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Background

�e red blood cell (RBC) is composed of a membrane surrounding haemoglobin-rich 

fluid, to which dioxygen binds when the cell traverses the lungs. RBCs are responsible 

for distributing this dioxygen throughout the body, as well as removing waste products 

[1]. �is requires RBCs to repeatedly pass through narrow blood vessels which can be 
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less than half their own diameter, making deformability a key characteristic for RBCs to 

efficiently deliver dioxygen to bodily tissues [2].

�e cell membrane is critical to the deformability of RBCs [3]. It is a composite of two 

main components—an outer lipid bilayer composed of phospholipids and cholesterol with 

embedded proteins, and a spectrin-based cytoskeleton tethered beneath. �e bilayer and 

cytoskeleton are tightly bound through interactions between transmembrane proteins 

within the bilayer and proteins of the cytoskeleton [4]. From a mechanical perspective, 

the bilayer provides resistance to bending and thus restrains membrane curvature. �e 

bilayer also resists changes in its surface area. �e cytoskeleton facilitates stretch deforma-

tion through the folding and unfolding of spectrin proteins, which are long molecules that 

bind with actin at their ends to form a triangulated network beneath the bilayer [5]. RBC 

deformability is thus largely governed by the extent to which the membrane resists bend-

ing, stretch and areal changes, as well as the incompressibility of the cytoplasm.

In the past, the study of RBC deformability has largely focused on the experimental 

methods of micropipette aspiration, optical tweezer stretching and flow visualisation [6]. 

Another more recent technique for measuring physical characteristics of biological sam-

ples is atomic force microscopy (AFM), which involves a cantilevered probe applying a force 

onto a sample while displacement is measured. A major advantage of using AFM over other 

experimental methods is that force and deformation can be measured at different locations 

over the cell membrane with high accuracy: AFM provides control over the indentation 

point, meaning that force acting on the membrane can be quantified locally. AFM can be 

performed while cells are submerged in liquid, meaning experimental conditions can repli-

cate aspects of the physiological environment and limit sample treatment [7].

A significant aspect of applying AFM to RBCs is managing the elasticity of the mem-

brane during imaging and indentation, while protecting its natural organisation [8, 9]. 

Probe shape is an important consideration, with most AFM studies of RBCs using coni-

cal and pyramidal tips [8–13]. �ese sharp tips can push the membrane beyond physi-

ological limits leading to penetration and rupture. To overcome these risks, spherical 

probes have been considered [14, 15]. Another challenge for AFM is attaching the cell to 

the substrate such that it is immobilised for imaging and indentation, while preserving 

the membrane mechanical properties. Poly-lysine is a chemical typically used for this 

purpose which causes bonding between the substrate and negative charges of the mem-

brane surface proteins, however it can also cause membrane tension [16, 17]. To balance 

adhesion strength against preservation of the membrane’s natural state, the adhesion 

protocol needs to be carefully considered.

Hertz-based models have been widely used for analysing experimental RBC force-

indentation data in order to estimate the stiffness of the membrane [8–13, 15]. �is 

method of analysis has gained popularity in recent times, likely due to its simplicity 

which enables a standard equation to be routinely fitted to the experimental curves to 

extract an effective Young’s modulus of the RBC membrane. However, the trade-off of 

this analysis is that there are significant limitations in reasoning the assumptions of solid 

mechanics contact for biological samples [18]—Hertz-based equations were developed 

specifically for solid-to-solid contact of elastic, isotropic materials where the size of the 

contact region was negligible compared to the bodies themselves. �erefore it should 

be emphasised that the effective Young’s modulus is only a qualitative estimate of the 
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membrane’s stiffness [18]. Nonetheless, previous studies have shown that Hertz-based 

empirical equations show close agreement for the experimental force–deformation 

trend at small indentations of biological samples [8–13, 15, 19, 20]. Furthermore, force–

deformation results from AFM are sensitive enough to detect a difference in the effective 

Young’s modulus between normal RBCs and those from patients suffering from diabetes 

[10, 13], sickle cell disease [9] and cigarette smoking [10]. �is has led to cell indenta-

tion being proposed as a possible diagnostic tool as mechanical properties of neoplastic 

cells have been shown to differ significantly from healthy cells [11, 15, 21]. �erefore 

Hertz-based equations can be considered in this study for the purpose of validating 

experimental results and as an empirical equation which describes the experimental 

force–deformation trend.

To investigate and understand the more fundamental mechanics of RBC deformability, 

it is desirable to develop numerical models. �is allows investigation of the mechanical 

aspects that define RBC behaviour at a much smaller scale than is possible with experi-

mentation, which becomes challenging and costly [22]. Studying elasticity of the RBC 

membrane at this level can provide insight on the state of the membrane and how struc-

tural changes and defects impact on physical characteristics of the cells [23]. Structural 

transformations within the membrane are known to occur naturally as RBCs age, also 

as a result of underlying conditions such as malaria, sickle cell trait and hereditary dis-

eases [10, 13], and even during the storage of RBCs before transfusion [24]. �us, better 

understanding of membrane changes may aid the development of measures which pre-

serve RBC deformability. Using a numerical model can help isolate the effect of particu-

lar conditions on the different membrane components.

