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Abstract 
 

This thesis provided a basis for deterministic optical polishing of aspheres and 

ogives with compliant tools. A new deterministic subaperture computer numerically 

controlled (CNC) polisher called UltraForm Finishing (UFF) is developed by OptiPro 

Systems (Ontario, NY). The UltraForm Finishing process was designed to remove 

midspatial frequency surface errors generated by grinding tools, preserve or correct 

the form of parts and polish the concave surface of tangent ogives made of tough 

optical materials. The three main goals of this thesis are 1) to develop polishing 

algorithms that specify collision free tool paths to correct part form, 2) to investigate 

a local removal model and 3) to investigate sources of any induced surface errors. 

The form of the part after polishing can be predicted by expressing the 

removal profile as a convolution integral of the tool removal function and crossfeed 

velocity. For form correction, the inverse problem is solved to obtain a tool crossfeed 

velocity profile that can achieve a desired removal profile. Explicit expressions for 

form correction problem were defined for plano and spherical parts. An approximate 

formulation was introduced for aspheres and ogives. The form correction problem 

was solved as a constrained optimization problem using regularization to achieve 

feasible solutions and overcome ill-conditioning. 

Algorithms establishing a collision free tool path have been developed. For 

that purpose, a two-dimensional model was introduced to detect tool-part collisions. 

Search strategies were defined to adjust the tool position and prevent such collisions. 
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Some properties of the UFF removal function have been characterized. It was 

shown that a generalized form of Preston’s equation combined with Hertz contact 

mechanics theory predicts fairly accurately the removal function for hard tools and 

convex surfaces over a range of process parameters. 

Errors that can produce discrepancies between actual and predicted removal 

profiles were modeled. Their effects were examined with numerical simulations and 

shown to depend strongly on the removal function. A diagnostic method was 

developed to determine the origin of spiral marks induced by UFF. These spirals are 

formed of discrete marks left on the part by the tool at a constant frequency. The 

method establishes all the possible frequencies that can create a given pattern and 

identifies the relevant one. The method was successfully used to identify the 

frequency that generated spiral marks in a series of experiments and lead to the 

discovery of a tool defect. 
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Chapter 1 Introduction 

Aristophanes’ play The Clouds mentions a burning-glass used to produce fire 

from the sun, which is believed to be a convex lens focusing the sun’s rays. If this is 

true, then this play, dated 424 BC, is the earliest written records of a lens. It is 

unknown how Aristophanes’ lens was produced. Since then, the principles of optics 

have been established and lenses have found multiple uses, for example in spectacles, 

telescopes and microscopes. Fabrication of precision optics has evolved as the 

demand and applications grew. However, for centuries most lenses were spherical. 

Only during the last few decades, the need for better imaging or aerodynamic 

performance has stimulated the development of efficient solutions for the production 

of aspherical and conformal optics. These geometries and their applications are 

described in Section 1.1. Even though these shapes differ from the traditional spheres, 

they are also produced according to the traditional steps of optical fabrication which 

are grinding and polishing. These processes are defined in Section 1.2. In addition to 

the need for new shapes, higher accuracy and reduction in production time are 

required. For that purpose deterministic processes have been developed. Existing 

deterministic solutions for grinding and polishing of precision optics are also 

reviewed in Section 1.2. UltraForm Finishing, a new deterministic polishing 

apparatus, is presented in Section 1.3. Section 1.4 summarizes the overview of this 

thesis. 
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1.1 Aspherical and conformal optics 

Optics with spherical surfaces have long been the primary choice for optical 

designs. However, it is known that a plano-convex lens with a spherical surface does 

not focus all incoming rays at a perfect point. This focus error is called spherical 

aberration as it is due to the spherical shape of the lens. Designers have to use several 

optical elements to compensate for spherical aberrations. On the other hand, a plano-

convex lens with an aspheric surface can theoretically focus all incoming light rays to 

a single point. The profile, zPart, of these axisymmetric surfaces is defined as a 

function of the radial distance, r, from its center by the aspheric equation 

      ...
))1(1(1

)( 5
5

4
4

3
32/122

2

++++
+−+

= rArArA
rCK

Cr
rzPart , (1.1) 

where the first term describes a conic surface, defined by its conic constant, K, and 

curvature, C, which is equal to the inverse of the radius of curvature. A3, A4, A5, … 

are the aspheric deformation constants. Aspheres allow high performance with a 

minimum number of lens elements [1, 2]. The reduced number of components 

translates into easier mounting, lighter assembly and potentially lower cost and higher 

reliability than with multiple spherical optical elements. However, spherical optics 

have wide acceptance because their manufacturing is well controlled. Manufacturing 

of high quality aspheric optics was expensive and difficult until the development of 

recent commercial processes. These processes, which are reviewed later in this 

Chapter, initiated a more common use of aspheres by optical designers. However, 
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because of current limitations, none of these processes has yet become a standard in 

the industry. 

 

Conformal optics also require non spherical shapes but for benefits other than 

optical. These optics interface to the environment and are shaped for optimal 

aerodynamics, rather than forced to fit commonly used optical shapes [3]. Conformal 

shapes are of particular interest for military applications, for example, for the front 

ends of projectiles. Because of manufacturing considerations, a section of a sphere is 

conventionally used for that purpose. However this form produces considerable 

aerodynamic drag [3]. Replacing a spherical front end with a tangent ogive shape will 

make the projectile more aerodynamically efficient and therefore improve speed and 

range. A tangent ogive is axisymmetric and its profile is formed of two arcs of a 

circle tangent to the projectile body at its base. This shape is illustrated in Figure 1.1. 

The profile of an axisymmetric tangent ogive shape is given by 

       ( ) ( )4/2/)(
22

BCBBCCPart dRddRrRrz −−−+−= , (1.2) 

where RC is the radius of the circle and dB is the base diameter of the ogive. Eq. (1.2) 

is the equation of a half circle of radius RC translated so that the tip of the ogive is 

located at the origin (r = zpart = 0). Similar to aspheres, polynomial terms can be 

added to refine the shape. The aerodynamics and environmental constraints also 

require that these conformal parts must be made of tough materials. The combination 

of hard materials and extreme shapes makes the manufacturing of these conformal 

optics challenging. 
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1.2 Grinding, polishing and deterministic solutions 

Optical surfacing is the process by which a surface suitable for optical 

applications is produced. Grinding and polishing are the two processes on which 

optical surfacing is based. During grinding, the workpiece is shaped using a rapid 

material removal technique which leaves the surface in a microscopically rough state. 

The purpose of polishing is to correct the form and reduce the roughness of the 

surface to meet the desired specifications. Subsurface damages (SSD) and midspatial 

frequency errors left from grinding must also be removed. Midspatial frequency 

errors are errors such as tool marks with spatial frequencies intermediate to the spatial 

frequencies of surface roughness and form errors. Grinding and polishing are 

typically accomplished in such a way that successively finer abrasives are applied to 

successively remove the SSD created by a given stage and gradually improve the 

surface. 

 

Optical fabrication is challenging, because optical glasses and ceramics are 

typically brittle materials and the form and roughness specifications required by 

precision optics are very demanding. The consequence is that for a long time, 

grinding and polishing have been labor intensive, requiring specialized tooling and 

processes used by skilled opticians to fabricate precision surfaces. To make low, mid 

and large volume production of various aspherical and conformal shapes cost 

effective, it was necessary to invent new fabrication methods. The goal of these 

methods is to make optical surfacing fully deterministic. This means removing 
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randomness from the fabrication process. For that purpose, optical fabrication is 

examined on a scientific level with advanced technology rather than on the intuitive 

level of the experienced optician. This is achieved by establishing the effect of 

different process parameters. These parameters must then be set appropriately and 

controlled during the process to achieve the desired goal. The emergence of computer 

numerically controlled (CNC) machining centers made it possible to introduced 

determinism into the production of precision optics. 

 

Deterministic grinding is a reality. The Center for Optics Manufacturing at the 

University of Rochester has made significant contributions to the development of 

deterministic microgrinding for the fabrication of precision optics [4-10]. 

Deterministic microgrinding uses rigid, computer numerically controlled (CNC) 

machining centers and high speed tool spindles. A bound diamond abrasive tool is 

positioned by a CNC machine to generate plano, spherical, or aspherical surfaces. 

The motion and position of the microgrinding tool on the optical workpiece is 

imposed by taking advantage of precise speed and positional control on the CNC 

machine. Because the tooling and machine are nearly rigid, all the material in the 

tool’s path is removed. Therefore, the tool path determines the workpiece surface 

shape and the amount of removed material is ideally precisely known. 

Two types of grinding tools are commonly used. Ring tools are cup shaped 

with a rim that consists of either a metal, resin or vitrified annular matrix in which 

diamonds are embedded [9]. The ring tool is inclined so that its edge cuts and shapes 
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plano and spherical parts of various radii of curvature. Contour grinding can be used 

to generate aspheric surfaces as well as flats and spheres. For contour grinding, the 

tool is a disk having on its periphery a metal, resin or vitrified matrix with embedded 

diamond abrasives [9]. However, grinding of shapes such as deep concave domes can 

be impossible with this tooling. Special tooling, such as ball tools, is needed for that 

purpose. 

Typically as one workpiece is ground, several tools are used with diamonds in 

the range 100 microns down to 2-4 microns. Each tool is used to remove the damaged 

layer or SSD resulting from the previous tool and to progressively reduce the surface 

roughness. Deterministic microgrinding is able to produce parts with a very good 

form accuracy (0.3 µm peak-to-valley (PV)), low surface roughness (30-100 Å) and 

SSD (under 1 µm) [6]. Deterministic microgrinding can generate surfaces with 

minimum defects requiring short polishing times. 

Single point diamond turning can also achieve deterministic grinding of 

optics. This process uses a gem quality single crystal diamond tool on a precision 

lathe [11]. As for deterministic microgrinding, rigid accurate CNC machines are 

required. Diamond turning was initially developed for metals and in particular lens 

molds production. It is a promising process for grinding of optical materials as it is 

capable of submicrometer form accuracy and surface roughness in the nanometer 

range [12, 13]. However, diamond turning can induce considerable SSD [14] and tool 

wear is a serious issue [11, 12, 15]. Tool wear is excessive in diamond turning of 

optical glasses because of the brittle nature of the material and relatively small 
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surface area of the tool which is in permanent contact with the part. Tool life can be 

improved by applying ultrasonic vibration to the diamond cutting tool [12, 15, 16]. 

These vibrations reduce tool-part contact time and permit better cooling and 

lubrification. Tool wear can also be reduced with heat assisted cutting [12], as the part 

material becomes less brittle when heated. 

 

Even though deterministic polishing processes have been under development 

since the 1970s, commercial deterministic aspheric polishers have only been available 

since the 1990s. This long development time is explained by the very challenging 

nature of the polishing operation. 

The earliest approaches considered for deterministic polishing were inspired 

by conventional polishing, which uses contact tools made of elastic materials such as 

pitch that precisely conform to the workpiece surface. Computer Controlled Polisher 

(CCP) [17-20] and Computer Assisted Optical Surfacing (CAOS) [21-24] were 

developed in the 1970s at the PerkinElmer [25] and now defunct Itek Corporations, 

respectively. They use a small pitch polishing tool, which is moved by a CNC 

platform to remove high points on a large optic. Canon [26] Super Smooth Polisher 

(CSSP) [27, 28] developed in the 1990s uses the same principle. These apparatus are 

not appropriate for polishing of extreme shapes such as conformal optics and remain 

proprietary to the respective companies. 

Another technology inspired by traditional polishing uses a stressed lap. It was 

developed for large optics at University of Arizona [29-31]. The lap changes shape 
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actively to follow the local curvature of the optics. A similar apparatus is also used at 

the Nanjing Institute of Astronomical Optics in China [32, 33]. These technologies 

are not commercially available and are not appropriate for polishing deep concave 

surfaces. 

Processes using an ion beam that bombards a part in vacuum to achieve 

material removal have been considered. The surface is shaped by sputtering. Wilson 

et al. at the University of New Mexico [34, 35] reported on their ion beam figuring 

method in the late 1980s. A similar process was developed at Eastman Kodak with 

the name Ion Figuring System (IFS) [36, 39], as well as at the German Institut für 

Oberflächenmodifizierung (IOM - Institute for Surface Modification) named Ion 

Beam Etching (IBE) [40-42]. Fawcett and Bifano at Boston University have also been 

involved in the development of the Precision Ion-Machining System (PIMS) [43, 44] 

at NASA's Marshall Space Flight Center. None of these machines have become 

commercially available. Ion beam figuring is advantageous over contact polishing 

because there is no edge effect and the removal is well characterized and near 

Gaussian, which is practical for figure correction. However, this process figures and 

does not smooth [45], therefore it cannot improve the surface roughness of the part. 

Furthermore ion beam figuring is well suited for large optics but not for the concave 

surface of conformal optics and has the disadvantage of requiring vacuum chambers. 

Chemical etching is another material removal mechanism that has been 

considered. It was first used for Plasma Assisted Chemical Etching (PACE) [46-49] 

at PerkinElmer [25] in the late 1980s. Nikon [50] and Osaka University collaborated 
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to develop Plasma Chemical Vaporization Machining (CVM) [51-53]. Reactive Atom 

Plasma (RAP) [54-56] is a similar technology in use at RAPT industries [57]. These 

three apparatus have been developed for precision optics. Chemical etching is rapid 

and produces damage free surfaces resulting in high laser damage threshold values 

[56]. However, the nozzle at the tip of which the plasma is generated has to remain 

perpendicular to the etched surface [52]. It also requires the selection of a gas reacting 

properly with the workpiece material [52] and tends to increase surface roughness 

because of varying etching rates at damage sites, grain boundaries, etc. [55]. Because 

of these two characteristics, these processes are inappropriate for deep concave 

surfaces and materials prone to grain highlighting such as aluminum oxynitride, 

ALON [58], which is of interest for ogives. These processes are best suited for 

specific applications. CVM and RAP are not commercially available. PACE became 

commercially available for precision shaping of ultra-flat silicon wafers and silicon-

on-insulator wafers [49]. RAP is principally used for silicon carbide optics. 

HyDra [59-62] developed at the Universidad Nacional Autónoma de México 

(National Autonomous Univeristy of Mexico) is a hydrodynamic tool that uses a flow 

of slurry to achieve removal. The flow exits a disk tangentially to the surface of the 

workpiece, creating an annular tool footprint. This technology is not commercially 

available and, because of the tool size, it is not appropriate for deep concave surfaces. 

Only two technologies have been commercially available for polishing 

precision aspheres. They are QED Technologies [63] Magneotorheological Finishing 

(MRF) [64-66] and the Zeeko [67] Precessions process [68-71]. Both are 
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tribochemical processes. MRF was developed in part at the Center for Optics 

Manufacturing in the mid 1990s and commercialized by QED Technologies starting 

in 1997 [45]. In MRF, a magnetorheological fluid consisting of nonmagnetic 

polishing abrasives and carbonyl iron particles in water is circulated on a wheel. The 

fluid stiffens when subjected to a magnetic field, creating a polishing tool. The 

consistency of the tool footprint makes MRF a very good solution for fine form 

correction. The Precessions process is more recent and the result of a collaboration 

between University College of London, Zeeko and Satisloh [72]. It uses bound 

abrasive commercial polishing pads or polyurethane pads with abrasive slurries. The 

pads are mounted on a spherical pressurized membrane. That membrane is rotated 

against the part at discrete precession angles to produce a near-Gaussian tool 

footprint. A combination of consistent tool footprints and efficient softwares make 

MRF and “Precessions” highly suitable for most conventional aspheres. However, 

neither process can remove midspatial frequency errors such as cutter marks left by 

the rigid tools used during grinding. They are also not appropriate for polishing deep 

concave workpieces. 

Two processes based on fluid jet have potential for polishing conformal 

optics. By using jets, removal can be achieved on the concave surface of an ogive. 

Delft Technical University in Holland and Fisba Optik [73] collaborated to develop 

Fluid Jet Polishing (FJP) [74-76]. FJP uses abrasive loaded slurry which is sprayed 

through a nozzle onto the workpiece surface. QED Technologies has developed MR 

Jet [77-79] specifically for the polishing of conformal ogives. A magnetic field is 



 11 

used to stabilize the magnetorheological fluid which exits the apparatus’ nozzle. The 

added stability makes removal highly deterministic. However, both MR Jet and FJP 

are not yet commercially available. In addition, the footprint is small resulting in low 

removal rates and midspatial frequency errors can not be corrected. 

 

Therefore, there is currently no solution available for satisfactory polishing of 

steep concave surfaces of ogives made of tough materials. Because there is a demand 

for such shapes, a rapid process, able to correct form errors and remove cutter marks 

is needed. Successful polishing of such shapes should also guarantee similar 

performance on most aspheres. This would make such a process very desirable for the 

optical fabrication industry and therefore, make that process commercially viable. By 

combining that process with deterministic grinding, a fully deterministic process for 

the fabrication of spherical, aspherical and conformal surfaces would be achieved. 

 

1.3 UltraForm Finishing 

UltraForm Finishing (UFF) is a deterministic CNC polisher developed by 

OptiPro Systems [80] with the University of Rochester. It is designed to meet the 

current needs for aspherical and conformal optics polishing. For that purpose, it must 

reduce the surface roughness and remove midspatial frequency surface errors 

generated by stiffer grinding tools. It must also preserve or correct the form of parts 

and be able to polish the inside surface of tangent ogives. 
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Figure 1.2 shows the CNC platform and a close up of the UFF tool. The tool is 

composed of a carrier wheel made of polyurethane, a rubberlike material, that 

circulates a belt of polishing material and deforms when the tool is pressed against the 

workpiece. Removal is created by the relative motion between the part and the 

abrasive material that is pressed against the part. The tool footprint is much smaller 

than the polished optics, therefore UFF, like all the polishers reviewed in Section 1.2, 

is a subaperture polishing process. 

UFF has an elongated shape due to the geometry of the shaft supporting the 

carrier wheel. Its design makes UFF capable of polishing the inside surface of deep 

domes. The concave surface of tangent ogives presents a tip that is inaccessible to 

UFF, because of the size of the carrier wheel. However, it is not necessary to polish 

the central region of ogives, since their tip will be removed before or after polishing. 

The rest of the part surface, that must be polished, can be reached by UFF. 

The tool compliance can be tuned by selecting the durometer, measured on the 

A scale, of the carrier wheel. The requirement for surface roughness reduction and 

cutter marks removal is met by adjusting the compliance and tool footprint. A soft 

wheel would produce a smoothing effect, while a hard wheel would result in higher 

removal rates. Hard wheels are of particular interest for tangent ogives which are 

made of tough, hard materials like aluminum oxynitride, ALON, or fine grained 

polycrystalline alumina, PCA. The durometer of the wheel will also affect the extent 

of the contact patch. To remove cutter marks, a footprint larger than the marks’ 

spacing and preferential wear at the top of the marks are needed. Compliant tools 
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imply a large contact patch, however if the tool is too compliant, it might conform to 

the cutter marks and result in uniform removal below the patch, thus preserving the 

cutter marks. Therefore, the tool compliance needs to be tuned to conform to the 

surface and achieve higher removal near the top of the marks. These different cases 

are illustrated in Figure 1.3. UFF offers the flexibility needed to achieve the 

appropriate configuration. Furthermore, the removal rate and extent of the tool 

footprint can be varied by adjusting the tool compression. The potential of UFF to 

reduce surface roughness and remove mid-spatial frequency surface errors has been 

demonstrated [58] and is not the subject of this thesis. 

A large variety of abrasives can be used with UFF. These abrasives consist of 

either a band of bound abrasive (e.g. cerium or aluminum oxide TrizactTM from 3M 

[81]) or abrasive slurry for which a polyurethane band is used. A band is transformed 

into the needed belt by splicing its ends together. 

The parameters adjustable on UFF create many process options. This is 

advantageous for establishing a polishing solution that will produce a desired surface 

finish for a given material. As for deterministic microgrinding, different abrasives, 

wheel durometers and tool compressions could be used successively to progressively 

reduce surface roughness and achieve finer correction. 

For onboard measurement of the tool footprint and part form, a retractable 

non-contact profilometer, STIL [82] optical pen, is mounted on the tool. Its operation 

is based on the chromatic-coded confocal imaging principle [83]. The pen model OP 
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300VM, which permits a depth of field of 300 �m and an accuracy of 90 nm [84], is 

used. 

The initial goal with UFF is to polish and correct rotationally symmetric form 

errors of axisymmetric workpieces. The coordinate system (x, y, z), shown in Figure 

1.4, where UFF polishes a hemisphere, is attached to the CNC platform. z is the axis 

of rotation of the workpiece and is oriented positively upward. x is parallel to the axis 

of rotation of the carrier wheel and oriented positively toward the front of the 

platform. The origin of (x, y, z) is the center of the workpiece surface. The entire 

surface of the workpiece is polished as the tool traverses the part along y with 

crossfeed velocity, vc. The workpiece and the carrier wheel rotate at the rotational 

speeds �W and �T, respectively, as illustrated in Figure 1.5. The simultaneous 

motions of the tool and the part produce a spiral tool path. The position of the tool as 

it traverses the part is defined by the location of the center of the contact patch as y0, 

as illustrated in Figure 1.6. Precise tool-workpiece contact is achieved by using the 

accurate positioning and motions capabilities of the CNC platform. The tool can be 

rotated around its B axis that is parallel to x to achieve a desired contact angle with 

the workpiece. Tool x, y and z translations are also available. 

UFF compliant polishing as considered in this thesis is accomplished with a 

soft tool and a large contact patch. As for the polishers reviewed in Section 1.2, the 

material is removed by controlling the dwell time that the polisher resides over a 

particular spot on the part. The tool dwell time is controlled by varying vc. To achieve 

form correction, an appropriate tool crossfeed velocity needs to be established. For 
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that purpose, the tool footprint must be taken into account. The tool footprint can be 

evaluated by dwelling on a stationary part to generate a removal spot. The topography 

of the resulting spot divided by the dwell time used to create that spot is a map of the 

removal rate or static removal function cST. 

 

1.4 Thesis overview 

The objective of this thesis is to provide a basis for deterministic polishing 

with UFF with an emphasis on ogive polishing. The main purpose of this work is the 

development of algorithms creating a tool path for axisymmetric workpieces. The tool 

path not only defines the spatial positions occupied by the tool during polishing but 

also the tool crossfeed velocity profile. The present work is also applicable to other 

deterministic polishers. 

 

The steps of the process needed to define the tool path are illustrated in the 

flow chart of Figure 1.7 and described in the following paragraphs. 

 
Step 1. To start the process, the desired part form, Sdes, is specified to the onboard 

computer. Either an aspheric, Eq. (1.1), or tangent ogive, Eq. (1.2), equation can be 

used. Tolerances on the form error as well as the minimum removal thickness must 

also be specified. This thickness ensures that the subsurface damage left by the 

previous manufacturing operations is removed. 
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Step 2. The actual form, Sact, is measured with a metrology instrument and imported 

to the onboard computer. This instrument could be the onboard STIL sensor, directly 

connected to that computer or another offline instrument, such as a stylus 

profilometer or interferometer. 

 
Step 3. For the first iteration, the answer to the question “Is the form satisfactory? 

AND Is the minimum thickness removed?” is negative, because no removal has yet 

occurred. 

 
Step 4. The removal map is created by subtracting the actual part profile from the 

desired one. The difference indicates the depth of material that must be removed as a 

function of the radial distance from the part center. 

 
Step 5. The geometry of the part from Step 1 is used to generate the tool path 

geometry. It defines the tool positions so that the carrier wheel is safely brought in 

contact with the part without producing tool-part collisions. 

 
Step 6. A removal spot is made on a spare part made of the same material and of 

geometry similar to the processed part. This spot is measured either onboard with the 

STIL sensor or offline with another instrument and data are imported to the machine. 

 
Step 7. This removal spot is be used to generate the tool removal function. 
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Step 8. The removal function and map from Step 7 and Step 4, respectively, are used 

as the main inputs for the algorithm that will generate a tool crossfeed velocity 

solution. 

 
Step 9. The tool crossfeed velocities from Step 8 are combined with the tool path 

geometry from Step 5 to form the machine commands. 

 
Step 10. The part is polished according to the commands from Step 9. 

 
The process is then iterated, starting over at Step 2, where the form of the part is 

measured after each polishing run. The actual form is then compared with the desired 

form at Step 3. If the results are satisfactory, the process is completed, Step 11. If that 

is not the case, the process is iterated again, as steps 4 to 10 are repeated. 

 

Algorithms are needed to create a satisfactory tool path and so that UFF can 

be operated according to the flow chart of Figure 1.7. 

To produce the desired form correction, it is necessary to formulate and solve 

at step 8 the form correction problem, which consists in establishing the tool 

crossfeed velocities satisfying constraints on the tool velocity and acceleration and 

such that the desired removal profile is achieved. For that purpose, chapter 2 includes 

a model predicting the depth of removal profile for a given removal function and tool 

crossfeed velocity. A method for solving the form correction problem formulated as a 

constrained optimization problem is also presented. 
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A model needed to detect tool-part collisions and search strategies to prevent 

such collisions are described in Chapter 3. Two dimensional models for the tool and 

the part and search strategies for a variety of part shapes are defined. They are used 

for the tool path geometry algorithms used at step 5. 

Removal is achieved by the local removal function generated along the tool 

path. Therefore, determinism can be greatly improved if the effect of the process 

parameters on this removal function can be predicted. For that purpose, Chapter 4 

investigates the effect of process parameters on the removal function as well as the 

predictability of this function as these parameters vary. The validity of Preston’s 

equation and the applicability of Hertz contact mechanics theory are evaluated. This 

approach is intended to complete step 7 of the flow chart. An alternative method to 

achieve accurate form correction without accurate prediction of the removal function 

is also presented. 

Furthermore, an understanding of surface errors, in particular causes of form 

errors and their effect as well as the origin of UFF induced midspatial frequency 

surface errors, is required to achieve the predicted form and minimize induced tool 

marks to a satisfactory level. Chapter 5 focuses on the effect of the possible sources 

of deviation between predicted and actual removal profiles. A method for the analysis 

of UFF induced tool marks, which take the form of spirals, is also introduced. 

Finally, Chapter 6 summarizes the methods developed and conclusions 

obtained throughout the thesis. It also presents suggestions for future study. 
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This work involves the development of algorithms which must be fast and 

easily integrated into a graphical user interface. To meet these requirements, the 

MATLAB [85] language was chosen to write these algorithms. MATLAB stands for 

MATrix LABoratory and is very efficient for matrix and vector operations required 

by this work. Furthermore, vectorization [86] is a technique that uses matrices and 

vectors to perform multiple simultaneous operations in MATLAB. Extensive use of 

vectorization produces fast algorithms that partially overcome the hardware 

limitations of the onboard computer. In addition, algorithms written with MATLAB 

can be compiled and run as stand alone programs, which can be integrated into a 

graphical user interface. 
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Figure 1.1 Geometry of a tangent ogive. 
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Figure 1.2 Views of UFF 

a) on CNC platform; 
b) close up. 
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Figure 1.3 Compliance of the tool and removal of cutter marks. 
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Figure 1.4 Hemisphere polishing and geometry definition. 
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Figure 1.5 Schematic of the tool path. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.6 Tool position definition. 
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Figure 1.7 Flow chart of the UFF process. 
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Chapter 2 Form correction problem 

Rigid grinding tools produce a small contact region between the tool and the 

workpiece and essentially remove all the material in the tool’s path. However some 

polishing techniques use compliant subaperture tools with a large tool-part contact 

region. In this case, as for UFF, the depth of removal is prescribed by adjusting the 

tool dwell time. While polishing an axisymmetric workpiece, the tool is continuously 

moved radially across the part and appropriate dwell times for form correction are 

achieved by varying the tool crossfeed velocity vc. The problem of establishing a tool 

crossfeed velocity schedule for form correction of plano, spheres and aspheres is the 

object of Section 2.2. This is an inverse problem. The forward problem, to predict the 

removal profile produced by a given removal function and tool crossfeed velocity 

schedule, is first examined in Section 2.1 for plano and spherical parts. The removal 

function is a map of the depth of material removed per unit of time within the tool-

part contact patch. In this chapter, the removal function and its variations in size and 

amplitude, are assumed to be known along the tool path. The definition of that 

removal function is the object of Chapter 4. 

 

2.1 Forward problem 

The forward problem is defined as predicting the removal profile for a given 

tool crossfeed velocity schedule and removal function. A formulation of this problem 

is necessary before the inverse problem can be considered. 
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2.1.1 Equations for the depth of removal on flats and spheres 

To perform form correction, a model predicting the form of the part after 

polishing is necessary. Since the part is axisymmetric and because only axisymmetric 

corrections are considered, only the radial part profile is needed. This simplifies the 

problem and reduces computational time. The final profile is equal to the initial 

profile minus the predicted depth of removal profile. The depth of removal profile is 

the result of summing the removal generated by the tool as it follows the tool path. 

To predict the removal profile, the approach of Forbes [1] is used. The part is 

described with the coordinate system (x, y, z) defined in Chapter 1. The process is 

modeled for flats, as illustrated in Figure 2.1, by a removal function c(x, y, y0) 

centered at y0 that traverses the part along the y axis at the crossfeed velocity vc(y0). 

Using the polar coordinate system (r, �) shown in Figure 2.1, an equivalent one-

dimensional removal function �F(r, y0) is first defined, as follows 

   ∫=
π

θθθ
π

σ
2

0

00 )),,(),,((
2
1

),( dyryrxcyrF ,  (2.1) 

where x(r, �) and y(r, �) are the coordinates in (x, y, z) of the point defined by (r, �) in 

the polar coordinate system. �F(r, y0) is the average of c(x, y, y0) over � and 

represents the removal rate at r on the part profile due to the two-dimensional 

removal function c(x, y, y0) centered at y0. 

The removal profile can be interpreted as the sum of the one-dimensional 

removal functions multiplied by the corresponding tool dwell time as the tool 

traverses the part. However, since the tool is moved continuously at a crossfeed 
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velocity vc(y0), the depth of removal DR(r) is given by the integral over y0 of �F(r, y0) 

multiplied by the inverse of vc. 

∫=
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y c
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where y0min and y0max are the extreme positions occupied by the tool. dy0/vc(y0) 

represents the tool dwell time for the annular ring of width dy0 centered at y0. 

Combining Eqs. (2.1) and (2.2), DR(r) is expressed as a function of c(x, y, y0) 
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The expression for the depth of removal can be similarly derived for a sphere 

of radius R. For that purpose, the spherical coordinates (r, θ, φ) of Figure 2.2 are used. 

The position of the tool is defined by φ0 or alternatively y0, such that y0 = R sin(φ0). 

The tool traverses the part along its intersection with the y-z plane. The one-

dimensional removal function �S(φ, φ0) for a spherical workpiece is given by 

∫=
π
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where x(θ, φ), y(θ, φ) are the coordinates in (x, y, z) of the point defined by (R, �, φ) in 

the spherical coordinate system. The depth of a removal as a function of φ is given by 
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and can also be expressed as a function of c(x, y, y0) as 
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Eq. (2.6) can be used for spheres and mild aspheres which can be treated as spheres. 

 

2.1.2 Model validation 

Eqs. (2.3) and (2.6) are convolution integrals and are derived under the 

assumption that there is a linear relation between depth of removal and dwell time. 

This last key hypothesis was verified by making removal spots with dwell times, td, of 

2, 5, 10, 15 and 30 s on BK7 samples. The expected linear relation between the 

volume, V, of the spot and td is reported, in Figure 2.3, with R2 larger than 0.99. 

 

Predicted and actual depths of removal were compared for the simple case of 

a constant vc. The goal of this experiment was not to reduce the form error but to 

verify the accuracy of the predictions. A flat Pyrex part of diameter 75 mm and 

previously pitch-polished with a peak-to-valley (PV) of less than 0.5 �m has been 

polished with the UFF tool traversing from y0min = – 30 mm to y0max = 30 mm. Thus, 

the region close to the part edge was intact and provided an absolute reference for the 

depth of removal. The tool removal spot was evaluated from the removal spot shown 

in Figure 2.4. This spot was made with a previous version of UFF using larger, softer 

carrier wheels and td = 30 s. DR(r) was evaluated for 35 values of r, according to Eq. 

(2.3). The actual part profile measured with a Talysurf stylus profilometer [2] is 
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superposed with the depth of removal predictions in Figure 2.5. Predictions and part 

profile are in very good agreement, R2 is equal to 0.98. 

 

2.2 Inverse problem 

The goal of the inverse problem is to establish the tool crossfeed velocity vc to 

achieve a desired part profile. 

