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Abstract

To view the electricity supply in our society as just sockets mounted
in our walls with a constant voltage output is far from the truth. In
reality, the power system supplying the electricity or the grid, is the
most complex man-made dynamical system there is. It demands severe
control and safety measures to ensure a reliable supply of electric power.
Throughout the world, incidents of widespread power grid failures have
been continuously reported. The state where electricity delivery to cus-
tomers is terminated by a disturbance is called a blackout. From a state
of seemingly stable operating conditions, the grid can fast derail into
an uncontrollable state due to cascading failures. Transmission lines
become automatically disconnected due to power flow redirections and
parts of the grid become isolated and islands are formed. An islanded
sub-grid incapable of maintaining safe operation conditions experiences
a blackout. A widespread blackout is a rare, but an extremely costly
and hazardous event for society.

During recent years, many methods to prevent these kinds of events
have been suggested. Controlled islanding has been a commonly sug-
gested strategy to save the entire grid or parts of the grid from a black-
out. Controlled islanding is a strategy of emergency control of a power
grid, in which the grid is intentionally split into a set of islanded sub-
grids for avoiding an entire collapse. The key point in the strategy is to
determine appropriate separation boundaries, i.e. the set of transmis-
sion lines separating the grid into two or more isolated parts.

The power grid exhibits highly nonlinear response in the case of
large failures. Therefore, this thesis proposes a new controlled islanding
method for power grids based on the nonlinear Koopman Mode Analysis
(KMA). The KMA is a new analyzing technique of nonlinear dynamics
based on the so-called Koopman operator. Based on sampled data fol-
lowing a disturbance, KMA is used to identify suitable partitions of the
grid.

The KMA-based islanding method is numerically investigated with
two well-known test systems proposed by the Institute of Electrical and
Electronics Engineers (IEEE). By simulations of controlled islanding in
the test system, it is demonstrated that the grid’s response following a
fault can be improved with the proposed method.

The proposed method is compared to a method of partitioning power
grids based on spectral graph theory which captures the structural prop-
erties of a network. It is shown that the intrinsic structural properties
of a grid characterized by spectral graph theory are also captured by the
KMA. This is shown both by numerical simulations and a theoretical
analysis.

Keywords: Controlled islanding, grid partitioning, power sys-

tem monitoring, Koopman mode analysis, spectral graph the-

ory.



Referat

Att betrakta elförsörjningen som endast någonting konstant som vi ma-
tas med via våra uttag i hemmet är långt ifrån hela sanningen. Elkraft-
systemet som försörjer samhället med elektricitet betraktas som ett av
de mest avancerade och komplexa dynamiska systemen som skapats av
människor. Med jämna mellanrum har fall av stora elnätskollapser rap-
porterats från olika delar av världen. Tillståndet när strömförsörjningen
till kunderna i systemet stängs av kallas ett elavbrott eller en blackout.
Från ett till synes stabilt tillstånd i systemet, kan tillståndet snabbt
försämras och fel kan propagera på ett lavinartat sätt och äventyra sta-
bila driftvillkor. Transmissionsledningar kan överbelastas på grund av
ett förändrat kraftflöde och kopplas bort automatiskt av säkerhetsrelä-
er. På deta sätt kan delar av systemet blir bortkopplade och subsystem
eller isolerade öar i systemet bildas. Om dessa isolerade öar inte kan
bibehålla stabila driftvillkor kommer det att inträffa ett elavbrott.

Under det senaste decenniet har många olika strategier föreslagits
för att förhindra utbredda elavbrott. Controlled islanding (kontrollerad
splittring) är en populärt föreslagen strategi för att rädda hela eller delar
av systemet från en kollaps. Det är en typ av nödåtgärd som används för
att på ett kontrollerat sätt splittra systemet för att begränsa risken för
propagering av fel som leder till omfattande elavbrott. Huvudproblemet
är att bestämma lämpliga separationspunkter för att erhålla bästa utfall,
d.v.s. att bestämma vilka transmissionledningar som mest lämpligast
bör kopplas bort.

Ett elkraftsystem uppvisar mycket ickelinjärt beteende som respons
av en stor störning. På grund av detta föreslår denna uppsats en ny
metod för splittring av ett elkraftsystem baserat på Koopman Mode
Analysis (KMA) som är en analysmetod av ickelinjära system och är
baserad på så kallade Koopman operatorn. Baserat på sampel av data
från ett dynamiskt skeende i systemet identifieras lämpliga separations-
punkter.

Metoden utvärderas numeriskt genom simuleringar av två välkända
testsystem föreslagna av Institute of Electrical and Electronics Engineers
(IEEE). Genom kontrollerad splittring demonstreras det att responsen
till följd av ett fel kan förbättras.

Den föreslagna metoden jämförs med en metod baserad på grafteori
för att partitionera nätverk. Grafteori fångar de strukturella egenska-
perna hos ett nätverk. Resultatet i den här uppsatsen visar att den
KMA-baserade metoden som analyserar dynamiken i elnätet, även kan
fånga de strukturella egenskaperna från grafteori. Detta resultat visas
både experimentellt och diskuteras utifrån en teoretisk analys.
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Chapter 1

Introduction

1.1 Background

Large scale power systems or power grids are the largest and most complex dynam-
ical systems created by humans. Simplistically, the grid constitutes of transmission
lines at different voltage levels connected by substations, power suppliers and cos-
tumers. The power generation incorporates technically advanced generation sources
such as nuclear power plants as well as many renewable and stochastically varying
sources like solar and wind power. The bare size of the physically interconnected
network spans over vast countries and even across borders. The operation of the
system demands severe monitoring and control measures.

In recent years, the power grids are generally operated closer to their maximum
capabilities due to increasing power demands in combination with environmental
policies. In order to meet the increasing demands as well as enabling the intro-
duction of the renewable energy sources, advanced power electronic control systems
are increasingly being installed. Moreover, information and communication tech-
nologies are integrated for a smart control and monitoring of the system. In other
words, the complexity as well as the vulnerability have increased.

A power grid exhibits highly nonlinear response in the case of extensive fail-
ures [1]. Cascading failures initiated by a severe disturbance in large-scale power
grids have been repeatedly reported all over the world from countries such as North
America, Sweden, Italy and India [2–4]. The state where electricity delivery to cus-
tomers is terminated by a disturbance is called a blackout. From a state of seemingly
stable operating conditions, the system can fast derail into an uncontrollable state
due to cascading failures propagating in the system. Overloaded transmission lines
are automatically disconnected due to redirection of power flow in the system and
parts of the system can become isolated and islands are formed. An islanded sub-
system incapable of maintaining safe operating conditions experiences a blackout.
A widespread blackout is a rare but an extremely costly and hazardous event for
the modern society.

Monitoring and coordinated control are of vital importance for maintaining the
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CHAPTER 1. INTRODUCTION

electricity supply and avoid large scale failures [2]. As one of the effective coordi-
nated controls, the so-called controlled islanding strategy has been studied recently.
It is a strategy of emergency control of a power grid, in which the grid is intention-
ally split into a set of isolated sub-grids in case of large failures in an attempt to
avoid a widespread blackout.

1.2 Problem Definition and Objective

The purpose of this thesis is to investigate a new controlled islanding strategy based
on nonlinear dynamical systems and to investigate its performance by simulations of
standard benchmark systems. The aim is to prevent a total blackout using the pro-
posed method. Cascading failures and associated dynamics are highly complicated
and need to be analyzed and controlled from a viewpoint of nonlinear dynamical
systems. The so-called Koopman Mode Analysis (KMA) is a new technique of non-
linear modal decomposition based on the Koopman operator [5, 6]. Recently, the
theory has been applied to power system analysis [7–9].

In this thesis, the KMA is applied on measurements of generator frequencies
and bus voltage angles. Based on the KMA on bus voltage angles, the test system
is split into isolated sub-systems. To maintain a safe operation for each constructed
island, a balance between load and generation in the island needs to be considered.

The test system is simulated with the power simulation toolbox PSAT [10]. The
proposed islanding method is evaluated by applying critical disturbances.
In short, the goal is set as follows:

Goal. A fully functional islanding strategy using the Koopman Mode Analysis is
implemented and proven to be successful in avoiding a blackout (instability) for
critical disturbances. This will be demonstrated on at least one test system. The
results of the proposed islanding strategy will be compared to results obtained
from at least one other islanding method.

1.3 Thesis Overview

The remainder of this thesis is organized as follows. In chapter 2, background and
mechanisms of cascading failures in power grids are given and common prevention
methods are described. In chapter 3 the theoretical descriptions of KMA as well as
spectral graph theory are given. The proposed islanding method based on the KMA
is presented in chapter 4. In chapter 5 simulations are performed and numerical
results are discussed. Lastly, a summary, conclusions and suggestions for future
studies are given in chapter 6. The mathematical description for the power system
simulations are given in appendix A. During the lapse of this project, one technical
report and one conference paper were produced and both are briefly described in
appendix C.
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Chapter 2

Controlled Islanding

A power grid is continuously subjected to small and large disturbances which do not
threaten a safe operation of the grid. Load fluctuations and variations in the power
generation are examples of small disturbances. Disconnection of important trans-
mission lines or loss of large power plants are common cases of large disturbances.
For example, transmission lines are occasionally short-circuited as a consequence of
falling trees or infrastructural damage caused by extreme weather conditions.

In recent years, as a consequence of the continuous increase of renewable energy
sources, generation becomes more stochastic compared to the case where conven-
tional power sources such as nuclear, hydro, coal and gas are mainly used. An in-
creasing demand of control, power electronics and IT infrastructure are demanded
to enable this increase and ensure safe operation. Also, the power grid is more often
operated closer to its operation limit. In this way, the grid has both become more
vulnerable and its behavior more complex.

