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In the present paper, we focused our attention to study pseudo-Ricci symmetric spacetimes in Gray’s decomposition subspaces. It
is proved that (PRS)n spacetimes are Ricci flat in trivial, A, and B subspaces, whereas perfect fluid in subspaces I, I⊕A, and I⊕B,
and have zero scalar curvature in subspace A⊕B. Finally, it is proved that pseudo-Ricci symmetric GRW spacetimes are vacuum,
and as a consequence of this result, we address several corollaries.

1. Introduction

A pseudo-Ricci symmetric manifold (briefly (PRS)n) is a
nonflat pseudo-Riemannian manifold whose Ricci tensor
satisfies

∇kRij � 2AkRij + AiRkj + AjRik, (1)

where A is a nonzero 1-form and ∇ indicates the covariant
differentiation with respect to the metric g [1].

)e class of pseudo-Ricci symmetric manifolds is a
subclass of weakly Ricci symmetric manifolds which were
first introduced and studied by Tamássy and Binh [2]. )ere
has been much focus on the concept of (PRS)n manifolds;
for instance, a sufficient condition on (PRS)n manifolds to
be quasi-Einstein manifolds was introduced by De and Gazi
[3]. (PRS)n manifolds whose scalar curvature satisfies ∇kR �

0 have zero scalar curvature [1]. A concrete example of
pseudo-Ricci symmetric manifolds was given in [4]. )ere

are many generalizations of (PRS)n manifolds, for example,
see [5, 6].

An invariant orthogonal decomposition of the covariant
derivative of the Ricci tensor was coined and studied by Gray
in [7] (see also [8–10]). )e manifolds in the trivial subspace
have parallel Ricci tensor; that is, ∇kRij � 0. )e subspaceA
contains manifolds whose Ricci tensor is Killing; that is,

∇jRki + ∇kRji + ∇iRkj � 0. (2)

)e next subspace is denoted by B. )e Ricci tensors of
manifolds in B are Codazzi; that is,

∇kRij � ∇iRkj. (3)

)e subspace A⊕B is characterized by the equation
∇R � 0. Manifolds with

∇kRij �
n

(n − 1)(n + 2)
∇

kRgij( 􏼁 (4)
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lie inI. InI⊕A, the tensor Rij − (2R/(n + 2))gij is Killing,
whereas in I⊕B, the tensor Rji − (R/2(n − 1))gji is a
Codazzi tensor. Such manifolds are called Einstein-like
manifolds [11]. Recently, there has been growing interest in
this decomposition. For example, generalized Rob-
ertson–Walker spacetimes are either Einstein or perfect fluid
in Gray’s orthogonal subspaces except one in which the Ricci
tensor is not restricted [12].

An n-dimensional Lorentzian manifold is said to be
pseudo-Ricci symmetric spacetime if the Ricci tensor sat-
isfies equation (1). Here, we assume the associated vector Ai

is a unit time-like vector (AiA
i � − 1).

In standard theory of gravity, the relation between the
matter of spacetimes and the geometry of spacetimes is given
by Einstein’s field equation (EFE):

Rij −
R

2
gij � kTij, (5)

where Rij, R, k, and Tij are the Ricci tensor, scalar curvature
tensor, Newtonian constant, and energy-momentum tensor,
respectively. EFE implies that the energy-momentum tensor
Tij is divergence-free.)is requirement is directly satisfied if
∇lTij � 0.

)is paper is organized as follows: In Section 2, general
properties of (PRS)n spacetimes are considered. In Section 3,
(PRS)n spacetimes are investigated in all Gray’s orthogonal
subspaces. It is proved that (PRS)n spacetimes in trivial, A,
and B subspaces are Ricci flat, in subspaces I, I⊕A, and
I⊕B are perfect fluid spacetimes, and inA⊕B have a zero
scalar curvature. In Section 4, we prove that pseudo-Ricci
symmetric GRW spacetimes are vacuum and as a conse-
quence, we address some corollaries.