 

2.2.1 Formulation of the problem 

The problem is to determine a crossfeed velocity schedule vc to obtain a 

desired depth of removal, DRdes, with Eqs. (2.3) or (2.6). This problem is an inverse 

problem and actually has several names, depending on its form and interpretation. 

The problem can be seen as finding vc(y0) resulting in a “good enough” 

approximation of DR(r). Mathematicians [3, 4] can then state it as a best 

approximation problem. If sc(y0) = 1/vc(y0) is introduced, Eq. (2.3) could also be 

referred to as a Fredholm integral equation of the first kind [5-8], where σF(r, y0) is 

the Kernel and sc(y0) is the unknown function to be solved for. Because of the finite 

size of the removal function, Eq. (2.3) is a convolution integral. Therefore, this 

problem is also often stated as a deconvolution problem [9-14]. Deconvolution, as 

mentioned by Brown [12], is a technique commonly associated with image 

reconstruction. 

 



 38 

The current problem of form correction is subjected to constraints. In fact, 

nonnegative crossfeed velocities are required because a negative velocity in Eqs. (2.3) 

or (2.6) would imply material deposition on the workpiece, which is not possible with 

this process. The tool crossfeed velocity cannot be larger than the value vcmax imposed 

by the motors driving the different axes. In addition, for similar reasons, the absolute 

value of the tool crossfeed acceleration has to be less than a value acmax. These 

constraints impose bounds and a certain level of smoothness for the solution vc. They 

can be expressed in terms of vc or sc. For flats they are such that  

≤< )(0 0yvc  vcmax and <
dt

dvc  acmax,   (2.7) 

or 

sc(y0) finite, ≥)( 0ysc 1/ vcmax and <
dt

scd )/1(
 acmax.  (2.8) 

 

2.2.2 Review of approaches reported in the literature 

This type of inverse problem has been considered for other subaperture 

deterministic polishing techniques. Two types of techniques are distinguished and 

described by Porsching et al. [15]. They are operator controlled that can be recursive 

and computer numerically controlled (CNC) finishing.  

 

Early techniques were typically applied to single-spindle machines inspired by 

conventional polishing, and correspond to the so called operator controlled and 

recursive operator controlled finishing [12, 15-17]. These processes use a subaperture 
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lap as shown in Figure 2.6. For these approaches, the success of the process relies on 

the operator skills and experience. He has to choose different machine parameters, 

such as tool size, stroke characteristics and tool rpm, to create different removal 

functions, which are applied on specific regions of the part. For operator controlled 

finishing, the operator first defines all the removal functions. The dwell times to 

apply to each removal function are then estimated. In its recursive version, the part is 

measured after each iteration. This measurement is used by the operator to choose the 

parameters that will define the removal function for the next iteration. These 

techniques are not compatible with the way UFF is operated. 

 

On the other hand, the UFF procedure is similar to ion beam figuring, the 

Precession process [18] and MRF [1]. 

The work by Wilson et al. [19] at the University of New Mexico constitutes 

one of the earliest treatments of figuring with an ion beam. The problem is expressed 

as a convolution problem in rectangular Cartesian coordinates, allowing for 

astigmatism correction. Fourier transforms are used to express the convolution 

integral as a multiplication in the frequency domain. The solution sc(x, y) is then 

“simply” the inverse Fourier transform of the ratio of the Fourier transforms of the 

desired depth of removal and removal function. As reported by Wilson et al. [19] and 

Forbes [1], when the Fourier transform of the removal function is small, the result 

becomes noise sensitive. Furthermore, the frequencies at which it is zero are a 
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problem. These issues were addressed by Wilson et al. [19] with the use of a 

thresholded inverse filter. This approach does not handle constraints on the solution. 

Two studies by Drueding et al. [13] and Shanbag et al. [20], also consider ion 

beam figuring in Cartesian coordinates. Their approaches are similar. In both cases, 

the known functions are expressed by series expansions so that the unknown function 

can be written in a similar form. This treatment converts the problem to a calculation 

of coefficients. Specifically, Drueding et al. [13] expand the terms in series of 

successive derivatives, whereas Shanbag et al. [20] used wavelet series. 

The advantages of these methods are that they are more robust than the 

Fourier transform solution and negative solutions can be avoided by adjusting a 

constant term or offset. The disadvantages are that other constraints are not taken into 

account, limitations are observed when the order of the polynomials becomes large in 

reference [13], and wavelet expansions might not be suitable for removal functions 

that strongly deviate from the Gaussian model used for the ion beam. 

 

Allen et al. [21] at Kodak and Hänsel et al. [14] at the German Institut für 

Oberflächenmodifizierung (IOM - Institute for Surface Modification) reported ion 

beam figuring apparatus named Ion Figuring System (IFS) and Ion Beam Etching 

(IBE), respectively. They both use iterative algorithms to establish the dwell times. 

These algorithms are not described, however, Hänsel et al. [14] qualifies the method 

used for IBE as a “modified iteration method in real space according to P. H. Van 
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Cittert”. This is a method based on the Van Cittert algorithm, widely used in 

spectroscopy, to which a relaxation factor has been introduced [22]. 

The IBE method also handles the constraints on the tool velocities and 

accelerations. In fact, the solution is checked after each iteration of the algorithm and 

corrected with a “smoothing procedure”, if necessary. The reported issue with this 

approach is the time required to achieve convergence. Moreover, the “smoothing 

procedure” is not described. 

From this review of some ion beam figuring approaches, it seems that the 

solutions reported by Allen et al. [21] and Hänsel et al. [14] are of potential interest 

for UFF, but these techniques are not described in detail. Techniques developed by 

Wilson et al. [19], Drueding at al. [13] and Shanbag et al. [20] might be of interest for 

a future treatment of non-axisymmetric workpieces or non-rotationally symmetric 

errors. 

 

A final approach formulates the form correction problem into matrix form. 

This technique is reported for ion beam figuring at Oak Ridge National Laboratory 

[23] and for many recent subaperture figuring processes, such as MRF [1], Zeeko 

Precessions process [18], HyDra [24]. This approach was selected for UFF and is 

described in further details in section 2.2.3. 
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2.2.3 Solution to the form correction problem 

 The form correction problem is formulated in matrix form for UFF and a wide 

range of geometries. A method establishing tool crossfeed velocities, which are 

feasible and minimize the deviation between desired and actual removal profiles, is 

described. 

 

2.2.3.1 Matrix formulation of the form correction problem 

To formulate the form correction problem for flats in matrix form, the integral 

over y0 of Eq. (2.3) is approximated by summing the integrand over a finite number 

of equidistant points along the tool path. Therefore, 
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is constant. The depth of removal is evaluated at equidistant points ri, 
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where        ii rrr −=∆ + )1(     (2.12) 

is constant. N�r and N�r0 are the largest values taken by i and j, set to cover the 

ranges of radial positions where material is removed (r ≥ 0) and where the tool is 

positioned (y0max ≥ y0 ≥ y0min), respectively. 

Eq. (2.11) can be written in matrix form as follows 

   scRMDR  =     (2.13) 
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or 

 

            (2.14) 

 

or      jiji scRMDR = ,    (2.15) 

where RM is the “removal matrix” of dimension N�r�N�y0, and its (i, j)th element is 

given by 

00 ),( yyrRM jiFij ∆= σ .   (2.16) 

sc is the vector of length N�y0, whose jth components )(/1 0 jcj yvsc = is the inverse 

of the tool crossfeed velocity when the tool is at y0j. DR is a vector of length N�r, for 

which DRi = DR(ri) is the depth of removal at ri resulting from the tool traveling 

along its toolpath. 

Similarly, for spheres and mild aspheres, Eq. (2.6) can be rewritten in the 

matrix form 

 

        ,  (2.17) 
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2.2.3.2 Computing RM  

The first key to the inverse problem is the computation of the removal matrix. 

Starting with Eqs. (2.3) or (2.6) and discretizing as described in the previous section, 

a clear definition of RM  is achieved for flats and spheres. It was possible to derive 

Eqs. (2.3) and (2.6), because flats and spheres can conveniently be described and 

mapped with polar and spherical coordinates, respectively  However, there is no 

coordinate system providing the same benefits for aspheres deviating significantly 

from their best-fit spheres. Therefore, there is no closed-form expression for the depth 

of removal on aspheres and no explicit definition for their removal matrices. 

Furthermore, the computations of the removal matrix for spheres using Eq. (2.18) 

require cumbersome coordinate manipulations. Therefore, a simpler, accurate and 

universal method is needed to compute the removal matrix on any shape. 

 

This method is defined by inspecting Eqs. (2.16) and (2.18). The columns and 

lines of RM  correspond to discrete points along the part profile such that the arc 

length, Larc, between two consecutive points is constant. For spherical workpieces, the 

points φi and φ0j can also be described by ri = R sin(φi) and y0j = R sin(φ0j), their 

respective y coordinates in (x, y, z). With this alternative notation, for plano and 

spheres, the points y0j associated with the columns of RM represent the positions 

occupied by the tool, while the points, ri, associated with the lines represent the points 

at which the depth of removal is computed. RMij is obtained by evaluating at ri the 

equivalent one-dimensional removal function generated for the tool at y0j and 
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multiplying that value by the arc length between two consecutive tool positions. 

Therefore, independently of the part geometry, the assignment of the elements of 

RM  is achieved by defining the points y0j and ri for a given part profile. These points 

are obtained by discretizing that part profile such that the arc length between two 

consecutive points along the part profile is constant. Algorithms performing that 

operation are described in Appendix 1.2. 

To fill RM , the one-dimensional removal function must be evaluated. 

Because of the part rotation around the z axis, the value of a one-dimensional removal 

function at yi is obtained by averaging that removal function over the circle of radius 

yi, centered at (0, 0, zPart(yi)). To perform that operation it is necessary to know the 

points of the removal function lying on that circle. Therefore, the (x, y, z) locations on 

the workpiece of the points of the removal function need to be known. However, the 

removal function is defined in a plane. The coordinate system (xrf, yrf) is attached to 

that plane with its origin located at the center of the removal function. xrf is parallel to 

the axis of rotation of the carrier wheel. To model removal, the points of this removal 

function need to be mapped onto the part, i.e. located in three dimensions. The chosen 

mapping method, illustrated in Figure 2.7, consists in positioning the plane on which 

the removal function is defined such that the normal to the part at y0 is orthogonal to 

the plane (xrf, yrf) and intersects that plane at the center of the removal function. yrf is 

in the plane (y, z). The points of the removal function are then projected onto the 

workpiece. 
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The removal function is filled column by column. Each column, being a one-

dimensional removal function obtained for a different discrete location of the tool on 

the part. This filling strategy permits varying removal functions, since at each column 

and therefore tool position a different removal function can be used. 

 

The method for removal matrix computation described in this section was 

validated by observing that the terms of RM  computed for spheres differ only at the 

third significant digit from the terms computed with Eq. (2.6). Showing that the 

mapping method is equivalent to the one suggested by the equations for the spherical 

case. In addition, by using a constant removal function, polishing times computed 

from the solution obtained with this method and approximated based on a constant 

volumetric removal rate for various aspherical shapes differ by less than 1%. This 

result suggests that removal is properly mapped onto the part. 

 

2.2.3.3 Solving for sc 

Once the removal matrix is computed, the matrix equation  

        scRMDRdes = ,    (2.19) 

where DRdes is a vector having for elements the desired depth of removal at the points 

yi, must be solved for sc. This is the second key to the inverse problem. 

 

Eq. (2.19) is a rather simple matrix equation. If RM  is a square matrix it 

might be possible to compute its inverse. sc could then be set equal to  
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      desDRRMsc
1−=     (2.20) 

If RM  is not a square matrix, its pseudo-inverse [25], defined by 

TT
RMRMRMRM 1)( −+ = ,   (2.21) 

could be computed to have 

      desDRRMsc
+= .    (2.22) 

However, because of the convolution nature of the problem, RM  is typically ill-

conditioned and Eqs. (2.20) and (2.22) produce a meaningless solution. Such a 

solution is illustrated in Figure 2.8. It was achieved with a desired uniform removal of 

5 µm and RM computed for a flat with the removal function derived from the removal 

spot shown in Figure 2.9. The tool crossfeed velocity solution is not satisfactory 

because the constraints of Eq. (2.7) are violated. 

 

To overcome the ill-conditioning of RM , the form correction problem is 

treated as a constrained optimization problem. Its solution is the vector sc minimizing 

the norm of the error vector ε defined by 

      scRMDRdes  −=ε ,   (2.23) 

while satisfying the constraints of Eq. (2.8). In order to enforce these constraints they 

need to be written in discrete form. The constraint of Eq. (2.8) on the tool velocity 

can be formulated as 

        
minmax

11

c

j

c v
sc

v
<< ,   (2.24) 
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where vcmin is the minimum permissible tool crossfeed velocity, introduced to prevent 

the tool from being too slow. The tool acceleration is evaluated at the midpoints of 

the arcs of length Larc separating two consecutive tool positions on the part with the 

following approximation 

2

/1/1/1/1 11 jj

arc

jj
c

arc

cc
scsc

L

scsc
v

L

v

dt

dv +−
≈∆≈ ++ .  (2.25) 

Therefore, the constraint of Eq. (2.8) on the tool acceleration becomes 

22
1max

2
1

2 2 jjarccjj scscLascsc ++ ≤−   (2.26) 

The �2-norm, defined by the following equation 

        ∑
∆

=

=
rN

i
i

1

2

2
εε ,    (2.27) 

is the most commonly used for this type of problem. Current processes such as HyDra 

[24] and Zeeko Precessions process [18] mention the use of that norm without any 

detail about the nature of the algorithm that they use. On the other hand, Carnal et al. 

[23] at Oak Ridge National Laboratory solved this problem with the documented 

LSQR (Least SQuaRes) algorithm [26]. But it does not appear to allow for the 

necessary constraints defined by Eqs. (2.24) and (2.26). The nonnegative least 

squares algorithm [27] used by Lee et al. [28] has the advantage that it can prevent 

negative solutions but that is the only constraint that is enforced. The norm defined by 

Eq. (2.27) is used to solve the present form correction problem. 

 Such a constrained optimization problem can be solved with the fmincon.m 

[29] MATLAB [30] function available in the MATLAB optimization toolbox. Using 
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that function, a solution minimizing the norm of ε and satisfying the constraints is 

obtained. Such a feasible solution is shown in Figure 2.10. However, that solution 

lacks the smoothness that is necessary on the CNC machine. 

 

 Therefore, in addition to the constraints on the tool velocity and acceleration, 

the smoothness of the solution must be considered. A smoother solution can be 

obtained with Tikhonov regularization [31, 32, 33, 34, 35]. With this method, the 

smoothness of the solution is taken into account in the objective function, which is 

rewritten as 

   
2

2

22

2

2

2

22

2
scLscRMDRscL des    λλε +−=+   (2.28) 

where λ and L are a regularization parameter and regularization matrix respectively. 

λ controls the weight of the smoothing and L  its nature. L , for example, can be the 

identity matrix or an approximation of a first or second derivative operator. A 

formulation similar to Eq. (2.28) is also reported by Forbes [1], who also suggests the 

following form for L . 
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where cv~ is an approximation of the solution. The definition of such an approximation 

is considered in the next paragraph. With L  defined according to Eq. (2.29), solutions 
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resembling cv~  with smooth variations of their first derivatives are targeted. L  is also 

defined according to Eq. (2.29) for the present problem. 

L  requires the knowledge of an approximate solution cv~ . A solution roughly 

achieving a uniform removal profile of amplitude similar to the amplitude of the 

desired correction is satisfactory. It is known that for tools having an infinitesimal 

contact patch, a crossfeed velocity varying as 1/y0 results in a constant depth of 

removal [36]. The removal profile shown in Figure 2.11 was obtained with RM  used 

to compute the solution of Figure 2.10 and a crossfeed velocity proportional to 1/y0. 

The predicted depth of removal appears constant away from the part center. However, 

less material is removed at the center over a region approximately as large as the 

removal function and is responsible for a PV error of approximately 1.5 µm. 

Therefore, to obtain a constant depth of removal, the tool dwell time must be 

increased by decreasing its crossfeed velocity over the central region of the part. Such 

a behavior can be achieved by defining cv~ as follows 

      
nn
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c
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yv /1
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= ,   (2.30) 

where c1, c2 and n are coefficients that must be adjusted for given removal function 

and depth. cv~ is approximately equal to 1/(c2 y0) away from the part center, therefore 

c2 is adjusted so that 1/(c2 y0) produces the desired removal depth away from the part 

center. The distance from the part center from which the tool should be slowed down 

is a function of the size of the removal function. In Eq. (2.30), that distance is 
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adjusted with n, a large value of n reducing the extent of the region over which the 

tool is slowed down. For a given value of n, c1 is chosen so that the �2-norm of the 

difference between desired and predicted removal profiles is minimized. Algorithms 

developed for UFF uses a dichotomous search to find the values of c1 for n taking the 

values 2, 3, …, 15 and select the pair of (c1, n) producing the most accurate removal 

profile. 

cv~  was evaluated in the case of the removal function and desired depth of 

removal considered in Figures 2.10 and 2.11. cv~ and the corresponding removal 

profile are shown in Figure 2.12. The predicted removal profile reveals that the form 

error is now distributed evenly around the desired depth of removal. The PV error is 

less than 1 µm and significantly better than with a tool crossfeed velocity simply 

proportional to 1/ y0. Therefore, Eq. (2.30) defines a satisfactory approximate solution 

to the form problem. 

The methods used to select λ and solve the constrained optimization problem 

with the objective function defined by Eq. (2.28) are not described by Forbes [1]. The 

vector sc minimizing Eq. (2.28) is known to be [35] 

     des
TTT

DRRMLLRMRMsc 12 )( −+= λ   (2.31) 

However, to avoid the matrix inversion of Eq. (2.31), the solution is conveniently 

obtained from a computation of the Generalized Singular Value Decomposition 

(GSVD) [25, 32, 33, 34] of the pair of matrices ( RM , L ). 
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This method establishes a solution minimizing Eq. (2.28), but it does not 

guarantee that the constraints on the tool velocity and acceleration are satisfied. This 

requirement is achieved via the selection of the parameter λ. If λ was very low, Eq. 

(2.28) would be equivalent to minimizing the norm of Eq. (2.23). Facing ill-

conditioning, a solution similar to the one shown in Figure 2.10 would be found. vc 

would not be smooth, but the predicted residual form error would be minimum. On 

the other hand, if λ was very large, the solution would converge to 1/ cv~ . This solution 

would be smooth but would produce a large residual form error. Smoothness of the 

solution is gained at the cost of an increase in the residual form error. The constraints 

on sc will be satisfied with a relatively smooth solution. Therefore, the desired 

solution is the solution for which λ is large enough to satisfy the constraints on the 

solution but low enough to produce a low residual form error. A dichotomous search 

is used to establish the lowest value of λ for which the solution is feasible. For that 

value, sc is such that Eqs. (2.24) and (2.26) are satisfied. 

 

In summary, the removal matrix is first computed. The approximate solution 

cv~ , defined by Eq. (2.30), is found by establishing c1, c2 and n minimizing form error. 

That solution is used to compute the regularization matrix L  according to Eq. (2.29). 

That matrix is then used to establish with a dichotomous search the lowest value of λ 

for which Eqs. (2.24) and (2.26) are satisfied. At each step of that search, vc is 

established by using the GSVD of the pair of matrices ( RM , L ). 
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The solution achieved with these algorithms and the same inputs as for Figure 

2.10, 2.11 and 2.12 is shown in Figure 2.13. vc is smooth and produces a nearly 

uniform removal profile since the PV error is on the order of 0.05 µm. vc follows the 

trend of the approximate solution with some oscillations to precisely achieve the 

desired removal profile. 

 

The form correction algorithms based on the methods presented in this chapter 

have been used to polish uniformly a BK7 plano part of diameter 35 mm with cerium 

oxide bound abrasive. The desired uniform depth of removal of 5 µm was achieved in 

one pass of 20 minutes. The part edges were left untouched so they could be used as a 

height datum. The resulting surface, away from the edges, exhibits a peak-to-valley 

error of 0.26 µm, which is slightly lower than the error of the initial surface. Figure 

2.14 is a Zygo Mark IV [37] measurement of this part over an aperture of diameter 27 

mm. 
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Figure 2.1 Geometry of the problem for flats. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Geometry for spheres polishing. 
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Figure 2.3 Linear relation between removal spot volume and spot dwell time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Removal spot used for comparison between predicted and actual depth of 

removal. 
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Figure 2.5 Comparison between the predicted depth of removal 

and the actual part profile. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Polishing with a subaperture lap. 
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Figure 2.7 Mapping of the removal function on the workpiece. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.8 Tool crossfeed velocity obtained with Eq. (2.24) for uniform removal of 

5 µm on flat using the removal spot of Figure 2.9. 
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Figure 2.9 Removal spot used to compute the solutions of Figure 2.8. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.10 Tool crossfeed velocity solution and predicted removal profile with the 

MATLAB function fmincon.m. 
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Figure 2.11 Tool crossfeed velocity proportional to 1/y0 and predicted removal 

profile. 
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Figure 2.12 Tool crossfeed velocity approximation for uniform removal and predicted 

removal profile. 
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Figure 2.13 Tool crossfeed velocity solution and predicted removal profile with the 

form algorithms developed for UFF. 
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Figure 2.14 Wavefront map of a part polished uniformly using the form algorithms 

developed for UFF. 
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Chapter 3 Tool path geometry determination 

The tool path geometry is defined at step 5 of the UFF process flow chart in 

Figure 1.7. This step defines how to position the tool to safely achieve the desired 

tool-part contact and compression as the tool is moved across the part. 

 

3.1 Definition and preferred configuration 

The tool path geometry is the series of spatial positions occupied by the tool 

during polishing. As the tool traverses the part, the tool positions and orientations 

must be defined according to the machine motion limits and the part and tool 

geometry. Since the parts considered here are axisymmetric, it is sufficient to polish 

with the tool traveling from the edge to the center of the rotating workpiece. 

However, tool lift off might induce artifacts that are unacceptable at the part center. 

Therefore, if the workpiece has a physical center that has to be polished, it is 

desirable to have the tool traverse the part from edge to edge. In the case of ogives, 

where the center of the part does not have to be polished or has been removed, the 

tool can be moved from the inner to the outer edge of the workpiece. 

 

A coordinate system (x, y, z) attached to the CNC platform and the angle B, 

shown in Figure 3.1, are used to describe the tool positions in this work. The origin of 

the (x, y, z) coordinate system is located at the center of the surface to polish. The z 

axis coincides with the workspindle axis of rotation and is directed positive upward. 

This is the axis of symmetry of the part. The x axis is parallel to the axis of rotation of 
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the carrier wheel and oriented positively toward the front of the platform. The tool is 

moved across the part along a path in the y-z plane. The B axis of rotation is 

orthogonal to the plane (y, z) and B is the angle between z and the tool normal. B is 

equal to 0 when the tool normal is parallel to z and is positive for a counterclockwise 

rotation of the tool. The tool path consists of finite series of coordinates (yj, zj) and 

angle values Bj. The coordinates (yj, zj)  are those of the B axis of rotation, i.e. the 

pivot point. The tool path position (yj, zj, Bj) is defined to produce a removal function 

centered at (y0j, z0j) on the part surface. 

 

Linear interpolation is used by the machine onboard computer to continuously 

move the tool between the prescribed points. The tool positioning errors that might be 

induced by the interpolations are minimized by finely discretizing the tool path. For 

this work the arc length between two consecutive (y0j, z0j) points is 0.1 mm. This 

discretization is achieved according to the method and algorithms described in 

Appendix 1.2. 

 

A removal function independent of (y0j, z0j) position along the tool path would 

be preferable for the computation of the removal matrix. In that case, only that single 

removal function is needed to compute all the elements of the removal matrix. In the 

current process, band velocity, vband, and tool inward displacement, δ, are constant. 

The part radii of curvature, and the angle, α, between the tool and local part normals, 

shown in Figure 3.1, are the parameters that may vary across the part and affect the 
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removal function. The part radii of curvature control the extent of the removal 

function. These radii of curvature are invariant on flat and spherical parts but vary on 

aspheres. Also, as α varies, the wrapping of the polishing band might change on the 

portions of the tool brought in contact with the part, producing variation in the 

removal functions. Furthermore, α affects the in-line compliance of the tool and 

therefore the load-displacement characteristic of the tool. To avoid these variations in 

removal function with α, it is desirable to keep α constant and equal to 0 along the 

tool path so that the tool and part normals are aligned. An example tool path with 

α = 0 is shown in Figure 3.2 for a convex part. This preferred configuration will 

simplify the computation of the removal matrix on flats and spheres and it will 

provide some consistency between the removal functions that have to be used on 

aspheres. 

 

The CNC platform allows maximum B tool rotation angles –Bmax and Bmax of 

–90° and 90°, respectively.  Therefore, the tool-part normals aligned, i.e. α equal to 0, 

configuration is typically feasible on convex surfaces with diameter within the 

machine capacity. This is illustrated in Figure 3.2. With this configuration, the points 

(y0j, z0j) are the intersections of the tool normal with the part surface along the tool 

path. 

 

On the other hand, that preferred configuration is not possible for all concave 

surfaces. The restrictions are due to the possible tool-part collisions that might occur 
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in particular, with the concave surfaces of hemispheres, ogives or domes, as 

illustrated in Figure 3.3. Therefore, to polish a large range of concave surfaces, 

methods of adjusting the tool Bj angles are necessary to avoid tool-part collisions. 

 

3.2 Preventing tool-part collisions 

3.2.1 2D symmetric model 

3.2.1.1 Geometry 

 The part and tool geometries have to be taken into account to define for each 

(y0j, z0j) a feasible Bj angle. This angle will be feasible if it prevents tool part collision 

and results in a tool position within the range of achievable motions on the machine. 

 Such angles could be established with algorithms using a 3D model taking 

accurately into account the tool and part geometries. These algorithms would rely on 

the detection of part-tool collisions and a search strategy to find feasible or “safe” B 

angles. But this 3D approach, in particular the detection of tool-part collision, would 

be very computationally demanding. The problem can be simplified with the use of a 

2D model. This is possible because the workpiece is axisymmetric and the tool is 

only subjected to a planar (y-z) motion. 

 

For this approach, the workpiece is modeled by the profile of the surface to be 

polished. The part profile is discretized according to the approach and algorithms 

defined in Appendix 1.2. The arc length between two consecutive points is typically 

on the order of 0.1 mm. For concave surfaces, the thickness of the part at its edge can 
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also be a source of collision. Therefore, segments are placed at both extremities of the 

profile to model the edge of the part. 

 

The 2D model must take into account the 3D nature of the tool. The machine 

was developed by OptiPro Sytems [1] with the CAD software SolidWorks [2]. This 

software is also a convenient tool for visualizing and evaluating the machine 3D 

geometry. SolidWorks views of the Army and Navy machine configurations are 

shown in Figures 3.4-3.7 and 3.8-3.11, respectively. They are the two existing UFF 

geometries. They both share the same UFF head, shown in Figures 3.7 and 3.11. The 

Army configuration includes a second tool spindle located at the back of the UFF 

tooling. This spindle is highlighted in Figure 3.6 and is available for ring or wheel 

grinding tools. The Navy configuration is dedicated to UFF only and the tool spindle 

of the Army version is replaced by a block of triangular cross section in the (x-z) 

plane, as shown in Figure 3.10. These structural differences need not be taken into 

account as these regions are out of reach for parts of diameter less than 150 mm, the 

specified maximum capacity of the machine. Parts with such diameter can only 

interfere with the UFF head. Therefore, only that region of the tool needs to be 

modeled to evaluate tool-part collisions. 

For this analysis, the coordinate system (xT, yT, zT) is attached to the tool with 

origin at the tip of the tool. The zT axis is oriented along the tool normal and positive 

into the tool. The xT axis is parallel to the x axis. The 2D collision model was 

developed to be symmetric with respect to the zT axis. As a consequence, the 
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established tool paths are symmetric with respect to the workpiece center. This is 

beneficial as it simplifies the removal matrix computation and removal function 

prediction. One additional advantage is that the whole tool path can then be 

established by only solving half the tool path problem. 

The tool model is defined by considering cross sections of the tool orthogonal 

to the zT axis. In a cross section at a given zT, the distance from the tool normal to the 

furthest point of the tool in this plane, Ltool(zT), is identified as illustrated in Figure 

3.12. The tool interior region is modeled in 2D by the region of the plane comprised 

between the curves –Ltool(zT) and Ltool(zT). Because of the relatively simple geometry 

of the UFF head, the complete tool geometry of the 2D model can be defined with the 

seven points P1 through P7 and the eight dimensions D1 through D8 shown in Figure 

3.13.a). D1 is equal to the carrier wheel radius RW. The vertical dimensions D7 and D8 

are defined to be invariant when the tool shaft or carrier wheel are modified. The 

points P1, P2, … , P7 have the respective coordinates (
1Py ,

1Pz ), (
1Py ,

1Pz ), … , 

(
1Py ,

1Pz ) in (yT, zT), such that 

),(),( 1111
DDzy PP = ,    (3.1) 

         ),(),( 61222
DDDzy PP += ,   (3.2) 

          ),(),( 61333
DDDzy PP += ,   (3.3) 

       ),(),( 761344
DDDDzy PP ++= ,   (3.4) 

       ),(),( 761455
DDDDzy PP ++= ,   (3.5) 

       ),(),( 861566
DDDDzy PP ++= ,   (3.6) 
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   ),(),( 861577
offsDDDDzy PP +++= ,  (3.7) 

where offs is a constant so that P7 is such that 
67 PP zz ≠ . Ltool(zT) can be described as a 

combination of a quarter circle modeling the carrier wheel, 5 segments and a half line, 

[P6P7). Ltool(zT) resembles the front view of the tool even though the dimensions D1 

through D8 do not match the dimensions of the front view but instead take into 

account the depth of the tool. A vertical half-line is used for zT greater than 
6Pz instead 

of a segment, because none of the points modeling the part should be in the region 

defined by 
6PT zz ≥ , that half-line and the one that is symmetric with respect to zT. 

Ltool(zT) can be expressed as a piecewise function formed of the equations of a quarter 

circle and lines defined by P1 through P7. This 2D model gives a conservative 

estimate for collision when a point modeling the part enters the region of the plane 

defined by –Ltool(zT) and Ltool(zT). But the present model does not guarantee any 

clearance between the part and the tool and therefore, there is no safety margin. 

In order to provide some clearance between the tool and the part, a safety 

region surrounding the tool 2D model is added. This region is delimited by the curve 

Lsafety(zT) illustrated in Figure 3.13.b). A uniform clearance, S1, is used for the top part 

of the tool. There is no clearance around the bottom half carrier wheel and a tapered 

safety region of width S2 at z1 is used in between. S1 and S2 are user defined inputs, 

but they should typically be of the order of 10 and 5 mm. The tapered shape prevents 

the tool model from becoming too large near its tip while allowing sufficient 

clearance elsewhere. This is important for the polishing of deep concave parts. As for 
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the tool interior region, the safety region is defined by 7 points, labeled 1P′ , 2P′ , … 

7P′  of coordinates 

),(),(
1111 2 PPPP zSyzy +=′′ ,   (3.8) 

),(),( 12222
Szyzy PPPP −= ′′′ ,   (3.9) 

         ),(),( 11 3333
SzSyzy PPPP −+=′′ ,   (3.10) 

         ),(),( 11 4444
SzSyzy PPPP −+=′′ ,   (3.11) 

),(),( 15555
Szyzy PPPP −= ′′′ ,   (3.12) 

),(),(
6666 1 PPPP zSyzy ′′′ += ,   (3.13) 

),(),(
7777 1 PPPP zSyzy +=′′ ,   (3.14) 

in (yT, zT) where
2Py ′ , 

5Py ′ and
6Pz ′ are determined as follows. 