�e most basic models previously applied for RBC indentation are the Hertz-based 

ones discussed above [9, 10, 13], which have restricted inputs (such as a geometric prop-

erty of the probe and cell) and a singular output of effective Young’s modulus. To date, 

there is one model that simulates the overall shape of the probe and cell during indenta-

tion in the report of Sen et al. [18]. �is is an analytical membrane model focused on 

membrane tension, which approximates the cell as a partial sphere with constant vol-

ume. Critically, it does not consider the bending resistance of the membrane which is 

cited as a major limitation of the study, as bending is known to contribute significantly 

to RBC properties. �e model is also limited in its application, as it is only relevant for 

indentation and only for RBCs which have formed perfectly symmetrical dome shapes. 

It is therefore necessary to evolve beyond analytical frameworks to develop an advanced 

numerical model capable of simulating RBC behaviour during indentation, with versatil-

ity for investigating how the cell acts in extended scenarios.

Several numerical techniques have been applied in the past to model RBCs at rest as 

well as during flow, stretching and micropipette aspiration. �ese can be broadly catego-

rised as finite element methods (FEM) [25–28] or particle-based methods, encompass-

ing coarse-grained molecular dynamics (CGMD) [29, 30], dissipative particle dynamics 

(DPD) [31, 32] and the coarse-grained particle method (CGPM) (refer to Table  2 for 

comprehensive list of CGPM studies). Particle-based methods involve coarse-graining 

the membrane into interconnected regions. For CGMD, the elements are on a very 

small scale indicating an enormous number are required to discretise the system. �is 

is likely why CGMD models have only simulated a small region of the RBC membrane. 
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In contrast, the lower particle resolution of DPD and CGPM models has allowed effi-

cient prediction of RBC deformability at the full cell scale. �e key difference between 

DPD and CGPM is that a fluid phase is innately incorporated in DPD, while the CGPM 

can be coupled with smoothed particle hydrodynamics (e.g. [33–35]) or the immersed 

boundary method (e.g. [22, 36]) to simulate the fluid phase. Modelling fluids is much 

more difficult for FEM models which require high degrees of mesh refinement and more 

complex solid–fluid coupling which adds significant computational cost [27, 37]. Finally, 

particle-based methods have significant potential for investigating the effect of heteroge-

neity and defects within the membrane. �is is because it is easy to introduce variance 

in regional properties or even between specific membrane particles [29], but is not pos-

sible with FEM. �is indicates there is significant potential for particle-based methods to 

link the state of the membrane under different conditions to observed behaviour, and to 

thus develop deeper understanding for the role and importance of individual membrane 

components.

�is study aims to develop foundation 2D and 3D numerical models for RBC inden-

tation, validated for resting shape, adhered shape and the force–deformation response. 

�e models will be applied to understanding how membrane stiffness properties impact 

on the observed behaviour. Given the numerical models represent a substantial improve-

ment on the analytical model of Sen et al. [18] (by considering bending and affording 

control over adhesion, probe geometry and applied force position), it is expected that 

they can be further developed in the future to investigate more complex changes within 

the membrane that cause differences in stiffness between healthy and deteriorating 

RBCs, which have already been measured experimentally [9–11, 13, 15].

Modelling methodology

CGPM overview

From the literature review presented in the introduction, the advantages of the coarse-

grained particle method (CGPM) make it the most suitable technique for the present 

developments. �e method was first applied to RBCs by Tsubota et al. [38], and it has 

since been implemented in a number of subsequent studies (refer to Table 2 for compre-

hensive list).

�e CGPM relies on discretisation of the membrane into particles which are intercon-

nected by a network capable of storing energy. �is network is developed to model the 

mechanical behaviour of cellular components—stretch resistance of the cytoskeleton, 

areal incompressibility of the bilayer, bending resistance of the bilayer, and volumetric 

incompressibility of the internal fluid. A stiffness coefficient is associated with each of 

these energy storing mechanisms. When total energy in the network is minimised, the 

preferred RBC resting shape is predicted.

Quantification of the stiffness coefficients is an absolutely critical aspect of the model-

ling, as they dictate accuracy of predictions [39]. However, there is significant variation 

in the coefficients used in existing CGPM models of RBCs (discussed in detail in “Com-

parison to stiffness coefficients of previous studies” section) and there is little evidence 

to justify their basis. �is is because most CGPM models are only validated with qualita-

tive comparison of the shapes RBCs exhibit at rest and during general flow conditions 

(e.g. [33, 40, 41]). �e only exception is in the report of Shi et al. [42] who also simulated 
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stretching. In the present study, stiffness coefficients for each energy storage mechanism 

are established for indentation in both 2D and 3D.

Model initialisation and energy storage mechanisms

To initiate the computational model, N particles were evenly distributed around a 3 µm 

radius circle (2D) [38] and 3.3 µm radius sphere (3D) [43] as shown in Fig. 1. For the 

3D case, this was done with the aid of a spherical surface mesh created with Comsol 

Multiphysics 4.4, composed of N vertices, Ne edges and Nt triangles. Each vertex repre-

sented the location of a membrane particle, each edge represented a linear interaction 

between adjoining particles, and bending interactions were present between adjoining 

triangular surfaces. On average, six triangles formed around each vertex, aligning with 

the cytoskeleton’s junctional complex structure [5].

