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High-fidelity computational fluid dynamics tools offer the potential to approximate incre-
ments for ground-to-flight scaling effects, as well as to augment the dynamic damping derivative
data for motion-based flight simulators. Unfortunately, the computational expense is currently
prohibitive for populating a complete simulator database. This work investigates an existing
surrogate-based, indicial response reduced-order model methodology as a means to efficiently
augment a flight simulator database with high-fidelity nonlinear aerodynamic damping deriva-
tives. Creation of the reduced-order model is based on the superposition integrals of the
step response with the derivative of its corresponding input signal. Step responses are cal-
culated using a computational grid motion approach that separates the effects of angle of
attack and sideslip angle from angular rates, and rates from angle of attack and sideslip. It is
demonstrated that the transients produced during the start of a forced-oscillation motion are
captured by the reduced-order model to the level of fidelity of a comparable computational
solution. Aerodynamic coefficients computed within minutes by the reduced-order model for
an aircraft undergoing an 18-second half Lazy-8 maneuver and a 25-second Immelmann turn
maneuver are compared with those from full computational flight solutions that required days
to complete. Finally, a cost-benefit assessment is included that demonstrates a compelling
advantage for this approach.

Nomenclature
a∞ = freestream velocity, 340.3 m/s
b = wingspan, 1.538 m
CL = lift coefficient, Lift/(q∞Sre f )
Cl = roll moment coefficient about x-body axis, Rolling Moment/(q∞Sre f b)
Cm = pitch moment coefficient about y-body axis, Pitching Moment/(q∞Sre f cre f )
Cn = yaw moment coefficient about z-body axis, Yawing Moment/(q∞Sre f b)
CY = side-force coefficient, Side-Force/(q∞Sre f )
cre f = wing reference chord, 0.479 m
f = frequency, Hz
k = reduced frequency, 2π f Lre f /U∞
Lre f = reference length, m
M = Mach number
p, q, r = angular rates for roll, pitch, and yaw, deg/s
q∞ = dynamic pressure, N/m2

Recre f = Reynolds number based on cre f
Sre f = wing reference area, 0.77m2

s = normalized time, = 2∆t∗ = 2U∞t/cre f
U∞,V0 = freestream velocity, m/s
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t,∆t = physical time and time-step, sec
∆t∗ = characteristic time step, ∆tU∞/cre f
nsub = number of subiterations
y+ = inner scaling for wall-normal direction
α = angle of attack, deg
β = angle of sideslip, deg
φ, θ, ψ = Euler angles for roll, pitch, yaw in body axis system, deg

I. Introduction

NASA has conducted research under the Technologies for Airplane State Awareness (TASA), a subproject of the
Airspace Operations and Safety Program, to improve the stall models for civil transports in motion-based flight

simulators [1–4]. These efforts have been in support of a pending Federal Aviation Administration (FAA) requirement
[5] that enhanced flight simulator models be implemented by early 2019 for training pilots to recognize precursors to
stall and to learn upset recovery strategies. While the majority of this research has relied on experimental data sources, a
portion has been dedicated to exploring ways to infuse computational aerodynamic data into the stall models [6]. High
fidelity computational fluid dynamics (CFD) tools offer the potential to approximate increments for ground-to-flight
scaling effects, as well as to augment the dynamic damping derivative data for the simulators. The status of research
in computing ground-to-flight scaling increments and dynamic derivatives for a generic T-tail (GTT) commuter jet is
reported in Refs. [7, 8]. The search for more efficient techniques to provide computational data for computing dynamic
damping derivatives is addressed in this paper.

For practical reasons, the aerodynamic coefficients for flight simulation databases are generally expressed in series
expansions, thus creating the commonly used stability and control (S&C) derivatives. In wind tunnels, conventional
practice to obtain damping derivatives is accomplished by measuring the in-phase and out-of-phase responses from
sinusoidal forced oscillations (FO) on wind-tunnel models. Initial attempts to include CFD data involved mimicking the
classic FO approach with CFD tools [9–11]. A key advantage of the computational approach is that the limitation of very
low speeds and hence Reynolds numbers due to wind-tunnel model loads is not an issue. While the computational FO
approach has been reasonably successful, it is largely impractical for populating a database due to the long computational
run times for each data point. More efficient approaches are needed before CFD will become a cost-effective means to
augment flight simulator databases.

Since CFD is not constrained by model loads or structural interferences common to wind tunnels, an aircraft can be
"flown" through maneuvers that are not physically possible using experimental techniques across the full flight Reynolds
and Mach number range. Research has been underway for several years to develop unsteady aerodynamic reduced-order
models (ROM) constructed from high-fidelity CFD simulations of specialty maneuvers that capture a broad frequency
content and nonlinear flow regimes. These flight ROMs seek to match the predictive capability of full CFD simulations
with computational times reduced from many hours to minutes.

Considerable progress has been made by researchers at the United States Air Force Seek Eagle Office (AFSEO).
Morton and his colleagues [12, 13] have developed techniques for flying an aircraft through training maneuvers designed
to excite the relevant flow physics that will be encountered during actual missions in all three axes (roll, pitch, and yaw).
These simulations are termed "training maneuvers" because they are used to regress or "train" the mathematical models.
Such maneuver simulations consist of translations and rotations that are often not physically possible to achieve by an
actual aircraft in flight or during a wind-tunnel test. Next, system identification (SysID) techniques are applied to create
a mathematical model of the aircraft response. Then, the model is tested against available experimental data and CFD
simulations, previously unused in the model generation process, to verify its validity. If the model is unsatisfactory, then
the process is repeated with additional training maneuvers. This approach was developed by the Department of Defense
(DoD) for fixed wing combat aircraft where a classic derivative-based model breaks down when undergoing an agile
maneuver at high angles of attack.

Another reduced-order modeling approach has been developed by Ghoreyshi and his colleagues [14] at the United
States Air Force Academy (USAFA) that is a surrogate-based indicial theory approach. Here the indicial responses of
the aerodynamic coefficients are computed directly with CFD through a series of step inputs for angle of attack, α,
sideslip, β, and roll, pitch, and yaw angular rates, p, q, and r, respectively, that capture their transients as they settle
to a steady state. The total number of required CFD calculations for model generation is reduced by constructing a
time-dependent surrogate model where the indicial responses are only computed at strategic points of α and Mach
number, M , within the flight envelope. The indicial responses of the aerodynamic coefficients are integrated through
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time along the aircraft maneuver while simultaneously interpolating across α and M , within the flight envelope using a
technique such as kriging. Hence the required number of indicial solutions depends on the level of granularity required
to resolve the nonlinearities of the flight envelope. In practice, a surprisingly small number of solutions are required to
generate a reasonable nonlinear model. In many cases, the computational cost of creating the ROM is comparable to
"flying the CFD" through one full flight maneuver. Furthermore, once the ROM has been generated, it can be flown
within seconds through any maneuver within the flight envelope. A primary limitation is the requirement for asymptotic
convergence of the indicial response, which presents challenges with stalled flows.

The overall goal for the present work is to investigate the utility of the surrogate-based indicial response ROM
approach as a potential candidate for efficiently augmenting the S&C database for civil transport flight simulators. The
first step and topic of this paper is to implement and verify the Ghoreyshi ROM methodology using two NASA flow
solvers, USM3D and FUN3D. Prior to assessing the approach, a grid refinement study is conducted for an unmanned
combat air vehicle (UCAV) configuration, and dynamic solution strategies are established for both flow solvers. ROM
solutions are then presented to assess the predictive capability for classic forced-oscillating motions at low-angles
of attack and various reduced frequencies. Then, the benefits and challenges of the ROM will be assessed through
predictions of the half Lazy-8 and Immelmann turn maneuvers published in Ref. [14] that exhibit weakly nonlinear
aerodynamics.

This paper lays a foundation for additional work that is needed before the goal of efficiently augmenting civil transport
S&C databases is achieved. The next step would be to confirm that the new ROM can predict, when present, any unsteady
frequency dependence in dynamic S&C derivatives for aircraft undergoing classic sinusoidal and wide-band oscillating
motions. And ultimately, an approach must be developed to modify the unsteady indicial responses encountered during
stall in an attempt to capture the overall lag and sluggesh behavior generally experienced during a stall.

II. Geometry
The Stability and Control Configuration (SACCON) geometry, depicted in Fig. 1 and described in detail in Ref.