2Py ′ is calculated, by 

considering, as shown in Figure 3.14, the intersection Pint of (P1P2) and the horizontal 

line defined by zT  = 
2Pz ′ . The general equation of a line passing through two points of 

coordinates (ya, za) and (yb, zb) is given by 

ab

abba
T

ab

ab
T

zz

zyzy
z

zz

yy
y

−
−+

−
−= .  (3.15) 

Using Eq. (3.15) with the coordinates of the points {P1, P2} and evaluating at zT  = 

2Pz ′ , 

       
6

21
12int D

DD
SDyP

−+= .   (3.16) 

And the difference between the abscissas of Pint and 2P′ is 
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)cos(

1
int2 ψ

S
yy PP =−′    (3.17) 

 

where 

        






 −=
6

12arctan
D

DDψ    (3.18) 

is the angle between (P1P2) and the zT axis. Therefore, by combining Eqs. (3.16) and 

(3.17), 

          
)cos(

1

6

21
122 ψ

S

D

DD
SDyP +−+=′ .  (3.19) 

5Py ′  is established by first noticing that ( 65PP ′′ ) is simply a translation of (P5P6), thus 

its equation is given by 

  b
zz

zyzy
z

zz

yy
yPP

PP

PPPP

T

PP

PP

T ∆+
−
−

+
−
−

=′′
56

5665

56

56:)( 65 , (3.20) 

where, since (P5P6) is at an angle 

         








−
−

=′
78

45arctan
DD

DDψ    (3.21) 

from the zT axis, as shown in Figure 3.15, 

         
)cos(

1

ψ ′
=∆

S
b .    (3.22) 

Therefore, by evaluating Eq. (3.20) at zT =
5Pz ′  









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+

−
−

+=′
)cos(

1

78
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SDy

P
.  (3.23) 
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And by solving that same equation for zT with 
6PT yy ′=  










−
−










′
−+++=′

45

78
1861 )cos(

1
1

6 DD

DD
SDDDz

P ψ
    (3.24) 

Similarly to Ltool(zT), Lsafety(zT) could be defined as a piecewise function of zT. 

 

3.2.1.2 Operations to determine tool-part collisions 

The 2D model for tool-part collision is illustrated in Figure 3.16. The part is 

represented by discrete points, the tool by its symmetric interior and safety regions. 

Potential collisions while polishing the part with a removal function centered at 

(y0j, z0j) can be evaluated by rotating the tool model by the angle Bj and translating it so 

as to contact the desired part point. That translation is performed so that the point 

(y0j, z0j) is on the half circle modeling the carrier wheel and such that the local part 

normal at this point intercepts the carrier wheel axis of rotation, as illustrated in 

Figure 3.1. The coordinates of the points on the part initially defined in the (x, y, z) 

coordinate system could be evaluated in the (xT, yT, zT) coordinate system attached to 

the tool. If any of these points is such that 

–Lsafety(zT) ≤ yT ≤ Lsafety(zT),   (3.25) 

and therefore, becomes interior to the tool and safety regions, then the tool position 

would not qualify as feasible. Because of the large number of points representing the 

part, the operation of transforming their coordinates in the (xT, yT, zT) coordinate 

system is rather time consuming. A faster solution for tool-part collision evaluation 
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consists in defining the interior region of the tool in terms of the coordinates y and z 

which are used to define the part, instead of (yT, zT).  

This approach requires the translation and rotation of the points forming the 

tool model. For that purpose, the full 2D symmetric model is considered. It is formed 

of the seven points 1P′ , 2P′ , … 7P′  and 1P ′′ , 2P ′′ , … 7P ′′ , which are symmetric to the 

first seven points with respect to the axis zT, as shown in Figure 3.17. In (yT, zT), 

     ),(),(
iiii PPPP zyzy ′′′′′′ −= .   (3.26)  

Setting the tool reference position such that its tip (yT = zT = 0) is at the (y, z) origin 

and B = 0, the coordinate systems (xT, yT, zT) and (x, y, z) are equal. Therefore, in that 

reference position, the coordinates of the points defining the tool safety regions in 

(y, z) are given by Eqs. (3.8) – (3.14). These fourteen points are rotated then 

translated so that the carrier wheel contacts the part at (y0j, z0j). This rotation has for 

center the center of the carrier wheel and is of angle Bj. For that purpose, the polar 

coordinates (r, θ) with origin the center of the carrier wheel (0, RW) and such that θ  is 

equal to 0 in the positive y direction is defined. The following operation transforms 

(y, z) into (r, θ) coordinates. 

      ),( θr = ( ,)( 22
WRzy −+ )/)arctan(( yRz W− )  (3.27) 

A point of polar coordinates (r, θ) after rotation by an angle Bj is transformed into 

    ),( θr → ),( jBr +θ .   (3.28) 

And the Cartesian coordinates of the rotated point are given by 

))sin(),cos((),( Wjj RBrBrzy +++= θθ .  (3.29) 



 77 

The translation is performed so as to place the center of the carrier wheel (0, RW) at a 

distance equal to RW along the local part normal. This is achieved by transforming the 

point’s coordinates as follows 

  ),( zy → (y + y0j – RW sin(Bjnorm), z + z0j – RW (1 – cos(Bjnorm))), (3.30) 

where Bjnorm is the angle between z and the part local normal. Therefore, the 

operations to transform the points subjected to the rotation and translation described 

here are obtained by combining Eqs. (3.30) and (3.29) 

    ),( zy   →  

   ( )cos( jBr +θ + y0j – RW sin(Bjnorm), )sin( jBr +θ + z0j – RW cos(Bjnorm)), (3.31) 

with r and θ defined according to Eq. (3.27).  

 

The tool safety interior region has then to be defined dynamically as a 

function of tool translation and rotation.  

For simplicity, the carrier wheel region is not modeled as the interior of the 

half circle shown in Figure 3.17, but as the interior of the full circle. This is 

satisfactory because that entire circle is within the tool safety region. Starting from 

the equation for the circle representing the carrier wheel of radius RW and center the 

center of the carrier wheel (yC, zC), which can be established with (y, z) = (0, RW) in 

Eq. (3.30), 

       222 )()( WCC Rzzyy =−+− ,   (3.32) 

a point (y, z) is interior to the carrier wheel if its coordinates are such that 
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        22 )( CWC yyRzz −−+<    (3.33) 

or 

        22 )( CWC yyRzz −−−> .   (3.34) 

When a point is detected in this region, a specific error code is outputted. This error 

code is used to indicate that a smaller carrier wheel might prevent the detected 

collision. 

The rest of the tool safety and interior region is divided into 4 regions 

delimited by four segments or one segment and two half-lines 

 (1)   [ ]11PP ′′′ , [ ]21PP ′′ , [ ]22PP ′′′  and [ ]12PP ′′′′  

 (2)   [ ]33PP ′′′ , [ ]43PP ′′ , [ ]44PP ′′′  and [ ]34PP ′′′′  

 (3)   [ ]55PP ′′′ , [ ]65PP ′′ , [ ]66PP ′′′  and [ ]56PP ′′′′  

(4)   [ ]66PP ′′′ , [ )76PP ′′  and [ )76PP ′′′′  

which are shown in Figure 3.17. A point is within these regions depending on its 

relative position with respect to the lines supporting the segments or half-lines 

forming these regions. The equation of a line � in the plane (y, z) is of the form 

         z = A
�
 y + B

�
,    (3.35) 

where A
�
 and B

�
 are constants. But a line cannot be described with this relation when 

it is vertical and AL is infinite. This can occur for all the lines of interest, since the tool 

can achieve rotations between –90º and 90º. Therefore, to avoid large values of A
�
, 

when │A
�
│ ≥ 1 the line is described with a relation of the form 
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         y = C
�
 z + D

�
,    (3.36) 

where C
�
 and D

�
 are constants. Therefore, Eqs. (3.35) and (3.36) are used when 

│A
�
│ < 1 and │A

�
│ ≥ 1, respectively. For a line � passing through two points of 

coordinates (ya, za) and (yb, zb), A�
, B

�
, C

�
 and D

�
 are given by 

ab

ab
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−
−=

�
   and   

ab

abba
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yzyz
B

−
−=

�
,  (3.37) 

        L

ab

ab A
zz

yy
C /1=
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−=
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   and   

ab

abba

zz

zyzy
D

−
−=

�
.  (3.38) 

To determine what relative position to the lines define the tool interior region 

for a given angle Bj, it is necessary to take into account the orientation of the line 

when B = 0. At that angle, the tool safety region is mainly defined by vertical, [ )76PP ′′′′ , 

[ ]34PP ′′′′ , [ ]43PP ′′  and [ )76PP ′′ , and horizontal, [ ]11PP ′′′ , [ ]33PP ′′′ , [ ]55PP ′′′  and [ ]66PP ′′′ , lines. 

[ ]43PP ′′  and [ ]33PP ′′′  are considered for illustration purposes. Figure 3.18 is also used for 

that purpose. By drawing the segment or half-line of interest in that figure, such that 

one of its extremity is placed at the origin, the equation to use to define the line of 

interest is indicated. As B varies, the position of the segment is visualized by rotating 

it by an angle B. 

At B = 0, [ ]43PP ′′  is vertical, 3P′  is placed at the origin in Figure 3.18 and the 

line )( 43PP ′′  is defined using Eq. (3.36). The interior region is on the left of )( 43PP ′′ , 

therefore a point interior to the region (2) will in particular be such that 

      
4343 PPPP DzCy ′′′′ +≤ .    (3.39) 
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This is true while 1
43

≥′′PPA . As the tool is rotated with B taking values between –90º 

and 90º, [ ]43PP ′′  can be located in the regions (a) and (c) of Figure 3.18. In both (a) and 

(c), Eq. (3.35) is used for )( 43PP ′′ . But a point must be above and below )( 43PP ′′  in (a) 

and (c), respectively to be interior to region (2). [ ]43PP ′′  can only be located in (a) and 

(b) with negative and positive values of B, respectively. Therefore, a point (y, z) can 

only be interior to (2) if it satisfies 

If 1
43

≥′′PPA        Eq. (3.39)  

else if Bj > 0 
4343 PPPP ByAz ′′′′ +≤     (3.40) 

         if Bj ≤ 0 
4343 PPPP ByAz ′′′′ +≥     (3.41) 

The case of [ ]33PP ′′′ , horizontal at B = 0 and can be similarly treated. By 

drawing such that 3P ′′  is the origin in Figure 3.18, [ ]33PP ′′′  is located in region (a). In 

this case, while │A│ is less than 1, )( 33PP ′′′  is described with an equation of the form 

of Eq. (3.35). And to be interior to region (2), a point must be above )( 33PP ′′′ . When B 

is varied between +90º and –90º, [ ]33PP ′′′  is located in (a), (b) or (d). It can only be in 

(b) and (d) when B is negative and positive, respectively. When [ ]33PP ′′′  is in (b) or (d), 

a point can only be interior to (2), if it is on the right or left, respectively, of [ ]33PP ′′′ . 

These observations indicate that a point can also only be interior to (2) if it also 

satisfies 

If 1
33

≥′′′ PPC   
3333 PPPP ByAz ′′′′′′ +≥     (3.42)  
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else if Bj > 0 
3333 PPPP DzCy ′′′′′′ +≤     (3.43) 

         if Bj ≤ 0 
4343 PPPP DzCy ′′′′ +≥     (3.44) 

A point is interior to the region (1), (2), (3) or (4), if it satisfies relations such 

as the ones derived for [ ]43PP ′′  and [ ]33PP ′′′  for all the segments or half-lines forming 

that region. The criteria for the other vertical and horizontal segments or half-lines 

can be derived in the same manner as for [ ]43PP ′′  and [ ]33PP ′′′ . The approach presented 

here relies on the fact that with rotations ranging between +90º and –90º and the 

knowledge of the position of the line at B = 0, the position of the line as a function of 

its slope and B can be predetermined. [ ]21PP ′′  and [ ]12PP ′′′′ , which are nearly vertical can 

be treated similarly. On the other hand, [ ]65PP ′′  and [ ]56PP ′′′′  need particular attention. 

Because, at B = 0, the absolute value of their slopes are close to 1 and with slight 

variations of D4, D5, D7 and D8 they could become greater or less than 1. Such 

variations affect the region (a), (b), (c) or (d), in which they are initially located and 

therefore, their location as B varies. For these two segments, the constraints on y and z 

must be defined for absolute values of the slope at B = 0 equal to, less than and 

greater than 1. 

 

The MATLAB [3] function ToolRotation.m has been written to perform the 

needed point rotations and computations of A
�
, B

�
, C

�
 and D

�
 for given Bj, (y0j, z0j). 

TestPtInterior.m verifies if the points modeling the part are interior to the tool safety 
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region based on the method presented in this section. The code for ToolRotation.m 

and TestPtInterior.m is in Appendix 2. 

 

The 2D model presented in this section is used to evaluate possible collisions. 

In order to determine a safe tool path, a search strategy is needed. The search 

strategies used for UFF are the object of the following sections. 

 

3.2.2 B angle search strategies 

For a point (y0j, z0j) of the part, the interval of values of B that are feasible, 

form the feasible space for a solution to the present problem. This interval is unique 

for axisymmetric workpieces. The best solution is defined as the feasible solution that 

minimizes │α│. But a low value for the difference between two consecutive 

solutions, Bj and Bj+1, is also desired to insure a smooth motion of the tool. 

Specific strategies to find the best safe B angles are used for the different part 

geometries. Concave and convex parts are handled according to the flow chart of 

Figure 3.19. The difference in the treatment of these two geometries resides in the 

specific algorithms, Convex and Concave which are first used. Based on the outputs 

of these algorithms, Generic algorithms will be used, namely if an error of type 3 is 

identified. These three algorithms can fail for several reasons that can be diagnosed 

with the outputted error codes. These codes are summarized in Table 3.1. If the part 

has a physical center that has to be polished and the tool cannot reach with B equal to 

0 without avoiding a collision, then the part is too deep or narrow and cannot be 
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polished with the current tool design. This is error code number 1, which is fatal. A 

collision might be due to the carrier wheel being too large. This is identified when 

points of the part model become interior to the region representing the wheel. The 

code corresponding to this error is 2. It indicates that the use of a smaller wheel might 

be appropriate. Error code 3 occurs when the algorithms are unable to find a safe B 

angle. Such an error can be due to the use of an inappropriate search method or the 

impossibility of preventing tool-part collisions with the given workpiece. 

 

Error code Cause 
1 Cannot reach part center 
2 Collision in the carrier wheel region 
3 Failure to find a safe B angle 
4 Unachievable tool linear motion 

Table 3.1 Error codes and their causes. 

 

For concave parts, the dedicated algorithms Concave are first used. These 

algorithms establish a safe B angle with a search strategy adapted to most deep 

concave parts. Figure 3.20 shows the detailed flow chart of these algorithms. Their 

principle consists in considering the npts points (y0j, z0j) such that y0j is positive. At 

each of these points, the tool is first rotated and translated to contact the part at 

(y0j, z0j) with Bj equal to Bjnorm, the B angle such that tool and part normals are 

aligned. The answer to the question “Is a collision detected?” is systematically 

obtained by applying the 2D model presented in the previous section and looking for 

the points of the part model becoming interior to the tool and safety region. If no 

collision is detected, Bj is set equal to Bjnorm, the preferred solution. If a collision is 
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detected, the strategy illustrated in Figure 3.21 is used. At first Bj is set equal to Bj-1. 

If no collision occurs with that angle, B is increased by constant increments ∆B, until 

a collision is predicted. Bj is ultimately set equal to the value of the angle at which 

that collision is predicted minus ∆B. This search strategy is used because with deep 

concave surfaces, as the tool moves from the part center toward its edge, a safe 

angular position at a point y0j-1 will be safe at y0j. This gives a feasible starting point 

for the search. Furthermore it is known that the starting value, Bj-1, must be increased 

to approach Bjnorm and therefore, miminize │α│. Therefore, a starting point and the 

search direction are known in this case. These properties are advantageously used 

here to make the search fast and robust for most concave parts and in particular deep 

ones such as ogives. In addition, a smooth tool motion is achieved by using ∆B on the 

order of 0.1º. For the geometries of interest, the amplitude of the rotation to perform 

when B is varied is of the order of ∆B. Larger values of ∆B results in larger intervals 

over which B is constant, but the amplitude of the rotations, required to transition 

between these intervals is too large for the degree of smoothness desired for the tool 

motion. 

 

Some aspects of the algorithms have not been included in the flow charts in 

order to keep them relatively simple. This is true for Figure 3.20 and the following 

flow charts. First of all, if Bj becomes greater than Bmax or less than –Bmax, it is set 

equal to the value of the upper or lower bound, respectively, under the condition that 

no collision is predicted. Error 2 does not appear in the flow chart, but anytime a part 
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point is found to be in the carrier wheel region, the algorithms are actually stopped 

and the error 2 is outputted. Similarly error code 1 is outputted if a collision is 

detected while dealing with the part center. 

 

The Convex algorithms do not include any search method. Their flow chart is 

shown in Figure 3.22. They are formed of the first steps of the Concave algorithms. 

They only check that a convex part can be polished with the tool and part normals 

aligned along the tool path. As mentioned previously, even though it does not appear 

in the flow chart, if Bjnorm is greater or lower than the machine angular limits, these 

limits are used. 

 

Both Concave and Convex algorithms could fail with error code 3 with parts 

being overall concave or convex but presenting changes in curvatures. In that case, 

which corresponds to more generic shapes, the feasible intervals for B are not known 

in advance. The Generic algorithms are used to find a solution for such workpieces. 

The overall algorithms flow chart is shown in Figure 3.23. These algorithms use the 

sub-algorithms Generic1 and Generic2 shown in Figure 3.24 and 3.25, respectively. 

They first operate in the same manner as Concave, by first setting Bj equal to Bjnorm 

and then, in case of collision, equal to Bj-1. Whether a collision occurs or not at that 

angle, the sub-algorithms Generic2 or Generic1, respectively, are used to find a 

solution. 
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Generic1 first determine if Bj is greater or less than Bjnorm. Based on that 

evaluation and since the current value of Bj is in a feasible interval, the algorithms 

look for the best solution by consistently adding or subtracting ∆B in a manner similar 

to what is done within Concave. 

Generic2 are used when Bj is not in the feasible interval. In this case, the 

feasible interval is not known. The algorithms Generic2 use Bj as a starting value 

stored as Bini. They are able to search in both directions by adding and subtracting ∆B 

while in the range of B achievable on the machine. Since there is only one feasible 

interval, it is not necessary to search in both directions. But the correct search 

direction is not known a priori. However, the correct direction can likely be 

determined by using the trend of the solution achieved at the previous points. At the 

beginning of Generic2, (Bj–1 – Bj–2), the difference between the two previous solutions, 

is evaluated. The search direction is then selected in agreement with the observed 

trend. Therefore, if the difference is positive, the algorithms search the solution by 

consecutively adding ∆B to Bj. If a feasible angle is found the algorithms stop and 

output the solution. If no solution is found, starting over at Bj  = Bini, the second 

search direction, consisting in subtracting ∆B to Bj, is used. If, at the beginning of 

Generic2, (Bj–1 – Bj–2) is negative, the order in which the search directions are used is 

the inverse of the one for a positive difference. The trend can not be established when 

dealing with the first two points of the tool path, in these cases, by default the search 

direction associated to (Bj–1 – Bj–2) ≥ 0 is used. │Bj│ > Bmax is used as the criterion to 

stop the search in a given direction. By selecting the first feasible angle that is 
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encountered, the smoothness of the solution prevails over minimizing │α│ in this 

approach. The sub-algorithms Generic2 rely on a very robust search strategy and can 

find feasible angles for a large range of shapes. And defining the best search strategy 

to use based on the solution’s trend makes for fast algorithms. 

 

The MATLAB functions TPGeomConvex.m, TPGeomConcave.m and 

TPGeomGeneric.m execute the algorithms Convex, Concave and Generic, 

respectively. Appendix 2 contains the code for these functions, as well as for 

ToolPathGeomMaker.m, which is the function called by the UFF software to create 

the tool path geometry. This function creates the inputs needed for 

TPGeomConvex.m, TPGeomConcave.m and TPGeomGeneric.m. It also executes 

them as needed.  

 

3.3 Tool pivot point coordinates 

After establishing the safe Bj along the tool path, ToolPathGeomMaker.m 

completes the tool path geometry by computing the coordinates (yj, zj) of the tool 

pivot point along the tool path. For a given part point (y0j, z0j), and angle Bj, knowing 

the distance, LTool, between the tip of the tool and the pivot point, 

)sin()( jWToolCpj BRLyy −−= ,   (3.45) 

)cos()( jWToolCpj BRLzz −+= ,   (3.46) 

where yCp and zCp are the coordinates of the center of the carrier wheel when 

subjected to the inward displacement δ into the part. These coordinates can be 
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obtained with (y, z) = (0, RW  – δ) in Eq. (3.30), in which RW  – δ must be substituted 

for RW to account for the radius of the wheel after compression. 

The feasibility of the pivot point coordinates computed with Eqs. (3.45) and 

(3.47) is established by verifying that they are in the ranges of linear motions 

achievable on the machine, defined as [ymin, ymax] and [zmin, zmax]. If computed yj or zj 

are out of these ranges, the part cannot be polished on the machine and error code 4 is 

outputted by ToolPathGeomMaker.m. Since the machine is designed to accommodate 

tangent ogives of diameter 150 mm and aspect ratio of 1.5, the machine specifications 

should be appropriate for most conventional workpieces of diameter less than 

150 mm. 

 

3.4 Experimental validation 

The algorithms described in the previous sections have been used to polish the 

concave surface of the hemispherical dome made of PCA provided by Ceranova 

Corporation [4] and shown in Figure 3.26. It has a diameter of 67.5 mm and an edge 

thickness of 3.3 mm. The preferred configuration, for which tool and part normals are 

aligned, is not possible all along the edge-to-edge tool path, because the part is a full 

hemisphere. The algorithms Concave made it geometrically possible to polish that 

surface. Because the part is well within the machine capabilities, the needed tool 

linear motions are within the feasible ranges. Graphical representations of the tool 

path geometry at various points along the half of the tool path corresponding to r 

larger than 0 are shown in Figure 3.27. The tool is represented by the contour of its 
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safety region and therefore, there is more clearance between the actual tool and the 

part than what might be observed in these plots. The outputted Bj values and the 

difference between Bj and Bjnorm are plotted versus y0j in Figures 3.28 and 3.29, 

respectively. The smoothness of the achieved solution and therefore, of the tool 

motion can be observed. The tool and part normals could only be aligned for │y0j│ 

less than 23.6 mm. The Concave algorithms established the best safe B angles for the 

tool path points out of that range. 
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Figure 3.1 Definition of the parameters for the tool path geometry. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 3.2 Feasible tool path with α = 0 on a convex part. 
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Figure 3.3 Unacceptable tool-part collision for a tool path with α = 0 on a concave 
part. 
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Figure 3.4 Front view of UFF Army configuration. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.5 Bottom view of UFF Army configuration. 
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Figure 3.6 Left view of UFF Army configuration. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.7 Right view of UFF Army configuration. 
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Figure 3.8 Front view of UFF Navy configuration. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.9 Bottom view of UFF Navy configuration. 
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Figure 3.10 Left view of UFF Navy configuration. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.11 Right view of UFF Navy configuration. 
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Figure 3.12 Illustration of tool interior region definition. 
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Figure 3.13 Geometry of the tool 2D model 
a) Tool interior region and points and dimensions used for its definition; 

b) Tool safety region and points defining the 2D model. 
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Figure 3.14 Geometry to define 
2Py ′ . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.15 Geometry to define ∆b. 
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Figure 3.16 2D model used to define the tool path geometry. 
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Figure 3.17 Points and regions defining the tool full 2D model. 
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Figure 3.18 Regions and equations used to define the tool interior region. 
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Figure 3.19 Overall flow chart for safe B angles search. 
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Figure 3.20 Flow chart of the Concave algorithms. 
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Figure 3.21 Strategy for adjusting B on concave parts 
a) solution Bj-1 at y0j-1; 

b) tool and part normals aligned at y0j
.; 

c) using solution Bj-1 at y0j; 
d) solution Bj at y0j after increasing B. 
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Figure 3.22 Flow chart of the Convex algorithms. 
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Figure 3.23 Flow chart of the Generic algorithms. 
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Figure 3.24 Flow chart of the Generic1 algorithms. 
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Figure 3.25 Flow chart of the Generic2 algorithms. 
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Figure 3.26 Hemispherical PCA dome [4]. 
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Figure 3.27 Plots of the tool path for the concave surface of a hemisphere of diameter 

67.5 mm. 

  

  

  

Plot of the tool path at y0j = 0 mm Plot of the tool path at y0j = 9.8 mm 

Plot of the tool path at y0j = 18.8 mm Plot of the tool path at y0j = 26.2 mm 

Plot of the tool path at y0j = 31.3 mm Plot of the tool path at y0j = 33.75 mm 

r (mm) r (mm) 

r (mm) r (mm) 

r (mm) r (mm) 



 111 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.28 Plot of the B angles used to polish the concave surface of a hemisphere of 

diameter 67.5 mm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.29 Plot of the difference between the B angles used to polish the concave 
surface of a hemisphere of diameter 67.5 mm and the angle of the local part normal. 
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Chapter 4 Removal function 

Knowledge of the removal function is required to solve the form correction 

problem. In this chapter, the removal function is first defined. The effects of various 

process parameters, as well as the possibility of predicting the removal function for 

some of these parameters using Preston’s equation and Hertz contact mechanics 

theory are examined. A method for achieving a desired removal profile without 

accurate knowledge of the removal function is also introduced. 

 

4.1 Definition 

The removal function, c(x, y, y0), is a topographic map, which represents the 

depth of material removed per unit of time within the tool-part contact patch centered 

at y0. The removal function is the footprint of the tool positioned at y0 along the tool 

path. This footprint is generated by the abrading effect of the tool on the workpiece. 

Due to the nature of the removal process, this removal function is affected by several 

process parameters. Belt and part velocities, part and carrier wheel geometries, carrier 

wheel durometer, part material, abrasive and coolant all can influence the removal 

function. 

The tool footprint can be examined by keeping the rotating tool and a 

stationary part in contact for a prescribed dwell time, td, to generate a removal spot. 

The topography of the induced spot divided by td is named the static removal 

function, cST(x, y, y0). As opposed to c(x, y, y0), which is considered dynamic as it 

occurs while the workpiece rotates, cST can be measured. 
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The computation of the removal matrix, introduced in Chapter 2 for the form 

correction problem, is based on the knowledge of the tool removal function. The goal 

of this work is to evaluate the possibility of predicting the dynamic removal function 

c(x, y, y0) along the tool path. This function is defined by the size of the contact patch 

resulting from the tool-part contact, and the removal distribution within the patch. 

During a typical polishing run the belt velocity remains constant, while the 

consistency of the carrier wheel, part material, abrasive and coolant is maintained. 

Therefore, the removal function should only be affected by geometry of the part and 

its velocity. With UFF, the use of Preston’s equation is suggested to relate removal 

and applied pressure and contact mechanics theory to predict the pressure resulting 

from the tool-part contact. 

 

4.2 Local material removal model 

4.2.1 Preston’s equation 

Applied pressure and removal were related by Preston [1], who proposed in 

1927 that the volumetric material removal rate for grinding or polishing is 

proportional to the rate at which work is done. The work, w, done during the dwell 

time td is defined as 

         w = µF A p vrel td,    (4.1) 

where µF is the coefficient of friction, A the area of contact between the tool and the 

part, p is the interfacial pressure and vrel the velocity of the abrasive relative to the 
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part. To be practical for grinding or polishing, Eq. (4.1) is typically rewritten in the 

following form 

          dh/dtd = CP vrel p,    (4.2) 

where h is the height of material removed and Cp the Preston coefficient. Eq. (4.2) is 

known as Preston’s equation and implies a linear relation between material removal 

rate, dh/dtd and the process parameters vrel and p.  

CP represents the volume removed per unit energy input and therefore 

indicates the efficiency of polishing. It is a process parameter that accounts for the 

effects other than relative velocity and pressure. Thus, it includes the effects on 

material removal, either mechanical or chemical, of the abrasive, coolant, workpiece 

and tool. Work by DeGroote et al. [2] showed that the workpiece near surface layer 

mechanical properties, polishing particle properties and glass composition and 

chemical durability are part of CP for Magnetorheological Finishing. Deriving 

Eq. (4.2) from Eq. (4.1) proves that CP must include µF. In the case of UFF, CP is 

expected to be a function of the abrasive, coolant, workpiece material, carrier wheel 

geometry and durometer and therefore, it is expected to be constant for a polishing 

run. For that reason, it is not necessary in this study to know the terms forming CP, 

instead only its value is of interest.  

 

4.2.2 Generalized form of Preston’s equation 

Preston’s equation is widely accepted in the optical fabrication community. In 

particular, this equation has been used for removal prediction with various contact 
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deterministic polishers [3-10]. However, it does not perfectly model all processes. 

This is especially reported for wafer polishing or chemical mechanical planarization 

(CMP). For such processes, the following generalized form of Preston’s equation is 

used [11, 12] 

     21/ nn

relGPd pvCdtdh = ,   (4.3) 

where n1 and n2 are fitted parameters and CGP is a generalized Preston coefficient 

playing the same role as CP in Preston’s equation. Table 4.1 summarizes three models 

established for different CMP processes. They exhibit n1 and n2 values less than or 

equal to 1. 

 

Model n1 n2 Reference 

21/ nn

relGPd pvCdtdh =  1/2 5/6 [13] 

21/ nn

relGPd pvCdtdh =  1/2 1/2 [14] 

21/ nn

relGPd pvCdtdh =  1 2/3 [15] 

Table 4.1 Three removal models for CMP. 

 

 

4.2.3 Model for UFF 

To express the removal function of UFF, the pointwise relation of Eq. (4.3) 

can be extended to the whole contact patch to obtain 

21 ),,(),,(),,( 000
nn

relGP yyxpyyxvCyyxc = .   (4.4) 

(x, y, z) is the coordinate system defined in Chapter 1. Once n1 and n2 are known, Eq. 

(4.4) expresses the removal function in terms of relative velocity between the 
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abrasive and the part and interfacial pressure distribution. As for CMP, n1 and n2 can 

be fitted so that Eq. (4.4) matches experimental data. However, the removal function 

and interfacial pressure distribution cannot be measured during the process. On the 

other hand, the static removal function can be measured by making a removal spot. 

Since, for a removal spot, vrel = vband and p and CGP can be assumed to be constant 

with respect to td, the generalized Preston’s equation implies 

        d
nn

bandGP tyyxpvCyyxh 21 ),,(),,( 00 = .  (4.5) 

If that relation is now integrated with respect to x and y over the removal spot 

centered at y0, 

        ∫∫∫∫ =
spot

nn

banddGP

spot

dxdyyyxpvtCdxdyyyxh 21 ),,(),,( 00 , (4.6) 

The right hand side of Eq. (4.6) is equal to the volume, V, of the removal spot. The 

integral on the left hand side of Eq. (4.6) is equal to the normal force applied by the 

tool on the part, F, if n2 = 1 as for Preston’s equation. In the case n2 = 1, 

              FvtCV
n

banddGP
1= .    (4.7) 

Eq. (4.7) indicates that if n2 = 1 and CGP as well as two of the factors of the product 

Fvt
n

bandd
1  are kept constant, the volume of the removal spot is proportional to the 

third factor of the product. In the case of Preston’s equation, V is proportional to td, 

vband and F. If n2 is different from 1, F must be replaced in Eq. (4.7) by the integral of 

Eq. (4.6) that involves p. 
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The relationship between td, vband, F and V was examined for UFF. For that 

purpose, series of removal spots were made so that only one parameter would be 

changed at a time. These experiments are part of a larger series of experiments 

described in further details in section 4.3.5.2.1. All the removal spots considered in 

this chapter, unless specified otherwise, were made in the preferred configuration, 

defined in Chapter 3, such that the tool and part normals are aligned or α = 0. 

Different parts, carrier wheel and abrasive were used for each series. However, CGP 

was kept constant by making all the removal spots for each series on the same part, 

with the same abrasive, carrier wheel and coolant. Furthermore, all the parts were 

made of BK7, which is a relatively inexpensive borosilicate glass having good 

mechanical properties. The removal spots were measured with the onboard STIL 

optical pen [16] allowing for evaluation of V. The principle of the pen and the model 

used are reported in Chapter 1. F was measured with the Tekscan system [17]. This 

system uses a thin and flexible tactile force sensor. An electrically conductive 

material is arranged in rows and columns to form a matrix-based sensor shown in 

Figure 4.1. The rows and columns are separated by a material that varies its electrical 

resistance with applied force, making each intersection a force sensor [18]. Measuring 

the change in resistance of the individual force sensors, the magnitude and location of 

the forces on the surface are determined. Knowing the area covered by an activated 

force sensor, the measurements can be displayed as pressure distributions. The 

geometry of the sensor is represented in Figure 4.2. The matrix is described by its 

width (MW) and height (MH). The spacing of the force sensors is given by the row 
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(RS) and column (CS) spacing. The sensor model number 5051 was used for this 

study. It is 0.1 mm thick and such that CS = RS = 1.27 mm, MH = MW = 56 mm 

resulting in a matrix of 1936 force sensors [19]. Therefore, the spatial resolution of 

this system is 1.27 mm. The primary purpose of the Tekscan system is measurement 

of pressure distributions, but because of its limited spatial resolution it provides few 

data within the UFF removal spots, which are typically about 5 mm wide. For this 

study, a sensor with a pressure range of 350 psi was selected and placed between the 

compressed static tool and part to measure F prior to making the removal spot. 