2. On (PRS)n Spacetimes

In this section, the main properties of (PRS)n spacetimes are
considered. Equation (1) implies

∇kR
k
i � 3A

j
Rij + AiR. (6)

)e use of ∇kRk
i � (1/2)∇iR yields

∇iR � 6A
j
Rij + 2AiR. (7)

A different contraction of equation (1) with gij gives

∇kR � 2AkR + 2A
j
Rkj. (8)

Solving equations (7) and (8) together, one gets

A
j
Rkj � 0, (9)

∇kR � 2AkR. (10)

Lemma 1. In (PRS)n spacetimes, the covariant derivative of
the scalar curvature is ∇kR � 2AkR. Moreover, Aj is an ei-
genvector of the Ricci tensor Rij with zero eigenvalue.

Assume that the scalar curvature is constant. Equation
(10) directly leads to R � 0.

Lemma 2. In (PRS) spacetimes, the scalar curvature R is
constant if and only if R � 0.

Let us consider R≠ 0; then, the use of equation (10) in
equation (1) implies that

∇kRij �
∇kR

R
Rij +
∇iR

2R
Rkj +
∇jR

2R
Rik. (11)

)is leads us to the following lemma.

Lemma 3. In (PRS)n spacetimes with nonzero scalar cur-
vature, the covariant derivative of the Ricci tensor takes the
form

∇kRij �
∇kR

R
Rij +
∇iR

2R
Rkj +
∇jR

2R
Rik, (12)

provided R≠ 0.

)e Weyl tensor of type (0, 4) has the form [13]

Cijkl � Rijkl −
1

n − 1
gilRjk + gjkRil − gikRjl − gjlRik􏽮 􏽯

+
R

(n − 1)(n − 2)
gilgjk − gikgjl􏽮 􏽯,

(13)
and its divergence is

∇hC
h
ijk �

n − 3
n − 2
∇kRij − ∇jRik􏼐 􏼑 −

1
2(n − 1)

gij∇kR − gik∇jR􏼐 􏼑􏼢 􏼣.

(14)

In virtue of (1) and (10), we have

∇hC
h
ijk �

n − 3
n − 2

AkRij − AjRik􏼐 􏼑 −
1

(n − 1)
gijAkR − gikAjR􏼐 􏼑􏼢 􏼣.

(15)

Assume that the Weyl conformal curvature tensor is
divergence-free, that is, ∇hC

h
ijk � 0; then,

AkRij − AjRik �
(n − 2)

(n − 1)(n − 3)
gijAkR − gikAjR􏼐 􏼑. (16)

Contracting with Ak and using equation (9), we obtain

Rij �
(n − 2)R

(n − 1)(n − 3)
gij + AiAj􏼐 􏼑. (17)

A multiplication with gij gives R � 0, and hence,

Rij � 0. (18)

)us, we can conclude the following theorem:

Theorem 1. A (PRS)n spacetime with divergence-free Weyl
curvature tensor is Ricci flat.

)e use of this result (Rij � 0) in the defining property of
the conformal curvature tensor entails that

Cijkh � Rijkh. (19)

Hence, we have the following corollary.
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Corollary 1. Semisymmetric and conformally semi-
symmetric pseudo-Ricci symmetric spacetimes are equivalent.

)e covariant derivative of equation (1) gives

∇r∇kRij � 2∇r AkRij􏼐 􏼑 + ∇r AiRkj􏼐 􏼑 + ∇r AjRik􏼐 􏼑. (20)

Interchanging the indices r and k in the last equation, we
have

∇k∇rRij � 2∇k ArRij􏼐 􏼑 + ∇k AiRrj􏼐 􏼑 + ∇k AjRir􏼐 􏼑. (21)