[15], was created by the North Atlantic Treaty Organization (NATO) Science and Technology Organization (STO)
AVT-161 Task Group titled "Assessment of Stability and Control Prediction Methods for NATO Air & Sea Vehicles"
[16], and subsequently used in the follow-on AVT-201 Task Group "Extended Assessment of Reliable Stability &
Control Predictions Methods for NATO Vehicles" [17]. It is a generic representation of a UCAV configuration with
a 53-deg swept leading edge that can be tested either sharp or rounded. The configuration of interest to this study
is designated the ’SACCON-01 round-leading-edge’ configuration, which has a sharp inboard leading edge segment
that transitions to a medium-round leading edge on the outer wing panel. The outer wing panels are twisted about the
leading edge to yield a 5-deg washout. The wingspan is 1.54 m, root chord is approximately 1 m, and reference chord,
cre f is 0.48 m. The reference area, Sre f , is 0.77 m2. The Point of Rotation (PoR) for pitch and yaw oscillations is
positioned near the aft end of the root chord, downstream of the aerodynamic Moment Reference Point (MRP). The
wind-tunnel model was designed to be mounted by a post sting attached at the PoR for tests in the German-Dutch Wind
Tunnel (DNW-NWB) located in Braunschweig, Germany or a rear sting mount for the NASA Langley 14- by 22-Foot
(14x22) Subsonic Tunnel in Hampton, Virginia, United States.

Fig. 1 Planform and geometric parameters of the SACCON configuration.
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III. Computational Tools
Two NASA flow solvers, USM3D and FUN3D, are used in this work. Both are exercised for time-accurate solution

of the Reynolds-averaged Navier-Stokes (RANS) equations using the Spalart-Allmaras one-equation turbulence model.

A. USM3D
The legacy USM3D is a tetrahedral cell-centered RANS flow solver that has been in use for many years [18]. The

present study uses a new developmental version of USM3D that is a parallelized, mixed-topology, cell-centered, finite
volume Navier-Stokes flow solver [19]. Inviscid flux quantities are computed across each cell face using various upwind
schemes. To improve the convergence and robustness of USM3D solutions, a hierarchical adaptive nonlinear iteration
method (HANIM) has been recently implemented in the mixed-element USM3D [20]. Further enhancements to the new
USM3D preconditioner and discretization scheme are reported in Refs. [21, 22]. Turbulence models currently available
are the standard and negative variant [23] of the Spalart-Allmaras (SA) one equation model, the SA with Quadratic
Constitutive Relation (QCR), and the two-equation k-epsilon turbulence model, the Menter Shear Stress Transport (SST)
two-equation model. A general prescribed grid motion capability is available that can be advanced in time by a 2nd- or
3rd-order time step scheme.

For the present study, the negative variant of the SA model was used for the USM3D computations. Inviscid fluxes
are computed with Roe’s flux difference scheme without limiting. The boundary conditions consist of a surface no-slip
constraint on the wing and characteristic inflow/outflow on the outer box. Time is advanced with an implicit 2nd-order
dual time-step scheme using exponential ramping either within each time step or over the global time steps. When
ramping locally within each time step over 5, 10, or 15 subiterations, the Courant-Friedrichs-Lewy (CFL) number
exponentially increases to a maximum of 148; 22,036; and 3.27 × 106, respectively, to advance the meanflow and
turbulence equations. With 5 subiterations, the low CFLmax of 148 severely limits the subiterative convergence. Hence,
with 5-subiteration solutions, a global exponential ramping is used that continues to increase and then holds a prescribed
maximum CFL of 1 × 1040.

B. FUN3D
FUN3D v13.3 is a parallelized, unstructured, node-based, finite-volume discretization, RANS flow solver [24].

Inviscid flux quantities are computed using a variety of upwind flux functions. Turbulence models currently available
include SA, Menter k-omega SST, Wilcox k-omega, and detached eddy simulations, among others. Time accurate
simulations may be advanced in time using up to 3rd-order time step schemes, where pseudotime advancement is
dictated by a linear CFL-subiteration schedule within each iteration. An optimized 2nd-order backward differencing
(BDF2opt) was utilized in the present work.

For the present study, the standard SA model was used for the FUN3D computations. Similar to the USM3D
procedure, inviscid fluxes are computed with Roe’s flux difference scheme without limiting. The boundary conditions
consist of a surface no-slip condition on the wing and characteristic inflow/outflow on the outer box. Time is advanced
with an implicit 2nd-order dual time-step scheme using a constant CFL number within each time step. For all of the
conducted simulations, constant CFL values of 30 and 20 were used to advance the meanflow and turbulence equations,
respectively. By using a constant CFL ramping, convergence for a given time step resolution is isolated to and controlled
by the number of specified subiterations.

C. Grid Motion
A desired trajectory is initially defined by aerodynamic parameters (α, β, M) and Euler angles (φ, θ, ψ). The relations

described in Appendix A transform this trajectory from the wind-to-body and body-to-horizontal axes system. For
USM3D simulations, a resulting trajectory file provides a set of translations and rotations to move the grid relative to
the horizontal or inertial axes system. For FUN3D simulations, a general prescribed rigid body motion capability is
available that relies on a series of 4 x 4 transformation matrices, which maps the moving body coordinates to the fixed
initial reference frame at user-specified points in time [25]. Appendix A illustrates the format of the user-defined motion
input files required for simulating rigid body maneuvers using the USM3D and FUN3D flow solvers.

IV. Grid Generation
Computational grids were created using Heldenmesh™ v3.03, which is a multithread software system developed

by the Helden Aerospace Corporation for the rapid generation of high quality, three-dimensional, mixed-element
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unstructured meshes about arbitrary complex configurations [26]. This capability was developed to streamline the
application of CFD in a demanding production environment by transforming the mesh generation process from one
currently measured in days-per-mesh to one measured in meshes-per-day. The Heldenmesh™ software system currently
consists of two primary tools, Heldenpatch™ and Heldenmesh™. The former is the interface between the underlying
Initial Graphics Exchange Specification (IGES) geometry definition and the Heldenmesh™ grid generator, and includes
geometry clean-up, management, and geometric transformation capabilities. The Heldenpatch™ will typically provide
around 95-percent of the surface patching automatically, leaving only a small amount of handwork to complete. An
input-based spatial sourcing file will typically produce adequate spatial control of the cell size and distribution using
only a few parameters with no additional user intervention needed. Heldenmesh™ was designed for compatibility with
the NASA Tetrahedral Unstructured Software System (TetrUSS) [27, 28] in general and the VGRID mesh generation
process in particular [29]. An important component of this system is the TetrUSS GridTool application, which is an
interactive program for geometry processing. The GridTool application is currently utilized for interactive geometry
processing in the Heldenmesh™ software system. A new integrated graphic user interface is planned for future releases.

A “family” of hybrid unstructured grids were generated on the clean SACCON wing that are suitable for the USM3D
cell-centered and FUN3D node-based flow solvers. Characteristics of the grids are detailed in Table 1 where the global
refinement factor, REFINE_FAC, of Heldenmesh™ was manually adjusted to produce nominally 5-, 10-, and 20-million
total cells for USM3D and total nodes for FUN3D. The respective grid names are suffixed by "c" and "n" in Table 1.

A near-wall first-node spacing was prescribed, based on flat-plate turbulent boundary layer theory, to achieve an
approximate turbulent wall coordinate (y+) of 0.5 at a longitudinal distance of 0.5*cre f for a Recre f = 1.57 million.
Since the near-wall layers are comprised of prismatic cells and the cell centroid height is positioned at one-half that of
the first node of the grid, the initial spacing of the first node, δi , was adjusted for USM3D to be twice that for FUN3D to
yield a consistent y+. Beyond the first layer of prisms, the layers grow into the field with stretching factors of r1 = 0.15
and r2 = 0.02, where the nodal spacing layers are defined by Eq. 1.

δi+1 = δi · [1 + r1 · (1 + r2)
i]i (1)

The surface and volume discretization for the “family” of USM3D and FUN3D grids are shown in Figs. 2 and
3, respectively. With REFINE_FAC=1, the maximum surface spacing was set to 6 × 10−3 m and the minimum to
1 × 10−4 m. This combination can enable as high as 60-to-1 stretching along the leading edge with the smallest spacings
clustered in the circumferential direction. These maximum and minimum surface spacings are scaled for each grid by
the REFINE_FAC parameter in Table 1. The flat trailing-edge spacing is not scaled and is set to 2.345 × 10−4 m to
allow four points across the 9.4 × 10−4 m thick surface.