An initial experiment consisting in making two removal spots at compressions 

of 0.05, 01, 0.15 and 0.2 mm with a 70 durometer wheel and a plano part was 

performed. A variation of less than 6 % between the volumes of the spots made under 

the same conditions showed the consistency and repeatability of the removal spots. 

The linear relation between td and V is reported in Chapter 2 and is shown in 

Figure 2.4, with R2 larger than 0.99. It was established by making removal spots with 

dwell times, td, of 2, 5, 10, 15 and 30 s. 

The relationship between V and F was investigated with the removal spots 

made with compressions, δ, of 0.05, 0.1, 0.15 and 0.2 mm during the initial 

experiment. These spots were made with a 70 durometer wheel for which δ  = 0.2 mm 

is a typical value. The measured loads and volumes are plotted in Figure 4.3, showing 

a good linear relation since R2 is larger than 0.99. This fit indicates that for UFF, 

n2 = 1 in Eq. (4.5). 
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Removal spots have been made with band velocities, vband, incremented by 

0.25 m/s and ranging between 0.25 and 1.5 m/s. Typically for polishing vband = 1 m/s. 

V is plotted versus vband in Figure 4.4. A fairly good linear fit with R2 larger than 0.95 

is observed. However, a power fit performed with SigmaPlot [20] and shown in 

Figure 4.5 reveals that a linear function of vband
0.788 is nearly a perfect fit to the data, 

since R2 = 0.998. SigmaPlot also established that the standard error on n1 is 0.02. 

Therefore, it can be concluded that n1 is approximately equal to 4/5 for UFF. 

 

The fitted experimental data suggest that for UFF, n1 and n2 must be set equal 

to 4/5 and 1, respectively. Therefore, the generalized Preston coefficient can be 

estimated from Eq. (4.7) as 

Fvt

V
C

bandd

GP 5/4
= .    (4.8) 

Removal spots have been made and the associated load measured for carrier wheels 

of durometer 50 and 70 on flats. The 70 durometer wheel was also used to make 

removal spots on spherical parts. Three convex and two concave workpieces of radii 

of curvature, ROC, of -50, -100, -150 and 100, 150 mm, respectively, were used. The 

process parameters, measurements of F and V and the corresponding CGP calculated 

according to Eq. (4.8) are reported in Table 4.2. In that table, the convex parts are 

denoted with a negative radius of curvature and the units of CGP are m2.2/(s0.2 N). The 

initial repeatability experiment also revealed good repeatability of CGP since 
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variations of less than 6 % were observed when evaluated for the same process 

conditions. 

 

Durometer 50 70 70 70 70 70 70 
δδδδ (mm) 0.3 0.2 0.2 0.2 0.2 0.2 0.2 

ROC (mm) ∞ ∞ -150 -100 -50 150 100 
td (s) 10 10 10 10 10 10 10 

vband (m/s) 1 1 1 1 1 1 1 
F (N) 11.2 18.1 18.2 15.3 14.2 20.7 19.2 

V (mm
3
) 0.10 0.18 0.14 0.11 0.14 0.25 0.33 

CGP 8.6E-13 9.7E-13 7.8E-13 7.2E-13 9.5E-13 1.2E-12 1.7E-12 
Table 4.2 Removal spots parameters and corresponding values of CGP. 

 

It is interesting to note that since vband is equal to 1 m/s, the values of CGP 

reported in Table 4.2 are the same as the one that would be obtained for these same 

removal spots with Preston’s model. CP has the units of Pa-1 and values reported in 

the literature are of the order of 10-13 Pa-1 [21-24]. UFF exhibits values close to one 

order of magnitude larger. This indicates that UFF is a relatively aggressive process, 

which is actually an advantage for polishing workpieces made of tough materials such 

as PCA and ALON. Table 4.2 indicates that, in the same conditions, CGP is larger for 

harder carrier wheels, meaning that with harder wheel the removal process is 

somewhat more efficient. From Table 4.2, it can also be concluded that CGP is a 

function of the part radius of curvature. This result was also observed by Yang et al. 

[9]. CGP appears to increase as the tool-part contact becomes more conformal, 

indicating an increased polishing efficiency. 
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Based on experimental observations, the removal function of UFF can be 

defined with the following expression 

),,(),,(),,( 0
5/4

00 yyxpyyxvCyyxc relGP= ,  (4.9) 

where CGP varies as a function of the part local radii of curvature. The dependence of 

CGP on the part geometry could be established by fitting the variations of CGP for 

additional experimental data. This approach is used by Yang et al. [9], who actually 

relate Preston coefficient to an equivalent radius that include both tool and part 

geometries. This equivalent radius will be defined in the following section on contact 

mechanics. 

The removal function as defined by Eq. (4.9) involves vrel(x, y, y0). This 

quantity is computed by examining the various motions occurring during polishing. 

The part and band are rotated while the tool traverses the part. The band and tool 

crossfeed velocities are of the order of 1 m/s and 1 mm/s, respectively. Therefore, the 

contribution of vc in vrel is negligible and effectively neglected. The part is typically 

rotated at constant rotational speeds on the order of 100 rpm resulting in non 

negligible part velocities. Therefore, vrel is defined as the length of the difference 

between the vectors representing the part and band velocities, 

       ),,(),,(),,(),,( 0000 yyxvyyxvyyxvyyxv partbandrelrel −== , (4.10) 

with 

       )(),,( 0
22

0 yyxyyxv Wpart Ω+= .  (4.11) 
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ΩW can vary as a function of y0, even though it has been kept constant in this work. In 

particular, by having ΩW inversely proportional to y0, vrel would be nearly constant. 

vband is assumed to be tangent to the workpiece within the contact patch and has no x 

component since the tool is moved across the part along y while the carrier wheel is 

rotated about the x axis. The carrier wheel rotation is in the negative x direction as the 

tool is moved in the positive y direction, therefore 
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where ),,( 0yyxγ  is the angle between the y axis and the tangent to the part at (x, y). 

),,( 0yyxγ  is estimated with a forward difference as follows 
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where ∆y is a small increment in y and zPart(r) is the profile of the workpiece. Figure 

4.6 illustrates the definition of vrel for a flat. 

 In addition to CGP and vrel, the interfacial pressure distribution, p(x, y, y0) is 

needed to evaluate c(x, y, y0) according to Eq. (4.9). Estimating that interfacial 

pressure distribution is a contact mechanics problem, which might be solved with 

contact mechanics theory such as Hertz theory presented in section 4.3. p(x, y, y0), by 

defining the extent of the contact patch, defines the extent of the removal function as 

a function of the part radii of curvature. It can also be noted that Eq. (4.5), with 

n1 = 4/5 and n2 = 1, can be rewritten as 
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Therefore, the generalized Preston’s equation implies that the topography of a 

removal spot, hspot(x, y, y0), is an image of the pressure distribution that induced that 

removal spot. That pressure distribution can therefore be evaluated with Eq. (4.14). 

Flats and spheres are particular in the sense that the part radii of curvature are 

constant at any point of their surfaces. With these geometries, by keeping δ constant 

with α = 0, F is maintained constant while polishing, away from the edges. Under this 

condition, p(x, y, y0) is constant along the tool path. Eqs. (4.9) and (4.14) can then be 

combined to express the removal function at any y0 in terms of the removal spot 

topography 
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where the static removal function is defined as 
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and is not a function of y0 on plano and spherical parts. 

The effect of α, the angle between the tool and local part normals, is 

investigated in section 4.4.1 and the prediction of interfacial pressure distributions is 

considered in the following section. 
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4.3 Hertz contact mechanics theory  

Hertz contact mechanics theory [25] deals with the contact of stationary 

elastic solids. This theory was developed by Heinrich Hertz in 1882 and is reported in 

contemporary English by Johnson [26] and Maugis [27]. 

 

4.3.1 Surfaces of the bodies in contact 

Hertz theory considers two elastic solids in contact. For this purpose, the 

origin of a rectangular coordinate system (xH, yH, zH), in which the xH-yH plane is the 

common tangent plane to the bodies in contact, is taken as their first point of contact. 

Near this point, the surfaces in contact are assumed to be described by an equation of 

the following form, 
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where zH is parallel to the normal to the surface at the origin. Rx and Ry are the 

principal radii of curvatures in the xH-zH and yH-zH planes, respectively. These 

principal radii of curvature are the maximum and minimum values of the radius of 

curvature of all the surface profiles in planes perpendicular to the xH-yH plane and 

including the origin of (xH, yH, zH). The two principal radii of curvature of a surface 

are in principal directions perpendicular to one another. Eq. (4.17) is the equation of 

an elliptic paraboloid. Such a surface is represented in Figure 4.7. 

In the general contact problem, the surfaces of the two bodies in contact are 

described with equations that are not necessarily expressed in the same Cartesian 
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coordinate system (xH, yH, zH). Instead two distinct coordinate systems are used. They 

have the same zH axis and are rotated with respect to this axis so that the two bodies’ 

principal radii of curvature lie in the planes defined by their respective xH-zH and yH-

zH planes. However, for the tool-part contact problem of UFF, the same coordinate 

system can be used to describe the two contacting bodies in the form of Eq. (4.17). 

 

In the case of UFF, the tool is brought into contact with axisymmetric 

workpieces. The surface of these parts, zPart, is described as a function of the radial 

distance, r, to its axis of symmetry. zPart(r) can have the form of Eqs. (1.1) and (1.2) 

for aspheres or ogives, respectively. In the coordinate system (x, y, z), introduced in 

Chapter 1, as the tool is moved along the y axis, the center of the removal function is 

defined as (0, y0, z0 = zPart(y0)). Since (0, y0, z0) is the center of the tool-part contact 

patch, it is the first point of contact as defined in Hertz theory to describe two 

contacting surfaces. Therefore, (0, y0, z0) is set as the origin of the coordinates system 

used to describe locally the contacting part and tool surfaces.  

The coordinate system (xT, yT, zT) is attached to the tool. zT is oriented along 

the normal to the part surface and positively into the tool. Since the tool is moved 

along y with the axis of the carrier wheel perpendicular to the y-z plane, as illustrated 

in Figure 4.8, that plane is a plane of symmetry of the tool. This plane is also a plane 

of symmetry for the part. These properties imply that one of the principal radii of 

curvature of both the tool and part surfaces at (0, y0, z0) lie in the y-z plane [26]. 

Therefore, yT is chosen so that the yT-zT and y-z planes are equal and xT = x. 



 126 

Furthermore, the part and tool second principal radii of curvature lie in the plane xT-

zT, where xT-yT is the plane tangent to both surfaces prior to compression along the 

part normal. The principal radii of curvature of the tool and part in the planes xT-zT 

and yT-zT are denoted as RTx, RPx and RTy, RPy, respectively. 

RPy is defined as the local radius of curvature of zPart(r) at y0. RPx is the radius 

of curvature at x = 0 of the curve fP(x), which is the intersection of the part surface 

and the plane xT-zT, as shown in Figure 4.9. The computations of RPy and RPx are 

addressed in Appendix 1.3. The sign convention used with UFF is also described in 

that appendix. The principal radii of curvature are denoted as positive and negative if 

the part surface is concave and convex, respectively. 

The carrier wheel is first manufactured as a section of a cylinder. Its final 

shape is achieved by grinding the cylinder’s periphery. This operation is performed to 

achieve prescribed values for the wheel diameter and the radius of curvature on the 

wheel’s periphery. The geometry of the carrier wheel is illustrated in Figure 4.10. The 

coordinate system (xW, yW, zW) has for origin the center of the wheel and yW-zW is the 

plane of symmetry of the wheel orthogonal to its axis of rotation. The wheel 

geometry is defined by the radii of curvature, R1 and R2. R1 is half the wheel diameter 

measured in the yW-zW plane. R2 is the radius of curvature generated on the wheel’s 

periphery in the xW-zW plane. Various values of R1 and R2 can be achieved by grinding 

the wheel periphery. After applying the polishing band on the wheel, RTy and RTx, are 

of the order of but different from R1 and R2, respectively. RTx and RTy, illustrated in 

Figure 4.11, can be evaluated by measuring the tool profiles in the xT-zT and yT-zT 
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planes, respectively, with a Mida laser probe [28] from Marposs [29]. The radii of 

curvature are the radii of the circle fitted to the measured tool profiles in the contact 

region. RTx and RTy are expected to vary as a function of α, the angle between tool and 

part normals defined in Chapter 3. Because, as α varies, the wrapping of the polishing 

band might change on the portions of the tool brought in contact with the part. The 

determination of RTx is also affected by anticlastic curvature [30]. This phenomenon 

consists in the formation on the polishing band of a curvature transverse to the band 

circumferential direction as the band is wrapped onto the carrier wheel. This effect is 

illustrated in Figure 4.12, which shows the profile of the tool measured in the plane 

xT-zT and a representation of the carrier wheel showing the separation between the 

two due to anticlastic curvature. One negative consequence of this curvature is that 

the band edges could contact the part and create removal artifacts. 

The tool and part geometrical properties result in the radii of curvature of both 

the part and tool lying in the same planes. Therefore, the surfaces of the tool, ZT, and 

the part, ZP, near the point of first contact are described by the following equations,  
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corresponding to the tool-part contact being modeled as shown in Figure 4.13. 

 

Hertz theory states that if the tool is compressed against the part with a 

displacement δ and a corresponding force F, the contact region will be an ellipse of 
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semi-major axis, a and semi-minor axis, b shown in Figure 4.14. In order to fully 

characterize the contact problem, a and b must be predicted as well as the pressure 

distribution within the patch. Hertz theory provides these results under the 

assumptions that the two surfaces in contact are continuous, smooth, frictionless and 

non-conforming (dissimilar profiles); that the strains must be small and that the two 

solids can be considered as elastic half-spaces [26]. 

 

4.3.2 Pressure distribution 

The pressure distribution is given by the following equation [26] 
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where 
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Lx and Ly are the half lengths of the patch in the xT and yT directions, respectively and 

are equal to a or b. Such a pressure distribution is represented in Figure 4.15, under 

the assumption that Lx = a and Ly = b. The pressure varies smoothly from zero at the 

edge of the patch to its maximum p0 at the center. 

 

Combining the generalized Preston’s equation derived for UFF and Hertz 

contact mechanics theory, Eqs. (4.9) and (4.20) imply that the removal function can
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be described by an equation of the form 
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4.3.3 Size of the contact patch and load-displacement relation 

The principal relative radii of curvature, xR′ and yR′ are defined as 
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and                
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The minus signs used in the definition of xR′ and yR′ are due to the sign convention 

associated with the part radii of curvature. 

Assuming that Lx = a and Ly = b, the ratios a/b and '' / yx RR are then related by 

[26] 
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where E(e) and K(e) are complete elliptic integrals of argument e = (1–b2/a2)1/2, with 

b < a. The relation between 2/1)/)(/( yx RRab ′′  and 2/1)/( yx RR ′′  is plotted in Figure 

4.16. 
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In addition, the product ab is given by [26] 
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where F is the total load, F1 is a function of e represented in Figure 4.16, Re and E* 

are the equivalent radius and plane strain elastic modulus, respectively and are 

defined by 

2/1)( yxe RRR ′′= ,    (4.27) 
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where EP, ET and �P, �T are the Young’s moduli and Poisson’s ratios of the part and 

tool. p0 can be rewritten by combining Eqs. (4.21) and (4.26). The resulting 

expression includes (F1(e))-2 which is named F3 and plotted as a function of 

2/1)/( yx RR ′′  in Figure 4.16.  

 

Load and displacement are related by the following expression 
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where F2(e) is plotted in Figure 4.16. Eq. (4.29) implies a linear relation between δ 

and F2/3. 
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4.3.4 Some simplifications and procedure to predict interfacial pressures and 

contact patch dimensions in the case of UFF 

Three specific cases are relevant to the contact problem of UFF with optics. 

First, a flat part has infinite principal radii of curvature, thus the principal relative 

radii of curvature are equal to the tool’s principal radii of curvature. Second, a 

spherical part of radius R implies that wherever the contact occurs on the part, the 

part’s principal radii of curvature are equal to ±R. Third, if the part is assumed to be 

rigid (EP = ∞), the equivalent plane strain elastic modulus is the plane strain elastic 

modulus of the tool. This is also true if the Young’s modulus of the part is much 

larger than the one of the tool. This is typically the case, since the carrier wheel is 

made of rubberlike material. These assumptions and simplifications are summarized 

in Table. 1. 

 

For the present contact problem, the principal radii of curvature of the part and 

tool can be used to evaluate a/b according to Eq. (4.25) or the associated plot of 

Figure 4.16. Since the tool is a composite body consisting of the carrier wheel (which 

is a composite body by itself) and the polishing band, but is assumed to be one elastic 

body for this approach, its Young’s modulus and Poisson’s ratio are not known. 

Equivalent values for this body are determined by measuring a load displacement 

curve which is curve fitted with Eq. (4.29) by adjusting the material properties of the 

tool. Knowledge of E*, Re and the measurement of F permits then the evaluation of ab 
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and p0 via Eqs. (4.26) and (4.21). Values of ab and a/b imply a and b. a, b and p0 

provide the interfacial pressure distribution and dimensions of the contact patch. 

 

Assumption Simplification 

Flat part 
Txx RR =′ and Tyy RR =′  

Spherical part of radius R RRR PyPx ±==  

Rigid part OR EP >> ET )1/( 2*
TTEE υ−=  

Table 4.3 Simplifications for the contact of the part and tool. 
 

 

4.3.5 Experimental results 

4.3.5.1 Preliminary results 

A Redlake [31] MotionPro high speed camera was available for preliminary 

experiments. It was used at a rate of 400 frames per second to observe the consistency 

of the contact patch when the tool is rotating, as well as the effect of the tool rpm, �T, 

on the size and shape of this patch. For these purposes, the camera was placed behind 

a transparent material against which the tool was compressed. 

The consistency of the contact patch during the rotation of the tool is of 

particular interest because it is a key factor in making the UFF process deterministic. 

The high speed camera revealed the inconsistency of the first version of the UFF 

carrier wheel, which was similar to a wheel with a tubeless tire. A bladder inflated to 

a desired pressure with air acted as the tire. Frames taken with this camera and shown 

in Figure 4.17 showed that the size of the patch was varying by about 30% during one 

rotation of the tool. This inconsistency was linked to variations in the bladder 
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thickness that could not be reduced. On the other hand, the high speed camera frames 

shown in Figure 4.18 were obtained with a previous version of UFF using the same 

carrier wheel as the current version. These frames show that the size of the contact 

patch varies by less than 7% during one rotation of the wheel. Therefore, the 

consistency of the contact patch has been greatly improved as needed for 

deterministic processing. 

The high speed camera was also used on an early version of the tool to 

investigate the influence of the tool rotational velocity �T on the size and shape of the 

contact patch. The carrier wheel was rotated at �T = 0, 50 and 500 rpm, to record the 

frames shown in Figure 4.19. The tool is rotating from the right to the left. The edges 

of the abrasive band can be seen on the top and bottom of each picture. A mark was 

initially placed on the band in order to compare the contact patch with the tool at the 

same location. This mark is visible close to the edge of the band on the top of each 

picture. Due to the high rotational velocity, it is particularly elongated at 500 rpm. 

These frames show no noticeable change between the different patches. This result 

supports the use of Hertz theory that deals with contact between stationary bodies. 

 

The similarity between removal spot topography and interfacial pressure 

distribution suggested by Eq. (4.14) was observed with a previous version of UFF 

using larger, softer carrier wheels. This configuration produced contact patches large 

enough to generate a large enough number of data points with the Tekscan system. 

The pressure distribution measured with the Tekscan system for the tool pressed with 
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δ = 1 mm into a flat BK7 sample is shown in Figure 4.20. Figure 4.21, is the STIL 

measurement of a removal spot made with a cerium oxide bound abrasive band and 

the same tool subjected to the same δ and on a flat BK7 sample with td = 60 s and 

vband = 1 m/s. After estimating CGP to be equal to 7�10-13 m2.2/(s0.2 N) using Eq. (4.8) 

and converting depths into pressures according to Eq. (4.14), R2 was estimated to be 

0.84 between these two sets of data. This correlation shows the validity of Eq. (4.14). 

 

4.3.5.2 Applicability of Hertz contact mechanics theory to UFF 

4.3.5.2.1 Removal spots making experiment 

Experiments consisting in measuring load displacement curves and making 

removal spots with bound cerium oxide abrasive on BK7 planar and spherical parts 

have been carried out with various carrier wheels. The experiments performed on 

spherical parts are the ones used in section 4.2.3 to establish the effect of the part 

radius of curvature on CGP. 

The durometer and geometries of the three carrier wheels that were used are 

summarized in Table 4.4. One has a durometer of 50, while the two others are harder 

with a durometer of 70. RTx was not evaluated from a profile measured with the 

onboard laser probe, because the region to fit was unclear in part because of a low 

number of measured points. Instead RTx was evaluated using the removal spots 

dimensions and Eq. (4.25). For these experiments, the removal spots were nearly 

circular in shape and therefore Lx/Ly was nearly equal to 1. Eq. (4.25) can be 

simplified to give [26] 
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Eq. (4.30) was used with the removal spots made on flats to evaluate RTx. 

Eleven removal spots were made with α = 0, vband  = 1 m/s and td  = 10 s. The 

other process parameters, which were varied, are summarized in Table 4.5. The 

variations were intended to study the predictability of the removal function as the part 

radii of curvature and tool compression change. The removal spots are shown in 

Figure 4.22, their size, volume and maximum depth, hmax, are summarized in Table 

4.6, which also indicates the figures corresponding to each removal spot. 

 

Name 50 70_1 70_2 

Durometer 50 70 70 

RTx (mm) 25 23 22 

RTy (mm) 19 22 21 

Table 4.4 Carrier wheels durometer and tool geometry. 

 

 

Spot # 1 2 3 4 5 6 7 8 9 10 11 

Wheel 50 70_1 70_1 70_1 70_1 70_2 70_2 70_2 70_2 70_2 70_2 

δδδδ (mm) 0.3 0.2 0.15 0.1 0.05 0.2 0.2 0.2 0.2 0.2 0.2 

ROC (mm) ∞ ∞ ∞ ∞ ∞ ∞ -150 -100 -50 150 100 

Table 4.5 Process parameters used to make the removal spots. 
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Spot # 1 2 3 4 5 6 7 8 9 10 11 

F (N) 11.2 16.8 10.9 5.9 2.1 18.1 18.2 15.3 14.2 20.7 19.2 

2Lx (mm) 5.50 4.60 3.80 3.00 2.25 4.50 4.30 3.60 3.80 6.00 6.05 

2Ly (mm) 4.55 4.25 3.60 3.00 2.25 4.30 4.00 3.45 3.60 5.20 5.55 

V (mm3) 0.10 0.17 0.10 0.05 0.02 0.18 0.14 0.11 0.14 0.25 0.33 

hmax (µµµµm) 8.8 17.6 14.8 11.4 9.5 19.5 18.0 19.0 21.3 20.3 23.5 

Figure 4.22 1) 2) 2) 4) 5) 6) 7) 8) 9) 10) 11) 

Table 4.6 Properties of the removal spots. 

 

 

4.3.5.2.2 Load displacement relationship 

Load displacement curves were measured by using the Tekscan system as a 

load cell while the tool was compressed at a constant feed rate of 6 mm/min against a 

BK7 part. The abrasive band was placed on the tool. Five measurements were 

performed at the same carrier wheel position, which was marked, before making the 

removal spots number 1, 2, 6, 7, 8, 9, 10 and 11 of Table 4.5. The measured data were 

curve fitted with a linear relation between F and δ3/2, of the form 

2/3*δβ=F ,     (4.31) 

where β  is the fitting parameter. The data were fitted over compressions no larger 

than 0.3 mm and 0.2 mm, for the carrier wheels of durometers 50 and 70, 

respectively. The fitted ranges include the compressions which are typically used with 

these wheels. A typical result obtained in the conditions used to make removal spot 

number 6 is shown in Figure 4.23. As for that example R2 is greater than 0.99 in all 

cases, showing a very good fit, consistent with Eq. (4.29) of Hertz theory. The 
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average and standard deviations of the β coefficients used to fit the curves measured 

in the different cases are reported in Table 4.7. 

According to Eq. (4.29) 
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Therefore, using Eq. (4.28), the plane strain modulus of the tool is given by 

P

PeT

T

EeF

R

E
2

2/3
2

2/12
1

)(
1

9
16

1
1 υ

β
υ −−








=

−
.  (4.33) 

BK7 has a Young’s modulus, EP, of 81 GPa and a Poisson’s ratio, υP, of 

0.208. Using these values the tool plane strain modulus was evaluated and reported in 

Table 4.7. The tool Young’s modulus, assuming a Poisson’s ratio of 0.5 typically 

associated with rubberlike materials, is also indicated in that table. 

Low Young’s moduli, consistent with rubberlike materials, are obtained. As 

expected, the plane strain elastic modulus is a strong function of the carrier wheel 

durometer. The plane strain modulus obtained with 50 and 70 durometer carrier 

wheels vary by a factor of almost 3. This variation illustrates the change in stiffness 

of the tool with these wheels. The plane strain modulus computed for the two 70 

durometer wheels in the same conditions on flat shows a variation of less than 9 % 

revealing consistency between carrier wheels. The plane strain elastic modulus of the 

tool should not vary when measured with various part geometries. The results 

obtained with the spherical part and the plano part in the case of the wheel 70_2 

reveal a decent consistency with a difference of 15 % between the largest and lowest 
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calculated values. These results indicate that the UFF load displacement curve could 

be modeled with Eq. (4.29). 

 

Wheel 50 70_1 70_2 70_2 70_2 70_2 70_2 70_2 

ROC (mm) ∞ ∞ ∞ -150 -100 -50 150 100 

β (N/mm
3/2

) 68 188 202 203 171 159 231 215 

σ (N/mm
3/2

) 2 11 5 3 1 1 2 2 

21 T

TE

υ−
 (MPa) 

 

11 
 

30 
 

32 
 

35 
 

30 
 

31 
 

34 
 

30 

ET (MPa) with 

υT = 0.5 

 

8.2 
 

22 
 

24 
 

26 
 

23 
 

23 
 

26 
 

23 

Table 4.7 Coefficient used to fit the load displacement curves and resulting tool 

mechanical properties. 

 

 

4.3.5.2.3 Pressure distribution 

Eq. (4.14) relates the topography of the removal spot and the tool-part 

interfacial pressure distribution. Using the pressure distribution from Hertz theory, 

given by Eq. (4.20), the removal spot topography is expected to be of the form 
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where the maximum depth h0 is given by 

0
5/4

0 ptvCh dbandGP= .    (4.35) 

The correlation between the topography of the removal spots shown in Figure 4.22 

and the topography subjected by Eq. (4.34) was evaluated by fitting that equation to 
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the experimental data. The fitting operation consists in adjusting h0, Lx and Ly to 

maximize R2. The values of these coefficients are reported in Table 4.8 for the eleven 

removal spots of Figure 4.22. 

The low value of R2 shows that the removal spot obtained with the 50 

durometer carrier wheel can not be described with Eq. (4.34). This spot exhibits a 

large central region of nearly uniform removal with shallow peaks toward its edges, 

unlike the pattern predicted from Hertz theory, which is illustrated in Figure 4.15. On 

the other hand the harder 70 durometer wheels produce removal spots that can be 

fairly well described with Eq. (4.34) on both plano and spherical parts. R2 is typically 

greater than 0.75, the main source of discrepancy being the region with the highest 

removal occurring slightly off-center. When for some reason, which is not well 

understood, that region appears to be at the center of the removal spot, as in the case 

of the spots number 4 and 5, R2 is approximately equal to 0.9. Furthermore, the 

values of h0, Lx and Ly producing these results are found to be within 8 % of the actual 

removal spots characteristics reported in Table 4.6. The fitted and actual maximum 

depths are within 1 µm. The fitted and actual removal spot dimensions are typically 

within 0.2 mm. These results show that the removal spots made with harder wheels 

can be fairly well described with Eq. (4.34) and the Hertz equations. These removal 

spots can be qualified as Hertzian, as their pattern follows the pattern of the pressure 

distribution suggested by Hertz theory. However, removal spots made with softer 

wheels are not Hertzian and cannot be properly predicted with Hertz theory. This was 

expected as the assumption for Hertz theory that the strains must be small is most 
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likely violated with these softer wheels. These results indicate that the removal 

function generated by a hard carrier wheel could be modeled with Eq. (4.22). 

 

Spot # 1 2 3 4 5 6 7 8 9 10 11 

h0 (µµµµm) 7.2 18.2 15.2 11.8 9.8 20.5 18.9 19.6 22.3 19.7 23.0 

2Lx (mm) 6.64 4.51 3.84 3.02 2.19 4.35 4.09 3.61 3.70 5.21 5.57 

2Ly (mm) 7.08 4.28 3.60 2.80 2.09 4.36 4.06 3.38 3.50 5.37 5.66 

R
2 0.14 0.80 0.84 0.90 0.88 0.71 0.75 0.74 0.86 0.71 0.79 

Table 4.8. Results of fitting Eq. (4.34) to the different removal spots. 

 

 

4.3.5.2.4 Removal function size and amplitude 

 The theoretical spot size can be calculated with Eqs. (4.25) and (4.26). h0 can 

be estimated with Eqs. (4.35) and (4.21). The resulting theoretical values for the 

removal spots 2 through 11, for which δ and ROC are varied are reported in Table 

4.9. 

 

Spot # 2 3 4 5 6 7 8 9 10 11 

Wheel 70_1 70_1 70_1 70_1 70_2 70_2 70_2 70_2 70_2 70_2 

δδδδ (mm) 0.2 0.15 0.1 0.05 0.2 0.2 0.2 0.2 0.2 0.2 

ROC (mm) ∞ ∞ ∞ ∞ ∞ -150 -100 -50 150 100 
h0 (µµµµm) 17.0 14.7 12.0 8.5 19.7 14.1 15.0 21.7 24.1 28.9 

2Lx (mm) 4.28 3.71 3.03 2.14 4.25 3.96 3.84 3.53 4.60 4.82 

2Ly (mm) 4.13 3.58 2.92 2.06 4.00 3.76 3.66 3.38 4.30 4.47 

Table 4.9 Theoretical size and depth of the removal spots. 
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Hertz theory predicts fairly well the size of the removal spot for plano and 

convex spheres, as the theoretical dimensions are within 10 % of the measured 

values. The amplitude is similarly well predicted on flats and as a function of δ. 

However, the predicted amplitude of the removal spots on spherical parts differs from 

the actual value by more than 20 %. A 20 % error is also obtained for the size of the 

removal spots on concave parts. These discrepancies can be interpreted as a violation 

of the assumption of Hertz theory that the bodies in contact must be non-conforming. 

When the tool is pressed against a concave surface, a conformal contact problem 

arises, which requires a different approach that is not considered in this thesis. 

In summary, Hertz theory and a generalized form of Preston’s equation can 

predict with some accuracy the removal function in the case of hard carrier wheels 

and convex surfaces as a function of the part radii of curvature and tool compression. 

However, this method does not predict the removal function for softer wheels covered 

with an abrasive belt and convex surfaces. 

 

4.4 Alternative to the prediction of the removal function 

Even though Hertz contact mechanics theory can provide a good 

approximation of the removal function in some cases, it does not offer the needed 

accuracy for the form correction problem. The need for accurately predicting the 

removal function can be alleviated with a method that corrects the removal 

matrix, RM , to achieve convergence between predicted and actual removal profiles. 

This method is particularly intended for removal function variations due to changes in 
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part radii of curvature. The method is typically not used for plano and spherical parts, 

because their radii of curvature are constant. 

This method consists in first computing RM with a removal function that does 

not vary as a function of the part radii of curvature. This removal function is defined 

using a removal spot according to Eqs. (4.15) and (4.16). That removal spot is 

typically made on a part made of the same material as the part to polish and of similar 

geometry. A tool path is computed with that initial RM . The part is polished and the 

actual removal profile measured. RM  is then corrected by multiplying each of its 

lines by a scaling factor such that the predicted and actual removal profiles match. 

The scaling factor for a given line of RM  is the ratio of the actual and predicted 

depth of removal at the part point where the depth of removal is predicted by that 

line. The corrected RM can then be used within the form algorithms to output tool 

paths capable of the desired form correction. This method does not produce a perfect 

RM , because it does not correct each removal function. Instead, this correction 

method makes the removal matrix globally correct for some range of material 

removal and form correction while the process parameters are unchanged. 

This method has been used to polish aspheres with drastic changes in radii of 

curvature. A form error of less than 0.5 µm PV was achieve on the asphere of 

diameter 40 mm, defined by Eq. (1.1) with the coefficients reported in Table 4.10. A 

plot of the part profile is shown in Figure 4.24. The radii of curvature variations are 

such that the surface is convex at the center and becomes concave near the edge of the 
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part. The form was effectively corrected by UFF as shown by the initial and final 

form error profiles in Figure 4.25. The initial PV form error was about 8 µm. 