Subtracting the last two equations, we obtain

∇r∇k − ∇k∇r( 􏼁Rij � 2∇r AkRij􏼐 􏼑 + ∇r AiRkj􏼐 􏼑 + ∇r AjRik􏼐 􏼑

− 2∇k ArRij􏼐 􏼑 − ∇k AiRrj􏼐 􏼑 − ∇k AjRir􏼐 􏼑,

∇r∇k − ∇k∇r( 􏼁Rij � 2Rij∇r Ak( 􏼁 + Rkj∇r Ai( 􏼁 + Rik∇r Aj􏼐 􏼑

+ 2Ak∇r Rij􏼐 􏼑 + Ai∇r Rkj􏼐 􏼑 + Aj∇r Rik( 􏼁

− 2Ar∇k Rij􏼐 􏼑 − Ai∇k Rrj􏼐 􏼑 − Aj∇k Rir( 􏼁

− 2Rij∇k Ar( 􏼁 − Rrj∇k Ai( 􏼁 − Rir∇k Aj􏼐 􏼑.

(22)

Making use of equation (1) and simplifying, we get

∇r∇k − ∇k∇r( 􏼁Rij � 2Rij ∇r Ak( 􏼁 − ∇k Ar( 􏼁􏼂 􏼃 + Rkj∇r Ai( 􏼁

+ Rik∇r Aj􏼐 􏼑 − Rrj∇k Ai( 􏼁 − Rir∇k Aj􏼐 􏼑

+ AiAkRjr + AiAjRrk + AjAkRir

− AiArRkj − AjArRki.

(23)

Now, assume that the (PRS)n is Ricci semisymmetric,
that is, (∇r∇k − ∇k∇r)Rij � 0; we have

0 � 2Rij ∇r Ak( 􏼁 − ∇k Ar( 􏼁􏼂 􏼃 + Rkj∇r Ai( 􏼁

+ Rik∇r Aj􏼐 􏼑 − Rrj∇k Ai( 􏼁 − Rir∇k Aj􏼐 􏼑

+ AiAkRjr + AiAjRrk + AjAkRir − AiArRkj − AjArRki.

(24)

Contracting with Aj and using equation (9), we infer

− AiRrk + ArRki � 0. (25)

Again, contracting with Ai and utilizing equation (9), we
get

Rrk � 0. (26)

)us, we have the following theorem:

Theorem 2. Ricci semisymmetric (PRS)n spacetimes are
Ricci flat.

3. ERROR!!PRS)n Spacetimes in Gray’s
Decomposition Subspaces

)is section is devoted to study (PRS)n spacetimes in Gray’s
seven subspaces. )ree main results are obtained in this

section. A Lorentzian manifold M is said to be perfect fluid if
its Ricci tensor satisfies

Rij � αgij + βuiuj, (27)

where α and β are scalar fields and ui is a time-like vector
field [14].

Theorem 3. (PRS)n spacetimes in trivial, A, and B sub-
spaces are Ricci flat.

Proof. )e trivial subspace of Gray’s decomposition con-
tains spacetimes whose Ricci tensors are parallel and the
scalar curvatures are constant. )us, equation (10) easily
gives R � 0. And hence, equation (1) becomes

2AkRij � − AiRkj − AjRik. (28)

A contraction of equation (28) with gij yields

Rij � RAiAj � 0. (29)

And consequently,

Rij � 0, (30)

which means that (PRS)n spacetimes with parallel Ricci
tensor are Ricci flat.

In subspace A (PRS)n spacetimes have a Killing Ricci
tensor; that is,

∇jRki + ∇kRji + ∇iRkj � 0. (31)

It is well known that in this subspace, the scalar cur-
vature is covariantly constant. Equation (10) implies R � 0.
Using equation (1) in equation (31), we have

AkRij + AjRik + AiRjk � 0. (32)

Contracting equation (32) with Ak and using equation
(9), we get

Rij � RAjAi � 0, (33)

whichmeans that (PRS)n spacetimes in subspaceA are Ricci
flat.

Next, let us consider the subspace B in which (PRS)n

has a Codazzi type of Ricci tensor [15]. )e Codazzi devi-
ation tensor Dijk of (PRS)n is given by

Dijk � ∇kRij − ∇iRkj

� 2AkRij + AiRkj + AjRik − 2AiRkj + AkRij + AjRik􏽨 􏽩

� AkRij − AiRkj.

