M H)

3

In summary, if a prototype belonging to Ck is misclassified, the next

value of the decision surface is given by

F Ay o eptt ]
S 451"1”[{2 T @D + w 0L -
1 hey 0| '
wl-A T1 - 2 3 + T
\ c M) OHD
h]

which is the desired result.
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