This correction method also compensates for the systematic machine errors 

that induce residual form errors. The origin of form errors and their effect is the 

subject of Chapter 5. 

 

1/C (mm) K A4 A6 A8 A10 

–40 0 –3×10–6 5×10–9 –6×10–12 7×10–14 

Table 4.10 Coefficients defining the asphere polished with UFF. 

 

 

4.5 Other properties of UFF removal 

4.5.1 Effect of α 

The effect of the angle α between the part and tool normal is of particular 

interest for polishing deep concave surfaces. The effect of the angle was investigated 

by measuring load displacement curves with the tool compressed against a plano part 

for values of α ranging from 0º to 90º with increments of 15º. A 70 durometer carrier 

wheel was used for these experiments. The curves measured at these angles were also 

fitted with the linear relation between F and δ3/2 predicted by Eq. (4.31). For all the 

values of α, R2 is larger than 0.99, the values of β and the corresponding standard 

deviations, σ, are reported in Table 4.11. 

The relation of Eq. (4.31) is based on the assumption that the compliance of 

the tool is due to the soft carrier wheel, while the rest of the tool is considered rigid. 
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Since β is associated to the compliance of the carrier wheel, it should not vary with α. 

However, a 40 % variation is observed between the values of β at α = 0 and 90º. This 

shows that the load displacement model should include the effect of other mechanical 

elements as α increases. In fact, the tool compliance is a combination of the carrier 

wheel and mechanical elements supporting the carrier wheel. An element of particular 

interest is the shaft seen in Figures 3.4 and 3.6. As α varies, this shaft is subjected to 

varying axial and bending loads. The extremes being pure axial load and bending at 

α = 0º and 90º, respectively. The observed decrease of β with α indicates a reduction 

in tool stiffness as α increases. This behavior could be linked to the shaft because of 

its slender geometry. 

The variations of the load displacement relationship with α could be explained 

and predicted with a load displacement model assuming that the tool compliance is 

equal to the in-line compliances of the mechanical elements supporting the carrier 

wheel and the carrier wheel, for which load and displacement satisfy Eq. (4.29). 

Because of the soft nature of the carrier wheel, in comparison with the other elements 

forming the tool, it is assumed that load displacement for UFF is properly modeled 

with Eq. (4.29) at low values of α. At larger values of α, an appropriate model would 

allow for the carrier wheel compliance and therefore, β to be constant. The 

compliance of the mechanical elements supporting the carrier wheel was modeled as 

a single spring. This model was found to be inappropriate, because it was unable to 

produce a constant value for β. Therefore, a more complex model should be 

considered to relate load and displacement as a function of α. 
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Even though there is no quantitative model for the load displacement 

relationship at large α, the values computed for β can be used to evaluate the effect of 

α on the removal function. Since a linear relation exists between the removal spot 

volume and F, the variations observed for β with α will also be observed for the 

removal spot volume and therefore, the volumetric removal rate of the removal 

function. Even though β varies by 40 % between α = 0º and 90º, a variation of only 

12 % is observed in the range [0º 75º]. Therefore, major variations only occur at very 

large values of α. The effect of α on the removal function will be moderate while it 

remains in the range [0º 75º]. Furthermore, the effect of α could be compensated for 

by using the knowledge of the load displacement curves to correct δ and consistently 

produce the load that would have been achieved in the α = 0º configuration. 

 

α (º) 0 15 30 45 60 75 90 

β (N/mm
3/2

) 202 205 201 186 181 181 145 

σ (N/mm
3/2

) 5 1 1 2 1 3 1 

Table 4.11 Values of β and standard deviation for different values of α. 

 

 

 

4.5.2 Effect of the workpiece material 

Removal spots were made on BK7, Fused Silica (FS), SF6 and LaF2 flats 

with a previous version of UFF using an 80 durometer carrier wheel. Lambropoulos 
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et al. [32] characterized a linear relation between material removal rate and a 

mechanical figure of merit, FOM, defined as follows 

)/( 12/236/7
kcHKEFOM = ,   (4.36) 

where E is the Young’s modulus, Kc the fracture toughness and Hk the Knoop 

hardness. The relevant mechanical properties found in [32, 33] and FOM for the four 

materials considered in this study are summarized in Table 4.12. The measured 

material removal rates are plotted versus FOM in Figure 4.26. In the case of UFF, a 

relatively good linear relation between material removal rate and FOM is also 

observed, since R2 = 0.84. This relationship allows for rough material removal rate 

estimates prior to making a removal spot. 

 

 E (GPa) Kc (MPa Hk (GPa) FOM 

SF6 56 0.53 3.1 24 

FS 73 0.75 6.5 5.5 

BK7 81 0.82 5.2 8.7 

LaF2 93 0.72 4.8 14 

Table 4.12 Mechanical properties and FOM of SF6, FS, BK7 and LaF2. 
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Figure 4.1 Structure of the Tekscan system. (Figure adapted from [18]) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Geometry of the Tekscan system. (Figure adapted from [19]) 
 

 

 

 

 

Matrix Width (MW) 

Exploded View 

Matrix Height 
(MH) 

sensel 

Row 
Spacing 
(RS) 

Column 
Spacing 
(CS) 

substrate 

sensing area 
(No adhesive or 

dielectric) 

pressure 
sensitive 
material 

conductive 
leads 



 151 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Removal spot volume versus applied load and linear fit. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Removal spot volume versus band velocity and linear fit. 
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Figure 4.5 Removal spot volume versus band velocity and power fit. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Illustration of vrel as a function of (x, y, y0) on a flat. 
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Figure 4.7 Definition of the surface used to model a contacting body in Hertz theory. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 Geometry of the part and tool motion. 
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Figure 4.9 Geometry used for the definition of RPx. 
 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 Carrier wheel geometry. 
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Figure 4.11 Principal radii of curvature of the tool. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 Tool profile in the plane xT-zT showing the anticlastic curvature of the 

polishing band. 
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Figure 4.13 Contact of the part and the tool in the xT-zT and yT-zT planes. 

 

 

 

 

 

 

 

 

Figure 4.14 Geometry of the contact patch. 
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Figure 4.15 Hertz pressure distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16 Functions of interest for Hertz theory. (Figure adapted from [26]) 
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Figure 4.17 High speed camera frames revealing the inconsistency of the contact 
patch on the first version of UFF. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18 High speed camera frames showing the consistency of the contact patch. 
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Figure 4.19 High speed camera frames for the tool at �T = 0, 50 and 500 rpm. 
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Figure 4.20 Tekscan measurement of 
the interfacial pressures encountered 

with the V2 tool. 
 

Figure 4.21 STIL measurement of 
a removal spot made with the V2 

tool. 
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Figure 4.22 Removal spots made with the process parameters reported in Table 4.5. 
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Figure 4.23 Load displacement curve in the conditions of the removal spot number 6. 
Data in red, theoretical curve in blue. 

 

 

 

 

 

 

 

 

 

 

Figure 4.24 Desired form of an asphere polished with UFF. 
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Figure 4.25 Form errors of the asphere polished with UFF 
a) initial; 
b) final. 
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Figure 4.26 Removal rate versus mechanical figure of merit. 
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Chapter 5 Surface errors 

Surface errors are the deviations of an optical surface from the target surface. 

The occurrence and amplitude of surface errors determine the quality of the grinding 

and polishing operations. Surface errors are typically categorized into three types, 

which are defined by specific spatial frequency ranges [1, 2]. They are figure error 

(low spatial frequency, < 0.3 mm-1), tool marks (mid spatial frequency, between 0.3 

mm-1 and 10 mm-1) and surface roughness and subsurface damage (high spatial 

frequency, > 10 mm-1). Table 5.1 reports these errors and possible sources. The actual 

surface is the sum of the desired shape and the contributions of these three types of 

errors. 

 

Surface error Frequency range Error sources 
 

Figure error 

 
< 0.3 mm-1 

o Erroneous inputted form 
o Errors in tool/part motion 
o Variations of material 

volumetric removal rate 
Tool marks > 0.3 mm-1 and < 10 mm-1 o Tool vibration 

 

Surface finish 

 
> 10 mm-1 

o Abrasive size and 
penetration 

o Workpiece material 
mechanical properties 

Table 5.1 Surface errors definition and possible sources. (Adapted from [2]) 

 

5.1 Surface roughness and subsurface damage (SSD) 

Surface roughness affects the contrast of the image produced by an optic, 

because the light is scattered in all directions [3], and subsurface damage (SSD) may 

reduce the strength and optical damage threshold of the material [4]. The roughness 
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of the surface after polishing can be characterized by evaluating its peak-to-valley 

(PV) and root mean square average (RMS) with an interferometer such as the Zygo 

NewView 5000 [5]. These values are a good metric for the polishing process. SSD is 

traditionally evaluated with destructive techniques revealing the damage lying under 

the surface of the part. Nondestructive techniques have also been developed. Randi et 

al. [6] reviewed nondestructive and destructive techniques to evaluate SSD in brittle 

materials. Dimpling, taper polishing, etching, sectioning and MRF spotting are some 

of the destructive techniques. Nondestructive techniques include transverse electron 

microscopy, x-ray diffractometry and Raman spectroscopy. SSD depth can also be 

evaluated from a surface microroughness measurement. Lambropoulos et al. [7] 

established that SSD depth is less than 2 times the PV surface microroughness for a 

large variety of optical glasses ground with bound abrasive diamond tools. Randi et 

al. [6] considered optical single crystals and found a factor of 1.4 between maximum 

SSD depth and PV surface microroughness. 

 

The surface finish errors are related to the material removal mechanisms [1]. 

Therefore, the amplitude of these errors are a function of all the factors influencing 

the removal process, which include the part material, polishing abrasive, coolant, part 

rpm, tool rpm and relevant tool characteristics, such as carrier wheel durometer and 

tool compression for UFF. An efficient polishing process must reduce surface 

roughness and limit induced subsurface damage. For a given material, the smoothest 

surface is typically achieved by determining empirically the best combination of 
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process parameters, which should also lead to minimized SSD. The numerous 

adjustable parameters of UFF offer a large range of combinations from which a 

satisfactory process solution can be found for most workpiece materials. For example, 

such solutions have been established by OptiPro Systems for BK7 and PCA. 

However, investigation and minimization of surface roughness and SSD induced by 

UltraForm Finishing is not within the scope of the present study. 

 

5.2 Figure error 

Figure or form error of an optical surface causes geometrical distortions of an 

image. This error is in the low spatial frequency range. It can be measured with 

interferometers such as the Zygo GPI phase shifting laser interferometer [8] and 

surface profilometers such as the Taylor Hobson Form Talysurf [9].  

5.2.1 Sources of form errors 

Form error is the difference between desired and actual part form. The goal 

with UFF is to minimize these errors by optimizing the tool path. The current 

approach typically results in low amplitude form errors. However, discrepancies exist 

between the predicted and observed form errors. The major sources of such errors are 

inaccurate specification of the desired removal profile, machine axes positioning or 

motion errors and unpredicted variations of the removal function. The cause and 

process effect of these problems are listed in Table 5.2. 

Improper lateral or height calibrations of the metrology instrument could be 

the cause for erroneous amplitude or lateral position of the points representing the 
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actual part profile. This would lead to inaccurate desired removal profiles. For a 

profilometer, the lateral calibration is linked to the calibration of the CNC stage on 

which it is operated. However, for an interferometer, the lateral calibration must be 

performed for every modification of the measurement setup. In most cases, the height 

measurement can be accurately calibrated with a calibration master. 

Tool misalignment or de-centering causes incorrect tool positioning that is 

characterized by constant x and y offsets ∆x and ∆y, respectively, between 

programmed and actual tool positions. z reference error is an improper adjustment of 

the z datum, which should be the surface of the part at its center. Following or 

tracking errors are the inaccuracy of the machine in positioning the tool at the desired 

location. This inaccuracy, which is intrinsic to CNC machines, is controlled by setting 

upper values for these following errors, typically on the order of 10 µm. Large 

following errors, expected or unexpected because of a machine problem, could cause 

a noticeable form error. A clock error corresponds to a discrepancy between the 

programmed and actual execution time for a machine command. 

Assuming that the machine can accurately position and move the tool, the 

relative velocity between the abrasive and part and the pressure applied by the tool 

should be known. However, according to Eq. (4.9), the removal function could still 

vary unexpectedly, because of variations of the generalized Preston coefficient. This 

coefficient can be affected by band and abrasive wear as well as a change in 

chemistry, such as the flow of coolant and pH level. 
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Source Cause Effect 
Inaccurate desired removal 

profile 
Erroneous lateral or height 

calibrations of the 
metrology instrument 

Inappropriate tool 
crossfeed velocities 

solution 
Tool improper positioning 

and motion 
Tool misalignment, z 

reference error, following 
and clock errors 

Inaccurate removal 
prediction 

Unexpected changes of the 
removal function 

Band and abrasive wear, 
change in chemistry 

(coolant, pH, …) 

Inaccurate removal 
prediction 

Table 5.2 Potential sources of form errors, their cause and effect. 

 

5.2.2 Approach for the evaluation of the effect of the errors 

An error such as tool de-centering can be qualitatively evaluated in grinding 

[1, 2]. However, such an approach is impossible with UFF for any of the errors 

reported in Table 5.2. This is due to the large extent of the removal functions and 

their overlaps as the tool traverses the part, as well as the variety of removal function 

topographies that occur. Instead in the case of UFF, the effect of a given error has to 

be evaluated for any given removal function. For that purposes, numerical 

simulations are used. 

In order to evaluate the effect of a given error, the general scheme for the 

numerical simulations involves the three steps illustrated in Figure 5.1. During the 

first step, the tool path generator is executed with the given inputs. The outputs are 

the tool path commands that would be executed on the machine and the 

corresponding predicted final part profile. This is a reference profile representing the 

prediction without machine and process errors. The second step produces a second 
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profile that is the actual profile. It is predicted by taking into account the effect of the 

error that is under investigation. The actual effect of that error is evaluated at step 3 

by taking the difference between the reference and actual profiles. 

It is necessary to understand the effect of an error on the removal process in 

order to accurately take it into account at step 2. Establishing the effect of an error is 

difficult for parts other than plano, because for spheres and aspheres one error might 

induce several coupled effects. For example, tool misalignment as the tool is moved 

across a spherical or aspherical part will also induce a variable tool compression 

error, because of the varying height of the part. Therefore, to simulate a tool 

misalignment error on a spherical surface, the size of the actual removal function 

should also be dynamically adjusted along the tool path. On the other hand, for flats, a 

constant shift in the removal function position will be sufficient to model a tool 

misalignment error. It is preferable to diagnose the effect of a single error by running 

numerical simulations on flats to avoid the coupling of the different errors. 

In the case of a flat, the different errors listed in Table 5.2 can be modeled 

according to the descriptions given in Table 5.3. Depending on the type of error, one 

of three different sets of operations or modes is used in step 2 as described in Figure 

5.2. 

 Mode 1 is used when errors are present in the desired removal profile. Such 

errors can be due to erroneous lateral and height calibrations of the metrology 

instrument. They are modeled by changing the lateral and vertical scales of the 

inputted desired removal profile. The tool path generator is then run to compute the 
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actual tool crossfeed velocities that would achieve the modified removal profile. The 

predicted profile including the effect of the inaccurate desired removal profile is 

obtained by multiplying the removal matrix reference, RM ref, computed at step 1, 

and the vector scact having for elements the inverse of the tool crossfeed velocities 

calculated at step 2. 

The tool path generator is also run with adjusted inputs for Mode 2. This 

mode is used for errors that result in changes of the removal matrix due to variations 

of the removal function. This occurs with tool misalignment, z reference error, 

following error, band and abrasive wear, change in chemistry. Tool misalignment and 

following error are modeled by shifts of the removal function equal to ∆x or ∆y in the 

x and y directions, respectively. For tool misalignment these shifts are constants. A 

constant or variable shift ∆y is used for a following error. For example, the error in y 

could be proportional to the tool crossfeed velocity at each step of the tool path. In 

case of z reference error, band and abrasive wear or change in chemistry an actual 

removal function could be simulated from the one used at step 1 by scaling up or 

down the size and amplitude of the removal function. A case of uniform band wear 

can be simulated by applying a proportionality coefficient less than 1 to the initial 

removal function. For a z reference error, size and amplitude of the actual removal 

function are coupled and could be established by using the results from Chapter 4 

relative to the prediction of the removal function as a function of the tool 

compression. In mode 2, once the error is taken into account to run the tool path 
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generator, the actual removal matrix, RM act that is computed, is multiplied by scref 

obtained at step 1. 

 

Table 5.3 Sources of form errors, model and simulation for flats. 

 

Mode 3 is used for errors resulting in discrepancies between programmed and 

actual tool and part motions. A machine clock error could result in discrepancies 

between programmed and actual part rpm. Such an error could be modeled by adding 

a constant or proportional error to the programmed part rpm. A machine clock error 

can also induce tool motion errors, because even though tool crossfeed velocities are 

computed, the machine is actually operated in terms of time. Such an error is modeled 

by modifying scref outputted by the tool path generator at step 1. A simple constant or 

proportional error can be used at each step of the tool path. The resulting actual 

commands vector scact is then multiplied by RM ref to generate the actual profile. 

Error Model Step 2 mode # 
Desired removal profile Change the lateral and vertical scales 

of the desired removal profile 
1 

Tool misalignment 
(∆x, ∆y) 

Shift the removal function in x and y 
by ∆x and ∆y, respectively 

2 

Following error (∆y) Shift the removal function in y by ∆y 2 
z reference error Use the actual removal function or 

modify the one from step 1 by scaling 
up or down its size and amplitude 

 
2 

Band and abrasive wear, 
change in chemistry 

Use the actual removal function or 
modify the one from step 1 by scaling 

up or down its amplitude 

 
2 

Clock error Adjust scref with constant or 
proportional time error 

3 
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5.2.3 Numerical simulations 

The effects of a variety of errors for two static removal functions were 

investigated with numerical simulations performed on a flat according to Figure 5.2. 

The two static removal functions are shown in Figure 5.3.a) and b). The first static 

removal function, shown in Figure 5.3.a) was virtually generated. It was created with 

an elliptical shape and a removal pattern in agreement with a Hertzian pressure 

distribution. The second static removal function, shown in Figure 5.3.b), was the 

actual removal generated on BK7 with a cerium oxide bound abrasive belt and a 

carrier wheel of durometer 50. That removal function was measured with the STIL 

profilometer. The effects of the removal function pattern on the predicted form can be 

highlighted with these two static removal functions. The simulated errors include 

shifts by ∆x and ∆y, variations in size and amplitude of the removal function and 

constant clock error. The removal function alterations for these simulated errors are 

illustrated in Figure 5.4. Shifts in x and y, size and amplitude scaling can be combined 

or used individually as shown in Figures 5.4,b), c), d) and e), respectively. The edge 

problem is not taken into account as the simulations only predict the part profiles 

away from the part edges. The part rotational speed was set equal to 300 rpm. To 

clearly visualize the effect of each error the desired removal was set uniform and 

equal to 10 µm. The desired, reference and “error” profile are consistently shown for 

the different considered errors. 

Figures 5.5 and 5.6 show the effects of ∆x and ∆y taking values + and – 1 mm 

with the virtual elliptical static removal function. Such error simulations represent the 
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effect of tool misalignment or a constant following error in the case of ∆y. Mode 2 

was used for these simulations. The reference profile exhibits a PV of 0.15 µm. 

Figures 5.5.b) and c) illustrate that +∆x or –∆x have drastically different effects, both 

degrade the form with PV of 0.25 and 0.5 µm, respectively. In both cases, while 

different patterns are observed in the part center region, the form is preserved away 

from that region. A positive value of ∆x results in less removal, because such a shift 

results in lower relative velocities between the abrasive and the workpiece. The 

opposite happens as a negative value of ∆x is used. On the other hand positive or 

negative values of ∆y have the same effect if the static removal function is symmetric 

with respect to y, because the tool crossfeed velocity solution is symmetric with 

respect to the part center. This case occurs with the virtual removal function as shown 

in Figures 5.6.b) and c). Whereas shifts in x induced “peaks” at the part center and 

excessive or insufficient removal away from the part center, shifts in y produce a 

“hole” at the part center and a nearly unchanged removal profile away from that 

region. The resulting PV is of about 0.4 µm. The simulations show that these errors 

should have a noticeable effect at the part center. The center feature has a width 

approximately equal to the length of the removal function semi-major axis. 

Figure 5.7 shows that shifts in x have similar effects with the measured and 

virtual removal functions. The main difference is the shape of the removal profile at 

the center. For the measured removal function, the observed effects are also function 

of the sign of ∆y, as shown in Figure 5.8, because of the lack of y symmetry of this 
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static removal function. All the following numerical simulations were run with the 

real removal function. 

The effect of a change in amplitude was simulated using mode 2 and scaling 

the removal function by multiplying its amplitude by 0.9.  This case corresponds to a 

proportional decrease of the removal function suitable to model uniform band wear. 

The predicted profiles of Figure 5.9 show what seems to be a predicted profile that is 

shifted up. This profile is actually a scaling of the original one, because the depth of 

removal equation is linearly dependent on the amplitude of the removal function. 

The effect of a change in size of the removal function was also simulated with 

mode 2 and is shown in Figure 5.10. Such simulations provide insights into the effect 

of z reference error. The removal function dimensions were scaled down in Figure 

5.10.a) and scaled up in Figure 5.10.b) by factors of 0.9 and 1.1, respectively. 

However, by doing so, the volumetric removal rate of the removal function would 

change. In order to decouple the effects of the change in volumetric removal rate 

from the change in size, the amplitudes of the downsized and upsized removal 

functions were scaled to keep the volumetric removal constant. They were multiplied 

by 1.25 and 0.83, respectively. In both cases, the form is quite degraded in the center 

region and exhibits an exacerbated overall waviness when compared to the reference 

profile. The higher or lower volumetric removal rates that should occur with a z 

reference error would be expected to result in an additional scaling similar to what 

can be seen in Figure 5.9. 



 

 

175 

 

A constant clock error that would result in a constant increase of the command 

execution time is simulated in Figure 5.11. At every step, during which a radial 

distance of 0.1 mm is covered, an error time of 10 ms is added to the programmed 

time. Such an error was actually observed due to an error in the machine command 

format. For the simulation, the computed process time was originally 17 mins and the 

systematic errors only increased the process time by 2.6 s, which would be hardly 

noticeable. This small effect results in a profile that is shifted down by a variable 

offset decreasing with r. While the form is merely altered away from the part center 

region, that profile shift has noticeable consequences at the part center. The initially 

smooth profile exhibits a central hole and the overall PV is nearly doubled. 

These numerical simulations show the variety of effects that can be induced 

by various sources of errors and removal functions. They are useful to evaluate the 

amplitude of the figure error that could be induced by a source of error. The center 

region of the part is particularly sensitive to most of the errors. The errors are 

amplified in that region because of the fast tool motions that are required. Because of 

the convolution nature of the process, the errors cannot be diagnosed and 

compensated for as with other CNC machine tools [10]. Instead numerical 

simulations can be used to define tolerances on the machines motion and positioning 

accuracies. However, they cannot be used as a diagnosis tool to identify the errors 

present a posteriori. Figure 5.12 is the result of a simulation run with the virtual 

removal function subjected to shifts ∆x and ∆y of 1 and 0.75 mm, respectively. The 

resulting profile conserves the main features of the reference profile and with a 
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0.2 µm translation. Assuming that this offset was detected, its origin could easily be 

mistaken for a change in amplitude of the removal function. 

 

5.3 Midspatial frequency errors and diagnostic of induced spiral marks 

Midspatial frequency errors or tool marks are caused by relative vibrations 

between the tool and workpiece. Such errors are responsible for a degradation of the 

achievable resolution of imaging systems [11]. These marks have been previously 

investigated in ring tool [1] and contour grinding [1, 2, 3]. The plano parts polished to 

investigate the occurrence of midspatials with UFF were initially ring tool ground. 

Tool marks generated by ring tool grinding appear as curves following contact lines 

between the tool and workpiece. The number of tool marks usually correlates with the 

k ratio, which is the ratio of the tool spindle to the work spindle speed [1]. Aspheres 

are typically contour ground. Tool marks generated by contour grinding can be 

categorized into annular rings, chatter marks and most noticeably spirals [1]. The 

amplitude of these marks can be reduced or increased by adjusting the grinding 

parameters and the intrinsic stiffnesses of the tool and machine. Since the relative 

vibration between the grinding tool and the workpiece cannot be eliminated, such 

marks will always occur during grinding. UFF was shown to efficiently remove tool 

marks induced by grinding [12]. This desired benefit could be greatly reduced if the 

UFF tool induced significant midspatials of its own. Therefore, it is important to 

understand the potential sources of UFF tool marks in order to reduce their amplitude 

as much as possible. Such marks have been measured and a diagnostic method has 
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been developed to find their origin. It relies on a simple model, a simulation tool and 

a method for the evaluation of the frequency inducing the observed marks. 

 

5.3.1 Experimental procedure and characterization of the induced marks 

Three ring tool ground BK7 flats were polished with UFF. Uniform removal 

of 5 µm was desired. Each part was polished at a different constant part rotational 

speed. Values used were 100, 300 and 500 rpm. The tool rotational speed was also 

kept constant such that the band was circulated at 1 m/s. 

The parts polished at 100 and 500 rpm exhibited significant data dropout near 

the part center when measured with a Zygo GPI interferometer [8]. Only the part 

polished at 300 rpm could be fully measured with that interferometer. This 

measurement is shown in Figure 5.13.a). The form exhibits a peak to valley error of 

0.26 µm and is dominated by concentric rings that could be reduced in subsequent 

form correction runs. However, careful examination of the part near its center reveals 

a series of about 15 curved marks. They are not clearly visible as their amplitude is 

significantly lower than that of the features dominating the topography of the part. 

The full extent of these marks and the underlying pattern is revealed with the use of 

the high pass average filter built-in the Zygo MetroProTM software [13]. A filter 

window size of 3 equivalent to a cutoff frequency of 2 mm-1 was set. The filtered data 

are shown in Figure 5.13.b). The marks take the form of 12 spirals emanating from 

the part center and curving counterclockwise. The degree of curvature of these spirals 

proves that these spirals were not introduced by the grinding process. Their amplitude 
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is rather low, on the order of 30 nm, but it is desired to reduce them further because of 

their negative impact on imaging systems. 

Furthermore, the observed pattern is sensitive to the polishing parameters. The 

parts polished at 100 and 500 rpm could not be fully measured, but the spirals could 

be visually observed near the part center. They also appear highlighted on the part 

intensity map captured with the interferometer. This map is a picture of the part on 

which the interference fringes are visible. These maps were overlapped with the 

interferometric measurements, which provide lateral scales for the images. The 

composite images, shown in Figure 5.14, reveal the pattern in the part center region 

and away from it. A single spiral and five clockwise spirals are observed on the part 

polished with work rotational speed equal to 500 and 100 rpm, respectively. 

 

5.3.2 Model for the generation of the marks and simulation tool 

Spiral marks have been observed in contour grinding [1, 3, 14, 15] and 

diamond turning [16-17]. These artifacts are due to tool vibrations occurring at a 

constant frequency. Irregularly spaced spirals are explained by the simultaneous 

occurrence of multiple vibrations [17]. In contour grinding, the source is typically the 

constant rotational frequency of the grinding wheel [1, 3, 14, 15]. 

Because of the similarities in process geometries, the use of constant tool rpm 

and the similarity in pattern, it is also hypothesized that the pattern induced by UFF is 

formed of marks occurring at constant time intervals. With this model, the problem of 

finding the origin of these marks consists in establishing the mark frequency, fmarks, 
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creating the observed pattern. For that purpose, a simulation tool has been developed. 

It consists of a code written with MATLAB [18]. It takes for input the actual tool path 

file that is executed on the CNC platform and the simulated frequency. The code 

computes and displays the marks’ locations on the surface of the workpiece. 

These computations are based on the structure of the tool path file and the 

manner in which the commands are executed. The tool path file is composed of lines 

of commands. The jth line of the file includes  

yj           ∆tj            rpmj    (5.1) 

and defines step j, which consists of the y location, yj to reach within the given time, 

∆tj, with the part rotating at rpmj. The control specifies constant tool crossfeed 

velocities, vcj, and part rotational speed over a step. Because the change in tool 

crossfeed velocity and part rotational speed for each step is small, it is assumed for 

the simulations that the time necessary to adjust these parameters from one step to the 

next is negligible. Therefore, the part rotational speed and tool crossfeed velocity are 

assumed to be piecewise constant functions of y. Furthermore, for flats, 

dt

dy
v tool

c =        and       
dt

d
rpm

partθ
π2

60−= ,  (5.2) 

where θpart is the angular position of the part in radians and the negative sign is due to 

the clockwise rotation of the part. ytool and θpart, the tool y and part angular positions, 

respectively, are piecewise linear functions of time as illustrated in Figures 5.15. At 

t = t0 = 0, the part is at an angle equal to 0 and, because of the symmetry of the tool 



 

 

180 

 

path with respect to the part center, the tool is positioned at y = –ymax, where ymax is 

the extreme y position reached by the tool. ytool and θpart are defined as follows 

∑
=

∆=
j

k
kj tt

0

 

∆ 000 == tt , max0 )( ytytool −= and 0)( 0 =tpartθ    

For   1+≤< jj ttt ,      (5.3) 

  )()(*)( jtooljcjtool tyttvty +−=   and  )()(
60
2

)( jpartjjpart tttrpmt θπθ +−−= , 

where j is a positive integer not exceeding the number of lines of the tool path file. 

Taking the part as reference frame, the position of the tool in polar coordinates, is 

described by 

 (rtool(t), θtool(t)) = (|ytool|, – θpart(t)),   (5.4) 

where rtool and θtool are the tool radial and angular coordinates. 

These equations define the spiral followed by the tool on the part. Assuming 

that marks occur at a constant frequency fmarks, and that the first mark occurs at t = 0, 

the marks are expected to be left on the part surface at the times 

   ∗
it  = 0, 1/fmarks, …, i/fmarks, …, imax/fmarks (in seconds, with fmarks in Hz),   (5.5) 

where i is a positive integer and imax is such that (imax+1)/fmarks is greater than the 

polishing time. Therefore, the locations of the marks in polar coordinates are given by 

(rtool(
∗
it ), θtool(

∗
it )), i = 0, 1, …, imax.     (5.6) 

These equations only compute the location of the predicted marks, which can 

be represented by points placed at the coordinates defined by Eq. (5.6). This model is 



 

 

181 

 

sufficient to simulate the number and the curvature of the observed spirals. However, 

this model will not provide insights into the mark formation mechanism and in 

particular the change in width of the spiral and the transition between marks being 

visible or not on the part surface. These aspects can be observed in Figure 5.13.b). To 

deepen the understanding of the observed patterns, options have been added to the 

simulation code. They offer the ability to represent the marks as scratches with length 

constant or corresponding to a constant scratching time. In the case of constant length 

scratches, the predicted point is replaced by a segment of the given length. This 

segment can be drawn either in the radial direction or perpendicular to it. For a 

constant scratching time, the point is replaced by the section of the spiral followed by 

the tool during that scratching time centered at the predicted point. 

Under normal conditions, the tool traverses the part from edge to edge through 

the part center. During a typical polishing pass, 1 to 20 µm of material are removed. 

Therefore, during each half of the tool path, part edge to center and center to edge, 0.5 

to 10 µm are removed and residual marks are induced, but their amplitude is on the 

order of 30 nm or 0.03 µm. Therefore, the marks induced during the first half of the 

tool path are removed during the second half of the tool path. Only the marks induced 

during the second half are then visible on the part surface at the end of the pass. 

Therefore, only the marks predicted during that period are plotted by the simulator. 
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5.3.3 Evaluation of candidate frequencies and simulations 

Candidate frequencies potentially responsible for the observed spiral patterns 

were calculated and measured by evaluating potential and actual vibrations frequency 

present on the tool. 

 

Candidate frequencies can be calculated from the potential periodic sources of 

error, including the carrier wheel ball bearing and the band splice. The frequencies 

associated with ball bearings are well known [19, 20]. Six frequencies including the 

wheel rotational frequency are determined by the number of balls N, their diameter 

Bd, the pitch diameter Pd, the contact angle γ, and the carrier wheel rotational speed 

rpmw. Bd, Pd and γ  are defined in Figure 5.16. Variable names and descriptions of 

the frequencies are summarized in Table 5.4. They are evaluated with the following 

expressions [19, 20] 

      f0 = 
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The polishing belt is also a potential source of marks. The belt is originally a 

band of material that is transformed into a belt by splicing its ends together. For this 

operation, a small piece of cloth is glued to the two ends of the band. A region, 

slightly thicker than the rest of the band and about 2 cm long, is thus created. This 

region is expected to leave a signature or mark on the part when they come into 

contact. Therefore, the frequency of passage of the band splice on the part, f6, is a 

candidate for the observed patterns. The rotational frequency of the band is given by 

f6 
L

vband= ,     (5.13) 

where L and vband are the length and velocity of the band, respectively. 