(34)

A contraction with gij implies

g
ij

Dijk � AkR − A
j
Rkj. (35)

But, in this subspace, the spacetimes have Codazzi-type
Ricci tensor (that is, Dijk � 0); then,

AkRij � AiRkj. (36)
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Multiplying with gij and utilizing equation (9), we get

R � 0. (37)

A contraction of equation (36) by Ak gives

Rij � 0, (38)

which means that (PRS)n spacetimes in Gray’s subspace B
are Ricci flat. □

Theorem 4. (PRS)n spacetimes in I, I⊕A, and I⊕B
subspaces are perfect fluid spacetimes.

Proof. In subspace I, the Ricci tensor of pseudo-Ricci
symmetric manifold M satisfies the following property:

∇kRij �
n∇kR

(n − 1)(n + 2)
gij +

(n − 2)∇iR

2(n − 1)(n + 2)
gkj

+
(n − 2)∇jR

2(n − 1)(n + 2)
gik.

(39)

Applying equation (1), we obtain

2AkRij + AiRkj + AjRik �
n∇kR

(n − 1)(n + 2)gij

+
(n − 2)∇iR

2(n − 1)(n + 2)
gkj

+
(n − 2)∇jR

2(n − 1)(n + 2)
gik.

(40)

It follows that

2AkRij + AiRkj + AjRik �
2nAkR

(n − 1)(n + 2)gij

+
(n − 2)AiR

(n − 1)(n + 2)
gkj

+
(n − 2)AjR

(n − 1)(n + 2)
gik.

(41)

Contracting with Ak implies

Rij �
nR

(n − 1)(n + 2)
gij +

(2 − n)R

(n − 1)(n + 2)
AiAj, (42)

which means that (PRS)n spacetimes in subspace I are
perfect fluid.

In subspace I⊕A, the Ricci curvature tensor satisfies

∇kRij + ∇iRkj + ∇jRik �
2∇kR

(n + 2)
gij +

2∇iR

(n + 2)
gkj +

2∇jR

(n + 2)
gik.

(43)

Using equation (1), we infer

AkRij + AjRik + AiRjk �
2

(n + 2)
∇kRgij + ∇iRgkj + ∇jRgik􏼐 􏼑.

(44)

Now, equation (10) implies

AkRij + AjRik + AiRjk �
2R

(n + 2)
Akgij + Aigkj + Ajgik􏼐 􏼑.

(45)

A contraction with Ak yields

Rij �
2R

(n + 2)
gij − 2AjAi􏼐 􏼑, (46)

which means that (PRS)n spacetimes in subspace I⊕A are
perfect fluid.

Assume that (PRS)n are in Gray’s subspace I⊕B; that
is,

∇kRji − ∇jRki �
1

2(n − 1)
gji∇kR − gki∇jR􏽨 􏽩. (47)

Equation (1) implies

2(n − 1) AkRij − AjRki􏼐 􏼑 � gji∇kR − gki∇jR. (48)

)e use of equation (10) gives

(n − 1) AkRij − AjRki􏼐 􏼑 � gjiAkR − gkiAjR. (49)

Contracting with Ak, we obtain

Rij �
R

n − 1
gji + AiAj􏼐 􏼑, (50)

which means that (PRS)n spacetimes in Gray’s subspace
I⊕B are perfect fluid. □

Theorem 5. (PRS)n spacetimes in A⊕B subspace have zero
scalar curvature.

Proof. In subspaceA⊕B, the scalar curvature is covariantly
constant and hence equation (10) implies

R � 0, (51)

which means (PRS)n spacetimes in Gray’s subspace A⊕B
have zero scalar curvature. □

4. Pseudo-Ricci Symmetric GRW Spacetimes

A generalized Robertson–Walker spacetime (for simplicity,
denoted by GRW spacetimes) is the warped product M �

I×fM∗ of an open connected interval (I, − dt2) and a
Riemannian manifold M∗, where f: I⟶ R+ is a positive
smooth function. A Lorentzian manifold M is a generalized
Robertson–Walker spacetime if and only if M possesses a
unit time-like vector field ui with [16, 17]