Only on rare occasions, a widespread blackout occurs, however local blackouts
occur frequently [1]. Famous blackouts during recent years have occurred in North
America, Sweden, Italy, Russia and India [2–4,11]. To some extent, it is inevitable
that the grid sooner or later will experience a large-scale blackout [12]. However,
sophisticated prevention strategies and control measures can minimize the occur-
rence. Improved monitoring that enables coordination and control of large scale
power grids is generally considered as an important counter-measures [2]. A Wide
Area Measurement System (WAMS) provides measurements via Phasor Measure-
ment Units (PMUs) [13]. PMU devices are able to measure desired quantities such
as voltage or currents at a high sampling frequency, coordinated in time by GPS
measurements.

There are numerous factors contributing to the vulnerability of a blackout. The
structural vulnerability of a power grids is addressed in [14] in the aftermath of
the North American blackout in 2003. The structural vulnerability is investigated
by means of a connectivity measurement, i.e. how the connectivity and hence the
robustness of the power grid can decrease in a fast manner if significant buses are
removed. It is concluded that cascading failures in particular have a devastating

3



CHAPTER 2. CONTROLLED ISLANDING

impact on the connectivity. Expensive infrastructural investments are required to
improve the structural deficiencies.

It was investigated in [15] how large interdependent networks like power grids
can interact and failures in one network can lead to cascading failures in another
network. Thus, the properties of interdependent network interaction should be con-
sidered when constructing robust systems. Geomagnetic disturbances originating
from the solar activity [16] also pose a large threat to power grids or any other
infrastructure including large conductors.

2.1 The Nature of the Blackout

The anatomy of a power grid blackout is explained in [11,17]. Generally, a scenario
similar to the following is the usual lapse of events that finally results in a widespread
blackout.

(i) Stable state

A power grid which is operated within its safe operating limits is considered.
In many blackout cases the grid was weakened because of unusual high electric
power demand, scheduled maintenance or large power import.

(ii) Initial fault

Somewhere in the grid one or several severe faults occurs such as short circuited
lines or sudden loss of power generation. Such failures occur on a regular basis
and should not adventure the general system operation.

(iii) Counter measures

The automatic protection system deals with the fault by utilizing appropri-
ate counter-measures such as tripping of lines or generators and frequency or
voltage stabilization by real and reactive power compensation. If the counter-
measures are insufficient, the grid could be heading for cascading failures.

(iv) Emergency state

If cascading failures are avoided the grid is in a state of temporarily safe
operation. The grid is built to survive at least one major failure due to the
N − 1-criterion [18] which implies that grid should withstand a worst case
scenario of generator or line loss. Within minutes, the grid will return to a
new operating point, i.e. to a new Stable state.

(v) Unexpected fault

If during the Emergency state another large, possibly uncorrelated failure
occurs the grid could be heading for a state of cascading failures.

(vi) Cascading stage

During the cascading stage, tripping of lines or generators result in power flow
overloads on neighboring transmission lines as well as voltage and frequency

4
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fluctuations in the grid. Power flow overloads lead to further line disconnec-
tions due to protective relays and further disturbances are induced in the grid.

(vii) Collapse

At some point during the cascading stage, the grid will come to a point of no
return where a partial or widespread blackout becomes inevitable. Due to volt-
age/frequency collapse or loss of synchronism between different areas, the grid
will automatically be separated into isolated sub-grids. The sub-grid’s ability
to maintain the operation within acceptable limits determines if a blackout
occurs or not. An important factor is the load-generation imbalance. If there
is a large discrepancy in electric power demand and generation capability a
blackout is likely to occur.

(viii) Restoration

In the aftermath of the blackout, the grid is scattered and heavily weakened.
In the restoration process, generation are reconnected, frequency and voltage
levels are stabilized and previously disconnected loads are gradually recon-
nected. Lastly, desynchronized areas are resynchronized.

Referring to the typical scenario outlined above, the 2003 blackout in Sweden
will be shortly described [2, 11, 17]. The grid was considered to be operated under
normal operating conditions. However, the grid was weakened due to maintenance
of two 400 kV transmission lines as well as HVDC (high-voltage, direct current)
lines connecting Sweden with the rest of Europe.

The first contingency, the Initial fault was the loss of a 1200 MW nuclear unit in
Oskarshamn due to a steam valve problem. This event increased the power transfers
from north to south. An Unexpected fault then occurred at a distance of only 300
km from the first outage. An equipment failure at a substation caused a double-bus
fault which lead to the disconnection of two 900 MW nuclear plants. From here, a
large deficiency in generation in the south part of Sweden caused overloaded lines
and voltage instabilities, i.e. a Cascading stage. The only 400 kV line connecting
south to north experienced a serious overload and consequently the the south part
of Sweden and Denmark became islanded from the rest of the grid. With only a
30 % generation capability to cover the demand an instant blackout or Collapse

unfolded.

2.2 Prevention Methods

The fundamental prerequisite in an AC power network is the synchronism of gener-
ators. Synchronism implies that all generators deliver power at a common system
frequency fs, 50 or 60 Hz. If one generator is not in synchronism with the system,
power can not be delivered from the generator to the system. As a consequence to
severe disturbances, generators can fall out of synchronism which is a major sta-
bility threat. Thus, a controlled islanding strategy should prevent generators from

5



CHAPTER 2. CONTROLLED ISLANDING

falling out of synchronism. It was shown in [19] how optimal tuning of generator
parameters enhance the synchronization and thus improves the robustness of the
grid.

However, serious failures in the grid often also lead to load-generation imbal-
ances causing the system frequency to decrease or increase, or inducing voltage
fluctuations. Thus, many types of controls are used in a power grid to suppress
these kind of disturbances and they operate at different time-scales.

In [11] it is described how large scale blackouts are currently prevented and fu-
ture recommendations to avoid them are given. An IT infrastructure supporting
wide-area measurements and control is mentioned as an important prevention mea-
sure. Controlled separation is suggested to deal with widespread failure and loss
of synchronism between different areas in the grid. Maintenance, inspection and
testing of existing hardware as well as replace old hardware are important safety
measures to limit the occurrence of random equipment failures. Also, deeper un-
derstanding and research on cascading failures are required to construct even more
efficient methods.

Wide-area measurements have been tested and researched on intensively in re-
cent years. In [20], measurements from PMUs are incorporated in a Wide-Area
stability and voltage Control System (WACS). The WACS is able to trip generators
and provide measurements for control of power compensation. In [21] it is shown
how WAMS can provide control input and increase the dynamic performance based
on simulation of a real power grid.

Many strategies for controlled islanding have been suggested in the last decade.
An illustrative image of a power grid separation is depicted in figure 2.1. The idea
is to identify suitable boundaries where a separation is beneficial for the ability to
withstand cascading failures and avoid a blackout. Often the usage of a WAMS is
assumed and based on system measurements a decision of separation is being made.

A method based on the slow coherency of generators [22] has been suggested as
an effective strategy of controlled islanding. Slow coherency is based on the two-
time-scales method in dynamical system theory where the dynamics can be divided
into fast and slow states. That is, slowly and rapidly changing dynamics. Groups
of generators showing coherency are identified for the slow states and separation
between the groups are identified with respect to a minimum load-generation im-
balance within the considered islands. A coherent groups of generator shows coupled
dynamics and the boundaries between these groups are hence considered as proper
boundaries to split the grid. The lines connecting different groups are called tie-lines
and through these tie-lines fast dynamics are propagated if the grid is not properly
separated. It is reported in [23] that for the (in)famous 2003 blackout event in the
United States, the slow coherency-based controlled islanding can improve the grid’s
performance substantially. Also, based on slow coherency or any preferred group-
ing method for generators, a minimal cut-set with a minimum net flow method was
demonstrated in [24]. That is, to minimize the load-generation imbalance within
the islands caused by the separation and thus avoid further disturbances induced
by power flow redirections in the grid.
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Figure 2.1: A controlled islanding strategy for a power grid determines appropriate
separation boundaries and splits accordingly in case of severe or cascading failures
with the purpose of avoiding a widespread blackout.

An islanding scheme using synchrophasors (e.g. PMUs) was proposed in [25].
It suggests measurements of generators and monitoring of the possible separation
between different coherent groups of generators. Ordered Binary Decision Diagrams
(OBDDs) are used to find the cut-set of transmission lines separating the grid into
isolated parts. OBDD is a data structure representation of a network. An OBDD
based controlled islanding strategy is utilized in [26] and evaluated by simulations
in [27].

A popular method to study the properties of networks is by means of spectral
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graph theory. In spectral graph theory, network properties are analyzed by the
eigenvalues and eigenvectors of its matrix representation. It is obvious that the
structure of the network, such as a power distributing network also affects the
dynamic performance. In [28] a strategy is presented where a power grid is separated
into different parts using the spectral graph theory. In this thesis, spectral graph
theory will be compared to results from the KMA-based method which is a method
based on measurements of dynamics of a power grid. The basic features of spectral
graph theory is given in section 3.2.

Most of the existing strategies are based on linear systems theory and method-
ology. This thesis instead investigates the possibilities of an alternative method for
power grid islanding which can fully capture nonlinear characteristics based only
on a series of measurements. The theory used in the method is described in section
3.1 and the method is outlined in chapter 4.

8



Chapter 3

Mathematical Tools

3.1 Koopman Mode Analysis

Recently, the nonlinear Koopman Mode (KM) has been applied to power grid anal-
ysis [7, 8]. The so-called Koopman Mode Analysis (KMA) is a new technique of
nonlinear modal decomposition based on properties of the point spectrum of the
Koopman operator [5, 6]. By definition, each KM oscillates with a single frequency
and is hence relevant for capturing the spatiotemporal pattern of the dynamics of
a large-scale power grid. In [7] the relevant feature is exploited for coherency iden-
tification based on data of swing dynamics in every generator, meaning that in a
coherent group of generators, all of them swing in phase with a common frequency.