 

The frequencies of the actual tool vibrations were measured with a PCB 

Piezotronics [21] accelerometer [22] placed on the tool shaft at about 10 cm from the 

carrier wheel with the tool subjected to the same conditions as during polishing. No 

significant peaks were revealed in the z direction, normal to the part. However, peaks 

in the x and y directions were measured, as shown in Figure 5.17. Because of the 

slender geometry of the shaft, it is more prone to transverse than longitudinal 

motions. A peak, fpeak1, is measured consistently in the x and y directions at 8.69 Hz. 

A second peak, fpeak2, of lower amplitude is also measured in the x direction at 

15.69 Hz. The third peak measured at 17.38 Hz is the second harmonic of the signal 

whose fundamental frequency is fpeak1. 
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The candidate frequencies, both calculated and measured, are summarized in 

Table 5.5. The frequencies f0 through f6 were calculated with L = 1,500 mm, 

vband = 1 m/s, N = 7, Bd = 4 mm, Pd = 16 mm, γ = 0 and rpmw = 500. It can be seen 

that the frequencies cover a range from 0.67 to 36 Hz corresponding to the band 

splice and outer race defect frequencies, respectively. The range between these 

extrema is reflected in the third column of Table 5.5, which indicates the number of 

marks induced on the part for the second half of a 20 minutes pass. The total number 

of marks varies between 402 and more than 50 times this value. The measured 

vibration frequencies, fpeak1 and fpeak2, are within 5 % of the carrier wheel’s rotational 

frequency f0 and ball defect frequency f3, respectively. Therefore, from these two sets 

of frequencies, approximately equal to 8 and 16 Hz, one set should likely be the 

frequency, fmarks, at which the marks are left on the workpiece. 

It was expected that one of the candidate frequencies summarized in Table 5.5 

would result in a close agreement between actual patterns and simulations. That 

frequency would then approximately indicate the value of fmarks responsible for the 

observed patterns. Simulations were run with the 9 candidate frequencies with the 

process conditions under which the 12 spirals of Figure 5.13.b) were created. 

However, as shown in Figure 5.18, they all fail to predict that pattern. Even the 

number of spirals does not match those of Figure 5.13.b) for any of the simulations. 

The simulated pattern is very sensitive to the value of fmarks, as illustrated by the 

simulations with f0 and fpeak1, Figures 5.18.c) and d). The difference between the 

values of these frequencies is less than 5%, but the corresponding simulations differ 
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greatly. Because of this sensitivity, predictions and actual patterns may differ only 

because of a slight calibration error on the machine, such as the part rotational speed 

being off by a couple of rpm. 

Simulations show that the calculated frequencies can not be used to match the 

observed pattern, but they are useful in giving a physical meaning to certain 

frequency domains. When a measured and a calculated frequency have similar values, 

a likely source of marks is found. However, as in the present case, it can occur for 

several calculated frequencies. Therefore, it is desirable to establish the precise value 

of fmarks needed to create an observed pattern using the simulation tool. Agreement 

between that needed frequency, calculated and measured frequencies would indicate 

the source of the observed marks. 

 

 

Frequency name Description 
f0 carrier wheel rotational frequency 
f1 defect on outer race 
f2 defect on inner race 
f3 ball defect 
f4 rolling element defect 
f5 fundamental train frequency 

Table 5.4 Variable names and descriptions of the calculated candidate frequencies. 
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Case Frequency (Hz) Number of marks* 
f0 8.3 4,980 
f1 22 13,200 
f2 36 21,600 
f3 16 9,600 
f4 31 18,600 
f5 3.1 1,860 
f6 0.67 402 

fpeak1 8.69 5,210 
fpeak2 15.7 9,410 

Table 5.5 Values of the calculated and measured frequencies and corresponding 
number of marks (*for half of a 20 mins run). 

 

 

5.3.4 Establishing the values of fmarks generating a given pattern 

Similar spiral marks are observed in contour grinding [1, 3, 14, 15] and 

diamond turning [16-17]. These patterns are commonly described as a function of the 

so-called k ratio [1, 2] or frequency ratio [16] defined as 

k = fmarks/fpart,    (5.14) 

where fpart is the rotational frequency of the part. Kim et al. [16] interpret the k ratio as 

   k = m + µ,    (5.15) 

where m is an integer equal to the number of spirals and µ a curvature term, such that 

           –0.5 ≤ µ < 0.5.    (5.16) 

If µ is equal to 0, the curvature is zero and the lines are radially outward as seen in 

Figure 5.18.c). A change in the sign of µ implies a change in the curvature of the 

spirals from clockwise to counterclockwise or vice versa. Eqs. (5.14) and (5.15) lead 

to 
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     fmarks = (m + µ) * fpart.   (5.17) 

For example, in order to observe 3 spirals, m must be set equal to 3 and some 

curvature can be introduced by setting µ equal to 0.01. For a part rotating at 300 rpm, 

fpart = 5 Hz and the corresponding fmarks is evaluated at 15.05 Hz with Eq. (5.17). The 

3 spirals were confirmed with a simulation run at that frequency with fpart = 5 Hz and 

using the tool path file used to polish the part of Figure 5.13. The predicted pattern is 

shown in Figure 5.19.a). 

A major limitation to this approach is that it only establishes the maximum 

frequency, fmarks-max, that will create a given pattern. Other frequencies that create the 

same pattern may also exist. They are the frequencies which adequately sample the 

marks left at the frequency fmarks-max so that the pattern is preserved. For example in 

the case of the 3 spirals obtained with fmarks-max equal to 15.05 Hz in Figure 5.19.a), 

the frequency fmarks = fmarks-max /2, will induce only half of the marks but generate the 

same 3 spirals pattern as shown in Figure 5.19.b). The corresponding k ratio is 1.505 

and can no longer be interpreted according to Eq. (5.15). Eqs. (5.15) through (5.17) 

are valid if fmarks is equal to fmarks-max. Therefore, it is preferable to rewrite Eq. (5.17) 

as 

     fmarks-max = (m + µ) * fpart.   (5.18) 

The use of Eq. (5.18) to evaluate the maximum frequency that can create a 

pattern with a desired number of spirals requires the knowledge of the value of µ that 

will produce the curvature of the observed pattern. If the tool traverses the part at a 

constant crossfeed velocity, the equations derived by Yoshihara et al. [15] can be 
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used to calculate exactly fmarks-max without having to consider µ. However, for UFF 

the tool crossfeed velocity is varied to obtain the desired figure correction. 

Furthermore, if a constant tool crossfeed velocity is used for experimental purposes, 

the figure of the part will be degraded making its measurement difficult. For spirals 

generated while polishing with a tool path computed by the form correction 

algorithms, a trial error method is used to determine µ, according to the following 

steps: 

i) Calculate fmarks-max creating the number of segments equal to the number of 

observed spirals, with µ equal to 0 in Eq. (5.18). 

ii) Run the tool marks simulator with fmarks-max obtained for a small positive and a 

small negative value of µ such as 0.01 and –0.01 to find the sign that will produce 

the desired clockwise or counterclockwise curvature. 

iii) Use small increments to modify µ until the simulated spirals exhibit the desired 

degree of curvature, while satisfying Eq. (5.16).  

 

The frequencies other than fmarks-max that produce the same spiral pattern also 

need to be established. These frequencies are of the form 

      fmarks(q) = fmarks-max/q,   (5.19) 

where q is a positive integer greater than 1. The sampling problem consists in finding 

all possible values of q, such that fmarks(q) produces the same pattern as fmarks-max. 

The first criterion for identifying a valid value of q is that q must be small 

enough so that a sufficient number of marks are generated to form the desired pattern. 
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A large q would mean few induced marks and because of the large gaps between 

them, their combination would not resemble the desired pattern. This situation would 

not correspond to an adequate sampling of the original pattern. The first criterion is 

subjective and requires simulations to visually determine the relevant frequencies. 

In addition, q cannot take all the values between 2 and the maximum value 

defined by the first criterion. For instance, some values of q would inappropriately 

sample the initial pattern. A simple example using a pattern consisting of m = 4 

segments with µ = 0, shown in Figure 5.20, will be used to illustrate this restriction. 

The segments are numbered from 1 to 4. With the part rotating counterclockwise and 

assuming that the part is the frame of reference, the rotation of the part is equivalent 

to a clockwise rotation of the tool over the part. fmarks-max is such that if m spirals are 

formed, a mark is left on each of these spirals at every rotation of the part. Therefore, 

in the present case, if q = 1, marks are left on each of the 4 segments in the order 1, 2, 

3, 4 during one rotation of the part. If q is equal to 2, marks are only left on every 

other segment, this means that during the first part rotation, marks are left on 

segments 1 and 3. Continuing with the subsequent part rotations, marks will 

systematically be left only on these 2 segments. Therefore, 2 is not an appropriate 

value for q in this case since it does not generate all 4 segments. On the other hand, q 

equal to 3 would imply marks left consecutively on segments 1, 4, 3, 2, 1, 4, 3, 2, and 

so on. Therefore, 3 would be a suitable value for q. This example illustrates that m 

consecutive marks must be left on the m spirals without giving any importance to the 

order in which they occur. This is the second criterion for valid values of q. 
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The second criterion is addressed by examining the position of the marks for 

given q and m, in the case where segments are generated. For that purpose, the 

angular spacing, ∆θ, between two consecutive marks is considered. ∆θ  for marks left 

at the frequency fmarks(q) is given by 

m

q πθ 2×=∆ .    (5.20) 

To form an m segments pattern, it is necessary to create consistent series of m 

consecutive marks on each of the m segments. Therefore, assuming that the first mark 

is left on the part at θ = 0, it is required that the (m+1)th mark be left at that same 

angle. This implies that the (m+1)th mark must be left at an angle θ∆×m  equal to 0 

modulo 2π. Eq. (5.20) implies that q must satisfy 

                   02 =× πq  (mod 2π)    (5.21) 

and must therefore be an integer. Furthermore, the first m consecutive marks are left 

at the angles θM1, θM2, … , θMm, such that 

          
m

q
jMj

πθ 2
)1(

×−=    (5.22) 

where j is a positive integer denoting the jth mark. In order to adequately sample the 

pattern created by fmarks-max, the first m marks must be left on the m segments. In 

particular, since the first mark is systematically assumed to be left at the segment 

located at θ = 0, none of the following m – 1 marks can be left on that segment. This 

is the criterion defining the satisfactory values of q. It can be formulated as, 

               πθ 2×≠ nMj ,    (5.23) 
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where n is a positive integer and j = 2, 3, …, m. Therefore, the adequate values of q 

are such that 

                 
1−

×≠
j

mn
q .    (5.24) 

Since q must be an integer, it can be concluded that the unsatisfactory values of q are 

the factors of m and their multiples. 

Using the criteria described in the previous sections, the satisfactory values of 

q can be established. However, it can be noted that the appropriate frequencies 

correspond to k ratios either greater or less than 1. A k ratio is greater than 1 when 

fmarks is greater than fpart and in that case q is renamed Q, which is such that 

      1 ≤ Q ≤ m–1.     (5.25)  

On the other hand, when q is greater than m, fmarks(q) corresponds to a k ratio less than 

1. Even though there are a large number of frequencies creating a given pattern, there 

are only a limited number of orders in which m consecutive marks can be left on the 

m segments to form the desired pattern. All of these possible orders are represented 

by the frequencies corresponding to k ratios greater than 1. Therefore, the frequencies 

corresponding to k ratios less than 1 can be obtained by intercalating complete parts 

rotations between the consecutive marks left on the segments at the frequencies 

corresponding to k ratios greater than 1. The frequencies corresponding to k ratios less 

than 1 are thus given by 

          fmarks(Q, nrot) = 

part

rot

error f

n

f
+

∆)(
1

1
,  (5.26) 
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where nrot is the number of complete part rotations intercalated between two 

consecutive marks. The denominator of Eq. (5.26) is the sum of the time between two 

consecutive marks for a frequency corresponding to a k ratio greater than 1 and the 

time necessary for the nrot part rotations. Furthermore, fmarks must be of the form of 

Eq. (5.19) and by considering the case of m segments, which implies µ = 0 and 

fmarks(Q, nrot) =

maxmax

1

−−

×+∆

marks

rot

marks f

mn

f

= fmarks-max/(Q + nrot × m),  (5.27) 

q can be expressed as 

             q = Q + nrot × m.    (5.28) 

Therefore, Q is first established by determining the integers comprised between 2 and 

m–1, which are not factors of m or multiples of these factors. The frequencies 

corresponding to k ratios less and greater than 1 are then evaluated with Eqs. (5.19) 

and (5.28) for predetermined values of nrot. 

 This method was applied to the calculation of the 8 largest frequencies 

consistently generating the 3 spiral pattern of Figure 5.19.a). The values of fmarks are 

summarized in Table 5.6. The two frequencies corresponding to k ratios greater than 

1, were simulated in Figure 19. Eqs. (5.19) and (5.28) were used with                   

fmarks-max = 15.05 Hz, Q = 1 and 2 and nrot = 1, 2 and 3 to compute 6 frequencies 

corresponding to k ratios less than 1. Larger numbers of part rotations could be 

intercalated but it would result in very low frequencies. The marks’ locations 

predicted with the frequencies reported in Table 5.6 are shown in Figure 5.21. All 

these simulations exhibit the same 3 spirals pattern at the part center. As fmarks and the 
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number of marks decrease, the sampled pattern can be interpreted as a different 

pattern. This is aliasing, which can occur in particular if the spirals are not identified 

near the part center like in Figure 5.21.e) where, for fmarks = fmarks-max/8, 38 potential 

spirals could be counted around the edge of the part. 

 

Q nrot q(Q, j, m) fmarks (Hz) k ratio # of marks* 

1 0 1 15.05 3.01 18,000 
2 0 2 7.525 1.51 9,000 
1 1 4 3.763 0.753 4,500 
1 2 7 2.150 0.430 2,500 
1 3 10 1.505 0.301 1,800 
2 1 5 3.010 0.602 3,600 
2 2 8 1.881 0.376 2,300 
2 3 11 1.368 0.274 1,600 

Table 5.6 Values of the frequencies creating the 3 spiral pattern of Figure 5.19 and 
corresponding number of marks (*for half of a 20 mins run). 

 

 

5.3.5 Results for the experimentally observed spirals 

The methods described in the previous section were applied to the case of the 

12 spirals highlighted in Figure 5.13.b) and repeated in Figure 5.22.a) for 

convenience. For a part rotating at 300 rpm, the maximum frequency creating 12 

segments is 60 Hz. Using trial error with the simulation tool it was determined that 

µ = –0.02, so that fmarks-max is equal to 59.9 Hz as illustrated in Figure 5.22. The 8 

largest frequencies generating a consistent 12 spiral pattern are summarized in Table 

5.7. Four frequencies correspond to k ratios greater than 1, for which q takes values 1, 

5, 7 and 11. Four frequencies corresponding to k ratios less than 1 were computed 
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with nrot = 1. Only the frequencies corresponding to k ratios greater than 1 were 

retained and plotted in Figure 5.23. It can be seen that fmarks-max is greater than any of 

the calculated and measured frequencies. On the other hand fmarks-max/5, fmarks-max/7 

and fmarks-max/11 are within the range of the calculated and measured frequencies. The 

second plot of Figure 5.23 shows that fmarks-max/7 falls within 3 % of the measured and 

calculated frequencies fpeak1 and f0. While fmarks-max/11 and fmarks-max/5 are not close to 

any calculated or measured frequencies. This seems to indicate that a frequency of the 

order of fmarks-max/7, or 8.6 Hz, is responsible for the 12 observed spirals. Based on the 

calculated frequencies, this frequency corresponds to the carrier wheel rotational 

frequency. 

This hypothesis is supported by the ability of that frequency to predict the 

patterns observed with two other part rotation speeds. These results are plotted in 

Figures 5.24 and 5.25 where the 5 and 1 spirals and their curvature are perfectly 

simulated at 100 and 500 rpm, respectively. Furthermore, a nearly invisible void was 

found on the carrier wheel that was produced by injection molding. This imperfection 

could create marks at the frequency fmarks = f0. This error would be expected to 

produce consistent marks on the part. Using the options developed for the simulator, 

it was found that scratches on the part of constant length of 0.8 mm, oriented 

perpendicular to the radial direction, explain well the details of the spiral patterns in 

the three considered cases as shown in Figures 5.26, 5.27 and 5.28, for parts at 

respectively 300, 100 and 500 rpm. The change in width of the spirals near the part 

center and the ring-like pattern toward the edge of the part are well simulated. At 300 
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rpm, the relative disappearance of these spirals away from the part center is explained 

by the presence of significant gaps between the marks away from the part center 

region. 

 

Q nrot q(Q, j, m) fmarks (Hz) k ratio # of marks* 

1 0 1 59.9 11.98 72,000 
5 0 5 11.98 2.40 14,000 
7 0 7 8.557 1.71 10,000 

11 0 11 5.446 1.09 6,500 
1 1 13 4.608 0.922 5,500 
5 1 17 3.524 0.705 4,200 
7 1 19 3.153 0.631 3,800 

11 1 23 2.604 0.521 3,100 
Table 5.7 Values of the frequencies creating the 12 spiral pattern of Figure 5.13.b) 

and corresponding number of marks (*for half of a 20 mins run). 
 

 

5.3.6 Summary of the diagnostic method for induced residual marks 

A diagnostic method for the spiral marks induced by UFF and similar 

processes has been derived in the previous sections. That method, used in section 

5.3.4, relies on a tool marks simulator, the measurement and calculation of candidate 

frequencies as well as the evaluation of all the frequencies generating the observed 

pattern. The source of the marks is identified by matching a frequency predicting the 

observed pattern and a measured and/or calculated frequency or by finding the 

frequency that consistently explains the patterns observed as process parameters, such 

as part rpm, are varied. The diagnostic method can be summarized with the following 

steps: 
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i) Calculate and measure the candidate frequencies. 

ii) Identify the number of spirals m. 

iii) Calculate fmarks-max for m segments, according to Eq. (5.18) with µ = 0. 

iv) Use the trial-error method to find µ producing the right curvature and evaluate 

fmarks-max for the m spirals, according to Eq. (5.18). 

v) Establish Q satisfying Eq. (5.25) and not Eq. (5.24). 

vi) Compute relevant frequencies with Eqs. (5.19) and (5.28). 

vii) Identify the actual frequency responsible for the observed pattern by matching 

one of the frequency established as predicting the observed pattern to a calculated 

frequency and/or by picking the frequency that consistently predicts the pattern while 

different values of part rpm are used. 
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Figure 5.1 Principle of the numerical simulations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 1 Generate the reference profile 

Effect of the error = actual profile – reference profile 

Step 2 
Generate the actual profile taking into account the 

machine or process error 

Step 3 
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Figure 5.2 Detailed procedure for the numerical simulations. 
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Figure 5.3 Static removal functions used for numerical simulations. 
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Figure 5.4 Error free removal function and induced alterations 
a) error free removal function; 

b) shift in x by ∆x = 1 mm; 
c) shift in y by ∆y = 1 mm; 

d) size scaling, new size is 0.9 times the original size; 
e) amplitude scaling, new amplitude is 1.1 times the original amplitude. 
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b) shift in x 

c) shift in y 

d) size scaling e) amplitude scaling 
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Figure 5.5 Effect of shifts in x of the elliptical Hertzian removal function 
a) error-free elliptical Hertzian removal function; 

b) desired, reference and actual profiles for ∆x = 1 mm; 
c) desired, reference and actual profiles for ∆x = -1 mm. 

 

 

 

 
b) Desired and predicted removal profiles with ∆∆∆∆x = 1 mm 

 

 
a) Error-free 

virtual removal function 

c) Desired and predicted removal profiles with ∆∆∆∆x = -1 mm 
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Figure 5.6 Effect of shifts in y of the elliptical Hertzian removal function 
a) error-free elliptical Hertzian removal function; 

b) desired, reference and actual profiles for ∆y = 1 mm; 
c) desired, reference and actual profiles for ∆y = -1 mm. 

 

 

 

 
b) Desired and predicted removal profiles with ∆∆∆∆y = 1 mm 

 

a) Error-free 

virtual removal function 

c) Desired and predicted removal profiles with ∆∆∆∆y = -1 mm 
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Figure 5.7 Effect of shifts in x of the real removal function 
a) error-free removal function; 

b) desired, reference and actual profiles for ∆x = 1 mm; 
c) desired, reference and actual profiles for ∆x = -1 mm. 

 

 

 

 

b) Desired and predicted removal profiles with ∆∆∆∆x = 1 mm 

 

a) Error-free 

real removal function 

c) Desired and predicted removal profiles with ∆∆∆∆x = -1 mm 
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Figure 5.8 Effect of shifts in y of the real removal function 
a) error-free removal function; 

b) desired, reference and actual profiles for ∆y = 1 mm; 
c) desired, reference and actual profiles for ∆y = -1 mm. 

 

 

a) Error-free 

real removal function 

 

 

b) Desired and predicted removal profiles with ∆∆∆∆y = 1 mm 

 

c) Desired and predicted removal profiles with ∆∆∆∆y = -1 mm 
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Figure 5.9 Effect of a change in amplitude of the removal function. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Desired and predicted removal profiles with amplitude of the initial 

removal function multiplied by 0.9 
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Figure 5.10 Effect of a change in size of the removal function while the volumetric 
removal rate is kept constant 

a) desired, reference and actual profiles with size and amplitude multiplied by 0.9 
and 1.25, respectively; 

b) desired, reference and actual profiles with size and amplitude multiplied by 1.1 
and 0.83, respectively. 

 

 

 

 

a) Desired and predicted removal profiles with size and amplitude of 

the initial removal function multiplied by 0.9 and 1.25, respectively 

 

b) Desired and predicted removal profiles with size and amplitude of 

the initial removal function multiplied by 1.1 and 0.83, respectively 
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Fig. 5.11 Effect of a systematic clock error. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12 Effect of two simultaneous errors, ∆x = 1 mm and ∆y = 0.75 mm. 
 

 

 

 

 

Desired and predicted removal profiles with systematic clock error of 10 ms 

 

Desired and predicted removal profiles with ∆∆∆∆x = 1 mm and ∆∆∆∆y = 0.75 mm 
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Figure 5.13 Raw and filtered measurement of part polished at 300 rpm 
a) interferometric measurement. 

b) after high pass average filtering. 
 

 

 

 

 

 

 

 
  

a) 

b) 

28.4 mm 



 

 

211 

 

 

 

 

 

 

 

 

 

 

Figure 5.14 Composite images showing the induced marks at 
a) 100 part rpm; 
b) 500 part rpm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.15 Piecewise linear functions for rtool(t) and θ part(t). 
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Figure 5.16 Geometry of a ball bearing. (Figure taken from [19]) 
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Figure 5.17 Power spectral density (PSD) plots for actual vibrations measurements in 

the x and y directions. 
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Figure 5.18 Simulations with the 9 candidate frequencies of table 5.5. 
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Figure 5.19 3 spirals patterns achieved with the tool path file used to polish the part 
shown in Figure 5.13, fpart = 5 Hz and 

a) fmarks = 15.05 Hz; 
b) fmarks = 0.5*15.05 = 7.525 Hz. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.20 Schematic of a part with a pattern consisting of 4 segments. 

 

 

 

 

1 3 

2 

4 

Segment # 

fmarks fmarks a) 
 

b) 
 



 

 

216 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.21 3 spirals patterns achieved with the 6 lower frequencies of Table 5.6. 
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Figure 5.22 Observed and simulated patterns with fmarks = 59.9 Hz 

and part at 300 rpm. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.23 Plots of the candidate frequencies: calculated, measured and predicting 

the observed pattern. 
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Figure 5.24 Observed and simulated patterns with fmarks = 59.9/7 Hz 

and part at 100 rpm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.25 Observed and simulated patterns with fmarks = 59.9/7 Hz 

and part at 500 rpm. 
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Figure 5.26 Observed and simulated patterns with fmarks = 59.9/7 Hz, part at 300 rpm 
and scratches of constant length equal to 0.8 mm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.27 Observed and simulated patterns with fmarks = 59.9/7 Hz, part at 100 rpm 
and scratches of constant length equal to 0.8 mm. 
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Figure 5.28 Observed and simulated patterns with fmarks = 59.9/7 Hz, part at 500 rpm 
and scratches of constant length equal to 0.8 mm. 
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Chapter 6 Summary and suggestions for future work 

6.1 Summary 

This thesis provides a basis for deterministic polishing with UFF so that this 

process can be operated according to the flow chart of Figure 1.7 for aspheres and 

ogives polishing. For that purpose, the form correction problem for rotationally 

symmetric errors of axisymmetric workpieces has been addressed as well as the 

problem of establishing a collision free tool path. Some of the properties of the UFF 

removal function have been characterized. Its predictability as a function of the 

process parameters with classical contact mechanics theory and Preston’s equation 

has been investigated. Potential sources of errors that may create discrepancies 

between actual and predicted removal profiles and their effect have been examined. 

The origin of induced tool marks taking the form of spirals has been identified. The 

methods developed in this thesis could be applied to other deterministic polishers. 

 

The form correction problem was formulated by deriving an equation for the 

depth of removal for a given removal function and tool crossfeed velocity. Because of 

the relatively large size of the UFF removal function, the removal profile is given by 

the convolution of an equivalent one-dimensional removal function and the tool 

crossfeed velocity. The form correction problem, which consists in adjusting the tool 

crossfeed velocity to achieve a desired removal profile, was treated by discretizing 

the tool path and rewriting the equation for the depth of removal in matrix form. The 

discrete depth of removal profile is then the product of a removal matrix and a vector 
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having for elements the inverse of the tool crossfeed velocity along the tool path. 

Closed form expressions have been derived for the computation of the removal matrix 

in the case of plano and spherical parts. An approximate formulation has been 

introduced for aspheres and ogives. To take into account the variations of the removal 

function, the removal matrix is computed in a fashion such that a different removal 

function can be used at every point of the discretized tool path. A method establishing 

the tool crossfeed velocities such that they are feasible, i.e. such that the tool’s 

velocity and acceleration constraints are satisfied, and produce a removal profile with 

minimum deviation from the desired removal profile has been developed. Because of 

the convolution nature of the problem, the problem is ill-conditioned and can lead to 

non-satisfactory solutions. Therefore, the problem is formulated as a constrained 

optimization problem and Thikhonov regularization was used to overcome this issue 

by including the smoothness of the crossfeed velocity solution in the objective 

function to minimize. 

 

Algorithms establishing a collision free tool path have been developed. They 

define the safe positions that the tool can occupy to polish the part by finding the tool 

B angle that prevents tool part collisions. These algorithms are based on a two- 

dimensional model that detects tool-part collision and search strategies for safe values 

of B. The two-dimensional model consists of a discretized profile of the part and a 

region of the plane representing the tool interior region that could interfere with the 

part. Fast and robust search strategies have been derived for B by defining pertinent 
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starting points and favoring the most likely successful search direction based on the 

specificity of deep, ogive-like, concave surfaces. 

  

 The effect of process parameters on the removal function as well as the 

predictability of this function as these parameters vary has been investigated. The 

applicability of Preston’s equation to relate the removal function to the contact 

interfacial pressure distribution, relative velocity between the part and abrasive was 

examined. This equation predicts a linear relation between removal and dwell time, 

relative velocity and pressure. In the case of UFF, the linear relation was observed 

with dwell time and pressure. However, removal appears to vary linearly with the 

relative velocity to the power 4/5. This power law dependence between removal and 

relative velocity was taken into account in a generalized form of Preston’s equation. 

This equation predicts the removal function as a function of the interfacial pressure 

distribution. Hertz contact mechanics theory was considered to establish the size of 

the contact patch and this interfacial pressure distribution. It was shown that with 

UFF, the generalized Preston coefficient is a function of the part radii of curvature. 

Removal spots were made with wheels of various durometers on parts with different 

geometries to evaluate the generalized Preston coefficient and the predictability of the 

removal function. The generalized Preston coefficients obtained with the different 

carrier wheels and part geometries were of the order of values reported for other 

polishing processes. A good predictability of the removal function on convex surfaces 

with hard carrier wheel was also observed. A similar predictability of the removal 



 224 

function on plano parts as a function of tool compression was also shown. However, 

Hertz theory was inaccurate for soft carrier wheels and concave surfaces. 

The difficulty of predicting the removal function was overcome by correcting 

the removal matrix obtained with an approximate removal function so that actual and 

predicted removal profiles agree. This method uses scaling factors by which each line 

of the removal matrix is multiplied. This method was used to perform successful form 

corrections on aspheres with significant part radii of curvature variations. 

The preferred configuration for tool positioning is to have tool and part local 

normals aligned. However to prevent tool-part collisions, the angle α between those 

normals has to vary. α was shown to affect the tool stiffness, resulting in load and 

therefore, removal function variations. Moderate, 12%, and large, 40%, stiffness 

variations were observed for α in the ranges [0º 75º] and [75º 90º], respectively. 

Finally, removal spots made on various materials indicated a fair linear 

relation between material volumetric removal rate and a mechanical figure of merit 

including the material’s Young modulus, fracture toughness and Knoop hardness. 

This is in agreement with observations made for other processes and allows for rough 

material removal rate estimates prior to making removal spots. 

 

 Sources of errors that may affect the predicted removal profile were 

examined. For that purpose, the potential errors were identified to be inaccurate 

desired removal profile, tool improper positioning and motion and unexpected 

changes in removal function. These errors were modeled to perform simulations 
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revealing the induced discrepancies between predicted and actual removal profiles. 

The effects were showed to depend strongly on the removal function, requiring 

specific simulations for every removal function of interest. However, numerical 

simulations showed that the center region of the part is particularly sensitive to these 

errors. The difficulty to diagnose such errors can potentially be overcome with the 

correction method also used to account for variations of the removal function. 

Tool marks induced by UFF and taking the form of spirals have been 

observed. Their number and curvature were shown to be a function of part rotational 

speed. These marks were explained by a mark generation model assuming that the 

tool leaves marks on the part at a constant frequency. It was found that multiple 

frequencies can create the same pattern. A method establishing all the frequencies 

that can create a given pattern was developed. The physical cause for these marks was 

established by calculating candidate frequencies taking into account potential sources 

of marks on the tool and by measuring the tool vibrations. It was concluded that the 

observed spirals were generated by marks left at a frequency matching the rotational 

frequency of the carrier wheel. The cause of these marks was found to be a small void 

present on the carrier wheel’s periphery. 

 

6.2 Suggestions for future work 

 The work presented in this thesis provides a baseline for deterministic 

polishing with UFF. This work can be extended in the major areas covered by the 

present work, namely algorithms for form correction and tool path geometry, as well 
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as removal function studies to improve the UFF process and expand its capabilities. 

In particular, correction of non-rotationally symmetric errors and polishing of 

freeform surfaces or parts with diameters exceeding the machine’s current capabilities 

could be considered. The algorithms needed for the various form correction problems 

are also of interest to other figuring processes. 

 

6.2.1 Form correction 

The current solution for form correction has been used to achieve form errors 

of less than 0.5 µm PV. Non-rotationally symmetric errors, such as astigmatism, 

become predominant in this range of form errors. These errors can not be reduced 

with the current form correction algorithms, since they only address rotationally 

symmetric errors. To significantly improve form errors, on the order of 0.1 µm PV 

and below, it will be necessary to correct for these non-rotationally symmetric errors. 

The correction of these errors requires variations of the tool dwell time not 

only as a function of the tool radial position but also as a function of its angular or 

azimuthal position on the part. For that purpose, the part rotational speed must be 

varied during each revolution to dwell appropriately over high and low spots. 

This problem can be addressed in a fashion similar to the one used for the 

axisymmetric approach reported in this thesis. For that purpose, the form correction 

problem must be formulated in matrix form such that the two-dimensional removal 

map resulting from given tool crossfeed velocities and part rotational speeds can be 

computed. For this approach the tool path must be discretized radially and 
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azimuthally. The removal map will then be the sum of the removal functions at these 

discrete points multiplied by the respective tool dwell times. This complete two-

dimensional model will accurately model removal and its formulation is relatively 

simple. However, it will require large matrices which will be time consuming to 

compute. 