∇kui � φ gki + ukui( 􏼁, (52)

Riju
j

� ξui, (53)

where φ and ξ are scalar functions. Vector fields satisfying
equation (52) are called torse-forming.
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Now, assume that M is a (PRS)n generalized Rob-
ertson–Walker spacetime; that is,

∇kRij � 2AkRij + AiRkj + AjRik. (54)

A contraction with uj yields

u
j∇kRij � 2Ak u

j
Rij􏼐 􏼑 + Ai u

j
Rkj􏼐 􏼑 + Aj u

j
Rik􏼐 􏼑. (55)

Using equation (1), one gets

u
j∇kRij � 2Akξui + ξAiuk + u

j
AjRik. (56)

)erefore,

u
j∇kRij � 2ξAkui + ξAiuk + u

j
Aj􏼐 􏼑Rik. (57)

However,

u
j∇kRij � ∇k Riju

j
􏼐 􏼑 − Rij∇ku

j

� ui∇kξ + ξ∇k ui( 􏼁 − Rij∇ku
j

� ui∇kξ + φ ξgki − Rik( 􏼁.

(58)

)us,

ui∇kξ + φ ξgki − Rik( 􏼁 � 2ξAkui + ξAiuk + u
j
Aj􏼐 􏼑Rik.

(59)

It is well known ∇kξ � − uk(uj∇jξ) � − ρuk, where ρ �

(uj∇jξ) (see [12]); thus,

φ + u
j
Aj􏼐 􏼑Rik � ξφgki − ρuiuk − 2ξAkui − ξAiuk. (60)

Since M is (PRS)n, equation (9) shows that

A
j
Rkj � 0. (61)

Multiplying both the sides by uk, that is,

A
j

Rkju
k

􏼐 􏼑 � 0. (62)

Using equation (53), one gets

ξA
j
uj � 0. (63)

Now, there are two different possible cases. )e first one
Ajuj � 0 and consequently ξ does not vanish. )en, equa-
tion (59) becomes

φRik � ξφgki − ρuiuk − 2ξAkui − ξAiuk. (64)

A contraction by Ai implies that

0 � ξφAk − ξ A
i
Ai􏼐 􏼑uk, (65)

which is a contradiction. )e second case is ξ � 0. )en,
equation (60) leads to

φ + u
j
Aj􏼐 􏼑Rik � 0. (66)

)us, either Rik � 0 or φ � − ujAj.

Theorem 6. A pseudo-Ricci symmetric GRW spacetime is
vacuum provided the one form A is not codirectional with the
torse-forming vector field u.

Suppose Ai ≠φui. Aen, the spacetime under consider-
ation is Ricci flat, that is, Rij � 0, which implies R � 0. It is
known that

∇hC
h
ijk �

n − 3
n − 2
∇kRij − ∇jRik􏼐 􏼑 −

1
2(n − 1)

gij∇kR − gik∇jR􏼐 􏼑􏼢 􏼣,

(67)

where C is the conformal curvature tensor [13].

)erefore, using Rij � 0 and R � 0, equation (67) yields
∇hC

h
ijk � 0, that is, divC � 0. In [18], Mantica et al. proved

that an n-dimensional GRW spacetime satisfies divC � 0 if
and only if the spacetime is perfect fluid. )erefore, we
conclude the following.

Corollary 2. A pseudo-Ricci symmetric GRW spacetime is a
perfect fluid spacetime provided Ai ≠φui.

Since Rij � 0 and R � 0, from the definition of the
conformal curvature tensor, it follows that Ch

ijk � Rh
ijk.

Hence, semisymmetric and conformally semisymmetric
manifolds are equivalent. Eriksson and Senovilla [19] con-
sidered the semisymmetric spacetime and proved that it is of
Petrov types D, N, and O. )us, we have the following.

Corollary 3. A conformally semisymmetric pseudo-Ricci
symmetric GRW spacetime is of Petrov types D, N, and O.
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