The following theory is based on [6]. Consider the dynamics described by a
discrete-time, nonlinear difference equation on a smooth manifold M :

xk+1 = f(xk), (3.1)

where f is a nonlinear map from M to itself. The Koopman operator is a linear,
infinite dimensional operator acting on a scalar function (observable) g : M → R in
the following manner:

Ug(x) = g(f(x)). (3.2)

The eigenvalues λj ∈ C and eigenfunctions ϕj : M → C are defined as

Uϕj(x) = λjϕj(x), for j = 1, 2, . . . (3.3)

where λj is called the j-th Koopman eigenvalue. Here, let g: M → R
p be a vector-

valued observable. If each gi of the components in g lies within the span of eigen-
functions ϕj , then the time-evolution of observable g(xk) from g(x0) is expanded
as follows:

g(xk) =
∞

∑

j=1

Ukϕj(x0)vj =
∞

∑

j=1

λk
j ϕj(x0)vj , (3.4)

9
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where vj is the vector-valued coefficient of the decomposition and is called the j-
th Koopman Mode (KM). This decomposition is based on properties of the point
spectrum of U , and the analysis based on (3.4) is called the Koopman Mode Analysis
(KMA).

3.1.1 Computation of Koopman Modes

Computation of Koopman eigenvalues and KMs is a challenging problem. A modi-
fied version of the Arnoldi algorithm described in [6] shows that the Ritz values λ̃j

and vectors ṽj approximate the Koopman eigenvalues λj and factors ϕj(x0)vj in
the expansion (3.4) in terms of a finite truncation. In other words, it is possible to
decompose the measured dynamics in terms of a finite number of eigenvalues and
eigenvectors (λ̃j and ṽj). The Ritz values and vectors are computed as follows.

Let’s consider a set of N+1 vectors of data, {g(x0), . . . , g(xN )}. g(xk) is a
vector measuring some observables (e.g. generator frequency ωi, i = 1, . . . , n) at a
certain time tk. Then a residual r is defined as:

r = g(xN ) −
N−1
∑

j=0

cjg(xj), (3.5)

and the constants cj chosen such that

r ⊥ span{g(x0), . . . , g(xN−1)}. (3.6)

With M = [g(x0), . . . , g(xN−1)] and c = [c0, . . . , cN−1], (3.5) together with (3.6)
gives

MTr = 0 = MTg(xN ) − MTMcT = B − Ac, (3.7)

and the constants c are consequently given by

c = A†B, (3.8)

where A† is the Moore-Penrose pseudoinverse of A. The pseudoinverse or generalized
inverse is defined for any m × n matrix and for the case of a non-square matrix
(m 6= n) it includes a best fit, i.e. a least square approximation. With the obtained
c, let us now consider the companion matrix C:

C =

















0 0 . . . 0 c0

1 0 0 c1

0 1 0 c2

...
. . .

...
0 0 . . . 1 cN−1

















(3.9)

The Ritz values λ̃j is now given by det (C − λ1) = 0. The Vandermonde matrix is
then defined as:

10



3.1. KOOPMAN MODE ANALYSIS

T =













1 λ̃1 λ̃2
1 . . . λ̃N−1

1

1 λ̃2 λ̃2
2 . . . λ̃N−1

2

...
...

...
. . .

...

1 λ̃1 λ̃2
N . . . λ̃N−1

N













(3.10)

The Ritz vectors ṽj , i.e., an approximation of the Koopman modes, are defined as
the columns of

V = [g(x0), . . . , g(xN−1)]T−1. (3.11)

λ̃j and ṽj behave like Koopman eigenvalues λj and term ϕj(x0)vj for a finite
sum compared to equation (3.4) shown before. In the following, ṽj is called the
Koopman Mode (KM). The input of the algorithm is the N + 1 sampled data
{g(x0), g(x1), . . . , g(xN )}. The outputs are N Koopman eigenvalues and KMs.
The finite sum expansion is expressed in (3.12) and (3.13):

g(xk) =
N

∑

j=1

λ̃k
j ṽj , k = 0, . . . , N − 1, (3.12)

g(xN ) =
N

∑

j=1

λ̃N
j ṽj + r, (3.13)

where r is a residue with the approximation error. By means of λ̃j and ṽj , the
captured nonlinear dynamics are analyzed with an usually small approximation
error.

3.1.2 Coherency in Koopman Modes

Here let us introduce the notion of coherency in KMs [7, 29]. A coherent group of
KMs is identified based on the amplitude coefficient Aji := |ṽji| and initial phase
αji := arg(ṽji) for each mode j and observable i (e.g. generator rotor speed ωi or
bus voltage angle θi). Coherency for KMs is defined in [29] as follows. For a finite
number N of modes {ṽ1, . . . , ṽN } and constants (ǫ1, ǫ2), two observables {gk, gv}
are called (ǫ1, ǫ2)-coherent with respect to mode j if

(i) |Aj,k − Aj,v| < ǫ1,

(ii) |αj,k − αj,v| < ǫ2,

which is illustrated in figure 3.1. An alternative method for identifying coherent
groups of observables is to apply the k-means clustering method.

11
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Figure 3.1: Groups of (ǫ1, ǫ2)-coherent observables illustrated in a phase vs. ampli-
tude plot.

3.1.3 Simple KMA Example

Let us consider a simple illustrative example of KMA. The signals shown in (3.14)
act as our measurements. Note that these signals have no coupling whatsoever.

g1 = 0.5 sin (2πf1t) , g2 = 0.8 sin (2πf2t − π/2) , g3 = sin (2πf3t) . (3.14)

Here {f1, f2, f3} are chosen as {6 Hz, 2.6 Hz, 0.7 Hz}. The signals are depicted in
figure 3.2 below for a time period of 4 s.
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p
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6 Hz

2.6 Hz

0.7 Hz

Figure 3.2: Three sine waves of different frequency corresponding to (3.14). The
2.6 Hz sine wave is displaced by a π/2 phase shift.

Let us now apply the KMA with a sampling frequency of fs = 60 Hz to the data
depicted in figure 3.2. N + 1 = 240 samples are acquired which gives N = 239
modes. The modes are now listed based on the Growth Rate (GR) |λ̃j | which is

12
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related to the damping in case of sampled dynamics. In table 3.1 the ten modes
with the largest GRs are listed.

Table 3.1: Dominant Koopman modes obtained for the data shown in figure 3.2.
Colored frequencies are equal or close to the frequencies of the sine waves (g1, g2, g3).

Mode GR Freq. (Hz) Norm

j |λ̃j | Im[lnλ̃j ]/(2πTs) ‖ṽj‖

1 0.9997 0.68 0.0269
2 0.9960 2.66 0.2814
3 0.9951 5.94 0.0266
4 0.9925 0.39 0.5401
5 0.9913 0.13 0.1816
6 0.9898 0.99 0.3171
7 0.9897 2.93 0.0513
8 0.9894 2.34 0.1207
9 0.9893 6.25 0.2850
10 0.9892 5.67 0.1331
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5.9 Hz Mode

2.7 Hz Mode

0.7 Hz Mode

Figure 3.3: The modal "dynamics" of the three dominant modes. Each of the modes
has three contributions corresponding to the three measured observables (the sine
waves g1, g2, g3).

In this manner, the sampled data has been decomposed into a set of Ritz values
λ̃j and vectors ṽj . The dominant frequencies were identified by applying KMA to
the sampled data. Modal dynamics for Mode 1-3 are depicted in figure 3.3. We see
that for each mode, essentially only one observable (out of three) contributes (the
one corresponding to the sine wave of the same frequency as the mode). The sum
over all modes according to (3.12)-(3.13) reconstructs the sampled data.
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3.2 Spectral Graph Theory

It is described in [28] how a power grid is split into islands based on spectral graph
theory. For a given power grid with n buses connected via transmission lines, the
grid is modeled as a graph with n vertices. The transmission lines connecting the
buses are represented as edges of the graph. The graph is denoted as G = (V, E),
where V is the set of vertices and E the set of edges connecting the vertices. An
edge is denoted as a pair (u, v) of vertices. For G, the adjacency matrix A [28] is
introduced as

A(u, v) =

{

1, if (u, v) ∈ E.

0, otherwise.
(3.15)

The degree di of a vertex is the sum of the i-th row of the adjacency matrix A, i.e.
the number of edges connected to the vertex. The degree matrix D [28] is defined
as a diagonal matrix given by

D =

{

di, if i = j.

0, otherwise.
(3.16)

Then, the Laplacian L [28] for G is defined as

L = D − A. (3.17)

The Laplacian L of G has the following properties for an unweighted or positively
weighted graph [28]:

(i) L is symmetric and singular;

(ii) L has non-negative eigenvalues;

(iii) L is positive semi-definite.

The eigenvalues of L are conventionally listed by increasing magnitude, where the
first eigenvalue λ1 equals to zero. Thus, the eigenvalues are ordered in the following
manner:

λ1 = 0 ≤ λ2 ≤ . . . ≤ λn.