Table 1 Characteristics of cell- and node-based “family” of grids. (Mc is million cells, Mn is million nodes)

Grid REFINE_FAC δi Surf Tri Nodes Pyramids Prisms Tets Total Cells
[m] [millions] [millions] [millions] [millions] [millions] [millions]

5Mc 1.718 5.75X10−6 0.104 1.81 0.019 2.82 2.17 5.01
10Mc 0.967 5.75X10−6 0.236 3.86 0.033 6.36 3.62 10.01
20Mc 0.593 5.75X10−6 0.526 8.10 0.054 13.81 6.16 20.03
5Mn 0.846 2.875X10−6 0.292 5.00 0.036 8.33 4.43 12.79
10Mn 0.544 2.875X10−6 0.611 10.01 0.059 17.22 7.21 24.49
20Mn 0.360 2.875X10−6 1.275 20.02 0.095 35.24 12.08 47.41

Setup for the initial grid required approximately 1-hour by an inexperienced user. Subsequent grids could be
generated within minutes by changing the REFINE_FAC parameter and rerunning Heldenmesh™. The six grids were
generated with Heldenmesh™ at an average rate of 90.1K nodes or 229.1K cells per second with a total computational
time of 8.5 minutes on 32 threads of the NASA Langley Research Center (LaRC) K3-cluster of Sandy Bridge nodes,
consisting of Intel Xeon E5-2670 processors.
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Fig. 2 USM3D cell-centered grids. From top to bottom: 5Mc, 10Mc, and 20Mc. From left to right: three-
quarter rear view of wing, closeup of leading edge at right wing tip, and slice through volume grid at x=0.60m.

Fig. 3 FUN3D node-based grids. From top to bottom: 5Mn, 10Mn, and 20Mn. From left to right: three-
quarter rear view of wing, closeup of leading edge at right wing tip, and slice through volume grid at x=0.60m.
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V. Reduced-Order Modeling

A. Aerodynamic Indicial Response Theory
Initial applications of aerodynamic indicial response theory were first detailed by Tobak et al. [30, 31] and Reisenthal

et al. [32, 33]. The unsteady aerodynamic response to longitudinal motions were modeled within linear flight regimes
using indicial theory by accounting for contributions due to angle of attack and pitch rate, state parameters common to
traditional stability-derivative models. Equation 2 expresses the unsteady lift and pitching moment, Cj = [CL,Cm], as a
function of the convolution integrals with respect to any arbitrary time-varying maneuver defined by angle of attack,
α, and pitch rate, q. In Eq. 2, Cj0 denotes the zero-angle-of-attack lift or pitching moment coefficients, provided by
steady-state data. The terms Cjα and Cjq represent the transient indicial responses of the system with respect to unit
step changes in angle of attack and pitch rate, respectively. Direct identification of indicial responses have been difficult
to measure experimentally due to the inability to create an instantaneous step motion. Historically, indicial responses
were identified either analytically, for 2D configurations, or experimentally, in conjunction with system identification
methods.

Cj(t) = Cj0 +
d
dt

[∫ t

0
Cjα (t − τ)α(τ)dτ

]
+

d
dt

[∫ t

0
Cjq (t − τ)q(τ)dτ

]
(2)

More recently, Ghoreyshi and Cummings [34] leveraged the grid motion capabilities of modern CFD solvers to
enable direct identification of indicial responses for maneuvering aircraft. The procedure assumes that the CFD solver
allows specification of all translational and rotational degrees of freedom. These degrees of freedom are defined with
respect to a reference point on the aircraft at each time step of the simulation. The initial aircraft velocity, v0, is first
calculated based on the initial angle of attack, sideslip angle, and Mach number. For successive iterations, the aircraft’s
reference point velocity, va, in the body-fixed inertial reference frame is calculated and specified to achieve the angle
of attack, sideslip angle, and forward speed defining a prescribed maneuver. The translational degrees of freedom
are defined by the relative velocity vector, va − v0, of the aircraft’s reference point. Rotation of the aircraft about
the reference point is then defined using the roll, pitch, and yaw rotation angles. The ability to simulate such 6DOF
maneuvers using CFD solvers allows for the simulation of both full-order solutions and indicial response functions.

Fig. 4 illustrates an example of the CFD-calculated approximations for the indicial response with respect to step
changes in angle of attack and pitch rate. In this approach, a step change in angle of attack is achieved by specifying
a grid motion, beginning at t = 0, consisting of a translation downward and aft. During this motion, changes in the
aerodynamic loads are isolated to contributions from angle of attack, while maintaining a zero-valued pitch rate. For
a unit step change in pitch rate, the grid rotates at a constant, unit pitch rate. Because angle of attack changes with
rotation, an additional grid motion is specified to translate upward and aft to maintain a local α = 0°. This grid motion
technique can also be applied to lateral motions to allow for the approximation of indicial responses with respect to
sideslip angle, roll rate, and yaw rate. The benefit of this approach is that indicial responses for 2D or 3D configurations
can be calculated at any flight condition, overcoming the identification problems inherent to analytical and experimental
methods. Using this CFD-based identification approach, the linear aerodynamic indicial response model presented in
Eq. 2 has been used to calculate the unsteady aerodynamics of longitudinal motions [34].

For nonlinear flows, the linear aerodynamic indicial response theory of Eq. 2 has been extended by use of
parameterized indicial response functions [14, 35]. The nonlinear aerodynamic indicial response model for longitudinal
coefficients is given by Eq. 3. Analogous to aerodynamic databases, flow nonlinearity may be captured by sampling
a system’s locally linear indicial response as a function of the flight space parameter values, where the degree of
nonlinearity resolved scales with the sampling of indicial responses. In the case of longitudinal aerodynamics, the
indicial response with respect to angle of attack is assumed to vary with angle of attack and Mach number, whereas for
pitch rate, the indicial response is assumed to vary only with Mach number with negligible variations in angle of attack
at low to moderate angles of attack. These parameterizations are consistent with those typical of aerodynamic databases.

Cj(t) = Cj0 (M) +
d
dt

[∫ t

0
Cjα (t − τ, α, M)α(τ)dτ

]
+

d
dt

[∫ t

0
Cjq (t − τ, M)q(τ)dτ

]
(3)

Ghoreyshi and Cummings [14, 35] later extended this formulation for the prediction of unsteady aerodynamic
responses to lateral motions, enabling estimates for the aerodynamics for 6DOF maneuvering aircraft. Consistent with
traditional aircraft flight dynamics assumptions, the lateral loads are assumed to only depend on sideslip angle (β),
normalized roll rate (p), and normalized yaw rate (r). The unsteady lateral aerodynamics, namely side force (Y ), rolling
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Fig. 4 Grid motion illustration of indicial responses from Ref. [14]. Upper: ∆α = 1◦, q = 0 rad/sec, Lower:
∆q = 1 rad/sec, α = 0◦.

moment (l), and yawing moment (n), may then be calculated using Eq. 4. The parameterization of the lateral/directional
indicial responses, Ck = [CY,Cl,Cn], are also consistent with those used in the longitudinal formulation.

Ck(t) =
d
dt

[∫ t

0
Ckβ (t − τ, α, M)β(τ)dτ

]
+

d
dt

[∫ t

0
Ckp (t − τ, M)p(τ)dτ

]
+

d
dt

[∫ t

0
Ckr (t − τ, M)r(τ)dτ

] (4)

In order to calculate the nonlinear responses,Cjα(t, α, M) for example, the flight maneuver space is first parameterized
by a set of angle of attack samples, α = [α1, α2, ..., αn], and a set of Mach number samples, M = [M1, M2, ..., Mn]. The
responses are then calculated at each angle of attack, αi (i = 1, 2, . . . , n), for each Mach number sample, Mi , by first
converging a static CFD simulation at the given angle of attack and Mach number and then performing a dynamic CFD
simulation, for which grid motion capabilities are used to perform a unit step in angle of attack to α = αi + 1. The
response function is then computed from the CFD solution by taking the difference between the time-varying response
due to the unit step change and the static initial solution at α = αi . This process is repeated for each unique combination
of flight space sampling for a total number of indicial response simulations equal to αi × Mi for the nonlinear response
Cjα (t, α, M). These same simulation requirements apply to the nonlinear responses with respect to sideslip angle,
Ckβ (t, α, M); where instead, a unit step from β = 0° is simulated at each unique combination of angle of attack and
Mach number. The nonlinear responses with respect to the angular rates, Cjq (t, M), Ckp (t, M), and Ckr (t, M), only
depend on Mach number, where unit steps in each angular rate are simulated at α = 0° for each Mach number sample,
Mi . The utility of the nonlinear aerodynamic indicial response theory presented in Eqs. 3 and 4 is assessed in the
present work as a viable means of populating S&C databases for civil transport flight simulators.