�e minimum energy RBC shape was obtained by moving particles over time with the 

principle of virtual work and Newton’s Second Law,

where Fi is the force on particle i, E is the total energy stored in the membrane expressed 

as a function of particle positions, and si the position of particle i. A mass, m, was used 

to convert force into an acceleration of each particle, ai. A time step was applied to cal-

culate how far each particle moved over progressive iterations. A small amount of damp-

ing was applied to the particle velocities to gradually approach the steady-state shape. 

�e time step, damping and mass do not impact on the steady-state shape, however they 

do contribute to the dynamics of how quickly the steady-state is achieved.

�e equations for calculating stored energy are presented in Table 1. Total energy, E, 

is the sum of energy stored through stretch resistance of the cytoskeleton, surface area 

incompressibility of the bilayer, bending resistance of the bilayer, and volumetric incom-

pressibility of the internal fluid. It can be seen that the 2D model only has three compo-

nents for total energy (Eq. 2) compared to four for 3D (Eq. 3). �is is because in 2D, areal 

incompressibility of the bilayer is effectively combined with spectrin’s stretch resistance 

to oppose the relative movement of adjacent particles.

(1)Fi = −

∂E

∂si
= mai

Fig. 1 Model setup schematics a 2D for N = 8, b 3D for N = 122 where each vertex represents the position 

of a membrane particle, edges show linear interactions between adjoining particles and bending interac-

tions are present between adjoining triangular surfaces
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�e force–deformation behaviour of spectrin follows a saw-tooth pattern at the molec-

ular level due to the sudden folding and unfolding of the molecular domains [44]. How-

ever, when cytoskeletal behaviour is observed on a larger scale, the fluctuations can be 

simplified to a linearly increasing trend for force versus deformation. �is is equivalent 

to a harmonic energy potential and is suitable due to the coarse-graining of the mem-

brane. �e harmonic type of potential also reflects the bilayer’s resistance to changes in 

surface area. �us, in 2D both mechanisms are modelled with a combined linear inter-

action between adjacent particles as shown in Fig. 1a. �e total energy stored via these 

means, El, was calculated with Eq. 4, where i is the interaction number, kl is the com-

bined linear stiffness coefficient, li is the actual distance between the adjacent particles, 

and l0,i is the relaxed distance between adjacent particles. �e distance between particles 

in the initial circular configuration was used for the relaxed lengths.

In the 3D model, stretch resistance and surface area incompressibility are separated. 

�e stretch component is applied between particles joined by edges of the mesh, while 

the surface area constraint is applied to each individual triangle. Some previous models 

have also applied an additional energy term to restrict global surface area of the cell [35, 

42, 43, 45, 46], however the split between the local and global components was arbitrar-

ily set [47] and stiffness coefficients were selected to simply ensure negligible variation in 

surface area [43]. �us, the global surface area constraint is omitted in the present study, 

consistent with Wu et al. [48]. �e energy stored via stretch (EL) was calculated using 

Eq. 5 in the same way as 2D with a linear stiffness coefficient kL, while the energy stored 

due to areal incompressibility (EA) is given by Eq. 6. Here kA is the stiffness coefficient for 

areal incompressibility, Ai is the area of the ith triangle and A0,i is the relaxed area of this 

triangle. �e relaxed area for each triangle and linear interaction lengths were equal to 

those in the initial sphere. �e area of each triangular surface was calculated using the 

method set out in Polwaththe-Gallage et al. [49].

�e bilayer is responsible for resisting bending of the membrane. �erefore, bend-

ing potentials were introduced between adjoining particles (2D) and triangular surfaces 

(3D). For the 2D model, the energy stored in bending (Eb) is given by Eq. 7, where kb 

is the bending stiffness coefficient, θi is the actual angle away from the horizontal (see 

Fig. 1a) and θ0,i is this angle relaxed. For the 3D model, energy stored in bending (EB) 

is given by Eq.  8, where kB is the bending stiffness coefficient, θi is the angle formed 

Table 1 Energy equations used in the 2D and 3D models

Energy term 2D 3D

Total energy E = El + Eb + Ea (2) E = EL + EA + EB + EV (3) 

Stretch resistance
El =

N∑

i=1

kl
2
(li − l0,i)

2 (4)
 

EL =

Ne∑

i=1

kL
2
(li − l0,i)

2 (5)
 

Surface area incompressibility
EA =

Nt
∑

i=1

kA
2

(

Ai − A0,i

)2
(6)

Bending resistance
Eb =

N
∑

i=1

kb
2
tan2

(

θi−θ0,i
2

)

(7)
 

EB =

Ne
∑

i=1

kB
2
tan2

(

θi−θ0,i
2

)

(8)
 

Volumetric incompressibility
Ea =

ka
2

(

A−Aref
Aref

)2

(9)
 

EV =
kV
2

(

V−Vref
Vref

)2

(10)
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between vectors normal to the adjoining triangular surfaces (see Fig. 1b) and θ0,i is again 

the relaxed angle. �e relaxed angle was set to zero in both models [35, 42].