It is shown in [30] that the second eigenvalue λ2 and the corresponding eigenvector
V2 contain important information about the connectivity of the graph. If λ2 = 0,
the graph is disconnected. The eigenvector V2 reveals information about the graph
structure through the value of the components in V2. In [31] the partitioning
properties of V2 are derived. For a fixed constant k ≤ 0, it is shown that a collection
of vertices C is connected if [V2]i ≥ k for all i ∈ C where [V2]i denotes the i-th
element of V2. In [28] this property is used to determine a partition of power grid
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for security enhancement in the following manner: Two groups of buses, A and B

where A ∩ B = ∅ and A ∪ B = V2, are constructed as follows:

i ∈ A if [V2]i ≥ 0,

i ∈ B if [V2]i < 0.
(3.18)

As a simple, illustrative example let us consider the graph shown in figure 3.4.

V=Vertex

E=Edge
1

2

3 4

Figure 3.4: An example graph with four vertices and four edges connecting the
vertices.

The graph Laplacian L is now calculated according to (3.17):

D











=











2 0 0 0
0 2 0 0
0 0 3 0
0 0 0 1





















−A











=











0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0





















= L











=











2 −1 −1 0
−1 2 −1 0
−1 −1 3 −1
0 0 −1 1





















and the eigenvalues are given by

det (L − λ1) = 0

and listed by increasing magnitude

λ1 = 0 ≤ λ2 = 1 ≤ λ3 = 3 ≤ λ4 = 4.

The values [V2]i for each vertex, i = 1, . . . , 4 are shown in figure 3.5. Based on
the result shown in figure 3.5 the graph is partitioned according to (3.18) and
the partitioned graph is shown in figure 3.6. An appropriate partition according to
spectral graph theory is to group the vertices as {1, 2, 3} and {4} which also involves
the cut of a minimum amount of edges (one).
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Figure 3.5: Values in second eigenvector [V2]i is plotted for each vertex, i = 1, . . . , 4
against the vertex number i.
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Cut

Figure 3.6: The example graph shown in figure 3.4 is partitioned according to (3.18).
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Chapter 4

Koopman Mode Based Controlled

Islanding Method

In this thesis the KMA is used for identification of coherent buses based on data on
voltage angle dynamics of every bus that are obtained numerically by simulation or
in practice with measurement units such as PMU [13]. Considering the coherency
of buses (namely, node dynamics of a graph), cut-sets are determined for every
partition. Splitting the power grid with respect to coherent groups is expected to
form groups of buses with generators that are able to keep synchronism.

For a graph G constituting of disjoint v parts, a cut-set is the set of branches that
upon removal separates G into v + 1 parts, and if all but one branch are removed,
there is no separation [32]. Generally, the KMA captures well a local mode for
dynamics of a single generator, an inter-machine mode for multiple generators or
an inter-area oscillation [7]. Modes excited in the grid highly depend on the type
of disturbance. In particular, when the grid responds to a severe disturbance, the
dynamics of the grid show highly nonlinear features and can not be evaluated with
the standard modal decomposition. Since cascading failures are typical of nonlinear
multi-scale dynamics of a large-scale power grid, it is inevitable to consider multiple
nonlinear modes that precisely capture the multi-scale dynamics.

4.1 Method

The outline of the method is as follows:

1. For measured data on voltage angle dynamics of every bus, the KMA is per-
formed (see section 3.1 for details).

2. Coherent groups of buses are identified in terms of multiple KMs, which are
dominant frequencies in the dynamics.

3. A partition of the power grid is derived based on the coherent groups of buses.
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4. A cut-set for each partition is identified as a set of lines connecting different
islanded sub-grids.

The proposed method has two novel points in comparison with the previously
mentioned [22–24,26–28,33]. First, as mentioned above, the method is solely based
on measurements of dynamics. In the controlled islanding, the target grid is highly
transient and far from a steady state operating condition. Thus, it is questionable
whether the grid partitioning based on static properties of the grid is effective.
Interestingly, in Section 5.4, it is shown that the connectivity measure obtained
from spectral graph theory, which comes from the static properties, is obtained with
the dynamics-based method. Second, the proposed method is based on nonlinear
dynamics of grids. The KMA is is capable of capturing nonlinear responses following
a severe disturbance [7, 8], i.e. a mixture of local modes for dynamics of single
generators, inter-machine modes for multiple generators or inter-area oscillations.
Thus, it is expected that the proposed method based on the KMA provides an
effective partition of a grid.
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Chapter 5

Simulations and Results

5.1 Test Systems and Simulation Setting

5.1.1 Test Systems

Two IEEE test systems are used to evaluate the performance of the proposed strat-
egy. Data for both test systems are available in [34].

The IEEE 68-bus test system contains 68 buses and 16 generators and is an inter-
connected network consisting of models of the New England Test System (NETS)
and the New York Power System (NYPS) as shown in figure 5.1(a): see [35] for
details.

The IEEE 118-bus test system represents a part of the American Electric Power
System in 1962. It has been used in numerous studies as a test case, e.g. [1,36–38].
The system dynamics are simulated with classical model for the 19 generators with
parameters chosen same as in [27].

5.1.2 Simulation Setting

The dynamics of the test systems are simulated using the free open-source toolbox
PSAT [10] for MATLAB. The mathematical model of the systems of differential
and algebraic equations solved in PSAT are given in appendix A.1.

The KMA will be performed on data of generator dynamics ω and bus voltage
angle dynamics θ for both test systems. N + 1 samples are collected with the
sampling frequency fs = 60 Hz. In a real power grid where measurements are
obtained from PMU:s, 60 Hz is an appropriate sampling frequency [39].

For N +1 samples, N KMs are obtained. The dominant modes are identified by
sorting them on the Growth Rate (GR) |λ̃j |. The GR represents the damping of the
mode and the norm ‖ṽj‖ gives the magnitude of the contribution in the dynamics.
A GR smaller than unity implies a positively damped mode. Based on the bus
coherency of dominant modes, partitions for the grid are identified.

For both test-systems, splitting of the power system is conducted based on the
partitions derived and the impact on the grid’s response is investigated. The main
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purpose of a controlled islanding is to relieve the stress of the grid and avoid an
instability phenomenon (such as loss of synchronism of generators). To evaluate
the control performance, it is inevitable to execute time-domain simulations of the
grid with and without controlled islanding. It is assumed that the grid is operated
at a steady operating condition before a disturbance. Then, the dynamics of the
grid following the disturbance at a fault time tf are simulated. The disturbance is
cleared at a pre-defined time tc, called the clearing time. As tc increases, the grid’s
response (e.g. generator angles and frequencies) tends to increase and finally begins
to diverge. The critical tc, where the response begins to diverge, is called the critical
clearing time tcc [18].

An important parameter in a controlled islanding strategy is the separation
timing. In this investigation, the separation time tsep is fixed at 20 cycles after the
fault clearing tc, i.e.:

tsep = tf + tc + 20/fs.

This lies within the range of normal relay and circuit breaker interrupting times [40].

5.1.3 Power System Stability

There are three main stability classifications for power systems. Most fundamental
is the ability of generators to maintain in synchronism with each other. This is
commonly referred to as rotor angle stability. A case of such instability usually
occurs within seconds (0 - 10 s) after a fault [40]. The study of rotor angle stability
by applying large faults is known as transient stability. For the test cases studied

in this thesis, transient stability investigated, i.e. the ability to maintain

the synchronism between generators in the post-islanding setting.
The second type of stability is voltage stability which is the ability of the system

to maintain voltages within acceptable limits after and during the occurrence of
faults. Voltage stability is closely linked to reactive power.

The third type is frequency stability. There are severe restrictions for the allowed
system frequency in the system. The frequency should be kept almost constant not
to damage or impair performance of generators and other equipment designed for
the system frequency. Frequency stability is closely linked to real power.

See the popular book by P. Kundur [40], for definitions and extensive descrip-
tions of power system stability and control.
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Figure 5.1: (a) IEEE 68-bus test system. This system is an interconnection of two
sub-systems called NETS (New England Test System) and NYPS (New York Power
System) (b) IEEE 118-bus test system. The dynamics of the system is simulated
with the classical model of 19 generators. Generator buses are indicated by hollow
squares and filled circles represents load buses.
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5.2 Test Case - IEEE 68-Bus Test System

The following disturbance is applied in this analysis:

Fault-case 68 A three-phase fault is applied close to bus 60 at tf = 1 s with
a clearing time tc = 124 ms. The fault is cleared by disconnecting the line between
bus 60 and 59. The line is then reconnected at t = 1.5 s.

5.2.1 Linear Modes and Koopman Modes

Let us first compare KMs to Linear Modes (LMs) by analyzing the dynamics of
generators. The ten least damped pairs of LMs are given in table 5.1. LMs are
calculated with PSAT: see Appendix A.3 for mathematical details. The oscillatory
LMs are complex conjugate pairs λj = σj ± jωj obtained from the linearization of
the system of differential equations describing the dynamics.

KMA is applied to the dynamics of generator angular frequencies ωi, i =
1, . . . , 16, in the post-fault dynamics induced by the three-phase fault disturbance
(Fault-case 68 ). N + 1 = 481 samples are collected during 8 s in the post fault
dynamics and 480 KMs are obtained. The dynamics are shown in figure 5.2 and ten
KMs are given in table 5.1 and listed by decreasing GR. In figure 5.3, the Koopman
eigenvalues λ̃ are plotted in the complex plane.

A comparison between the frequencies appearing among LMs and KMs tells
that multiple frequencies are identical or similar. Similar or equal frequencies for
the two types of modes are highlighted by the same color.
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Figure 5.2: Generator angular angular frequency dynamics in the IEEE 68-bus test
system following the three-phase fault on bus 60.
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Table 5.1: Poorly damped linear modes obtained from small signal analysis are listed
to the left. Koopman modes obtained for data on generator frequency dynamics in
figure 5.2 are listed to the right. Equally colored frequencies are those frequencies
found among both types of modes (with exception of white that indicates unique
frequencies).