On the other hand, as suggested by Walker et al. [1] in the case of the Zeeko 

Precessions process, an approximate and possibly satisfactory solution could be 

derived based on the form correction algorithms for rotationally symmetric errors. In 

the case of parts with non-rotationally symmetric errors, by inputting a part profile 

formed of azimuthal averages of the part full map measurement, the present form 

correction algorithms output the tool dwell time that will correct this averaged 

azimuthal error at a given radial position. This result is the total dwell time for this 

radial position. At this radial position, the part circumference can be divided into arcs 

to which a corresponding fraction of the total dwell time can be associated. The dwell 

time in each separate region could then be adjusted to compensate for the difference 

between averaged and actual form error while maintaining a constant dwell time for 

that radial position. This approach would be relatively simple to implement. 

However, this is only expected to be accurate for non-rotationally symmetric errors 

slowly varying in the radial and azimuthal directions, so that the error is relatively 

uniform over the extent of the removal function. The solution must also be 

established such that constraints on the part rotational velocity and acceleration are 

satisfied. 
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It must be noted that according to Eqs. (4.9), (4.10) and (4.11), the removal 

functions which are required to determine the part rotational speed for form 

correction are function of that speed through the relative velocity, vrel, between the 

abrasive and the part. Therefore, to simplify the problem it will be desirable to make 

vrel relatively insensitive to the part rotational speed. This can be achieved by using 

relatively large band velocities or low part rotational speeds. 

 

The next challenge is deterministic polishing of non-axisymmetric or freeform 

surfaces. Polishing of such shapes will typically require a spiral or raster tool path 

across a static part. With these shapes, the form correction problem can only be 

treated with a complete two-dimensional model for removal such as the one described 

previously.  

 

Polishing the edge of a part is a problem for figuring processes involving 

contact between the tool and part and it has not yet been addressed for UFF. As a 

result of the tool overhanging the edge of the workpiece, the edge is typically turned 

down. Greater removal at the part edge is likely due to an increase of the interfacial 

pressures as the contact area decreases. Work could be done to predict the removal 

function as the tool overhangs the part edge. However, this is a very difficult contact 

problem. A solution, preventing this issue, could consist in adding a ring, or border 

piece [2] to extend the part, as Jones [2], Walker et al. [3] and Brown [4] suggested. 

This is convenient from an algorithm point of view as the removal function will not 
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dramatically change, but it is not very practical as each part needs its own customized 

disposable ring. Instead, it is suggested to continuously lift the tool as it reaches the 

edge of the part to adjust the size of the contact patch so that│y0│+ Ly is equal to half 

the part diameter as illustrated in Figure 6.1. The goal is to prevent the tool from 

overhanging the part edge. For UFF, this strategy has also the advantage of 

preventing band damages induced by the part’s edge. However, the reduction in size 

and amplitude of the removal function as the tool is lifted up might produce low 

removal rates that would significantly increase the process time. This potential 

problem could possibly be overcome by increasing the band velocity. The feasibility 

of this approach depends on the predictability of removal function as a function of the 

displacement of the tool into the part, δ, and if a crossfeed velocity solution producing 

the desired depths of removal can be established. In Chapter 4, it was shown that the 

removal function can be fairly well predicted as a function of δ on plano parts. 
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Figure 6.1 Edge strategy. 

 

The present algorithms for form correction minimize the PV error of the 

predicted form. It might also be desirable to reduce the residual slope errors of the 

predicted surface. Periodic slope errors can take the form of midspatial frequency 

error and therefore, might cause light scattering [5, 6]. To reduce slope errors, it is 

suggested to modify the formulation of the form correction problem to include the 

minimization of the profile slope errors within the objective function or within the 

constraints. 
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6.2.2 Tool path geometry 

Faster search strategies for B angles producing safe tool-part contact could be 

investigated. The algorithms for tool path geometry could also be modified to expand 

the machine capabilities beyond the initial maximum part diameter specification of 

150 mm. The current model for tool-part collision only takes into account the tool and 

machine elements that might interfere with parts of diameter less than 150 mm. By 

including machine elements that would interfere with oversized parts in the tool-part 

collision model, tool part collisions could be prevented for these parts as well and 

therefore, make it geometrically possible to polish such shapes. In the case of 

oversized parts, the limits on y and z tool translations should also be taken into 

account while searching for a safe B angle. 

Specific algorithms will be needed to deal with freeform surfaces. A full 

three-dimensional model will be needed to model tool part collisions and the desired 

tool-part contact configurations will have to be defined as a function of the part local 

normal orientation. 

 

6.2.3 Removal function 

The correction method introduced in Chapter 4 alleviates the need for a 

precisely predictable removal function in the case of rotationally symmetric errors. 

However, the process could be improved if the removal function was well predicted 

as a function, in particular, of the part local radii of curvature. This information is 

necessary to formulate the complete two-dimensional model for non-rotationally 
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symmetric errors and non-axisymmetric parts. In this thesis, the removal function has 

been expressed with Eq. (4.9) as a function of the contact interfacial pressure 

distribution and a generalized Preston coefficient which have to be predicted as a 

function of process parameters. 

As for Yang et al. [7], the generalized Preston coefficient could be expressed 

empirically as a function of the part local radii of curvature. In the present work, it 

has been shown that the measured pressure distribution is in good agreement with the 

pattern of the removal spot, as suggested by Eq. (4.14). Furthermore, the size of the 

contact patch and pressure distribution can be fairly well predicted using Hertz 

contact mechanics theory with hard carrier wheels on convex surfaces. With such 

wheels and part geometries, the discrepancies between actual and predicted removal 

function are essentially due to slight differences between actual and predicted 

removal pattern, such as the region of maximum removal being slightly off center in 

reality. This issue could potentially be addressed by evaluating numerically the actual 

pressure distribution from the measurement of a removal spot according to Eq. (4.14). 

That actual pressure distribution could be used to define the pattern of the pressure 

distribution as the removal function size and amplitude vary. This can be achieved by 

stretching the “pressure reference” Eq. (4.14) to match the size of the predicted 

contact patch and applying a scaling factor to the pressure distribution. This factor 

would be chosen so that the integral of the new pressure distribution over the 

predicted contact patch is equal to the force measured or predicted by Hertz theory. 

Corrections to Hertz theory might also be needed to achieve a better accuracy. 
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The use of that approach for softer carrier wheels which exhibit non-Hertzian 

pressure distributions could be investigated under the assumption that Hertz theory 

can predict fairly accurately the size of the removal function and the actual load in 

these conditions. If Hertz theory is not satisfactory for soft bodies, possible 

corrections to the theory could be investigated. The use of empirical approximations 

based on experimental result, as in Yang et al. [7], or finite element analysis could 

also be considered to predict the size of the contact patch and the interfacial pressure 

distribution. 

Hertz contact mechanics theory was also shown to inaccurately predict size 

and amplitude of the removal function on concave surfaces. This is because in that 

case a conformal contact problem arises. Since Hertz theory is only appropriate for 

non-conformal contact [8], another approach is needed for concave surfaces. For 

spherical and cylindrical contacting bodies, Steuermann [9, 8] has expressed the 

pressure distribution as an infinite series of known functions. However, for more 

general cases, such as UFF, a closed form solution to the conforming contact problem 

cannot be achieved. In that case it is necessary to use numerical methods such as the 

ones reported by Johnson [8] and Liu et al. [10]. The feasibility and accuracy of such 

methods for UFF could be investigated. The results could be compared to finite 

element analysis of the conformal contact problem. 

The tool-part contact problem is complicated, because the tool is a composite 

body including rubberlike materials on which a band is wrapped. This is part of the 

reason why it is difficult to derive a closed form solution to this problem. Instead 



 234 

methods that rely on a pressure distribution estimated from a removal spot have been 

suggested. A better understanding of the contact problem could be gained by building 

a finite element model for the contact of the tool with the ABAQUS finite element 

analysis software [11]. If this model is able to predict the actual interfacial pressure 

distributions with some accuracy, it could be used to characterize the effect of the part 

geometry, carrier wheel geometry and durometer, band thickness and rigidity on the 

interfacial pressure. This could lead to prediction of interfacial pressure distributions 

as a function of these parameters. A better understanding of the role of the band in the 

contact problem could also be possible as well as a better insight into the compliance 

at the contact that might help in explaining and predicting the removal of cutter 

marks. 
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Appendix 1 Initial operations 

1.1 Description 

Initial operations are run before the main algorithms used for generating the 

tool path geometry and form correction. The initial operations consist of two utilities 

used successively. They discretize the part and tool path and evaluate the part 

principal radii of curvature along the tool path. For that purpose, the MATLAB 

function InitialOperations.m, copied at the end of this section, calls successively the 

functions ProfileDiscretizer.m and PartPrincipalRoCEstimator.m. The operations 

performed in these MATLAB functions are described in details in sections 1.2 and 

1.3. 

 

ProfileDiscretizer.m discretizes the part profile. It is used to create the part 

model for tool-part collisions presented in Chapter 3 and the points along the part 

profile needed to compute the solution to the form correction problem as described in 

Chapter 2. For the computation of the removal matrix, the removal function is 

assumed to be constant over the prescribed arc length, Larc. Therefore, the mid-points 

of these arcs are needed to compute the removal matrix. The extremities of these arcs 

are also needed to formulate the tool path commands as defined in Chapter 3. 

Therefore, it is desirable to have the part profile discretized at an arc length equal to 

half the desired value, because it will provide the points for removal computation and 

tool path geometry definition with one execution of the function. As mentioned in 

section 2, using half the desired arc length will also improve the accuracy of the 
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computed points. Therefore, ProfileDiscretizer.m performs the discretization at half 

the desired arc length. The coordinates of the discretized points are stored in the 

matrix TPDiscreteProfile. The matrix PDiscreteProfile contains the points used to 

model the part to predict tool-part collisions. They are obtained by sampling 

TPDiscreteProfile to keep the points separated by the desired arc length. Additional 

points representing the edge are added for concave surfaces. If the part has no 

physical center, that region can be ignored, or replaced by a series of points forming a 

horizontal line that could model part fixtures that could collide with the tool. 

TPDiscreteProfile will also be sampled as needed to select the relevant points for the 

form correction and tool path geometry algorithms described in Chapters 2 and 3, 

respectively. 

 

PartPrincipalRoCEstimator.m evaluates the part principal radii of curvature at 

the points where the removal function has to be known for removal computation. 

These radii of curvature are needed to take into account the variations of the removal 

function as described in Chapter 4. 

 

 

Code of the MATLAB function InitialOperations.m 

function [TPDiscreteProfile,PDiscreteProfile,PartRadiiOfCurv] = 
InitialOperations(Larc) 
% InitialOperations: Function performing the preliminary operations 
needed 
% for the tool path server 
% Reference: Appendix 1 on "Initial operations" 
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% Inputs: Scalar equal to the desired arc length between the 
discretized 
% points. 
% Outputs: Matrices containing the discretized part and tool path. 
Matrix 
% containing the part principal radii of curvature along the tool 
path. 
  
global Pgeom TPgeom 
  
% Run the profile discretizer. 
% Define the matrix containing the discretized tool path. 1st 
column: y. 
% 2nd column: z. 
if sign(TPgeom(1))~=sign(TPgeom(2)) 
    TPDiscreteProfile=ProfileDiscretizer(0,TPgeom(2),Larc); 
else 
    TPDiscreteProfile=ProfileDiscretizer(TPgeom(1),TPgeom(2),Larc); 
end 
  
% Define the matrix containing the discretized part profile. 
PDiscreteProfile=ProfileDiscretizer(Pgeom(1),Pgeom(2),Larc); 
% Sample to achieve desired arc length. 
PDiscreteProfile=PDiscreteProfile(1:2:size(PDiscreteProfile,1),:); 
% Add flat at center if needed. 
if Pgeom(4)==1 
    Pcenter=(0:Larc:PDiscreteProfile(1,1)-Larc)'; 
    
PDiscreteProfile=[Pcenter,ones(size(Pcenter,1),1)*zPart(Pgeom(1));PD
iscreteProfile]; 
end 
% Add the part edge for concave surfaces. 
if Pgeom(3)==1 
    Pedge=(Pgeom(2):Larc:Pgeom(2)+Pgeom(5))'; 
    if Pedge(size(Pedge,1))~=Pgeom(2)+Pgeom(5) 
        Pedge=[Pedge;Pgeom(2)+Pgeom(5)]; 
    end 
    
PDiscreteProfile=[PDiscreteProfile;Pedge,ones(size(Pedge,1),1)*zPart
(Pgeom(2))]; 
end 
  
% Run the estimator for the part principal radii of curvature. 
% Define the matrix containing the part principal radii of curvature 
along 
% the tool path. 1st column: y. 2nd column: Rpx. 3rd column: Rpy. 
[PartRadiiOfCurv]=PartPrincipalROCEstimator(TPDiscreteProfile); 
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1.2 Profile discretizer 

A matrix approach is used to solve the form correction problem. This 

approach is based on a discretization of the tool path. A discrete representation of the 

part profile is also needed for the tool path geometry algorithms. For both cases, a 

profile discretizer is needed. The point spacing is defined as the arc length, Larc, along 

the part profile between two consecutive discretized points. For the problems 

addressed in this work, a constant point spacing is desired. 

 

Because the parts are axisymmetric, only half of the part profile is discretized, 

starting from the part center or its inner edge, if the part has no physical center. 

Uniform arc length between discretized part points can be simply achieved for flats 

and spheres. For flats, points equidistantly spaced along y are satisfactory. For 

spheres, the spherical coordinates shown in Figure 2.2 are used, and points of the part 

profile separated by a constant angular increment ∆φ can be selected. On the other 

hand, for aspheres, which can take a large variety of shapes, there is no convenient 

way to simply and quickly achieve such a discretization. Therefore, a robust method 

for the uniform discretization of all kind of parts profile is needed. 

 

Algorithms for general shapes are derived by approximating the arc length 

from one point along the part profile by the length along the tangent to the curve at 

that point. This approximation, illustrated in Figure A.1, is valid, because the desired 

arc length is low, typically 0.1 mm, and because most part profiles and their 
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derivative with respect to y are continuous functions of y. In the case of a larger arc 

length, the accuracy can be improved. For that purpose, the profile is discretized with 

an arc length equal to the desired one divided by an integer n, chosen so that the arc 

length becomes small enough for the approximation to hold. By selecting every n 

points of the resulting discretized profile, a discretization with the desired arc length 

can be achieved. The case n = 2 is illustrated in Figure A.2. Similarly, in the present 

algorithms, one intermediate point and therefore, half of the desired arc length is 

actually used. The algorithms take for inputs the y values, ymin and ymax, between 

which the part profile must be discretized and Larc. They output the discretized profile 

in the form of a matrix. The first and second columns of this matrix contain the y and 

z values, respectively, of the points forming the discretized profile. 

 

The algorithms contained in ProfileDiscretizer.m, copied at the end of this 

section, perform the following operations. For a point of abscissa y1, the abscissa y2 of 

the point situated on the part profile, such that y2  >  y1 and the arc length between 

these two points is Larc, is approximately given by 

212
1 slope

L
yy arc

+
+= ,   (A.1) 

where slope is the slope of the tangent to the part profile at y1, such that 

y

yyzyz
slope PartPart

∆
∆−−

=
)()( 11 ,   (A.2) 

where ∆y is a small increment in y. Eq. (A.2) uses a backward difference to 

approximate slope. A forward approximation is not used, because it might result in 
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attempts at evaluating zPart at points passed the range over which it is defined. This 

could in particular occur near the edge of hemispheres or tangent ogives. Starting 

with y1 = ymin, y2 is computed with Eqs (A.1) and (A.2). y1 is set equal to y2 and the 

process is iterated while y2 is lower than ymax. Once y2 becomes larger than ymax, the 

code is stopped and the last, out of range, point is removed.  

 

The accuracy of the profile discretizer can be verified with hemispheres. The 

arc length between two points situated on these profiles is equal to half the part 

diameter times the difference of the φ coordinates of these points. For a programmed 

arc length of 0.1 mm, the profile discretizer establishes points separated by an arc 

length within 1% of the desired value for points up to 0.2 mm from the part edge in 

the case of parts of diameters ranging from 40 to 150 mm. 
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Figure A.1 Illustration of approximation to establish points spaced by the desired arc 

length. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure A.2 Illustration of the use of intermediate points to improve the arc length 
spacing between the selected points. 

z 

y1 y2 
y 

Larc 

tangent to zPart at y1 

zPart(y) 

y1 y2 
y1 y2 

y 

Larc/2 

Larc/2 

intermediate point 

points to select z 

zPart(y) 

iteration j 
iteration j+1 



 243 

Code of the MATLAB function ProfileDiscretizer.m 

function DiscreteProfile = ProfileDiscretizer(ymin,ymax,Larc) 
% ProfileDiscretizer: Function discretizing the part profile such 
that the 
% arc length between two consecutive points is constant. 
% Reference: Appendix 1 on "Initial operations" 
% Inputs: Scalars equal to the desired extremities of the 
discretized 
% profile and arc lenght between the discretized points. 
% Outputs: Matrix containing the discretized profile. 
  
Larc=Larc/2; % arc length spacing in mm used for the computations 
deltay=10^(-9); % small increment in y used for evaluation of the 
slope 
  
y1=ymin; 
% Define the matrix DiscreteProfile containing the discretized 
profile: 1st 
% column: y values, 2nd column: z values 
DiscreteProfile=[y1,zPart(y1)]; 
k=1; 
while y1<=ymax 
    k=k+1; 
    % estimate the slope of the tangent to the part profile at 
    % (y1,zPart(y1)) 
    a=(zPart(y1)-zPart(y1-deltay))/deltay; 
    % Compute y2 
    y2=y1+Larc/(1+a^2)^0.5; 
    % Store the point 
    DiscreteProfile(k,1)=y2; 
    DiscreteProfile(k,2)=zPart(y2); 
    % Set y1=y2 for the next iteration 
    y1=y2; 
end 
% Remove the last line for which y1>rmax 
DiscreteProfile(size(DiscreteProfile,1),:)=[]; 
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1.3 Part principal radii of curvature 

 The part principal radii of curvature are needed to predict the variations of the 

removal function on aspheres and ogives. These radii of curvature are evaluated by 

the MATLAB function PartPrincipalROCEstimator reported at the end of this 

section. These algorithms take for inputs TPDiscreteProfile, the matrix containing the 

discretized tool path established as described in section 1.2. Because the parts are 

axisymmetric, only the half of the part profile corresponding to y ≥ 0 needs to be 

discretized. For the same reason, the part principal radii of curvature only need to be 

computed for that same half of the part profile. 

 

The starting point for the computations of these radii of curvature is the 

following equation defining the radius of curvature of f(x) at x0 
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Based on this mathematical definition, the radius of curvature of f(x) is always a 

positive value. Therefore, the convex or concave nature of f(x) cannot be determined 

based on the value of its radius of curvature. But in the optics world, sign 

conventions, which vary depending on the context, are used to distinguish convex and 

concave surfaces. For the problem of predicting the removal function it is also desired 

to know if the surface is locally concave or convex through its radius of curvature. To 
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determine if the part is locally convex or concave, the part principal radii of curvature 

are evaluated with a modified version of Eq. (A.3) in this work. The modification 

consists in having the denominator of Eq. (A.3) equal to the second derivative of f(x) 

evaluated at x0 instead of its absolute value. 

The part principal radii of curvature RPx and RPy are defined in Chapter 4 and 

given by 
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where fP(x) is the intersection of the part surface and the plane xT-zT, as shown in 

Figure 4.9. The coordinate system (xT, yT, zT) is defined in Chapter 4.  fP(x) is such 

that fP(0) = 0 and basically gives the value of the coordinate zT of the points of the 

part surface intersecting with xT-zT. Because z and zT are oriented positively out of the 

surface to polish, concave and convex surfaces would imply positive and negative 

denominators, respectively, in Eqns (A.4) and (A.5). Therefore, positive and negative 

values of RPx and RPy indicate concave and convex surfaces, respectively. 
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Approximations are used to evaluate the first and second derivatives of fP(x) 

and zPart(y) at the points of interest. To insure that zPart is evaluated at points within 

the range on which it is defined, forward 
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and backward 
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differences are used to estimate the first and second derivatives of zPart(y) for the first 

and second half, respectively, of the points forming TPDiscreteProfile. 

The algorithms of PartPrincipalROCEstimator store the y coordinates of the 

points of TPDiscreteProfile which are of interest into the vector yPts. The values 

contained in that vector are used to compute deriv1 and deriv2, the first and second 

derivatives, respectively, of zPart with respect to y0 according to Eqns (A.6) through 

(A.9). These values are then used to compute RPy according to Eq. (A.4). 

 

The first and second derivatives of fP are established by only using the 

following forward approximation 
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These two approximations are illustrated in Figure A.3. The points F, G and H of 

coordinates (0, 0, 0), (∆x, 0, fP(∆x)) and (2∆x, 0, fP(2∆x)), respectively, in the 

coordinate system (xT, yT, zT) are used to derive Eqs (A.10) and (A.11). In order to 

establish fP(∆x)) and fP(2∆x) for a given y0, the coordinates of F, G and H are first 

established in the coordinate system (x, y, z).  In that coordinate system, F has the 

coordinates (0, y0, zPart(y0)). G and H are defined as the intersections of the part 

surface and the plane xT-zT at x = ∆x and 2∆x, respectively. In (x, y, z), the plane xT-zT, 

named Pn, is described by 

       )()(),( 000 yzyySLOPEyyzz PartPn +−×== ,   (A.12) 

where SLOPE is the slope of the normal to zPart at y0. That slope is the opposite of the 

inverse of the slope of the tangent to zPart at y0. Therefore, 
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The points G and H have the coordinates (∆x, yG, )( 22
GPart yxz +∆ ) and 

(2∆x, yH, ))2(( 22
HPart yxz +∆ ), respectively, in (x, y, z). Because G and H belong to 

Pn and the part surface, yG and yH are such that 
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Therefore, yG and yH are obtained by finding the roots, near y0 of the functions 
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respectively. The built-in MATLAB function fzero.m is used to find the desired roots 

of f1 and f2. 

The zT coordinates, which are the needed values of fPn, of the points G and H 

are finally obtained by performing a coordinate transformation from (x, y, z) to 

(xT, yT, zT). These coordinate systems are illustrated in Figure A.4. Therefore, since zT 

is oriented positively out of the part and fn(0) = 0, 
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where α, the angle between the normal to the part surface at y0 and the z axis, is 

defined by 
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Using the method and the equations presented in this section, 

PartPrincipalRoCEstimator.m estimates the part principal radii of curvature along the 

tool path. The output is a matrix having three columns. The first column contains the 
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y values of the tool path points at which the values of RPx and RPy, contained in 

columns two and three, respectively, have been evaluated. 

 

The accuracy of PartPrincipalRoCEstimator.m has been verified with spheres 

of diameters ranging from 10 to 150 mm. In all cases, within 0.1 mm of the part edge, 

the algorithms predicted radii of curvature within 1% of the actual value, that is equal 

to half the part diameter. 

 

 

 

 

 

 

 

 

 

 

 

Figure A.3 Numerical approximation of RPx. 
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Figure A.4 Coordinate systems (x, y, z) and (xT, yT, zT). 

 

 

 

Code of the MATLAB function PartPrincipalROCEstimator.m 

function [PROC] = PartPrincipalROCEstimator(TPDiscreteProfile) 
% PartPrincipalROCEstimator: Function discretizing the part profile 
such 
% that the arc length between two consecutive points is constant. 
% Reference: Appendix 1 on "Initial operations" 
% Inputs: Scalars equal to the desired extremities of the 
discretized 
% profile and arc lenght between the discretized points. 
% Outputs: Matrix containing the discretized profile. 
  
% Declare as global the variables needed to evaluate f1 and f2. 
global deltax SLOPEii y0 
  
% Store the y coordinates of the points of TPDiscreteProfile used 
for 
% computations. 
if TPDiscreteProfile(1,2)==0 
    yPts=TPDiscreteProfile(1:2:size(TPDiscreteProfile,1),1); 
else 
    yPts=TPDiscreteProfile(2:2:size(TPDiscreteProfile,1),1); 
end 
  
% 1) Computation of Rpy 
deltay=10^(-3); % small increment in y 
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% Separate the first and second half of yPts. 
yPtsHalf1=yPts(1:round(size(yPts,1)/2)); 
yPtsHalf2=yPts(round(size(yPts,1)/2)+1:size(yPts,1)); 
% Evaluate the 1st and 2nd derivative of zPart at yPts using forward 
and 
% backward approximations for yPtsHalf1 and yPtsHalf2. 
deriv1=[(zPart(yPtsHalf1+2*deltay)-
zPart(yPtsHalf1))/(2*deltay);(zPart(yPtsHalf2)-zPart(yPtsHalf2-
2*deltay))/(2*deltay)]; 
deriv2=[(zPart(yPtsHalf1+2*deltay)-
2*zPart(yPtsHalf1+deltay)+zPart(yPtsHalf1))/deltay^2;(zPart(yPtsHalf
2)-2*zPart(yPtsHalf2-deltay)+zPart(yPtsHalf2-2*deltay))/deltay^2]; 
% Evaluate Rpy based on the definition of the radius of curvature of 
a 
% function. 
Rpy=(1+deriv1.^2).^(3/2)./deriv2; 
  
% 2) Computation of Rpx 
deltax=10^(-2); % Small increment in x 
SLOPE=-1./deriv1; % Vector of the slopes of the normals to zPart at 
yPts 
% Preallocate the matrix containing yG and yH 
yBandCs=zeros(size(yPts,1),2); 
% Fill yGandyHs with the roots of f1 and f2 near y0. 
for ii=1:size(yPts,1) 
    SLOPEii=SLOPE(ii);y0=yPts(ii); 
    yGandHs(ii,:)=abs([fzero(@f1,y0),fzero(@f2,y0)]); 
end 
% Evaluate the 1st and 2nd derivative of zPart at yPts using forward 
% approximations. 
deriv1_2=1./cos(atan(deriv1)).*(zPart(sqrt((2*deltax)^2+yGandHs(:,2)
.^2))-zPart(yPts))./(2*deltax); 
deriv2_2=1./cos(atan(deriv1)).*(zPart(sqrt((2*deltax)^2+yGandHs(:,2)
.^2))-
2*zPart(sqrt(deltax^2+yGandHs(:,1).^2))+zPart(yPts))./deltax^2; 
% evaluate Rpy based on the definition of the radius of curvature of 
a 
% function 
Rpx=(1+deriv1_2.^2).^(3/2)./deriv2_2; 
  
% Define the matrix containing the calculated radii of curvature. 
1st 
% column: y. 2nd column: Rpx. 3rd column: Rpy. 
PROC=[yPts,Rpx,Rpy]; 
  
  
% Functions called by PartPrincipalROCEstimator 
  
function z=f1(y) 
% f1 is such that its root near y0 is yG 
global SLOPEii y0 deltax 
z=SLOPEii*(y-y0)+zPart(y0)-zPart(sqrt(deltax^2+y^2)); 
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function z=f2(y) 
% f2 is such that its root near y0 is yH 
global SLOPEii y0 deltax 
z=SLOPEii*(y-y0)+zPart(y0)-zPart(sqrt((2*deltax)^2+y^2)); 
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Appendix 2 MATLAB code for tool path geometry 

Code of the MATLAB function ToolPathGeomMaker.m 

function [ToolPathGeom,PlotMatrix] = 
ToolPathGeomMaker(TPDiscreteProfile,PDiscreteProfile) 
% ToolPathGeomMaker: Function creating the tool path geometry. 
% Reference: Chapter 3 on "Tool path geometry determination" 
% Inputs: Matrices containing the tool and part discretized profiles 
% Outputs: Matrices containing the tool path geometry and data to 
plot the 
% tool path 
  
global Tgeom Pgeom TPgeom Larc AP5pP6p0 
  
% ************************* 
% *** Inputs assignment *** 
% ************************* 
% tool dimensions 
LTool=Tgeom(1); 
D1 = Tgeom(2); 
D2 = Tgeom(3); 
D3 = Tgeom(4); 
D4 = Tgeom(5); 
D5 = Tgeom(6); 
D6 = Tgeom(7); 
D7 = Tgeom(8); 
D8 = Tgeom(9); 
Rw=D1; 
% safety region dimensions 
S1=Tgeom(10); 
S2=Tgeom(11); 
% tool path parameters 
Delta=TPgeom(4); 
BlimPlus=TPgeom(5); 
BlimMinus=TPgeom(6); 
yMin=TPgeom(7); 
yMax=TPgeom(8); 
zMin=TPgeom(9); 
zMax=TPgeom(10); 
% offset (in mm) used for P7p 
offs=50; 
% **************************** 
% **************************** 
% **************************** 
  
% ******************* 
% *** Part matrix *** 
% ******************* 
% Define the matrix containing the coordinates of the points forming 
the 
% part 2D model. 1st column: y, 2nd column: z. 
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Part2DModel=[-
flipud(PDiscreteProfile(:,1)),flipud(PDiscreteProfile(:,2));PDiscret
eProfile]; 
% Remove point that might be repeated at part center 
if Part2DModel(size(PDiscreteProfile,1),1)==0 
    Part2DModel(size(PDiscreteProfile,1),:)=[]; 
end 
% ******************* 
% ******************* 
% ******************* 
  
% ************************** 
% *** Inputs definition  *** 
% ************************** 
% Define the matrix containing the coordinates of the points forming 
the 
% tool 2D model. 1st column: y, 2nd column: z. The lines 1 to 14 
represent 
% contain the coordinates of P7pp,P6pp,...,P1pp,P1p,P2p,...,P7p 
aPSI=atan((D2-D1)/D6); % Angle for computation of P2p 
aPSIp=atan((D5-D4)/(D8-D7)); % Angle for computation of P5p and P6p 
ToolHalf2DModel=[[D1+S2,D1];[D2+S1*((D1-D2)/D6+1/cos(aPSI)),D1+D6-
S1];[D3+S1,D1+D6-S1];[D3+S1,D1+D6+D7-S1];[D4+S1*((D4-D5)/(D8-
D7)+1/cos(aPSIp)),D1+D6+D7-S1];[D5+S1,D1+D6+D8+S1*(1-
1/cos(aPSIp))*((D8-D7)/(D5-D4))];[D5+S1,D1+D6+D8+S1+offs]]; 
Tool2DModel=[-
flipud(ToolHalf2DModel(:,1)),flipud(ToolHalf2DModel(:,2));ToolHalf2D
Model]; 
AP5pP6p0=(D8-D7)/(D5-D4); % Slope at B=0 of (P5'P6') 
  
% Define the matrix containing the polar coordinates of the points 
forming 
% the tool 2D model. 1st column: r, 2nd column: Theta. 
Tool2DModelPC = [((Tool2DModel(:,1)).^2+(Tool2DModel(:,2)-
Rw).^2).^0.5,atan((Tool2DModel(:,2)-Rw)./Tool2DModel(:,1))]; 
idx=find(Tool2DModel(:,1)<=0); % find the points with y<=0 
Tool2DModelPC(idx,2) = Tool2DModelPC(idx,2)+pi(); 
  
% Define the matrix contining the coordinates of the part points for 
which 
% the tool path geometry is computed. 1st column: y, 2nd column: z. 
if TPDiscreteProfile(1,2)==0 
    
TPPts=[[0,0];TPDiscreteProfile(2:2:size(TPDiscreteProfile,1),:)]; 
else 
    TPPts=TPDiscreteProfile(1:2:size(TPDiscreteProfile,1),:); 
end 
  
% Define the maximum B angle, so that the toolpath is symmetric with 
% respect to z. 
Bmax=min(abs(BlimPlus),abs(BlimMinus))*pi()/180; 
  



 255 

% Define the maximum permissible y translations, so that the 
toolpath is 
% symmetric with respect to z. 
yTrMax=min(abs(yMin),abs(yMax)); 
  
% Define the vector containing Bjnorm 
Deltay = 10^(-9); % small increment in y 
Bnorm=atan((TPPts(:,2)-zPart(TPPts(:,1)-Deltay))/Deltay); %start at 
Deltarow/2 so that B calculated at (0.5,1.5,2.5,...) otherwise use 
zero to get (0,1,2,3,...) 
if TPPts(1,1)==0 
    Bnorm(1)=0; 
end 
  
% Define matrix containing the y and z offsets used to translate the 
rotated tool along the tool path 
% 1st column: y offset, 2nd column: z offset 
TrMat=[-Rw*sin(Bnorm)+TPPts(:,1),-Rw*(1-cos(Bnorm))+TPPts(:,2)]; 
% ************************** 
% ************************** 
% ************************** 
  
% ***************************** 
% *** B angle determination *** 
% ***************************** 
if TPgeom(11)==0 % algorithms chosen according to part geometry 
    if Pgeom(3)==1 % concave algorithms 
        DeltaB=0.1*pi()/180; % increment (in rad) used for the 
search of B 
        