A volume requirement was imposed on the RBC to model the internal fluid’s incom-

pressibility. In 2D, this manifests as a requirement on the cross-sectional area. �e 

desired cross-sectional area of the RBC, Aref, was calculated from Aref = RAAcircle where 

RA is the swelling ratio for 2D set to 0.48 for physiological conditions [36] and Acircle is 

the area of the initial circle. A penalty function enforces this cross-sectional area by stor-

ing energy (Ea) when actual area (A) deviates from the desired area in Eq. 9. Here, ka is 

the penalty stiffness coefficient. It represents a “soft” restraint given that the size of the 

cell can still vary, however the extent is limited if the strength of the penalty is large, thus 

modelling the incompressibility of the internal fluid. Similarly in 3D, desired volume of 

the RBC was calculated from Vref = RVVsphere, where RV is the swelling ratio for 3D set to 

0.6 for physiological conditions [45] and Vsphere is the volume of the initial sphere. �e 

penalty function for volume (Eq. 10) causes energy to be stored when actual volume of 

the RBC (V) differs from the desired, using a penalty stiffness coefficient, kV. �e actual 

volume of the cell was calculated using the method set out in Polwaththe-Gallage et al. 

[49].

Finally, if the number of particles used to represent the membrane is changed but stiff-

ness coefficients remain steady, total energy stored in the membrane interactions will 

change. �is will modify how the cell responds to force. In order to overcome this, stiff-

ness coefficients can be normalised against particle number. �erefore for comparison 

purposes, base coefficients of the form kbase = k/N are introduced for stiffness coeffi-

cients associated with spectrin’s stretch resistance, surface area incompressibility and 

bending. It should be noted that the stiffness coefficients for maintaining the volume 

of the cell do not require this treatment as these are applied globally rather than locally. 

�is is regarded as an improved normalisation method as it can be applied in the same 

manner to each mechanism unlike some previous studies which have only normalised 

some aspects (e.g. Tsubota et al. [38]).

Adherence to substrate and indentation

In order to validate the model, the experimental conditions relating to substrate adher-

ence and indentation were replicated (refer to “Experimental method and results” 

section below). Both AFM and confocal imaging showed that the RBCs formed dome-

shapes when adhered. To incorporate this into the model, a constraint was introduced 

for specific membrane particles to be in contact with the substrate. In 2D, a section 

of the membrane corresponding to 8.5 µm in length was set to the substrate’s height, 

while in 3D, 50% of the particles were set to the substrate’s height. Equation 1 was then 

re-applied to minimise energy and thus predict adhered RBC shape. �is treatment of 

adhesion as a constraint rather than an additional energy term saves computational cost. 

However, if the model was to be used to specifically study adhesion or detachment, the 

attraction potential between the membrane and substrate should be quantified with an 

additional energy term.

�e 5 µm spherical probe was represented as a rigid body (incapable of deforming), 

given that RBCs are significantly softer. Contact between the probe and cell was mod-

elled with a penalty function,
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which stored energy, Econ, when cell membrane particles penetrated the probe surface. 

Here Np is the number of membrane particles which have penetrated, kcon is the penalty 

stiffness coefficient for contact, si is the position of membrane particle i which has pene-

trated, and Pi is the closest point on the probe’s surface to si. �is is illustrated for clarity 

in Fig.  2. �e penalty stiffness coefficient for contact is a numerical parameter imple-

mented to ensure negligible cross-over of the probe and cell membrane. When it is suf-

ficiently large to enforce the contact, it becomes independent of steady-state RBC shape 

and measured force. However, when too large, it can cause numerical oscillation requir-

ing particle movements to be slowed and causing an increase in computation time. �us, 

a sensitivity study was performed to select the contact stiffness coefficient. �is found 

kcon = 10
20

× kb m
−1 and kcon = 10 × kb m

−1 to be suitable for 2D and 3D respectively.

To simulate indentation, the probe was centred above the adhered cell and moved 

down a specified distance (zero position was defined as where contact initiated). Equa-

tion  1 was re-applied with the additional energy term, Econ, to minimise total energy. 

�is treats the indentation as a “quasi-static” problem, justified by the indentation speed 

being slow enough that the system remains in internal equilibrium. Total contact force 

between the cell and probe was measured when the simulation had reached steady-state. 

By Newton’s �ird Law, the measured contact force is equivalent in magnitude to the 

force applied downwards by the probe to cause the deformation. Indentation was simu-

lated at a series of depths between 0 and 200 nm corresponding to the range tested in 

the experiments. Contact force and indentation depth were plotted against each other 

and compared against the experimental reference curve.

Sensitivity study for particle number

In order to select the number of particles for discretisation of the membrane, sensitiv-

ity simulations were completed for both the resting and adhered cases as a function of 

particle number. An adaptive discretisation technique was utilised to speed up the con-

vergence process, which involved converging the model for a small particle number and 

(11)
Econ =

Np∑

i=1

kcon

2
(si − Pi)

2

Fig. 2 Schematic showing the ith membrane particle which has penetrated and the closest point on the 

probe’s surface
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then including additional particles at the midpoint of each linear interaction. In the 2D 

model, this caused the number of particles to be doubled, while in the 3D model this 

almost quadrupled the particle number each time. �e model was then converged again 

from the pre-existing solution which was significantly faster than starting from the cir-

cular and spherical shapes each time the particle number was refined. It should be noted 

that the parameters referenced from the initialised geometry (such as lo,i and Ao,i) were 

obtained as if the model started with the corresponding particle number so no com-

pounding error was introduced from this adaptive discretisation technique.