Linear Modes

Mode Damping Freq. (Hz)
j −σj/|λj | ωj/(2π)

1 0.0394 ±1.33
2 0.0394 ±1.26
3 0.0441 ±0.54
4 0.0460 ±1.83
5 0.0466 ±0.64
6 0.0468 ±1.13
7 0.0477 ±1.07
8 0.0481 ±0.41
9 0.0488 ±0.98
10 0.0491 ±1.53

Koopman Modes

Mode GR Freq. (Hz) Norm

j |λ̃j | Im[lnλ̃j ]/(2πTs) ‖ṽj‖

1 1.0000 0 16.1
2 0.9982 0.84 1.8 · 10−7

3 0.9960 0.56 2.6 · 10−6

4 0.9952 0.98 4.50 · 10−7

5 0.9952 1.56 2.06 · 10−7

6 0.9950 0.69 1.14 · 10−5

7 0.9950 0.17 7.19 · 10−6

8 0.9949 1.29 2.91 · 10−6

9 0.9946 1.73 4.44 · 10−8

10 0.9945 0.43 8.11 · 10−5

ℜ(λ)

ℑ
(λ

)

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Figure 5.3: Koopman eigenvalues plotted with the imaginary part (ℑ(λ̃j)) against
the real part (ℜ(λ̃j)). The modes are distributed close to the unit circle and are
colored from red (largest norms) to blue (smallest norms).
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Figure 5.4: Voltage angle dynamics of buses in the IEEE 68-bus test system follow-
ing the three-phase fault on bus 60. The bus angle dynamics are here shown in the
Center Of Intertia (COI) reference frame (see appendix A.2).

5.2.2 Coherency Identification and Grid Partitioning

For the same fault case (Fault-case 68 ), the KMA is now performed for data on
voltage angle dynamics of the 68 buses, θl, l = 1, . . . , 68 shown in figure 5.4. The
number of samples is N + 1 = 481 and N KMs are obtained. Ten KMs are listed
in table 5.2 and are sorted based on decreasing GR. A comparison to the modal
frequencies identified in table 5.1 reveals that two frequencies (≈0.67 Hz, ≈0.41 Hz)
appear among both LMs as well as KMs for generator dynamics, (≈0.83 Hz, ≈1.78
Hz) only among the KMs and (≈1.13 Hz) only among the LMs. In other words,
fundamental modal frequencies such as inter-area oscillations (oscillations between
different parts of the system) and local mode dynamics are identified by analyzing
the bus dynamics.

Now, based on the KMA of voltage angle dynamics, coherent groups of buses
are identified and partitions are determined for the IEEE 68-bus test system.

Considering the modes listed in table 5.2. Mode 1 (0 Hz) and Mode 2 (0 Hz)
represents the Non-Oscillatory (NO) or time-averaged dynamics of the grid. Mode
1 has a GR larger than unity whereas the GR of Mode 4 is equal to unity. More
precisely, Mode 2 represents the average output of the observables. Mode 1, or
the second NO mode ṽNO2 will be investigated for the Case 2 disturbance for the
IEEE 118-bus test system.

Because Mode 3 and Mode 6 have large GRs as well as norms, they are regarded
as dominant modes that capture the oscillatory response well. The initial phase αji

versus the amplitude Aji is plotted for every bus i = 1, . . . , 68 in figures 5.5(a) and
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Table 5.2: Dominant Koopman modes obtained for the data on voltage angle dy-
namics in figure 5.4. Colored frequencies are equal or close to frequencies identified
for generator dynamics displayed in table 5.1 and hence share the same color.

Mode GR Freq. (Hz) Norm

j |λ̃j | Im[lnλ̃j ]/(2πTs) ‖ṽj‖

1 1.0095 0 8.14 · 10−4

2 1.0000 0 1.93 · 103

3 0.9989 0.67 2.18 · 10−2

4 0.9983 1.78 2.45 · 10−6

5 0.9981 2.47 2.93 · 10−7

6 0.9976 0.41 1.33
7 0.9973 2.61 4.20 · 10−7

8 0.9972 0.83 5.13 · 10−5

9 0.9971 2.33 8.73 · 10−7

10 0.9968 1.13 4.45 · 10−4

5.5(b) for Mode 1 and Mode 2, respectively. Clusters of buses are identified in terms
of phase coherency and correspond to coherent groups of buses with respect to KMs
as discussed below.

Grouping of buses based on Mode 3 in figure 5.5(b) leads to three groups of
buses. One group corresponds to the NETS. NYPS is divided into two sub-groups:
one group is large and contains most of the NYPS; the other group is small and
corresponds to the north-east part of NYPS. The associated partition of the grid is
shown in figure 5.7.

Grouping of buses based on Mode 6 in figure 5.5(a) leads to one large group
and one smaller group. The latter group consists of the far-east buses in the NYPS
system, and the former group represents the rest of the system. The associated
partition of the grid is shown in figure 5.7.

A fine partition is constructed by considering at least two partitions and let the
cut-set be the combination of cut-sets as illustrated in figure 5.6. By combining the
partitions for Mode 3 and Mode 6, a partition with four disjoint parts are obtained.
Partitions based on the concept of fine partition are multiple coherent for at least 2
frequencies and hence expect to keep generators in synchronism within the islands.

The graph theoretical partition is calculated according to (3.18). The resulting
partition is shown in figure 5.7 and corresponds to the interconnection between
NETS and NYPS.
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Figure 5.5: (a) Phase vs. amplitude plot of buses for Mode 3 (0.67 Hz) and (b)
Mode 6 (0.41 Hz).

X =

Figure 5.6: The concept of a fine partition. Here, a fine partition is constructed
based on two partitions.
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Figure 5.7: Partitioning of the IEEE 68-bus test system according to Mode 3, Mode
6 and spectral graph theory. The cut-sets are indicated by colored lines.
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(a) tc = 390 ms < tcc
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(b) tc = 400 ms > tcc

Figure 5.8: Angular frequency response for generators following a three-phase fault
at bus 60 with (a) tc = 390 ms and (b) tc = 400 ms.

5.2.3 Time-Domain Simulations of Grid Splitting

For the Fault-case 68 , tc is increased until a case of instability (divergence of
generator frequencies) is achieved and tcc is identified as ≈ 392 ms. The dynamics
for angular frequencies of generators for tc = 390 ms < tcc and tc = 400 ms > tcc are
depicted in figures 5.8(a) and 5.8(b), where a typical case of step-out of generators
is observed in figure 5.8(b).

In the post-fault dynamics induced by the unstable disturbance (tc = 400 ms)
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the grid is now separated according to the partitions obtained from the two domi-
nant modes (Mode 3 and 6), the fine partition and the graph theory partition. The
data for the cut-sets are given in table 5.3.

The dynamic responses for the four cases are shown in figure 5.9. Instabilities
similar to the unstable case shown in figure 5.8(b) are obtained for figure 5.9(a)-
5.9(c) corresponding to the cut-sets obtained for KMA. However, the time-duration
until the instability occurs varies. For the response of the Mode-3-splitting shown
in figure 5.9(a), loss of synchronism is apparent short after the grid separation and
finally the simulation is terminated at t ≈ 9 s due to divergence. In figure 5.9(b) for
the Mode 6 partition, the two groups of generators keep synchronism until ≈ 12
s until divergence of one generator occurs. Figure 5.9(c) shows the response of the
separation for the fine partition (combination of Mode 3 and 6) and synchronism is
here maintained until ≈ 15 s.

The response for the cut-set obtained from the graph theoretical partitioning
shown in figure 5.9(d) stabilizes into two separate system frequencies (caused by
the load-generation imbalance).
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(b) Mode 6
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(d) Graph Theory - NETS-NYPS

Figure 5.9: Four different partitions are investigated during the event of a large
fault and the test system is split according to (a) Mode 3, (b) Mode 6, (c) fine
partition and (d) spectral graph theory.
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Table 5.3: The data of the cut-sets illustrated in figure 5.7. The tie-lines are the
lines connecting two groups of buses and a line is denoted in the table as (bfr, bto),
where bfr is the from-bus and bto is the to-bus. ∆PX→Y is the power mismatch in
Group X caused by disconnecting the tie-lines from Group X (Gr. X) to group Y
where a positive sign (+) implies that power are being exported from Gr. X to Gr.
Y. ∆P/Gtot is the power mismatch divided by the sum of the real power output of
the generators in the group.