The sampling of the flight space may be completed using a variety of sampling strategies, including the methods of
full-factorial design, Latin hypercube sampling, or sampling based on optimality criteria as reviewed in Ref. [36]. The
maximum sampled values for angle of attack and Mach number should be chosen to define the limits of the flight space
corresponding to the flight maneuvers to be evaluated by the reduced-order models. In the present work, only positive
values of angle of attack are used with the underlying assumption that the response is symmetric between positive and
negative angles of attack. The density of sampling should be carefully selected to balance the computational cost vs. the
degree of resolution needed to capture the salient nonlinearities throughout the maneuvers to be predicted.

In the present work, a uniform sampling of one degree angle of attack is used with ranges of α = [0◦ − 10◦], and
Mach numbers are sampled at M = [0.05, 0.15, 0.3] to provide a sampling corresponding to the bounds of the prescribed
maneuver space. A kriging surrogate modeling approach, first demonstrated in Ref. [14], is used to interpolate the
database of simulated indicial responses to better resolve the flow nonlinearities encountered by any arbitrary prescribed
flight maneuver. From this, the granularity of the database can be assessed by selective use of indicial responses from
within the database.
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B. Kriging Surrogate Modeling
Surrogate modeling based on kriging interpolation has found widespread use in flight dynamics and aeroelastic

studies as a means of reducing the computational costs associated with model identification [14, 37]. Kriging modeling
is implemented in the present work using the MATLAB Design and Analysis of Computer Experiments (DACE) toolbox
[38].

Following the formulation implemented in Ref. [14], the indicial responses are viewed as a set of time-correlated
spatial processes, where the output is a simulated or ‘observed’ transient response. Universal-type kriging surrogate
models may be used to estimate indicial responses, corresponding to the flight conditions at a given point along a
maneuver, without the need for direct simulation of the response. A unique surrogate model is created for each discrete
time step of the indicial response for a total of n surrogate models as a function of the flight maneuver space inputs, i.e.,
one predicted response for each point along the maneuver, as created from n surrogate models.

The modeling process begins with the definition of an input matrix, X(m × d) in Eq. 5, and a corresponding
output matrix of observed responses, Y(m × n) in Eq. 6. The columns of the input matrix represent the number, d, of
independent flight space variables, x, whereas the rows of the input matrix represent the number of samples, m, or unique
combinations of values for the input variables. In modeling indicial responses with respect to angle of attack using the
current sampling strategy, there are d = 2 independent variables, α and M , corresponding to indicial responses sampled
at m = 33 (αn × Mn) unique locations in the flight maneuver space. The rows of the output matrix also correspond
to the number of samples, however, the columns of the output matrix now correspond to the n discrete time steps or
iterations of the numerically simulated indicial responses.

X =


x11 x12 . . . x1d

x21 x22 . . . x2d
...

...
...

...

xm1 xm2 . . . xmd


(5)

Y =


y11 y12 . . . y1n

y21 y22 . . . y2n
...

...
...

...

ym1 ym2 . . . ymn


(6)

Universal kriging models the prediction at a given point in time, ŷi , at a new combination of values in the input
variable space, x∗, as the sum of a deterministic mean response value, µi , and a zero-mean autocorrelated error, εi , as
given by Eq. 7.

ŷi(x∗) = µi(x∗) + εi (7)

The objective of kriging modeling is to minimize the mean squared error, φ in Eq. 8, of the modeling prediction ŷ

over the parameter space, where E[...] is the covariance of the quantity of interest [38]. For a linear regression of the
parameter space, the resulting mathematical expressions for the mean response and autocorrelated error are given by
Eqs. 9 and 10.

φ(x∗) = E[(ŷ(x∗) − y(x∗))2] (8)

The mean response is written as a linear combination of regression functions, fj , and their corresponding regression
coefficients, βi j , for the j-th regression function at time step i, for i = 1, . . . , n. In the present work, the regressions are
defined as follows: f0(x∗) = 1, f1(x∗) = α∗, and f2(x∗) = M∗.

µi(x∗) =
n∑
j=0

βi j fj(x∗) (9)
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The autocorrelated error is written in terms of r(x∗), the correlation matrix between the sampled points and the new
evaluation point, R, the correlation function matrix for sampled points, F, the regression functions at the sampling
points, Y, and β. Substituting the expressions for the mean response and autocorrelated error into Eq. 7 results in the
final prediction expression given by Eq. 11.

εi(x∗) = rTR−1(Y − Fβ) (10)

ŷi(x∗) =
n∑
j=0

βi j fj(x∗) + rTR−1(Yi − Fβ) (11)

An illustration of the kriging surrogate modeling process for the prediction of a single indicial response (with respect
to angle of attack) for a given point in the maneuver, where α = 4.5◦ and M = 0.25, is shown in Fig. 5. In this modeling
procedure, n surrogate models are generated, one for each point in discrete time. In consideration of the convolution
process, an interpolated indicial response is needed at each point in time along the maneuver based on the current value
of the flight space parameters. This process is utilized for the nonlinear indicial responses with respect to angle of attack
and sideslip angle. A linear interpolation is used for the indicial responses with respect to the angular rates.
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Fig. 5 Kriging modeling of indicial responses.

VI. Results & Discussion
The accuracy and efficiency of the indicial ROM will be evaluated through correlations with several full CFD flight

maneuver solutions using SACCON. This section begins with a brief description of the evaluation flight maneuvers,
followed by an assessment of CFD sensitivities to grid and time-step variations. Based on guidance from these results,
the CFD indicial response solutions that serve as input to the ROMwere computed. And finally, various ROM predictions
are studied to provide application guidelines for future applications.
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A. Description of Evaluation Flight Maneuvers

1. Half Lazy-8
An aircraft performing a half Lazy-8 [14], illustrated in Fig. 6, enters and exits the maneuver from a straight and

level condition. The angle of attack and sideslip angles are constrained within [0◦ to 10◦] and [−4◦ to 4◦], respectively,
and Mach numbers within [0.1 to 0.28]. Figure 6(a) shows the aircraft making a 180◦ turn. The aircraft starts a steep
climb to reduce flight speed (as shown) in order to make the tight turn. The aircraft rolls left as the pitch angle decreases,
such that the vehicle is at zero pitch and maximum roll angle at a 90◦ yaw angle, as shown in Fig. 6(d). This is followed
by a descent trajectory and decreasing roll angle, increasing pitch angle, and regaining speed until the vehicle reaches
the initial velocity and altitude.

(a) Flight Trajectory (b) Mach Number

(c) Aerodynamic Angles (d) Euler Angles

Fig. 6 Half Lazy-8 maneuver from Ref. [14].
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2. Immelmann turn
The Immelmann turn [14], depicted in Fig. 7, is characterized by a half loop with a half roll at the end. The angles

of attack and sideslip angles are constrained within [-3◦ to 10◦] and [-4◦ to 4◦], respectively, and Mach numbers within
[0.07 to 0.28]. The maneuver starts with a steep climb and a resultant decrease in speed as shown in Fig. 7(b). At
the maximum pitch angle, the aircraft changes heading from 0◦ toward 180◦. As the aircraft continues on its reverse
heading, it performs a half roll to level the wing.

(a) Flight Trajectory (b) Mach Number

(c) Aerodynamic Angles (d) Euler Angles

Fig. 7 Immelmann turn maneuver from Ref. [14]

3. Sinusoidal forced oscillation
The forced sinusoidal oscillation solutions are generated using nondeforming solid-body rotation of the full grid

about the x, y, or z body axis and are initialized by restarting from a converged static solution at the prescribed angle
of attack, α0, and Mach number, M0. Two full sinusoidal oscillations are simulated to allow for initial transients to
sufficiently decay.
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B. Sensitivities to CFD Parameters

1. Effect of grid refinement on static angle-of-attack sweep
A series of static time-accurate RANS flow solutions were generated at 21 angles of attack between [0◦ to 30◦]

to assess the sensitivity of USM3D and FUN3D to the grid densities presented in Table 1. The flow conditions are
M∞ = 0.15 and Recre f = 1.57 million using the SA turbulence model. The time step was ∆t ≈ 0.00094s based on a
prescribed characteristic time step of ∆t∗ = 0.10, where ∆t = ∆t∗ · cre f /U∞. A total of 1,000 time steps were simulated
for α = [0◦ to 8◦], and 1,500 steps for α = [9◦ to 30◦]. All solutions were confirmed to be well-converged.