From the 2D sensitivity study, 400 particles was chosen as the point where dimensions 

and energy sufficiently stabilised—doubling the number of particles from here resulted 

in less than a 1% change to the critical dimensions. An equivalent sensitivity study was 

conducted for the 3D model. �is found N = 1922 to be most suitable for the 3D inden-

tation simulations.

Experimental method and results

RBC samples

Units of leukodepleted packed RBCs in saline-adenine-glucose-mannitol (SAGM) solu-

tion were obtained through the Australian Red Cross Blood Service Processing Cen-

tre (Kelvin Grove, Australia). Samples from four different units were used in this study. 

�e units were stored at 4 °C under standard conditions.

Atomic force microscopy

AFM probes

In order to observe the behaviour of the membrane within physiological limits, spherical 

indenters were used [14, 15, 50]. �eir smoothness reduces the potential for penetration, 

rupture and non-physiological localised strains [50]. It has been reported that spherical 

probe diameters have limited to no influence on the measured Young’s modulus [51, 52] 

whereas a hundred-fold variation can be found in literature for indentation using sharp 

tips [9, 10, 12, 13].

Spherical indenters were assembled using Hydra2R-100NG tipless cantilevers (App-

Nano, Mountain View, USA) and melamine beads of 5  µm diameter (Sigma-Aldrich, 

Sydney, Australia) and a standard deviation of 0.15 µm. A bead was attached to the tip of 

the cantilever using a two-part epoxy glue. Placement of the bead was controlled using 

the AFM piezo electric manipulator.

Adhesion to substrate

Due to the scanning step, used to reliably align the indentation contact point with its 

height, AFM indentation was performed after cells were immobilised on the substrate. 

Cells were incubated at room temperature in phosphate buffered saline (PBS) to allow 

them to sink and then adhere to poly--lysine coated Petri dishes (TPP, Trasadingen, 

Switzerland). Poly--lysine creates positive charges over the substrate that interact with 

the negative charges found over the RBC membrane. To minimise tension in the upper-

most part of the cell membrane against the need for sufficient adhesion during scan-

ning, a concentration of 100 µg/mL of poly--lysine and incubation time of 10 min were 

chosen.
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Glutaraldehyde was used to stabilise the membrane and prevent spreading on the sur-

face while indentation was performed: following incubation with poly--lysine, the cells 

were incubated for 30 s in 1% glutaraldehyde in cacodylate buffer 1% (ProSciTech, Kir-

wan, Australia). �e short incubation time as well as the very low concentration of glu-

taraldehyde were expected to stabilise the membrane surface proteins. PBS was used for 

AFM analysis.

Indentation

A NanoSurf FlexAFM with NanoSurf C3000 software (NanoSurf, Liestal, Switzerland) 

was used to indent the samples (n =  26 cells). �e RBC surface was first scanned to 

identify the cell’s shape profile and then indented following a grid pattern to measure 

the deformation response. Maximum indentation force was set between 0.5 and 2.5 nN 

and resulted in deformations of less than 200 nm. �e deformation depth was kept to 

less than 10% of cell height, which averaged 2.1 µm, to minimise the effect of the sub-

strate [52]. To further reduce the substrate’s impact on the measured force–deformation 

behaviour, only results from indentation performed at the centre of the cells were con-

sidered in the analysis. Indentation at the centre also means that inclination and asym-

metry of the contact area between the cell and probe are minimised [53]. Indentation 

speed was set at 1 µm/s, as measurements at slower speeds may experience sample drift 

[13]. At a higher speed (above 5 µm/s), the dynamic reaction force from the membrane 

has been found to influence the extracted elasticity values. Force-height curves were 

extracted for indentation points at the centre of the cells using the SPIP image process-

ing software (3D Vizualisation Studio, Horsholm, Denmark).

Experimental data analysis

As stated in the introduction, Hertz-based models have significant limitations in rea-

soning solid mechanics contact assumptions. However, they have been widely used to 

analyse RBC force-indentation results [8–13, 15]. As this study aims to develop a numer-

ical model for RBC indentation, the intention with the experimental data analysis was 

to validate the measurements against previous studies and then to select an empirical 

equation which describes the force–deformation trend for reference. �is could then be 

used to benchmark the numerical model’s performance.

�e force-height curves were analysed using MATLAB (MathWorks, Natick, USA). 

�e effective Young’s modulus was extracted by minimising the root-mean-square 

(RMS) error between the data and the Hertz equation modified by Dimitriadis et al. [52] 

for spherical tip shape and which corrects for finite sample thickness,

Here F is the applied force, E is the effective Young’s modulus, δ is the indentation 

depth, R is the indenter radius and h is the cell height.