[PlotMatrix,BsolMatrix]=TPGeomConcave(Part2DModel,Tool2DModelPC,Bmax
,Bnorm,TrMat,Rw,TPPts,DeltaB); 
    elseif Pgeom(3)==-1 % convex algorithms 
        
[PlotMatrix,BsolMatrix]=TPGeomConvex(Part2DModel,Tool2DModelPC,Bmax,
Bnorm,TrMat,Rw,TPPts); 
    end 
elseif TPgeom(11)==1 % generic algorithms 
        DeltaB=0.1*pi()/180; % increment (in rad) used for the 
search of B 
        
[PlotMatrix,BsolMatrix]=TPGeomGeneric(Part2DModel,Tool2DModelPC,Bmax
,Bnorm,TrMat,Rw,TPPts,DeltaB); 
end 
% ***************************** 
% ***************************** 
% ***************************** 
     
% ******************************************* 
% *** Pivot point coordinates calculation *** 
% ******************************************* 
% Define the matrix containing the tool path geometry. 1st and 2nd 
column: 
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% y and z coordinates, respectively, of the pivot point. 3rd column: 
B. 
% 4th and 5th column are preallocated for tool crossfeed velocity 
and time 
% for each tool path step 
% But if an error code is encountered, the outputted matrix is a 
scalar 
% equal to the error code. 
if size(BsolMatrix,1)==1 
    ToolPathGeom=BsolMatrix; 
else  
    y0=TPPts(:,1); % y coordinates of the part points of interest 
    z0=TPPts(:,2); % z coordinates of the part points of interest 
    Bsol=BsolMatrix(:,2); % B angle to apply 
    ToolPathGeom=[y0+(Rw-Delta)*sin(-Bnorm)+(LTool-Rw)*sin(-
Bsol),z0+(Rw-Delta)*cos(-Bnorm)+(LTool-Rw)*cos(-Bsol),-
180/pi*Bsol,zeros(size(TPPts,1),1),Larc*ones(size(TPPts,1),1)]; 
    % Test feasability of the positions established for the pivot 
point 
    if 
min(abs(ToolPathGeom(:,1))<=yTrMax)*min(ToolPathGeom(:,2)<=zMax)*min
(ToolPathGeom(:,2)>=zMin)==0 
        % if these positions cannot be reached error code 4 is 
outputted 
        ToolPathGeom=4; 
    end   
end 
% ******************************************* 
% ******************************************* 
% ******************************************* 
 
 
 
Code of the MATLAB function TPGeomConvex.m 

function 
[PlotMatrix,BsolMatrix]=TPGeomConvex(Part2DModelIN,Tool2DModelPCIN,B
max,Bnorm,TrMatIN,RwIN,TPPts) 
% TPGeomConvex: Function verifying than on a convex part, the 
preferred 
% tool path configuration (tool and part normals aligned) can be 
achieved 
% along the tool path 
% Reference: Chapter 3 on "Tool path geometry determination" 
% Inputs: Matrices containing the tool and part discretized 
profiles, 
% maximum permissible B angle. Vector containing Bjnorm. Matrix 
containing 
% the y and z offsets used to translate the rotated tool along the 
tool 
% path. Carrier wheel radius. Matrix contining the coordinates of 
the part 
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% points for which the tool path geometry is computed. 
% Outputs: Matrix containing data to plot the tool path. Matrix 
containing 
% the B angle and corresponding y0j to use for a collision-free tool 
path. 
  
global Rw TrMat Part2DModel Tool2DModelPC 
  
% Inputs assignment 
TrMat=TrMatIN; 
Tool2DModelPC=Tool2DModelPCIN; 
Part2DModel=Part2DModelIN; 
Rw=RwIN; 
  
% Preset the variable indicating the error code. 
ErrorCode=0; 
% Preallocate the matrices containing the outputted B angles and 
data for 
% plotting. 
Bsol=zeros(size(Bnorm)); 
PlotToolMatrix=zeros(28,size(TPPts,1)); 
% Loop defining B along the tool path. 
jj=0; 
while jj+1<=size(TPPts,1) && ErrorCode==0 
    jj=jj+1; 
    % Set B equal to desired angle = angle of local part normal if 
not 
    % larger than Bmax, otherwise set equal to Bmax. 
    if abs(Bnorm(jj))>Bmax 
        if Bnorm(jj)>0 
            Bsol(jj)=Bmax; 
        else 
            Bsol(jj)=-Bmax; 
        end 
    else 
        Bsol(jj)=Bnorm(jj); 
    end 
    % Rotate and translate the tool to contact the jjth part points 
for 
    % which the tool path geometry is computed and store the 
coordinates of 
    % the points forming the tool model. 
    PlotToolMatrix(:,jj)=ToolRotation(Bsol(jj),jj); 
    % Check for tool-part collision. 
    
test=TestPtInterior(Bsol(jj),jj);%test(jj)=TestPtInterior(Bsol(jj),j
j); 
     
    % Define ErrorCode, based on occurence of tool-part collision. 
    if test>=1 
        if TPPts(jj,1)==0 % check if part center 
            if test==2 
                ErrorCode=2; 
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            else 
                ErrorCode=1; 
            end 
        else 
            if test==2 
                ErrorCode=2; 
            else 
                ErrorCode=3; 
            end 
        end 
    end 
end 
  
% Define BsolMatrix. 
if ErrorCode~=0 % If error found, pass error code in BsolMatrix. 
    BsolMatrix=ErrorCode; 
else % Store the solution in BsolMatrix. 1st column: y0j, 2nd 
column: Bsol. 
    BsolMatrix=[TPPts(:,1),Bsol]; 
end 
% Define the matrix containing the data for plotting the tool path. 
1st 
% and 2nd lines: transpose of TPPts. 3rd line: B angle solutions in 
degrees 
% as used to program UFF. 4th line: difference between Bnorm and 
Bsol. 5th 
% and 6th lines: transpose of TrMat. 7th line: PlotToolMatrix. 
PlotMatrix=[TPPts';-180/pi()*Bsol';-180/pi()*(Bnorm-
Bsol)';TrMat';PlotToolMatrix]; 
 
 
 
Code of the MATLAB function TPGeomConcave.m 

function 
[PlotMatrix,BsolMatrix]=TPGeomConcave(Part2DModelIN,Tool2DModelPCIN,
Bmax,Bnorm,TrMatIN,RwIN,TPPts,DeltaB) 
% TPGeomConcave: Function establishing the B angles preventing tool-
part 
% collisions along the tool path. The search strategy is optimized 
for deep 
% concave surfaces. 
% Reference: Chapter 3 on "Tool path geometry determination" 
% Inputs: Matrices containing the tool and part discretized 
profiles, 
% maximum permissible B angle. Vector containing Bjnorm. Matrix 
containing 
% the y and z offsets used to translate the rotated tool along the 
tool 
% path. Carrier wheel radius. Matrix contining the coordinates of 
the part 
% points for which the tool path geometry is computed. 
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% Outputs: Matrix containing data to plot the tool path. Matrix 
containing 
% the B angle and corresponding y0j to use for a collision-free tool 
path. 
  
global Rw TrMat Part2DModel Tool2DModelPC 
  
% Inputs assignment 
TrMat=TrMatIN; 
Tool2DModelPC=Tool2DModelPCIN; 
Part2DModel=Part2DModelIN; 
Rw=RwIN; 
  
% Preset the variable indicating the error code. 
ErrorCode=0; 
% Preallocate the matrices containing the outputted B angles and 
data for 
% plotting. 
Bsol=zeros(size(Bnorm)); 
PlotToolMatrix=zeros(28,size(TPPts,1)); 
% Loop defining B along the tool path. 
jj=0; 
while jj+1<=size(TPPts,1) && ErrorCode==0 
    jj=jj+1; 
    % Set B equal to desired angle = angle of local part normal. 
    B=Bnorm(jj); 
    % Rotate and translate the tool to contact the jjth part points 
for 
    % which the tool path geometry is computed and store the 
coordinates of 
    % the points forming the tool model. 
    PlotToolMatrix(:,jj)=ToolRotation(B,jj); %rotated/translated 
tool 
    % check for tool-part collision. 
    test=TestPtInterior(B,jj); 
  
    % "fast" algorithms finding a safe B angle 
    if test~=0 || abs(B)>Bmax % if collision, set Bj = Bj-1. 
        % If j=1, set = 0. 
        if jj==1 
            B=0; 
        else 
            B=Bsol(jj-1); 
        end 
        % If previous solution was Bmax, the current one is set 
equal to 
        % Bmax if no collision is predicted. 
        if B==Bmax 
            % Rotate and translate the tool to contact the jjth part 
points 
            % for which the tool path geometry is computed and store 
the 
            % coordinates of the points forming the tool model. 
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            PlotToolMatrix(:,jj)=ToolRotation(B,jj); 
            % Check for tool-part collision. 
            test=TestPtInterior(B,jj); 
            if test==0 
                Bsol(jj)=Bmax; 
            end 
        else 
            % Rotate and translate the tool to contact the jjth part 
points 
            % for which the tool path geometry is computed and store 
the 
            % coordinates of the points forming the tool model. 
            PlotToolMatrix(:,jj)=ToolRotation(B,jj); 
            % Check for tool-part collision. 
            test=TestPtInterior(B,jj); 
            if test==0 
                % If no collision with previous solution, DeltaB is 
added 
                % to B until collision occurs. 
                while test==0 
                    B=B+DeltaB; 
                    % Rotate and translate the tool to contact the 
jjth 
                    % part points for which the tool path geometry 
is 
                    % computed and store the coordinates of the 
points 
                    % forming the tool model. 
                    PlotToolMatrix(:,jj)=ToolRotation(B,jj); 
                    % Check for tool-part collision. 
                    test=TestPtInterior(B,jj); 
                end 
                % Once collision is detected, Bsol is set equal to 
B-DeltaB 
                % to compensate for last operation leading to 
collision. 
                Bsol(jj)=B-DeltaB; 
                % Reset value of test. 
                test=0; 
            end 
        end 
    else % if no collision, set equal to the preferred angle 
        Bsol(jj)=Bnorm(jj); 
    end 
  
    % If statement detecting the first solution larger than Bmax. 
That 
    % solution is replaced by Bmax if no collision occurs. This "if" 
    % section is only used once, the section starting with "if 
B=Bmax" 
    % will act to replace the following solutions. 
    if test==0 && abs(Bsol(jj))>=Bmax 
        Bsol(jj)=Bmax; 
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        % Rotate and translate the tool to contact the jjth part 
points 
        % for which the tool path geometry is computed and store the 
        % coordinates of the points forming the tool model. 
        PlotToolMatrix(:,jj)=ToolRotation(Bmax,jj); 
        % Check for tool-part collision. 
        test=TestPtInterior(Bmax,jj); 
    end 
     
    % Define ErrorCode, based on occurence of tool-part collision. 
    if test>=1 
        if TPPts(jj,1)==0 % check if part center 
            if test==2 
                ErrorCode=2; 
            else 
                ErrorCode=1; 
            end 
        else 
            if test==2 
                ErrorCode=2; 
            else 
                ErrorCode=3; 
            end 
        end 
    end 
end 
  
% Define BsolMatrix. 
if ErrorCode~=0 % If error found, pass error code in BsolMatrix. 
    BsolMatrix=ErrorCode; 
else % Store the solution in BsolMatrix. 1st column: y0j, 2nd 
column: Bsol. 
    BsolMatrix=[TPPts(:,1),Bsol]; 
end 
% Define the matrix containing the data for plotting the tool path. 
1st 
% and 2nd lines: transpose of TPPts. 3rd line: B angle solutions in 
degrees 
% as used to program UFF. 4th line: difference between Bnorm and 
Bsol. 5th 
% and 6th lines: transpose of TrMat. 7th line: PlotToolMatrix. 
PlotMatrix=[TPPts';-180/pi()*Bsol';-180/pi()*(Bnorm-
Bsol)';TrMat';PlotToolMatrix]; 
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Code of the MATLAB function TPGeomGeneric.m 

function 
[PlotMatrix,BsolMatrix]=TPGeomGeneric(Part2DModelIN,Tool2DModelPCIN,
Bmax,Bnorm,TrMatIN,RwIN,TPPts,DeltaB) 
% TPGeomGeneric: Function establishing the B angles preventing tool-
part 
% collisions along the tool path for all types of geometries. 
% Reference: Chapter 3 on "Tool path geometry determination" 
% Inputs: Matrices containing the tool and part discretized 
profiles, 
% maximum permissible B angle. Vector containing Bjnorm. Matrix 
containing 
% the y and z offsets used to translate the rotated tool along the 
tool 
% path. Carrier wheel radius. Matrix contining the coordinates of 
the part 
% points for which the tool path geometry is computed. 
% Outputs: Matrix containing data to plot the tool path. Matrix 
containing 
% the B angle and corresponding y0j to use for a collision-free tool 
path. 
  
global Rw TrMat Part2DModel Tool2DModelPC 
  
% Inputs assignment 
TrMat=TrMatIN; 
Tool2DModelPC=Tool2DModelPCIN; 
Part2DModel=Part2DModelIN; 
Rw=RwIN; 
  
% Preset the variable indicating the error code. 
ErrorCode=0; 
% Preallocate the matrices containing the outputted B angles and 
data for 
% plotting. 
Bsol=zeros(size(Bnorm)); 
PlotToolMatrix=zeros(28,size(TPPts,1)); 
% Loop defining B along the tool path. 
jj=0; 
while jj+1<=size(TPPts,1) && ErrorCode==0 %stop before covering edge 
thickness 
    jj=jj+1; 
    % Set B equal to desired angle = angle of local part normal if 
not 
    % larger than Bmax or lower than -Bmax, otherwise set equal to 
Bmax or 
    % -Bmax, respectively. 
    if abs(Bnorm(jj))>Bmax 
        if Bnorm(jj)>0 
            B=Bmax; 
        else 
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            B=-Bmax; 
        end 
    else 
        B=Bnorm(jj); 
    end 
    Bsol(jj)=B; 
    % Rotate and translate the tool to contact the jjth part points 
for 
    % which the tool path geometry is computed and store the 
coordinates of 
    % the points forming the tool model. 
    PlotToolMatrix(:,jj)=ToolRotation(B,jj); 
    % Check for tool-part collision. 
    test=TestPtInterior(B,jj); 
     
    % Algorithms finding a dafe B angle 
    if test>=1 % if a collision is detected, set Bj=Bj-1. 
        if jj-1==0 
            B=0; 
        else 
            B=Bsol(jj-1); 
        end 
        % Rotate and translate the tool to contact the jjth part 
points 
        % for which the tool path geometry is computed and store the 
        % coordinates of the points forming the tool model. 
        PlotToolMatrix(:,jj)=ToolRotation(B,jj); 
        % Check for tool-part collision. 
        test=TestPtInterior(B,jj); 
        % If no collision is detected, try to set B "closer" to 
Bnorm. 
        if test==0 
            if B>Bnorm(jj) %if B>Bnorm, decrease B until collision 
                while test==0 && B>=Bnorm(jj) 
                    B=B-DeltaB; 
                    % Rotate and translate the tool to contact the 
jjth 
                    % part points for which the tool path geometry 
is 
                    % computed and store the coordinates of the 
points 
                    % forming the tool model. 
                    PlotToolMatrix(:,jj)=ToolRotation(B,jj); 
                    % Check for tool-part collision. 
                    test=TestPtInterior(B,jj); 
                end 
                % Once collision is detected, undo the last 
operation. 
                Bsol(jj)=B+DeltaB; 
                % Reset value of test. 
                test=0; 
            else % if B<Bnorm, increase B until collision 
                while test==0 && B<=Bnorm(jj) 
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                    B=B+DeltaB; 
                    % Rotate and translate the tool to contact the 
jjth 
                    % part points for which the tool path geometry 
is 
                    % computed and store the coordinates of the 
points 
                    % forming the tool model. 
                    PlotToolMatrix(:,jj)=ToolRotation(B,jj); 
                    % Check for tool-part collision. 
                    test=TestPtInterior(B,jj); 
                end 
                % Once collision is detected, undo the last 
operation. 
                Bsol(jj)=B-DeltaB; 
                % Reset value of test. 
                test=0; 
            end 
            % Rotate and translate the tool to contact the jjth part 
points 
            % for which the tool path geometry is computed and store 
the 
            % coordinates of the points forming the tool model. 
            PlotToolMatrix(:,jj)=ToolRotation(Bsol(jj),jj); 
        else % If a collision is detected, 
            B0=B; % Store inital value of B, 
            % Serach is first performed in direction following 
solution 
            % trend. 
            if jj==1 || jj==2 || Bsol(jj-1)>=Bsol(jj-2)  
                while test~=0 && abs(B+DeltaB)<=Bmax 
                    B=B+DeltaB; 
                    PlotToolMatrix(:,jj)=ToolRotation(B,jj); 
                    test=TestPtInterior(B,jj); 
                end 
            else 
                while test~=0 && abs(B-DeltaB)<=Bmax 
                    B=B-DeltaB; 
                    PlotToolMatrix(:,jj)=ToolRotation(B,jj); 
                    test=TestPtInterior(B,jj); 
                end 
            end 
            % If no solution is found, the other search direction is 
used. 
            if test~=0 || abs(B)>Bmax 
                % Set B equal to the initial search value. 
                B=B0; 
                if jj==1 || jj==2 || Bsol(jj-1)>=Bsol(jj-2) 
                    while test~=0 && abs(B-DeltaB)<=Bmax 
                        B=B-DeltaB; 
                        PlotToolMatrix(:,jj)=ToolRotation(B,jj); 
                        test=TestPtInterior(B,jj); 
                    end 
                else 
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                    while test~=0 && abs(B+DeltaB)<=Bmax 
                        B=B+DeltaB; 
                        PlotToolMatrix(:,jj)=ToolRotation(B,jj); 
                        test=TestPtInterior(B,jj); 
                    end 
                end 
            end 
            if test==0 
                if abs(B)<=Bmax 
                    Bsol(jj)=B; 
                else 
                    test=3; % Set test to get ErrorCode=3. 
                end 
            end 
        end 
    end 
     
    % Define ErrorCode, based on occurence of tool-part collision. 
    if test>=1 
        if TPPts(jj,1)==0 % check if part center 
            if test==2 
                ErrorCode=2; 
            else 
                ErrorCode=1; 
            end 
        else 
            if test==2 
                ErrorCode=2; 
            else 
                ErrorCode=3; 
            end 
        end 
    end 
     
end 
  
% Define BsolMatrix. 
if ErrorCode~=0 % If error found, pass error code in BsolMatrix. 
    BsolMatrix=ErrorCode; 
else % Store the solution in BsolMatrix. 1st column: y0j, 2nd 
column: Bsol. 
    BsolMatrix=[TPPts(:,1),Bsol]; 
end 
% Define the matrix containing the data for plotting the tool path. 
1st 
% and 2nd lines: transpose of TPPts. 3rd line: B angle solutions in 
degrees 
% as used to program UFF. 4th line: difference between Bnorm and 
Bsol. 5th 
% and 6th lines: transpose of TrMat. 7th line: PlotToolMatrix. 
PlotMatrix=[TPPts';-180/pi()*Bsol';-180/pi()*(Bnorm-
Bsol)';TrMat';PlotToolMatrix]; 
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Code of the MATLAB function ToolRotation.m 

function PlotTool2DMoRT=ToolRotation(B,jj) 
% ToolRotation: Function computing the coordinates of the points 
forming 
% the rotated and translated tool 2D model and the coefficients A, 
% B, C and D used to define the lines passing through these points. 
% Reference: Chapter 3 on "Tool path geometry determination" 
% Inputs: Value of B and index of the point of the part at which the 
tool 
% path geometry is computed. 
% Outputs: Vector containing the coordinates of the points forming 
the 
% rotated and translated tool 2D model for tool path plot. The 
coefficients 
% A, B, C, D of all the lines of interest are stored in vectors 
defined as 
% global. 
  
global Rw TrMat Tool2DModelPC 
global Avect Bvect Cvect Dvect 
  
% Define the matrix containing the coordinates of the points forming 
the 
% part 2D model after rotation and translation to achieve contact at 
the 
% jjth point of the tool path. 1st column: y, 2nd column: z. 
Tool2DMoRT=[Tool2DModelPC(:,1).*cos(Tool2DModelPC(:,2)+B)+TrMat(jj,1
),Tool2DModelPC(:,1).*sin(Tool2DModelPC(:,2)+B)+Rw+TrMat(jj,2)]; 
PlotTool2DMoRT=[Tool2DMoRT(:,1);Tool2DMoRT(:,2)];%stored in 1 line 
for plot 
  
% Define the vectors containing the coefficients A, B, C, D for the 
lines 
% 
[(P6'P6");(P5'P5");(P3'P3");(P1'P1");(P6'P7');(P6"P7");(P5'P6');(P5"
P6"); 
% (P3'P4');(P3"P4");(P1'P2');(P1"P2")] 
Vect1=[Tool2DMoRT(13,:);Tool2DMoRT(12,:);Tool2DMoRT(10,:);Tool2DMoRT
(8,:);Tool2DMoRT(14,:);Tool2DMoRT(1,:);Tool2DMoRT(13,:);Tool2DMoRT(2
,:);Tool2DMoRT(11,:);Tool2DMoRT(4,:);Tool2DMoRT(9,:);Tool2DMoRT(6,:)
]; 
Vect2=[Tool2DMoRT(2,:);Tool2DMoRT(3,:);Tool2DMoRT(5,:);Tool2DMoRT(7,
:);Tool2DMoRT(13,:);Tool2DMoRT(2,:);Tool2DMoRT(12,:);Tool2DMoRT(3,:)
;Tool2DMoRT(10,:);Tool2DMoRT(5,:);Tool2DMoRT(8,:);Tool2DMoRT(7,:)]; 
  
Avect=(Vect2(:,2)-Vect1(:,2))./(Vect2(:,1)-Vect1(:,1)); 
Bvect=(Vect2(:,2).*Vect1(:,1)-Vect1(:,2).*Vect2(:,1))./(Vect1(:,1)-
Vect2(:,1)); 
Cvect=1./Avect; 
Dvect=(Vect2(:,1).*Vect1(:,2)-Vect1(:,1).*Vect2(:,2))./(Vect1(:,2)-
Vect2(:,2)); 
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Code of the MATLAB function TestPtInterior.m 

function test=TestPtInterior(B,jj) 
% ToolPtInterior: Function determining if any point of the part 
model 
% becomes interior to the tool interior and safety region. 
% Reference: Chapter 3 on "Tool path geometry determination" 
% Inputs: Value of B and index of the point of the part at which the 
tool 
% path geometry is computed. 
% Outputs: Scalar, test, indicating if no collision (test=0), a 
collision 
% in the carrier wheel region (test=2) or another type of collision 
% (test=1) is predicted. 
  
global Rw TrMat Part2DModel AP5pP6p0 
global Avect Bvect Cvect Dvect 
  
% Preset the variable indicating the occurence of tool-part 
collisions 
test=0; 
  
% Region 0: circle modeling the carrier wheel 
test01=Part2DModel(:,2)<Rw+TrMat(jj,2)+(Rw^2-(Part2DModel(:,1)-
TrMat(jj,1)).^2).^0.5; 
test02=Part2DModel(:,2)>Rw+TrMat(jj,2)-(Rw^2-(Part2DModel(:,1)-
TrMat(jj,1)).^2).^0.5; 
% if test01 and test02 are positive, a part point is within the 
carrier 
% wheel 
if max(test01+test02)==2 
    test=2; 
end 
  
% if no collision in the carrier wheel region, the other regions are 
% considered by establishing the relative position of the points 
modeling 
% the part with respect to the lines delimiting the different 
regions. 
if test==0 
    % Region (1) 
    % (P1"P2") 
    if abs(Avect(12))>=1 
        
test1=Part2DModel(:,1)>=Cvect(12)*Part2DModel(:,2)+Dvect(12); 
    else 
        if B>0 
            
test1=Part2DModel(:,2)>=Avect(12)*Part2DModel(:,1)+Bvect(12); 
        else 
            
test1=Part2DModel(:,2)<=Avect(12)*Part2DModel(:,1)+Bvect(12); 



 268 

        end 
    end 
    % (P1'P2') 
    if abs(Avect(11))>=1  
        
test2=Part2DModel(:,1)<=Cvect(11)*Part2DModel(:,2)+Dvect(11); 
    else 
        if B>0 
            
test2=Part2DModel(:,2)<=Avect(11)*Part2DModel(:,1)+Bvect(11); 
        else 
            
test2=Part2DModel(:,2)>=Avect(11)*Part2DModel(:,1)+Bvect(11); 
        end 
    end 
    % (P1'P1") 
    if abs(Cvect(4))>=1  
        test3=Part2DModel(:,2)>=Avect(4)*Part2DModel(:,1)+Bvect(4); 
    else 
        if B>0 
            
test3=Part2DModel(:,1)<=Cvect(4)*Part2DModel(:,2)+Dvect(4); 
        else 
            
test3=Part2DModel(:,1)>=Cvect(4)*Part2DModel(:,2)+Dvect(4); 
        end 
    end 
    % (P2'P2") 
    if abs(Cvect(3))>=1  
        test4=Part2DModel(:,2)<=Avect(3)*Part2DModel(:,1)+Bvect(3); 
    else 
        if B>0 
            
test4=Part2DModel(:,1)>=Cvect(3)*Part2DModel(:,2)+Dvect(3); 
        else 
            
test4=Part2DModel(:,1)<=Cvect(3)*Part2DModel(:,2)+Dvect(3); 
        end 
    end 
    % if test1, test2, test3 and test4 are posisitve, the point is 
within 
    % region (1) 
    if max(test1+test2+test3+test4)==4 
        test=1; 
    end  
  
    % Region (2) 
    % (P3"P4") 
    if abs(Avect(10))>=1 
        
test5=Part2DModel(:,1)>=Cvect(10)*Part2DModel(:,2)+Dvect(10); 
    else 
        if B>0 
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test5=Part2DModel(:,2)>=Avect(10)*Part2DModel(:,1)+Bvect(10); 
        else 
            
test5=Part2DModel(:,2)<=Avect(10)*Part2DModel(:,1)+Bvect(10); 
        end 
    end 
    % (P3'P4') 
    if abs(Avect(9))>=1  
        test6=Part2DModel(:,1)<=Cvect(9)*Part2DModel(:,2)+Dvect(9); 
    else 
        if B>0 
            
test6=Part2DModel(:,2)<=Avect(9)*Part2DModel(:,1)+Bvect(9); 
        else 
            
test6=Part2DModel(:,2)>=Avect(9)*Part2DModel(:,1)+Bvect(9); 
        end 
    end 
    % (P3'P3") 
    if abs(Cvect(3))>=1  
        test7=Part2DModel(:,2)>=Avect(3)*Part2DModel(:,1)+Bvect(3); 
    else 
        if B>0 
            
test7=Part2DModel(:,1)<=Cvect(3)*Part2DModel(:,2)+Dvect(3); 
        else 
            
test7=Part2DModel(:,1)>=Cvect(3)*Part2DModel(:,2)+Dvect(3); 
        end 
    end 
    % (P4'P4") 
    if abs(Cvect(2))>=1  
        test8=Part2DModel(:,2)<=Avect(2)*Part2DModel(:,1)+Bvect(2); 
    else 
        if B>0 
            
test8=Part2DModel(:,1)>=Cvect(2)*Part2DModel(:,2)+Dvect(2); 
        else 
            
test8=Part2DModel(:,1)<=Cvect(2)*Part2DModel(:,2)+Dvect(2); 
        end 
    end 
    if max(test5+test6+test7+test8)==4 
        test=1; 
    end 
  
    % Region (3) 
    % (P5"P6") - take into account the slope at B=0 
    if abs(AP5pP6p0)==1 
        if B>=0 
            
test9=Part2DModel(:,2)>=Avect(8)*Part2DModel(:,1)+Bvect(8); 
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        else 
            
test9=Part2DModel(:,1)>=Cvect(8)*Part2DModel(:,2)+Dvect(8); 
        end 
    elseif abs(AP5pP6p0)>1 
        if single(abs(Avect(8)))>=1 
            
test9=Part2DModel(:,1)>=Cvect(8)*Part2DModel(:,2)+Dvect(8); 
        else 
            if B>0 
                
test9=Part2DModel(:,2)>=Avect(8)*Part2DModel(:,1)+Bvect(8); 
            else 
                
test9=Part2DModel(:,2)<=Avect(8)*Part2DModel(:,1)+Bvect(8); 
            end 
        end 
    else 
       if single(abs(Cvect(8)))>=1 
            
test9=Part2DModel(:,2)>=Avect(8)*Part2DModel(:,1)+Bvect(8); 
        else 
            if B>0 
                
test9=Part2DModel(:,1)<=Cvect(8)*Part2DModel(:,2)+Dvect(8); 
            else 
                
test9=Part2DModel(:,1)>=Cvect(8)*Part2DModel(:,2)+Dvect(8); 
            end 
        end 
    end 
    % (P5'P6') - take into account the slope at B=0 
    if abs(AP5pP6p0)==1 
        if B>=0 
            
test10=Part2DModel(:,1)<=Cvect(7)*Part2DModel(:,2)+Dvect(7); 
        else 
            
test10=Part2DModel(:,2)>=Avect(7)*Part2DModel(:,1)+Bvect(7); 
        end 
    elseif abs(AP5pP6p0)>1 
        if single(abs(Avect(7)))>=1  
            
test10=Part2DModel(:,1)<=Cvect(7)*Part2DModel(:,2)+Dvect(7); 
        else 
            if B>0 
                
test10=Part2DModel(:,2)<=Avect(7)*Part2DModel(:,1)+Bvect(7); 
            else 
                
test10=Part2DModel(:,2)>=Avect(7)*Part2DModel(:,1)+Bvect(7); 
            end 
        end 
    else 
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        if single(abs(Cvect(7)))>=1  
            
test10=Part2DModel(:,2)>=Avect(7)*Part2DModel(:,1)+Bvect(7); 
        else 
            if B>0 
                
test10=Part2DModel(:,1)<=Cvect(7)*Part2DModel(:,2)+Dvect(7); 
            else 
                
test10=Part2DModel(:,1)>=Cvect(7)*Part2DModel(:,2)+Dvect(7); 
            end 
        end 
    end 
    % (P5'P5") 
    if abs(Cvect(2))>=1  
        test11=Part2DModel(:,2)>=Avect(2)*Part2DModel(:,1)+Bvect(2); 
    else 
        if B>0 
            
test11=Part2DModel(:,1)<=Cvect(2)*Part2DModel(:,2)+Dvect(2); 
        else 
            
test11=Part2DModel(:,1)>=Cvect(2)*Part2DModel(:,2)+Dvect(2); 
        end 
    end 
    % (P6'P6") 
    if abs(Cvect(1))>=1  
        test12=Part2DModel(:,2)<=Avect(1)*Part2DModel(:,1)+Bvect(1); 
    else 
        if B>0 
            
test12=Part2DModel(:,1)>=Cvect(1)*Part2DModel(:,2)+Dvect(1); 
        else 
            
test12=Part2DModel(:,1)<=Cvect(1)*Part2DModel(:,2)+Dvect(1); 
        end 
    end 
    if max(test9+test10+test11+test12)==4 
        test=1; 
    end 
  
    % Region (4) 
    % (P6"P7") 
    if abs(Avect(6))>=1 
        test13=Part2DModel(:,1)>=Cvect(6)*Part2DModel(:,2)+Dvect(6); 
    else 
        if B>0 
            
test13=Part2DModel(:,2)>=Avect(6)*Part2DModel(:,1)+Bvect(6); 
        else 
            
test13=Part2DModel(:,2)<=Avect(6)*Part2DModel(:,1)+Bvect(6); 
        end 
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    end 
    % (P6'P7') 
    if abs(Avect(5))>=1  
        test14=Part2DModel(:,1)<=Cvect(5)*Part2DModel(:,2)+Dvect(5); 
    else 
        if B>0 
            
test14=Part2DModel(:,2)<=Avect(5)*Part2DModel(:,1)+Bvect(5); 
        else 
            
test14=Part2DModel(:,2)>=Avect(5)*Part2DModel(:,1)+Bvect(5); 
        end 
    end 
    % (P6'P6") 
    if abs(Cvect(1))>=1  
        test15=Part2DModel(:,2)>=Avect(1)*Part2DModel(:,1)+Bvect(1); 
    else 
        if B>0 
            
test15=Part2DModel(:,1)<=Cvect(1)*Part2DModel(:,2)+Dvect(1); 
        else 
            
test15=Part2DModel(:,1)>=Cvect(1)*Part2DModel(:,2)+Dvect(1); 
        end 
    end 
    if max(test13+test14+test15)==3 
        test=1; 
    end 
end 
 
 