Comparisons with lift and pitching moment data from the German-Dutch DNW-NWB wind tunnel are shown in Fig.
8. The aerodynamics are characterized by a highly nonlinear behavior at the higher angles of attack, including a sharp
pitch break around α = 17◦. The vortical flow physics producing these behaviors is well analyzed and interpreted in Ref.
[39] and extensive CFD-to-experiment correlations with this data set are published in Refs. [40, 41]. The USM3D
(open symbols) and FUN3D (solid symbols) results are in very close agreement with each other up to α = 12◦, but
both significantly underpredict pitching moment. This observed underprediction of Cm over the lower angle-of-attack
range was typical for all eight flow solvers correlated with the data in Ref. [40]. The 5-, 10-, and 20-million element
grids display some sensitivity in the 15◦ to 20◦ angle-of-attack range, and more so at the higher post-stall angles of
attack. The cell-centered grid 20Mc captures the pitch break, which is caused by a sudden state change in leading-edge
separation and subsequent vortex formation. The USM3D and FUN3D flow solvers both exhibit an expected level of
uncertainty in the stall and post-stall region consistent with that from the eight flow solvers in Ref. [40].

Fig. 8 Effect of SACCON grid refinement on static lift and pitching moment coefficient. Open symbols:
USM3D/SA, solid symbols: FUN3D/SA. M∞ = 0.15 and Recref = 1.57x106.

2. Effect of grid refinement and solution strategy on the half Lazy-8 maneuver
Prior to choosing a grid for the indicial ROM assessment, a small study was performed using the SACCON half

Lazy-8 maneuver from Ref. [14] to examine solution sensitivities to flow solver, grid density, subiterations, and time
step size in a dynamic flight environment. From this, a selection of grid and solution strategy is made for generating the
indicial response solutions and to potentially aid future studies.

A comparison of USM3D and FUN3D aerodynamic coefficients of lift, pitching moment, rolling moment, yawing
moment, and side force is presented in Fig. 9 over the full 18-second half Lazy-8 maneuver depicted in Fig. 6. The
solutions were generated on the 10-million element grids with a characteristic time step of ∆t∗ = 0.10 and nsub = 10
subiterations. The two codes are typically in close agreement, with the largest differences occurring in the yawing
moment coefficient, which is small in magnitude since the SACCON is a thin, tailless aircraft. Subsequent parameter
sensitivity assessments focus on the longitudinal pitching moment, Cm, and directional yawing moment, Cn, coefficients.

13



(a) Lift (b) Pitching Moment

(c) Rolling Moment (d) Yawing Moment

(e) Side Force

Fig. 9 Comparison of USM3D and FUN3D flow solvers for SACCON half Lazy-8 maneuver. Grids 10Mc and
10Mn. M∞ = 0.2789, Recref = 1.57 × 106,∆t∗ = 0.10, nsub = 10.
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The impact of grid density on Cm and Cn is shown in Fig. 10 for both codes using the 5-, 10-, and 20-element
grids. The solutions were generated using a characteristic time step of ∆t∗ = 0.10 and nsub = 10 subiterations. The
USM3D solutions are generally grid converged with 10- and 20-million elements. The grid sensitivities are even less for
the FUN3D solutions. From these results, the 10-million element grids were chosen for further parameter sensitivity
assessments.

(a) USM3D Pitching Moment (b) USM3D Yawing Moment

(c) FUN3D Pitching Moment (d) FUN3D Yawing Moment

Fig. 10 Effect of grid density on time-varying pitch and yaw moment coefficients for SACCON half Lazy-8
maneuver: USM3D upper, FUN3D lower. M∞ = 0.2789, Recref = 1.57 × 106,∆t∗ = 0.10, nsub = 10.

Temporal convergence was assessed with the cases listed in Table 2. The effect of subiterative convergence between
time steps is evaluated using Cases 2.1, 2.2, and 2.3, where a constant time step of ∆t∗ = 0.10 is maintained to traverse
the 18-second half Lazy-8 maneuver in 36,000 time steps. As evident from the first three cases in Table 2, the number
of subiterations applied to this constant time step has a proportional impact on the total number of solution iterations
and hence, cost. The Cm and Cn results presented in Fig. 11 suggests that nsub = 10 is sufficient for subiterative
convergence for both flow solvers. While not shown, this conclusion was further substantiated by examining the
subiterative convergence history of the force and moment coefficients for the solutions.
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Table 2 Subiteration and time step parameters for temporal convergence of Half Lazy 8. USM3D/SA/10Mc
and FUN3D/SA/10Mn.

Case ∆t (s) ∆t∗ Nsub Total Time Steps Total Iterations
2.1 5.00E-4 0.10 15 36,000 540,000
2.2 5.00E-4 0.10 10 36,000 360,000
2.3 5.00E-4 0.10 5 36,000 180,000
2.4 2.50E-4 0.06 10 54,000 540,000
2.5 1.25E-4 0.03 5 108,000 540,000
2.6 5.00E-5 0.01 5 360,000 1,800,000

(a) USM3D: Pitching Moment (b) USM3D: Yawing Moment

(c) FUN3D: Pitching Moment (d) FUN3D: Yawing Moment

Fig. 11 Effect of inner time step subiteration on pitch and yawmoment coefficients for SACCONhalf Lazy-8ma-
neuver: USM3D upper, FUN3D lower. Grids 10Mc and 10Mn. M∞ = 0.2789, Recref = 1.57 × 106,∆t∗ = 0.10.

The sensitivity to time step size is captured by the Cases 2.1, 2,4, 2.5, and 2.6 in Table 2 with ∆t∗ = 0.10, 0.06, 0.03,

16



and 0.01, respectively. A constant number of total solution iterations of 540,000 was maintained for the first three cases
as recommended by Ref. [42]. The fourth Case 2.6, with ∆t = 0.01 and 1,800,000 total iterations, was included to
provide a consistency with the time step to be used in the following indicial response solutions. As is evident in Fig. 12,
the time step size has negligible impact on the solution for the half Lazy-8 maneuver.

∆

∆

∆

∆

(a) USM3D: Pitching Moment

∆

∆

∆

∆

(b) USM3D: Yawing Moment

∆

∆

∆

(c) FUN3D: Pitching Moment

∆

∆

∆

(d) FUN3D: Yawing Moment

Fig. 12 Effect of time step on pitch and yaw moment coefficients for SACCON half Lazy-8 maneuver: USM3D
upper, FUN3D lower. Grids 10Mc and 10Mn. M∞ = 0.2789, Recref = 1.57 × 106.

C. Generation of Indicial Response Solutions
To insure consistency with the indicial response sampling of Ref. [14], a set of 33 flight space points were sampled

within the variable ranges α0 = [0◦ − 10◦] and M = [0.05 − 0.30] as depicted in Table 3. While the matrix of Ref. [14]
spanned M from 0.1 to 0.5, the half Lazy-8 and Immelmann maneuvers provided by the USAFA for the present study
covered the range of M from 0.07 to 0.28, assuming sea level speed of sound of 340.3 m/s. Hence, the selected Mach
numbers of 0.05, 0.15, and 0.30.

The indicial response solutions are generated by imposing through solid-body grid motion a sudden step change
in α, β, or angular rates from a converged static solution at each flow condition in Table 3. Static solutions from the
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sensitivity study in SectionVI.B.1 are used for this purpose. The grid-motion trajectory files are created by applying the
vehicle-state inputs at each Mach number, in Table 4, to the transformations noted in Appendix A. The incremental steps
are defined as ∆α = 1◦,∆β = 1◦, and ∆p = ∆q = ∆r = 1 rad/s = 180/π deg/s.

Table 3 Matrix of 75 indicial step cases for input to the kriging surrogate model.

α0, deg M = 0.05 M = 0.15 M = 0.30
0 ∆α,∆β,∆p,∆q,∆r ∆α,∆β,∆p,∆q,∆r ∆α,∆β,∆p,∆q,∆r

1 to 10 ∆α,∆β ∆α,∆β ∆α,∆β

Table 4 Input parameters to transformations in Appendix A for creating indicial trajectories (t > 0).

Indicial α, deg β, deg φ, deg θ, deg ψ, deg M0

α- step α0 + 1 0 0 0 0 0.05, 0.15, 0.30
β- step α0 1 0 0 0 0.05, 0.15, 0.30
∆p- step 0 0 ∆p · t 0 0 0.05, 0.15, 0.30
∆q- step 0 0 0 ∆q · t 0 0.05, 0.15, 0.30
∆r- step 0 0 0 0 ∆r · t 0.05, 0.15, 0.30

For an ∆α-step and ∆β-step, the initial time step is set to α = α0, β = 0◦, and φ = θ = ψ = 0◦. For a ∆α-step, this
produces a pure translation motion downward and slightly aft to maintain ∆q = 0 rad/s. For a ∆β-step, this imposes a
pure translation to the right and slightly aft to maintain ∆r = 0 rad/s. The ∆p-, ∆q-, and ∆r- steps are initialized by
setting α = β = φ = θ = ψ = 0◦ for the initial time step. For a ∆p-step, this results in an impulsive roll of the grid about
the body axis. For a ∆q-step, a constant-rate pitch rotation of the grid coupled with an upward and aft translation along
a curved path that maintains α = β = 0◦ throughout the motion. For a ∆r-step, there is a constant-rate yaw rotation of
the grid coupled with a sideways and aft translation, such that α = β = 0◦ is maintained during the motion.