(12)

F =
16

9
ER

0.5δ1.5
[

1 + 1.133χ + 1.283χ2
+ 0.769χ3

+ 0.0975χ4

]

where χ =
(Rδ)0.5

h
.
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Confocal imaging

Confocal imaging was used to quantify the diameter of adhered cells for replication 

in the numerical modelling. Briefly, the cells were first incubated for 15  min with DiI 

(�ermo Fisher Scientific, Scoresby, Australia) and then adhered to a poly--lysine 

coated substrate following the AFM sample preparation protocol, without glutaralde-

hyde. Imaging was done using a Leica TCS SP5 confocal microscope at exactly 10 min 

after the beginning of incubation (Leica, North Ryde, Australia). A side view of a typical 

stack can be seen in Fig. 4. Nine cells were imaged using confocal microscopy following 

the experimental adhesion protocol. �e average substrate contact area was found to be 

54.7 µm2.

Experimental results and discussion

�e experimental data was observed to closely fit the force–deformation trend pre-

dicted by the modified Hertz equation (Fig. 3a). Effective Young’s modulus for each cell 

is shown in Fig. 3b. �e average was found to be 7.57 kPa with a standard deviation of 

3.25 kPa (experimental data is provided in Additional file 1). �is aligns with previous 

studies investigating the effective Young’s modulus of the RBC membrane which have 

reported values between 0.1–0.2 kPa [15] and 98 ± 17 kPa [11]. �e wide range is attrib-

uted to the differences in sample preparation and indentation protocols, as well as analy-

sis methods (supplementary information in Ciasca et al. [13] contains a comprehensive 

summary of these differences).

Adding glutaraldehyde is known to have an effect on the membrane function and con-

sequently studies using this method have tended to report a higher Young’s modulus 

(between 26 ± 3 kPa [8] and 98 ± 17 kPa [11]), compared to those who do not (between 

0.1–0.2 kPa [15] and 4.9 ± 0.5 kPa [10]). However, other parameters such as indenta-

tion location, probe geometry and indentation speed, to name a few, were also linked to 

large variation in the calculated Young’s modulus numerical value. �is has a significant 

impact on the interpretation and comparison of quantitative values, with most studies 

only reporting an average. Regarding indentation location, Ciasca et  al. [13] found an 

effective Young’s modulus significantly higher for the central region compared to near 

the edges. In fact, for a “typical” cell, Young’s modulus was as high as 9 kPa at the cen-

tre, as low as 0.06 kPa near the edge, and 1.87 kPa when averaged over the surface. �is 

study was not the only one reporting these variations [8, 11, 13]. Probe geometric dif-

ferences also have a substantial impact on measured Young’s modulus, as local strains 

imposed on the membrane by sharp probes may exceed physiological levels and subse-

quently trigger a reorganisation of the membrane structure. Different probes also mean 

that different Hertz equations have been applied in an attempt to take into account the 

geometry, with some neglecting modifications for finite sample thickness and substrate 

effects. �us, while acknowledging complicating factors in the comparison, the result 

of the present experiment is comparable with existing data. It is also shown that the 

experimental data follows the trend predicted by the modified Hertz equation. �is gives 

strong support for the development of the numerical model, using the present experi-

mental result as a reference, which extends into the explanation of mechanical behaviour 

of the RBC membrane.
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Model validation

�e mean value for effective Young’s modulus from the experiments was used within the 

modified Hertz equation to validate the force–deformation behaviour of the model. �is 

is because of the variability in the value measured for different cells but each closely fol-

lowed the trend of the modified Hertz equation.

An inverse method was applied to extract the stiffness coefficients that best predict RBC 

shape (resting and adhered) and the force–deformation behaviour for indentation. Initial 

values were assumed for each stiffness coefficient which were then iteratively converged 

until reasonable agreement was reached between the model and experimental observations 

Fig. 3 a Comparison between experimental data and the modified Hertz equation for a typical sample 

where E = 9.83 kPa, b effective Young’s modulus for each cell; the mean is 7.57 kPa (solid line) with a standard 

deviation of 3.25 kPa (dotted lines)
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for resting shape, adhered shape and indentation behaviour. In 2D, the optimised stiffness 

coefficients were kl = 1.2 × 10
2
N/m, kb = 1.6 × 10−14 J/rad and ka = 2.3 × 10−10 J . 

Similarly, in 3D, the optimised stiffness coefficients were kL = 2.1 × 10
−4

N/m, 

kB = 5.3 × 10−15 J/rad, kA = 1.4 × 10
11

N/m2, and kV = 7.0 × 10−10 J.

�e predicted resting and adhered cell shapes are shown in Fig. 4. Critical dimensions 

for the RBCs at rest are each within 10% of those reported by Evans et al. [54], while the 

adhered RBCs have a diameter and height within 10% of the mean dimensions obtained 

in the present experiments. Qualitatively, the cross-sectional shape matches well with 

the confocal results.

�e force–deformation curves predicted by the numerical models using the optimised 

stiffness coefficients are shown in Fig. 5. �ese can be compared against the modified 

Hertz equation with effective Young’s modulus of 7.57  kPa. Overall, good agreement 

is reached over the investigated range. However for the 2D case there is some discrep-

ancy in the early deformation region where the model predicts a more linear trend and 

a larger force than in the experimental case. �e 3D model is able to better capture the 

behaviour through the early region.