Cut-set Tie-lines (bfr, bto) Generators ∆P/Gtot

Mode 3
(60,61), (53,27),
(53,54), (45,51),
(46,49), (42,41)

Gr. 1: {1,2,3,4,5,
6,7,8,9}
Gr. 2: {10,11,12,
13,14}
Gr. 3: {15,16}

Gr. 1:

∆P1→2 = 7.13
∆P1→2/Gtot1 = +13.8 %
Gr. 2:

∆P2→1,3 = −11.77
∆P2→1,3/Gtot2 = −14.3 %
Gr. 3:

∆P3→2 = 4.64
∆P3→2/Gtot3 = +10.6 %

Mode 6
(50,18), (49,18),
(41,40)

Gr. 1: {1,2,3,4,5,
6,7,8,9,10,11,12,13}
Gr. 2: {14,15,16}

Gr. 1:

∆P1→2 = −15.09
∆P1→2/Gtot1 = −13 %
Gr. 2:

∆P2→1 = 15.09
∆P2→1/Gtot2 = +24.6 %

Fine Part.
Mode 3 & 6’s
tie-lines

Gr. 1: {1,2,3,4,5,
6,7,8,9}
Gr. 2: {10,11,12,
13}
Gr. 3: {14}
Gr. 4: {15,16}

Gr. 1:

∆P1→2 = 7.13
∆P1→2/Gtot1 = +13.8 %
Gr. 2:

∆P2→1,3,4 = −19.58
∆P2→1,3,4/Gtot2 =
−30.4 %
Gr. 3:

∆P3→2,4 = 7.81
∆P3→2,4/Gtot3 = +43.8 %
Gr. 4:

∆P4→2,3 = 13.08
∆P4→2,3/Gtot4 = +30.1 %

Graph Th.
(60,61), (53,27),
(53,54)

Gr. 1: {1,2,3,4,5,
6,7,8,9}
Gr. 2: {10,11,12,
13,14,15,16}

Gr. 1:

∆P1→2 = 7.13
∆P1→2/Gtot1 = +13.8 %
Gr. 2:

∆P2→1 = −7.13
∆P2→1/Gtot2 = −5.7 %
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5.3 Test Case - IEEE 118-Bus Test System

For this test system, two cases of disturbances are considered:

Case 1 A three-phase fault is applied to bus 68 with a clearing time tc = 350 ms,
slightly below critical clearing time tcc ≈ 360 ms.
Case 2 For initial generator frequency deviation ω0

i , i = 1, . . . , 19, the disturbance
is initiated as ω0

i = ω0
i + ∆ωi where

∆ωi =

{

−0.001 p.u., if i is odd,

+0.001 p.u., if i is even.
(5.1)

5.3.1 Linear Modes and Koopman Modes

In the same manner as for the IEEE 68-bus test case, KMs are compared to Linear
Modes (LMs) by analyzing the dynamics of generator frequencies ωi for the Case

1 fault. The dynamic response is shown in figure 5.10. N + 1 = 481 samples are
collected during 8 s in the post faults dynamics which gives 480 KMs. The dominant
KMs and poorly damped LMs are given in table 5.4. In figure 5.11, the Koopman
eigenvalues λ̃ are plotted in the complex plane.
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Figure 5.10: Angular angular frequency dynamics in the IEEE 118-bus test system
for all 19 generators following the Case 1 fault.
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Table 5.4: Poorly damped linear modes obtained from small signal analysis are listed
to the left. Koopman modes obtained for data on generator frequency dynamics in
figure 5.10 are listed to the right. Equally colored frequencies are those frequencies
found among both types of modes (with exception of white that indicates unique
frequencies).

Linear Modes

Mode Damping Freq. (Hz)
j −σj/|λj | ωj/(2π)

1 0.0082 ±4.17
2 0.0087 ±5.20
3 0.0093 ±4.56
4 0.0097 ±3.41
5 0.0107 ±3.47
6 0.0108 ±2.78
7 0.0115 ±2.67
8 0.0116 ±3.84
9 0.0120 ±2.59
10 0.0129 ±2.06

Koopman Modes

Mode GR Freq. (Hz) Norm

j |λ̃j | Im[lnλ̃j ]/(2πTs) ‖ṽj‖

1 1.0000 0 19.4536
2 0.9982 1.37 2.02 · 10−4

3 0.9980 1.20 5.03 · 10−5

4 0.9976 1.81 2.43 · 10−5

5 0.9973 1.55 2.20 · 10−4

6 0.9971 2.69 3.59 · 10−5

7 0.9969 1.97 3.58 · 10−5

8 0.9960 2.14 9.41 · 10−5

9 0.9958 1.05 1.97 · 10−4

10 0.9950 0.17 1.09 · 10−5

ℜ(λ)

ℑ
(λ

)

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Figure 5.11: Koopman eigenvalues plotted with the imaginary part (ℑ(λ̃j)) against
the real part (ℜ(λ̃j)). The modes are distributed close to the unit circle and are
colored from red (largest norms) to blue (smallest norms).

33



CHAPTER 5. SIMULATIONS AND RESULTS

0 1 2 3 4 5 6 7 8 9 10

80

60

40

20

0

20

40

Time (s)

B
u
s
 A

n
g
le

 
i
(d

e
g
re

e
s
)

Figure 5.12: Voltage angle dynamics of buses in the IEEE 118-bus test system
following a three-phase fault according to Case 1 . The bus angle dynamics are
here shown in the Center Of Intertia (COI) reference frame (see appendix A.2).

5.3.2 Coherency Identification and Grid Partitioning

Now, based on the KMA of voltage angle dynamics for Case 1 , coherent groups
of buses and associated partitions for the IEEE 118-bus test system are identified.
N = 420 KMs are collected from the data displayed in figure 5.12 which corresponds
to 7 s in the post fault dynamics, where the large excursions of bus angle swings
are observed. Ten KMs are listed in table 5.5 and sorted based on decreasing GR.

Let us now consider the modes listed in table 5.5. Mode 1 (0 Hz) and Mode 4
(0 Hz) represents the Non-Oscillatory (NO) or time-averaged dynamics of the grid.
Mode 1 has a GR equal to unity whereas the GR of Mode 4 is less than unity. Mode
1 represents the average output of the observables. Mode 4, or the second NO mode
ṽNO2 will be investigated for the Case 2 disturbance.

Mode 2 (1.04 Hz) and Mode 3 (1.72 Hz) hold the largest GRs as well as norms
among the oscillatory modes. Because Mode 2 and 3 have large GRs as well
as norms, they are regarded as dominant modes that capture the oscillatory re-
sponse well. The initial phase αji versus the amplitude Aji is plotted for every bus
i = 1, . . . , 118 in Figs. 5.13(a) and 5.13(b) for Mode 2 and Mode 3, respectively.
Several clusters of buses are identified in terms of phase coherency and correspond
to coherent groups of buses with respect to KMs as described below. A k-means
clustering algorithm can alternatively be used for clustering.

Grouping of buses based on Mode 2 in figure 5.13(a) leads to one large group
and one smaller group. For Mode 3 (see figure 5.13(b)), two more equally sized
groups are obtained as well as two isolated generator buses incoherent with the
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Table 5.5: Dominant Koopman modes obtained for the data on voltage angle dy-
namics in figure 5.12. Colored frequencies are equal or close to frequencies identified
for generator dynamics displayed in table 5.4 and hence share the same color.

Mode GR Freq. (Hz) Norm

j |λ̃j | Im[lnλ̃j ]/(2πTs) ‖ṽj‖

1 1.0000 0 3.9 · 105

2 0.9987 1.04 0.0629
3 0.9983 1.72 0.2194
4 0.9983 0 5.6 · 105

5 0.9982 3.36 0.0024
6 0.9979 4.82 0.0001
7 0.9975 4.46 0.0027
8 0.9973 2.60 0.0265
9 0.9969 2.26 0.0059
10 0.9967 0.66 0.0546
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Figure 5.13: Phase vs. amplitude plots for (a) Mode 2 (1.04 Hz) and (b) Mode 3
(1.72 Hz).

neighboring buses. The associated partitions are shown in figure 5.14.
As shown above, each dominant oscillatory KM provides a partition of the power

grid. That is, the proposed method provides a set of partitions based on multiple
frequencies. The variety of partitions possibly enhances the performance of the
controlled islanding strategy: see [41].

The results of grid partitioning based on KMA and spectral graph theory were
considered earlier. Now, a relationship between the theories is demonstrated by
using data on dynamics of the test system according to Case 2 . Figure 5.15 depicts
the oscillatory response of the bus voltage angles according to Case 2 . N +1 = 541
samples are acquired with fs = 60 Hz and 540 KMs are obtained. Then, the second
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Figure 5.14: Partitioning of the IEEE 118-bus test system according to Mode 2,
Mode 3 and spectral graph theory. The cut-sets are indicated by colored lines.

0 Hz mode, ṽNO2 is identified among the KMs, a mode in which all components are
real valued. In figure 5.16(a), ṽNO2 is plotted against bus numbers. A similar plot
can be observed for V2 in figure 5.16(b). The correlation coefficient of the two data
sets is calculated in MATLAB according to

R =
C(i, j)

√

C(i, i)C(j, j)
, (5.2)

where C(i, j) is the covariance between i and j. R = 0.89 is obtained and hence the
data sets have a strong correlation. The reason for this is explained in section 5.4.
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Figure 5.15: Voltage angle dynamics of buses in the IEEE 118-bus test system
following disturbance of initial rotor frequencies according to Case 2 .

0 20 40 60 80 100 120

0.225

0.23

0.235

0.24

Bus Number

V
a
lu

e

0 20 40 60 80 100 120
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Bus Number

V
a
lu

e
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Figure 5.16: (a) ṽNO2 for the Case 2 disturbance and (b) graph Laplacian’s second
eigenvector V2 plotted against bus numbers.
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5.3.3 Time-Domain Simulations of Grid Splitting

For the Case 1 fault, tcc becomes approximately 360 ms. For a tc > tcc instability
occurs instantaneously and PSAT terminates. Thus, tc is set to 350 ms, slightly
below tcc and the performance of the splitting is investigated with this setting.

The grid is now separated according to the partitions obtained from the two
dominant modes (Mode 2 and 3), the fine partition and partition obtained from
spectral graph theory. The data for the cut-sets are given in table 5.6 including
tie-lines, generator groups and the factor ∆P/Gtot indicating the load-generation
imbalance caused by the splitting.