The indicial step responses were computed with USM3D and FUN3D using the temporal parameters presented in
Table 5. All responses, shown in Appendix B, were advanced for 500 time steps with ∆t∗ = 0.011 to an smax = 10
where asymptotic convergence to steady state was achieved. The abscissa on those plots is compressed to a maximum of
s = 4 to illuminate the initial transients.

D. Assessment of Reduced-Order Model (ROM)
The utility of the indicial ROM is explored through a series of parameter sensitivity studies while SACCON performs

various maneuvers. Model accuracy is evaluated by comparisons with the full-order CFD flight maneuver solutions. The
goal is to gain an understanding of the ROM behavior, which leads to application guidelines that produce an acceptable
level of accuracy with the least amount of model generation time and run time. There are several parameters that have a
direct effect on the cost and accuracy of the model. For example, the density of the surrogate model, i.e., the number of
indicial responses needed for α, β, and M, has a direct impact on both the accuracy and cost. In practice, the CFD
time step size for the indicial responses should be as large as practical, and the duration of the response as small as
possible. Similarly, the time step size while integrating the trajectory in the ROM manifests in a trade-off between
dynamic resolution and model run time.

1. Roll, pitch, and yaw forced oscillations
Typical S&C databases may require forced oscillations at multiple flight conditions, amplitudes, and frequencies.

The computational efficiency of the ROM provides an opportunity to supply high-fidelity simulation data at a fraction of
the cost as would be required for full-order solutions, but with sufficient modeling accuracy. To evaluate the viability of
such an approach, a series of forced sinusoidal oscillations about the roll, pitch, and yaw axes were simulated using the
NASA USM3D and FUN3D flow solvers for comparison to ROM predictions. The salient scaling parameter for the
FO simulations is reduced frequency, k = 2π f Lre f /U∞, where Lre f = cre f for pitch oscillation and Lre f = b/2 for
roll and yaw oscillations. Each of the cases were initialized from a well-converged static simulation and subsequently
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Table 5 Temporal parameters for indicial step responses.

Indicial Mach ∆t (s) ∆t∗ smax Nsub Total Time Steps Total Iterations No. Cases
∆α 0.30 5.0E-05 0.011 10 10 500 5000 11
∆α 0.15 1.0E-4 0.011 10 10 500 5000 11
∆α 0.05 3.0E-04 0.011 10 10 500 5000 11
∆β 0.30 5.0E-05 0.011 10 10 500 5000 11
∆β 0.15 1.0E-4 0.011 10 10 500 5000 11
∆β 0.05 3.0E-04 0.011 10 10 500 5000 11
∆p 0.30 5.0E-05 0.011 10 10 500 5000 1
∆p 0.15 1.0E-4 0.011 10 10 500 5000 1
∆p 0.05 3.0E-04 0.011 10 10 500 5000 1
∆q 0.30 5.0E-05 0.011 10 10 500 5000 1
∆q 0.15 1.0E-4 0.011 10 10 500 5000 1
∆q 0.05 3.0E-04 0.011 10 10 500 5000 1
∆r 0.30 5.0E-05 0.011 10 10 500 5000 1
∆r 0.15 1.0E-4 0.011 10 10 500 5000 1
∆r 0.05 3.0E-04 0.011 10 10 500 5000 1

advanced in time with a characteristic time step of ∆t∗ = 0.011. Two cycles of motion were simulated for each case to
allow for the initial transient response to decay, leading to a converged hysteresis loop for the second cycle of motion.

Three forced pitch oscillation cases were simulated using the USM3D and FUN3D flow solvers. Each oscillation
was initialized at a 5◦ mean angle of attack and 0◦ sideslip angle, and simulated with a 5◦ pitching amplitude. The
first and second cases were simulated with a common Mach number, M = 0.15, but at different reduced frequencies,
k = [0.06, 0.12]. These cases allow for the ROM prediction capability to be assessed for longitudinal motions of varying
flow unsteadiness. Because the cases were simulated at a Mach number for which indicial responses were sampled, a
nonlinear ROM accounting only for variations in angle of attack is necessary to predict the response across a wide range
of angles of attack, α = [0◦ − 10◦]. The second and third cases were simulated using a common reduced frequency,
k = 0.12, but at different Mach numbers, M = [0.15, 0.20]. Since the third case is simulated at a Mach number not
previously sampled in generating the ROM, it requires the complete nonlinear ROM given by Eq. 3, which accounts for
variations with respect to both angle of attack and Mach number.

Figure 13 illustrates a comparison between CFD and ROM results for each of the forced pitch oscillation cases (top
to bottom) using the USM3D (left) and FUN3D (right) flow solvers. While the ROM was used to generate predictions
for both the lift and pitching moment coefficients, only the pitching moment results are shown for brevity with similar
prediction trends found for the lift coefficient. Overall, the ROM predictions were shown to be in close agreement with
the full-order CFD simulations for each of the forced pitch oscillations, in which a pitching moment curve exhibiting a
counter-clockwise hysteresis loop is observed. In every case, the ROM is able to accurately resolve the aerodynamic
response, including the effect of the initial grid motion, where both the magnitude of the initial peak and the transient
decay are exactly predicted by the ROM.

Between the first and second cases, the damping effect of increased reduced frequency (pitch rate) is captured
correctly in the thickening of the hysteresis loops. The minimum and maximum pitching moment values are not affected
by reduced frequency.

Between the second and third cases, an increase in Mach number yields similar pitching moment results with
the primary difference being a damping of the initial transients at the higher Mach number due to an increase in the
propagation speed of pressure disturbances. Despite not directly sampling the indicial responses at M = 0.2, the ROM
is able to predict the damping of the initial transient and a pitching moment loop comparable to CFD simulation data.

For each of the pitch oscillation cases, deviations between the ROM and CFD results were observed during the
down-swing motion at lower angles of attack. This trend was observed for both flow solvers at several frequencies and
Mach numbers. One of the widely used assumptions of the reduced-order model is that the step response is symmetric
for positive and negative changes in angle of attack, i.e., the response would be identical in initial peak and transient

19



behavior, but opposite in sign. In observation of the results, it would appear that this assumption may be invalid for
the SACCON UCAV used in the present study. This is not a particularly surprising result as modern flight vehicle
configurations are not generally symmetric about the lateral planes of motion. This observation leads to the suggestion
that future ROM efforts should explore the sampling requirements for positive and negative step responses within
positive and negative angles of attack regimes for accurate S&C predictions.

Next, three forced yaw oscillation cases were simulated using the USM3D and FUN3D flow solvers. The SACCON
UCAV is a thin tailless aircraft, where the lateral forces and moments are very small in magnitude. Hence, the following
examples represent a vigorous test of the ROM methodology. Each oscillation was initialized at a 7.5◦ angle of attack
and 0◦ mean sideslip angle, and simulated with a 5◦ yawing amplitude. The first and second cases were simulated with
a common Mach number, M = 0.15, but at different reduced frequencies, k = [0.10, 0.19]. These cases allow for the
ROM prediction capability to be assessed for lateral motions of varying flow unsteadiness. Because the yaw oscillation
cases maintain a zero angle of attack and are simulated at a previous sampled Mach number, a linear variant of the
ROM given by Eq. 4 is used for model predictions, where no dependencies on angle of attack or Mach number are
necessary for modeling. The second and third cases were simulated using a common reduced frequency, k = 0.19,
but at different Mach numbers, M = [0.15, 0.20]. Since the third case is simulated at a Mach number not previously
sampled in generating the ROM, it requires a simplified variant of the nonlinear ROM given by Eq. 3, where only a
dependency on Mach number is required for modeling.

Figure 14 illustrates a comparison between CFD and ROM results for each of the forced yaw oscillation cases (top
to bottom) using the USM3D (left) and FUN3D (right) flow solvers. While the ROM was used to generate predictions
for the side force, rolling moment, and yawing moment coefficients, only the yawing moment results are shown with
similar prediction trends found for the other coefficients. Overall, the ROM predictions were shown to be in general
agreement with the full-order CFD simulations for each of the forced yaw oscillations, in which a yawing moment curve
exhibiting a clockwise hysteresis loop is observed. In every case, the ROM is able to accurately resolve the aerodynamic
response due to the initial grid motion, where both the magnitude of the initial peak and the transient decay are well
predicted by the ROM.