Fig. 4 2D and 3D predictions for resting and adhered RBC shape, including comparison to typical confocal 

image

Fig. 5 Force-deformation prediction of the 2D and 3D models validating performance
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Results and discussion

Mechanisms through indentation

In order to understand which mechanisms impact on the cell’s behaviour at different 

indentation depths, cell shape through the indentation stroke is shown in Fig. 6b. For the 

early stages, it can be seen that the cell’s surface flattens out under the application of the 

force. Beyond this, a concavity is introduced into the surface by the probe. Consequently, 

at small indentation depths, indentation force is mainly used to modify curvature of the 

membrane, impacting energy stored through the bending mechanism. With further 

indentation, the probe causes the membrane to curve beneath and at the same time, the 

cytoplasm needs to redistribute to avoid being compressed. Consequently the cytoplasm 

applies pressure on the membrane, which in turn develops tension. �us, in addition to 

a change in the bending energy, there is also an increase in energy stored through mem-

brane tension. �is trend is evident in both the 2D and 3D results, however it is most 

clear in Fig. 6a which shows the additional energy absorbed in each mechanism for the 

2D simulation. It would be expected that for deeper indentations, tension on the mem-

brane would become dominant over bending stiffness, as the cytoskeleton is stretched.

As bending is most influential, especially at small deformations, the overestimation for 

the force in the 2D model at these small deformations is most likely caused by the under-

lying assumption for the quantification of bending energy. Currently, energy developed 

in bending interactions is directly proportional to the tangent squared relationship of the 

angle. �is appears to capture the behaviour well in the 3D model, but introduces a small 

error in 2D. In order to better capture the trend and magnitude, a variable bending stiff-

ness coefficient may be considered for the 2D model to compensate for the 2D simplifi-

cation. Variable stiffness coefficients have been implemented in previous 3D models for 

Fig. 6 a Energy and b cell shape through indentation stroke
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the linear stretch mechanism [45, 47], but have not been attempted for bending before. 

�is may be a future research focus to improve the 2D model for greater accuracy where 

a lower computational cost is important for the application.

Effect of modifying stiffness coefficients

In order to explore the influence of the individual mechanisms involved in RBC deform-

ability, a parametric study was conducted for the stiffness coefficients. �is was per-

formed by varying each stiffness coefficient in isolation to between a tenth and ten times 

the baseline value established during the validation. Indentation was then simulated to 

nominal depths of 100 and 200 nm. �e results are shown in Fig. 7.

It can be seen for the 2D cases, varying the membrane’s bending stiffness causes a sig-

nificant change in the deformability of the RBC. In fact, a roughly linear relationship 

is present between the force required to indent the cell and the bending stiffness coef-

ficient. In contrast, the effect of the linear stiffness coefficient is minimal, particularly as 

it is increased from the baseline multiplier of 1. �is means that further increases have 

very little effect on the RBC’s deformability. �e stiffness coefficient for incompressibil-

ity of the internal fluid has a negligible impact.

For the 3D cases, changing the membrane’s bending stiffness still has the most substan-

tial impact on deformability, however it starts to plateau unlike the 2D model. �e linear 

and areal stiffness coefficients have a small influence when indenting to 100 nm, with 

the influence of the areal stiffness coefficient becoming more important at the deeper 

indentation depth. �is aligns with the finding in the previous section that tension in 

Fig. 7 Parametric study measuring indentation force when varying stiffness coefficients in both 2D and 3D
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the membrane becomes more significant with larger indentation depths. �e negligible 

impact of the volumetric incompressibility coefficient agrees with the 2D result.

�ese results demonstrate that overall deformability of the RBC is most sensitive to 

changes in bending stiffness. As bending resistance is provided by the membrane’s outer 

lipid bilayer and its embedded proteins, this suggests structural changes within this part 

of the membrane play the most critical role in the loss of deformability observed in dete-

riorating RBCs.

Comparison to stiffness coefficients of previous studies

A literature review was conducted on previous studies employing the CGPM to model 

RBC physical behaviour. All models identified and presented in Table  2 only consid-

ered flows, with the exception of Shi et al. [42] which also considered stretching. Areal 

Fig. 8 Force deformation curves obtained using parameters from a Tsubota et al. [38] and b Wang et al. [55]. 

Insert show the adhered cell geometry
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incompressibility stiffness coefficients are not presented as most models used both local 

and global constraints for which an equivalent combined value cannot be computed. Sig-

nificant variation can be seen in the stiffness coefficients, suggesting there is a range of 

values which may be suitable for simulating RBC behaviour. �e values selected for this 

study lie within the range used previously. Values presented in Table 2 are normalised 

against the number of particles used to represent the membrane, for fair comparison.

In order to test whether previous values would also be appropriate for indentation, a 

mid-range (Wang et al. [40]), large (Tsubota et al. [38]), and small (Wang et al. [55]) set 

of stiffness coefficients from Table 2 were tested for indentation  (Fig. 8). For the mid-

range and small set, the adhered cell shapes were much flatter than the confocal results 

and there was little agreement between the force–deformation trend of the model and 

the modified Hertz equation  (Fig. 8b). �e large set showed reasonable agreement for 

the adhered shape and force–deformation trend (Fig. 8a), however the best-fit Young’s 

modulus was 9.51 GPa, significantly larger than literature reports [13].