For all the responses shown in figures 5.17(a)-5.17(d), synchronism is maintained
between generators after the separation. The difference between the cases are the
frequency deviation from steady state (1 p.u.). In table 5.6 the factor ∆P/Gtot

indicates the load-generation discrepancy for each island formed.
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(b) Mode 3
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(c) Fine Partition
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(d) Graph Theory

Figure 5.17: The four partitions are investigated during the event of a large fault
and the test system is split according to (a) Mode 2, (b) Mode 3, (c) fine partition
and (d) spectral graph theory.
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Table 5.6: The data of the cut-sets illustrated in figure 5.14. The tie-lines are the
lines connecting two groups of buses and a line is denoted in the table as (bfr, bto),
where bfr is the from-bus and bto is the to-bus. ∆PX→Y is the power mismatch in
Group X caused by disconnecting the tie-lines from Group X (Gr. X) to group Y
where a positive sign (+) implies that power are being exported from Gr. X to Gr.
Y. ∆P/Gtot is the power mismatch divided by the sum of the real power output of
the generators in the group.

Cut-set Tie-lines (bfr, bto) Generators ∆P/Gtot

Mode 2
(77,82), (80,96),
(80,97), (80,98),
(80,99)

Gr. 1: {10,12,25,26,
31,46,49,54,59,61,65,
66,69,80}
Gr. 2:

{87,89,100,103,111}

Gr. 1:

∆P1→2 = 1.06
∆P1→2/Gtot1 = −4.33 %
Gr. 2:

∆P2→1 = −1.06
∆P2→1/Gtot2 = −7.85 %

Mode 3

(43,44), (42,49),
(42,49), (38,65),
(69,70), (70,74),
(70,75), (86,87),
(110,111)

Gr. 1:

{10,12,25,26,31}
Gr. 2: {46,49,54,59,
61,65,66,69,80.
89,100,103}
Gr. 3: {87}
Gr. 4: {111}

Gr. 1:

∆P1→2 = −2.29
∆P1→2/Gtot1 = −21.3 %
Gr. 2:

∆P2→1,3,4 = 1.89
∆P2→1,3,4/Gtot2 = 7.06 %
Gr. 3:

∆P3→2 = 0.04
∆P3→2/Gtot3 = 98.5 %
Gr. 4:

∆P4→2 = 0.36
∆P4→2/Gtot4 = 99 %

Fine Part.
Mode 2 & 3’s
tie-lines

Gr. 1:

{10,12,25,26,31}
Gr. 2: {46,49,54,59,
61,65,66,69,80}
Gr. 3: {89,100,103}
Gr. 4: {87}
Gr. 5: {111}

Gr. 1:

∆P1→2,3 = −2.29
∆P1→2,3/Gtot1 = −21.3 %
Gr. 2:

∆P2→1,3 = 1.53
∆P2→1,3/Gtot2 = +11.7 %
Gr. 3:

∆P3→2,4,5 = 0.66
∆P3→2,4,5/Gtot3 =
+7.37 %
Gr. 4:

∆P4→3 = 0.04
∆P4→3/Gtot4 = 98.5 %
Gr. 5:

∆P5→3 = 0.36
∆P5→3/Gtot5 = 99 %
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Graph Th.
(65,68), (47,69),
(49,69), (24,70),
(70,71)

Gr. 1: {10,12,25,26,
31,46,49,54,59,61,65
66}
Gr. 2: {69,80,87,89,
100,103,111}

Gr. 1:

∆P1→2 = 0.85
∆P1→2/Gtot1 = +3.47 %
Gr. 2:

∆P2→1 = −0.85
∆P2→1/Gtot2 = −6.29 %

40



5.4. DISCUSSION

5.4 Discussion

5.4.1 Islanding Performance Factors

According to the literature study and the results obtained for the two test systems,
three important factors governing the performance of a controlled islanding strategy
were identified in the previous sections:

1. Synchronism between generators.

2. Load-generation balance within the islands.

3. Timing of grid-splitting.

The timing of the power grid splitting was a disregarded factor in this investigation
as previously mentioned (see simulation setting in section 5.1.2). Nonetheless, a
shorter or longer delay of the splitting affects the performance drastically for any of
the cut-sets investigated. However, it is shown that KMA-monitoring of dynamics
enables detection of disturbances and instabilities, see figure B.1. In the following,
let us discuss the other two factors (1-2) with respect to the results obtained.

5.4.2 IEEE 68-Bus Test System

For the IEEE 68-bus system, the islanding performance was investigated for a crit-
ical disturbance, i.e. instability occurs within seconds after the clearing of the fault
if no control measures are taken. With a controlled islanding operation for the four
sets of tie-lines presented in table 5.3, the performance was improved in the sense
that for the cases in which instability occurred anyway (shown in figures 5.9(a)-
5.9(c)), an instability phenomena was delayed. For the Mode 3 partition (figure
5.9(a)), the splitting caused an instantaneous loss of synchronism between the gen-
erators. For the Mode 6 partition (figure 5.9(b)), the splitting itself did not cause
any immediate loss of synchronism, but one generator diverges ≈ 10 s into the post-
fault dynamics. The combination of Mode 3 and 6 (the fine partition) maintained
generators in synchronism for a longer period of time ≈ 15 s. The idea of the
fine partition was to provide partitions multiple coherent for two or more dominant
modes (frequencies) and thus this result was not unexpected.

The partition obtained from spectral graph theory separated the test system
into two parts. Following the splitting, instability was avoided and the two sub-
grids converged with two separate frequencies. One group with a surplus of power
generation and consequently left the other one with a deficiency. The same cut-set
was included in the partitioning according to Mode 3, see figure 5.7.

The NETS-NYPS partition (captured by graph theory and Mode 3) provided
the best result in terms of least amount of tie-lines disconnected and the best load-
generation imbalance compared to the other partitions. Also, this was the only
cut-set with maintained synchronism between generators upon separation.
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5.4.3 IEEE 118-Bus Test System

The IEEE 118-bus system was simulated with a three-phase fault disturbance with
a clearing time tc just below critical clearing time tcc. For all four cases of parti-
tions, generators kept synchronism within the groups in the post-splitting dynam-
ics. The KMA did not exactly capture the graph theoretic partition for the Case

1 fault-case. However, interestingly, for a generator frequency displacement for all
generators inducing oscillations close to the steady state (Case 2 disturbance), the
connectivity measurement from spectral graph theory was identified with the KMA.

5.4.4 Koopman Modes and Spectral Graph Theory

It was shown in section 5.3.2 that a strong correlation existed between a certain KM
(denoted as the second 0 Hz mode, ṽNO2) and the second eigenvector for the graph
Laplacian (a measurement of connectivity). Now the correlation is theoretically
explained, in other words, why the spectral graph connectivity is captured using the
KMA on dynamics. First of all, by applying the Case 2 disturbance, a response
exhibiting dynamics close to the initial operating point is achieved. In PSAT the
dynamics are calculated from a set of nonlinear differential-algebraic equations:

dx

dt
= f(x, y),

0 = g(x, y),
(5.3)

where x = (δ1, . . . , δ19, ω1, . . . , ω19)T is the set of state variables and y is the set
of output variables consisting of bus voltages v = (v1, . . . , v118)T and bus voltage
angles θ = (θ1, . . . , θ118)T. Here the vector-valued function g represents the power
flow equations of the grid and is decomposed in [40] as follows:

0 = g1(x, v, θ),

0 = g2(x, v, θ),
(5.4)

where g1 describes the reactive power flows and g2 the active power flows. Under
the singular perturbation theory [42], x describes the slow dynamics of the grid,
and y its fast dynamics. According to the standard scaling argument (see [42]), the
so-called boundary layer system exhibiting the fast dynamics of the grid is derived
as follows:

dx

dτ
= 0,

dv

dτ
= g1(x, v, θ),

dθ

dτ
= g2(x, v, θ),

(5.5)

where τ is a new time variable. Now, because the short-term electro-mechanical
dynamics close to the initial steady state is analyzed, bus voltages v are assumed to
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be constant, and the differences of bus angles between any two buses are assumed
small. Thus, by recalling that the active power flows are represented by g2, (5.5) is
rewritten as

dθ

dτ
= g2(xQ, vQ, θQ) + (Dθg2)(xQ, vQ, θQ)θ + h.o.t.,

≈ g2(xQ, vQ, θQ) + LWθ,
(5.6)

where (xQ, vQ, θQ) denotes the initial steady state, and LW corresponds to the
Laplacian matrix weighted by positive constants vivjBij (Bij is the susceptance of
the line between buses i and j). That is, the linearized bus dynamics are represented
by the positively-weighted Laplacian matrix of the grid. This is why the KMA of
bus angle dynamics close to the initial steady state captures well the intrinsic graph-
structural properties of the grid.

The second 0 Hz mode (ṽNO2), is not only identified for the IEEE 118-bus test
system. For the 68-bus test case, a similar result is also obtained. Depending on the
disturbance and also the sampling duration, the connectivity property of spectral
graph theory is obtained with stronger or weaker correlation.
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Chapter 6

Closure

6.1 Summary

This thesis investigates the possibilities of a new power grid islanding strategy based
on the Koopman Mode Analysis (KMA). By measuring voltage angle dynamics of
every bus in two test systems, partitions are determined for dominant modes. The
dynamics of the response are decomposed into a finite number of modes (each with a
frequency) using KMA. A dominant mode corresponds to a predominant frequency
identified in the dynamics following a fault in the system.

In graph theory, a power grid is represented by vertices (buses or nodes) and
edges connecting the vertices (transmission lines). By investigating the matrix
properties of the power grid representation, a connectivity property is achieved. On
the other hand, the measurements of voltage angle dynamics provides the nodal or
vertex dynamics of a graph. It is shown in this thesis that the connectivity property
obtained from spectral graph theory could be verified by KMA on nodal dynamics,
with a strong correlation.

Simulations showed that the partitions obtained from KMA and spectral graph
theory could indeed improve the performance following a severe fault. However, a
vital step in a controlled islanding strategy is to determine which one out of several
cut-sets that are most suitable for the islanding. This is not yet clarified for the
KMA-based controlled islanding strategy.