Between the first and second cases, the damping effect of increased reduced frequency (yaw rate) is captured
correctly in the thickening of the hysteresis loops. The minimum and maximum yawing moment values are not affected
by reduced frequency. However, a discrepancy is observed in ROM predictions of the minimum and maximum yawing
moment coefficient values. Here, the coefficient maximum (at minimum sideslip angle) is overpredicted, and the
coefficient minimum (at maximum sideslip angle) is underpredicted, as evidenced by the clockwise tilt of the hysteresis
loops in Fig.14. For the linear ROM predictions, the calculated coefficient extreme values are largely a product of the
minimum/maximum sideslip angle values (e.g., β = 5◦) and the final steady-state coefficient value, Clβ |t = ∞, from the
converged indicial response in stepping from β = 0◦ to β = 1◦. The observed differences between the linear ROM
predictions and the CFD simulation data may be attributed to an unaccounted nonlinear dependency on sideslip angle for
SACCON yawing oscillations. The consequence of such a nonlinearity manifests in a need to sample indicial responses
with respect to sideslip angle, the first term in Eq. 4, as a function of not only angle of attack and Mach number, but also
sideslip angle.

Between the second and third cases, an increase in Mach number yields similar yawing moment results with the
primary difference being a damping of the initial transients at the higher Mach number, consistent with the response
behavior observed in the pitch oscillation simulations. Again, the ROM is able to predict the damping of the initial
transient and a yawing moment loop comparable to CFD simulation data. The differences in minimum and maximum
yawing moment coefficient values between the ROM and CFD results are seen again at the higher Mach number. Such a
result is expected given that the differences are likely attributed to insufficient modeling of state parameter dependencies.
Additionally, it is important to note that in the ROM formulation given by Eq. 4, the indicial responses with respect
to the roll and yaw rates are assumed to be independent of angle of attack. Consistent with this assumption, indicial
responses sampled at α = 0◦ were used in predicting the contributions from roll and yaw rates. However, the yaw
oscillation cases in the present study were simulated at α = 7.5◦, and thus, may illustrate a non-negligible dependency
on angle of attack for the angular rates, as originally assumed for sideslip indicial responses.
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α

(a) USM3D - FO Pitch (k=0.06, M=0.15)

α

(b) FUN3D - FO Pitch (k=0.06, M=0.15)

α

(c) USM3D - FO Pitch (k=0.12, M=0.15)

α

(d) FUN3D - FO Pitch (k=0.12, M=0.15)

α

(e) USM3D - FO Pitch (k=0.12, M=0.20)

α

(f) FUN3D - FO Pitch (k=0.12, M=0.20)

Fig. 13 Comparison of ROM and CFD pitching moment results for SACCON forced pitching oscillations:
USM3D left, FUN3D right. 10Mc and 10Mn grid. ∆t∗ = 0.01, Recref = 1.57 × 106.
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β

(a) USM3D - FO Yaw (k=0.10, M=0.15)

β

(b) FUN3D - FO Yaw (k=0.10, M=0.15)

β

(c) USM3D - FO Yaw (k=0.19, M=0.15)

β

(d) FUN3D - FO Yaw (k=0.19, M=0.15)

β

(e) USM3D - FO Yaw (k=0.19, M=0.20)

β

(f) FUN3D - FO Yaw (k=0.19, M=0.20)

Fig. 14 Comparison ofROMandCFDyawingmoment results for SACCONforced yawing oscillations: USM3D
left, FUN3D right. 10Mc and 10Mn grid. ∆t∗ = 0.01, Recref = 1.57 × 106.
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As a final test, two forced rolling oscillation cases were simulated using both flow solvers. Each oscillation was
initialized at a 10◦ angle of attack and 0◦ sideslip angle, and simulated with a 5◦ rolling amplitude. The cases were
simulated with a common Mach number, M = 0.14, but at different reduced frequencies, k = [0.06, 0.15]. Because the
roll oscillation cases maintain a constant angle of attack, a linear variant of the ROM given by Eq. 4 is used for model
predictions, where only a dependency on Mach number is necessary.

Figure 15 illustrates a comparison between CFD and ROM results for each of the forced roll oscillation cases (top to
bottom) using the USM3D (left) and FUN3D (right) flow solvers. While the ROM was used to generate predictions for
both the side force, rolling moment, and yawing moment coefficients, only the rolling moment results are shown with
similar prediction trends found for the other coefficients. Overall, the ROM predictions were shown to be in general
agreement with the full-order CFD simulations for each of the forced roll oscillations, in which a rolling moment curve
exhibiting a clockwise hysteresis loop is observed. Similar to the yaw oscillation cases, the ROM was able to accurately
resolve the aerodynamic response for each case due to the initial grid motion, where both the magnitude of the initial
peak and the transient decay are well predicted by the ROM. An increase in reduced frequency (a faster roll oscillation)
results in an expected widening of the loop. The minimum and maximum rolling moment values are not affected by
reduced frequency. These ROM results show a general capability to accurately resolve rolling motions encountering
varying degrees of flow unsteadiness. In contrast to the yaw oscillations, the ROM was able to accurately predict the
minimum and maximum rolling moment coefficient values. Based on these results, it may be concluded that the linear
dependency on angle of attack and sideslip angle is a valid assumption for SACCON rolling motions.

φ

(a) USM3D - FO Roll (k=0.06, M=0.14)

φ

(b) FUN3D - FO Roll (k=0.06, M=0.14)

φ

(c) USM3D - FO Roll (k=0.15, M=0.14)

φ

(d) FUN3D - FO Roll (k=0.15, M=0.14)

Fig. 15 Comparison of ROMandCFD rollingmoment results for SACCON forced rolling oscillations: USM3D
left, FUN3D right. 10Mc and 10Mn grid. ∆t∗ = 0.01, Recref = 1.57 × 106.
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2. Half lazy-8 and Immelmann turn maneuvers
In addition to generating forced oscillation predictions, the nonlinear indicial response ROM is capable of predicting

any generalized vehicle trajectory defined in terms of velocity (α, β, M) and the Euler orientation angles. If successful,
such a capability would provide aircraft designers an ability to “fly” a suite of realistic vehicle trajectories across a
range of flight Reynolds and Mach numbers at a fidelity comparable to full-order CFD, but at a fraction of the cost. To
demonstrate the prediction quality of the methodology, the half lazy-8 and Immelmann turn maneuvers were modeled
using linear and nonlinear variants of the ROM methodology and compared to USM3D and FUN3D simulation results.
Each maneuver was simulated using the 10M-element grids and was initialized from a well-converged static simulation.
Rigid body motion files were created for each maneuver using the steps outlined in Appendix A, and the maneuvers
were subsequently advanced in time with a characteristic time step of ∆t∗ = 0.11 and nsub = 10. These same motion
files were read in as inputs to the ROM for aerodynamic predictions.

Figures 16 and 17 provide a comparison between the linear ROM, nonlinear ROM, and CFD results for the half
Lazy-8 maneuver using the USM3D and FUN3D flow solvers, respectively. The time-varying longitudinal aerodynamic
coefficients (lift and pitching moment), and lateral aerodynamic coefficients (rolling moment, yawing moment, and side
force) in the body frame of reference are shown over the course of the 18 second maneuver. Here, the ROM results
between USM3D and FUN3D compare favorably. Such a result is to be expected given the good agreement of the
indicial response solutions in Appendix B. Overall, the half Lazy-8 ROM predictions show qualitative agreement with
the CFD simulation data for each coefficient, with the exception of the yawing moment coefficient.

Subfigures 16 and 17 (a-b) show that lift and pitching moment predictions match the CFD solutions fairly well,
correctly predicting the coefficient peaks that coincide with the peak angle-of-attack maneuver values. Furthermore, the
nonlinear ROM better predicts the lift and pitching moment in comparison to the linear ROM, as it is able to interpolate
among the sampled indicial responses to account for the change in angle of attack and Mach number throughout the
trajectory. Subfigures 16 and 17 (c-e) show that the rolling moment and side force coefficients are predicted with good
accuracy, whereas difficulties are encountered for yawing moment predictions. Given that the SACCON UCAV is a thin
tailless aircraft, where the lateral forces and moments are very small in magnitude, it is not surprising that prediction
results diminish for the more sensitive aerodynamic quantities. As opposed to the longitudinal coefficient results,
significant differences are apparent between the linear and nonlinear ROM results for the lateral coefficients. These
differences are most pronounced in the ranges of [6-8] and [11-13] seconds, where the nonlinear ROM can account
for the variability in the aerodynamic response at nonzero angles of attack. The discrepancy between the nonlinear
ROM predictions and CFD simulation data for the yawing moment coefficient may indicate a requirement for increased
sampling and/or the inclusion of a dependency on angle of attack for the angular rate contributions.