Table 2 Literature review of parameters for RBC simulations using coarse-grained particle 

method applied in flows, normalised against particle number

2D paper Case N (particles) r (µm) kl,base  
(N/m/particle)

kb,base  
(J/rad/particle)

ka (J)

Tsubota et al. [38] – 76 3.0 1.1E+04 6.6E−12 1.0E−05

Wang et al. [40] Min 76 2.8 2.5E−02 1.3E−15 1.0E−09

Max 2.5E−01 1.3E−14 1.0E−08

Pan et al. [56] Min 76 2.8 2.5E−03 1.3E−16 1.0E−10

Max 7.4E−01 3.9E−14 3.0E−08

Shi et al. [22] – 76 2.8 1.2E+04 6.6E−12 1.0E−05

Wang et al. [57] Min 76 2.8 2.5E−04 1.3E−17 1.0E−11

Max 1.2E−02 6.6E−16 5.0E−10

Tsubota et al. [41] Min 48 3.0 2.7E+01 4.2E−13 2.0E−07

Max 2.7E+03 4.2E−11 2.0E−05

Shi et al. [36] – 76 2.8 1.2E+04 6.6E−12 1.0E−05

Polwaththe-Gallage 
et al. [33, 58]

– 88 2.8 1.4E+04 5.7E−12 1.0E−05

Polwaththe-Gallage 
et al. [34]

– 88 2.8 8.5E−01 3.4E−14 3.0E−08

Wang et al. [55] Min 76 2.8 7.4E−02 3.9E−15 3.0E−09

Max 7.4E−01 3.9E−14 3.0E−08

Present study – 400 3.0 7.8E−04 9.8E−20 2.3E−10

3D paper Case N (particles) r (µm) kL,base  
(N/m/particle)

kB,base  
(J/rad/particle)

kV (J)

Tsubota et al. [43] – 2304 3.27 2.6E+04 5.6E−22 1.8E−16

Nakamura et al. [45] – Not stated 3.25 Variable stiffness Not calculable 4.3E−15

Shi et al. [42] Min 770 3.28 7.1E−09 2.9E−21 4.7E−15

Max 9.7E−09 4.1E−21 4.7E−15

Wu et al. [48] 1 440 2.8 2.7E−08 3.2E−21 Not stated

2 1058 1.1E−08 1.3E−21 Not stated

Nakamura et al. [47] 2648 3.27 Variable stiffness 3.8E−06 4.4E−15

Polwaththe-Gallage 
et al. [35, 46]

– 954 3.1 1.6E−08 2.0E−20 3.7E−15

Present study – 1922 3.3 1.1E−07 2.8E−18 7.0E−10
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�ese findings demonstrate the stiffness coefficients extracted in this study are more 

suitable for modelling indentation of RBCs. It also suggests indentation simulations are 

more sensitive to stiffness coefficient selection. �is is because flow studies use quali-

tative comparison of RBC shapes in general flow conditions, whereas the indentation 

model uses both qualitative RBC shapes and quantitative force–deformation response. 

�e quantitative aspect means the system’s response is more sensitive to changes in the 

stiffness coefficients—if only qualitative comparison of shape is considered, modification 

of the stiffness coefficients which have little impact on cell shape cannot be detected. 

�is positions indentation as a preferred model for investigating the impact on deform-

ability caused by changes within the RBC membrane as they will be measured far more 

readily.

Conclusions

�is study developed an effective protocol for measuring the mechanical properties of 

RBCs, utilising AFM with a spherical probe in liquid. �e force–deformation behav-

iour was shown to follow the modified Hertz equation for finite thickness samples and 

provided a measurement of the Young’s modulus for the model of 7.57  ±  3.25  kPa, 

consistent with literature reports. A numerical model based on the coarse-grained par-

ticle method (CGPM) was developed for simulating RBC deformation behaviour during 

indentation in both 2D and 3D for the first time, and achieved good agreement with 

the experimental observations. �e models were applied to investigate the mechanisms 

which absorbed energy through the indentation stroke, and the impact of varying stiff-

ness coefficients on the measured deformability. �is found the membrane’s bending 

stiffness was most influential in controlling RBC physical behaviour for indentations 

of up to 200 nm. As the bilayer provides bending resistance, this infers that structural 

changes within the bilayer are responsible for the deformability changes experienced by 

deteriorating RBCs. �is indentation model forms a foundation for future investigations 

into structural changes within the membrane and how these impact on cellular deforma-

bility, given that differences in stiffness have been shown experimentally between healthy 

and deteriorating RBCs. �is CGPM model has significantly more versatility in simulat-

ing RBC indentation as it considers the membrane’s resistance to bending, stretch, areal 

changes and volume changes, as well as affording control over the shape and dimensions 

of the probe, adhesion of the membrane to the substrate, and the direction and posi-

tion of the applied indentation force. �e numerical model presented here established 

a foundation for future investigations into changes within the membrane that cause dif-

ferences in stiffness between healthy and deteriorating RBCs, which have already been 

measured experimentally with AFM.
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