6.2 Conclusions and Contributions

The contributions of this thesis are two-fold. First, the thesis provides a new method
of partitioning power grids based on the nonlinear KMA. By applying the method to
the IEEE 118 and 68 test systems, it was demonstrated that the KMA provides cut-
sets splitting the test systems into isolated sub-grids. This leads to the KMA-based
controlled islanding strategy.

Second, it is shown that the KMA also captures characteristics described by
spectral graph theory, particularly for dynamics exhibiting oscillations close to the
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steady state which was shown for the IEEE 118-bus test system. For the IEEE
68-bus test system, the cut-set from graph theory was even directly obtained from
one of the dominant oscillatory modes for a large fault.

In the case of cascading dynamics in a real power grid far from steady state
conditions, a method which can fully capture and provide partitions with respect to
the complex nonlinear dynamics should be considered. Thus, the KMA is regarded
as a powerful prospect in monitoring and control of complex power grids.

The development of new sophisticated strategies for protecting and maintaining
the safe operation of vital systems like power grids are important for the society. It
is also and one of the pieces in the puzzle for the next generation power grids called
smart grids. Almost every vital function in the society today depends on the stable
supply of electricity and the development of the new power grid gives economical,
environmental and safety gains.

6.3 Future Studies

There are several future studies required to establish a complete and sophisticated
controlled islanding strategy based on the KMA. The two most important steps are
listed below.

1. Determine the best cut-set from a selection of possible cut-sets.

2. Determine an optimal separation timing for the cut-set.

Determining a best cut-set from a set of possible cut-sets is a vital part of
the controlled islanding strategy. This could be done in two steps. First, impose
constraints such as a minimum load-generation imbalance. Second, for every sub-
grid, a pre-assessment of the stability is conducted. Previously, a pre-assessment of
islanding stability has been conducted in [43].

The separation timing is a complicated task. Firstly, an emergency situation
has to be detected by the monitoring system. Depending on the type and location
of the disturbance it could be beneficial to split as soon as possible or delay the
splitting for a certain amount of time. For example, the time duration from a
stable state to a blackout state can range from seconds to minutes. It is possible
that the islanding operation causes even more turbulence and failure in the system
if split incorrectly or with an inappropriate timing. It is shown in figure B.1 in
the appendix, that monitoring dynamics with KMA on a short time-scale enables
detection of disturbances and instabilities. More investigation on KMA-monitoring
and how this can trigger an islanding operation is an interesting future subject of
research.
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Appendix A

Power System Analysis

In the following a short theoretical description of the mathematics simulated in the
test cases are given, see [40,44] for details.

A.1 System Equations and Modeling

The most simple representation of a generator used in transient studies is the classi-
cal model shown in figure A.1. The classical model is used for the IEEE 118-bus test
case in section 5.3. The generator is described by a constant voltage Ē

′

(= E
′

∠δ)
behind its transient reactance X

′

d. The voltage at the generator bus is denoted as
v̄ (=v∠θ).

E'

Xd v
'

I

Figure A.1: Classical model of a synchronous generator for transient studies.

The injected real power Pe delivered to the k-th bus by its associated generator is
given by

Pe =
E

′

kvk

x
′

d

sin (δk − θk). (A.1)
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APPENDIX A. POWER SYSTEM ANALYSIS

The dynamics of the generators are described by the following two differential equa-
tions:

δ̇k = ωk,

ω̇k =
1

Mk

(Pmk − Pe − Dωk) ,
(A.2)

where δ is the rotor angle, ω the rotor frequency deviation from equilibrium point
and D the damping. Mk is given by

Mk =
2HSb

k

ωsS3φ
b

, (A.3)

where H is the generator’s inertia constant (≈ a few seconds), ωs is the system

synchronous speed (2πfs), S3φ
b is the rated three-phase power for the system and

Sb
k is the generator’s rated power. For the IEEE 68-bus test case in section 5.2, a

generator model in which generator voltages are not constant is used (see PSAT
manual, generator model IV and Automatic Voltage Regulator (AVR) type II).

The injected active and reactive powers for every bus k bus are given by the
following nonlinear algebraic equations:

Pk = vk

n
∑

m=1

(Gkmvm cos θkm + Bkmvm sin θkm) + Pe,

Qk = vk

n
∑

m=1

(Gkmvm sin θkm − Bkmvm cos θkm) + Pe,

(A.4)

where Pe = 0 for non-generator buses and Gkm and Bkm is the conductance and
susceptance in the admittance matrix Y between bus k and m respectively, see [40]
for further explanations. In every bus, there is a balance between injected and
consumed active and reactive power given by:

0 = Pk + PLk,

0 = Qk + QLk,
(A.5)

where PLk and QLk is the active and reactive load at bus k, respectively. The set
of nonlinear differential and algebraic equations is denoted as

ẋ = f(x, y),

0 = g(x, y),
(A.6)

where f is the set of differential equations governing the generator dynamics and
g is the set of algebraic equations maintaining the power balance for buses. x =
(δ1, . . . , δ19, ω1, . . . , ω19)T is the set of state variables and y is the set of output
variables consisting of bus voltages v = (v1, . . . , v118)T and bus voltage angles
θ = (θ1, . . . , θ118)T. The dynamics are simulated using the Power System Anal-
ysis Toolbox (PSAT) [10], which is an open source toolbox for MATLAB.
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A.2 Center of Inertia

It is common to transform (A.6) into the so-called Center Of Inertia (COI) reference
frame. COI is a point in the system defined by the following set of equations.

δCOI =
1

MT

n
∑

k=1

Mkδk, ωCOI =
1

MT

n
∑

k=1

Mkωk, MT =
n

∑

k=1

Mk. (A.7)

The measured observables such as rotor angles δ, generator angular frequencies ω
and bus voltage angles θ are expressed in the COI reference frame as follows.

δ̃COI = δk − δCOI , ω̃COI = ωk − ωCOI , θ̃COI = θk − δCOI . (A.8)

See [44] for more information.

A.3 Small Signal Analysis - Modal Analysis

The linearization of (A.6) around its equilibrium point is expressed as following:

∆ẋ = fx∆x + fy∆y,

0 = gx∆x + gy∆y,
(A.9)

where

fx =

[

∂f(x0, y0)

∂x

]

, fy =

[

∂f(x0, y0)

∂y

]

,

gx =

[

∂g(x0, y0)

∂x

]

, gy =

[

∂g(x0, y0)

∂y

]

,

(A.10)

where f is the set of differential equations describing generator dynamics (see (A.2)
for classical model) and g is represented by the set of equations (A.2)-(A.4). Now,
(A.9) can be re-written as

∆ẋ = (fx − fy

(

gy

)−1

gx)∆x = A∆x, (A.11)

and the eigenvalues are given by

det (A − λ1) = 0, (A.12)

where the damping ξj for each mode (eigenvalue) λj = σj ± jωj is given by

ξj =
−σj

√

σ2
j + ω2

j

, (A.13)

and the frequency fj is calculated as

fj =
ωj

2π
. (A.14)
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Appendix B

Short-Time Koopman Mode Monitoring

Here, let us now apply the KMA to the unstable fault case shown in figure B.1(a).
In the KMA-partitioning in section 5.2.2, KMs were calculated based on a large
number of samples (541). Here, let us investigate the KMs calculated based on
fewer samples (30) which corresponds to 0.5 s (fs = 60 Hz) of sampled dynamics.
Multiple sets of KMs are calculated. Two consecutive sets of KMs have an overlap
of 24 samples. The result is shown in figure B.1(b) and can be regarded as a KM
spectrogram. In the figure, the frequency associated for every mode is shown as
constant for the time period it is calculated for (0.5 s) and colored from red (large
Growth Rate (GR)) to blue (small GR). By inspecting the spectrogram, a clear and
sudden increase in GR is visible just prior to the loss of synchronism between the
two groups of generators. By monitoring dynamics in this manner, it is possible to
detect instabilities and trigger an islanding operation of a grid.
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Figure B.1: (a) Angular frequency response of generators for an unstable fault and
(b) short-time (0.5 s) Koopman mode frequencies calculated for the response. Every
modal frequency is colored based on the growth rate.

52



Appendix C

Submitted Reports and Papers

One technical report and one conference paper were written and submitted during
the project and they are briefly described below.

(i) F. Raak, Y. Susuki, T. Hikihara, and H. Chamorro, “Investigation of power
grid islanding based on nonlinear Koopman modes,” in IEICE Technical Re-
port, Nonlinear Problems, vol. 113, pp. 75–80, 2013

A technical report was submitted to the IEICE Technical Meeting on Nonlinear
Problems (NLP) with the title "Investigation of Power Grid Islanding Based on
Nonlinear Koopman Modes" [41]. The meeting was held in Miyakojima (Japan) in
July 2013. The report describes how a power grid can be separated in two or several
sub-grids by means of the KMA. The proposed separation method was compared
to another method based on spectral graph theory. It was shown in this report that
the result from spectral graph theory was also captured by the KMA-based method.

(ii) F. Raak, Y. Susuki, T. Hikihara, H. Chamorro, and M. Ghandhari, “Parti-
tioning power grids via nonlinear Koopman mode analysis,” in IEEE PES
Conference on Innovative Smart Grid Technologies, ISGT Washington, 2014.
(Submitted)

A paper [45] was submitted to The Innovative Smart Grid Technologies (ISGT)
conference in Washington DC (US) which will be held in February 2014. Similar to
the technical report, it demonstrates the ability to identify separation boundaries
in a power grid using the KMA-based method on sampled dynamics. More than
that, it is shown that KMA indeed captures the intrinsic structural properties of
the spectral graph theory which was first suspected in the IEICE Technical Meeting
report.
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