Figures 18 and 19 provide a comparison between the linear ROM, nonlinear ROM, and CFD results for the
Immelmann turn maneuver using the USM3D and FUN3D flow solvers, respectively. The time-varying longitudinal
aerodynamic coefficients (lift and pitching moment), and lateral aerodynamic coefficients (rolling moment, yawing
moment, and side force) in the body frame of reference are shown over the course of the 25 second maneuver. Similar to
the half Lazy-8 results, the ROM predictions between USM3D and FUN3D compare favorably. Overall, the Immelmann
ROM predictions show qualitative agreement with the CFD simulation data for each coefficient, with a consistent
exception of the yawing moment coefficient.

Subfigures 18 and 19 (a-b) show that lift and pitching moment predictions match the CFD solutions fairly well,
correctly predicting the coefficient variability that correlate with the maneuver’s angle-of-attack time history, depicted
in Fig.7. As noted in the half Lazy-8 predictions, the nonlinear ROM better predicts the lift and pitching moment in
comparison to the linear ROM, as it is able to account for nonlinear dependencies on angle of attack and Mach number.
The greatest prediction discrepancy occurs in the range of [7-11] seconds, which coincides with a rapid decrease in
Mach number from M = 0.15 to M = 0.07. As shown in Appendix B, there is an increasingly transient response in the
indicial solutions for lower Mach numbers, suggesting that accurate pitching moment predictions may require increased
sampling for Mach numbers approaching incompressible flow levels. Subfigures 18 and 19 (c-e) show that the rolling
moment and side force coefficients are predicted with good accuracy, whereas difficulties are again encountered for
yawing moment predictions. Differences between the linear and nonlinear ROM results are most pronounced for the
rolling moment coefficient, where only the nonlinear ROM is capable of matching the coefficient time histories. The
linear and nonlinear ROM both produce reasonable results for the side force coefficient with a general agreement in both
magnitude and qualitative behavior. The yawing moment coefficient for both ROM variants is not able to capture the
peak CFD levels near t = 10 seconds. This point along the maneuver coincides with a rapid increase in the yaw and roll
angles, shown in Fig.7, as the aircraft simultaneously rolls while performing a steep climb. This observation further
supports the idea of exploring the inclusion of a dependency on angle of attack for the lateral angular rate contributions.
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(a) Lift (b) Pitching Moment

(c) Rolling Moment (d) Yawing Moment

(e) Side Force

Fig. 16 Comparison of ROM and USM3D results for SACCON half Lazy-8 maneuver. 10Mc grid.
M∞ = 0.2789, Recref = 1.57 × 106.
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(a) Lift (b) Pitching Moment

(c) Rolling Moment (d) Yawing Moment

(e) Side Force

Fig. 17 Comparison of ROM and FUN3D results for SACCON half Lazy-8 maneuver. 10Mn grid.
M∞ = 0.2789, Recref = 1.57 × 106.
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(a) Lift (b) Pitching Moment

(c) Rolling Moment (d) Yawing Moment

(e) Side Force

Fig. 18 Comparison of ROM and USM3D results for SACCON Immelmann maneuver. 10Mc grid.
M∞ = 0.2789, Recref = 1.57 × 106.
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(a) Lift (b) Pitching Moment

(c) Rolling Moment (d) Yawing Moment

(e) Side Force

Fig. 19 Comparison of ROM and FUN3D results for SACCON Immelmann maneuver. 10Mn grid.
M∞ = 0.2789, Recref = 1.57 × 106.
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3. Cost/benefit assessment of ROM
The computational resources required for creating the SACCON indicial response solutions, the eight forced

oscillation cases, and the two generalized flight maneuvers on the 10-million element grids are included in Table
6. The USM3D indicial solutions were computed on the K3-cluster Sandy Bridge nodes, consisting of Intel Xeon
E5-2670 processors. The FUN3D indicial solutions were computed on the K4-cluster, consisting of Intel Gold 6148
Skylake processors. Both USM3D and FUN3D full-order maneuver solutions were computed on the NASA Advanced
Supercomputing (NAS) facility’s Pleiades supercomputer Ivy Bridge nodes, consisting of Intel Xeon E5-2680v2
processors. ROM computational times are given as computed using MATLAB computations performed on a 2 GHz
Intel Core i7 MacBook Pro personal laptop.

Table 6 CPU hours required to create ROM and flight maneuver solutions with grids 10Mc and 10Mn.

Static Indicial Half Lazy-8 Immelmann Forced Oscillations
Initialization Steps Total (18 sec.) (25 sec.) (8 cases, 2 cycles)

USM3D 5,884 8,456 14,340 43, 317 7, 988 12, 317 59, 464
FUN3D 21,679 23,015 44,694 − 24, 268 34, 915 74, 116

ROM - Linear - - - - 0.01 0.02 0.00 - Avg.
ROM - Nonlinear - - - - 0.32 1.19 0.01 - Avg.

∆t∗ 0.01 0.01 0.01 0.10 0.10 0.01

A full set of 75 indicial responses was computed from each flow solver with a temporal resolution of ∆t∗ = 0.01. The
indicial step responses were restarted from converged steady-state solutions at the appropriate initial static conditions.
As observed in Table 6, the static initialization contributes a considerable portion toward the total cost of creating
the ROM input. The combined total computational cost to generate the ROM input data with USM3D and FUN3D
was 14,340 and 44,694 CPU hours, respectively. For a relative cost comparison at the same temporal resolution of
∆t∗ = 0.01, a full USM3D simulation was flown over the 18-second half Lazy-8 maneuver and required 41,317 CPU
hours. Thus, the indicial response ROM was created using 33-percent less CPU resources than a full USM3D simulation
flown over an 18-second maneuver. As noted in the discussion of Fig. 13 in Section VI.D.1, the ROM captures the
impulse flow transients to a level of temporal accuracy of a comparable CFD simulation.

A further cost comparison can be made in Table 6 with the 8 Forced Oscillation cases that were computed with
∆t∗ = 0.01. USM3D and FUN3D required 59,464 and 74,116 CPU hours, respectively. The computational resources
required to generate full CFD simulations for the half Lazy-8 maneuver and Immelmann turn maneuver with an
order-of-magnitude larger time step of ∆t∗ = 0.1 are 7,988 and 12,317 CPU hours with USM3D, respectively, and
24,268 and 34,915 CPU hours with FUN3D, respectively.

The costs associated with the ROM are primarily attributed to the model generation process. Once the indicial
responses are simulated, the resultant ROM can then be used to fly through any maneuver within the α, β, and M
envelope of the response solutions in a matter of seconds or minutes (e.g., Immelmann turn, half Lazy-8, forced
oscillations, wideband input, etc.). Note that the CPU hours needed to run the flight manuevers in Table 6 with the linear
ROM is almost negligible. With the nonlinear ROM, all aerodynamic coefficients were generated for the half Lazy-8
in 0.32 hours and the Immelmann turn in 1.19 hours. The utility in using such an approach for efficiently providing
unsteady aerodynamic CFD predictions for unconventional vehicle configurations is evident, where the computational
benefits scale with the number of evaluations needed.

29



VII. Future Work

A. Efficient System Identification
The recent focus vehicle for the Technologies for Airplane State Awareness subproject has been a Generic T-Tail

(GTT), aft twin-engine commuter jet. Considerable effort [8, 10, 11, 43] has been directed toward bringing aerodynamic
data from CFD sources into the system identification (SysID) process for constructing dynamic stability derivatives for
transport aircraft. The most recent attempt is reported in Refs. [7, 8] where the resultant derivatives appear reasonable,
but the required computational resources render it impractical for populating large databases.

An alternate approach is proposed in Fig. 20 where a high-fidelity surrogate-based indicial reduced-order model
is created for the GTT as previously described. Since the ROM captures the transient behavior of motions to the
fidelity of a comparable CFD solution, and the surrogate framework enables coverage of a broad flight envelope, then
the ROM can be used to very quickly generate a large matrix of responses to typical SysID specialty inputs across
the envelope. The classic SysID approaches are now able to capture any transients or nonlinearities in the stability
derivatives. Furthermore, the aerodynamic data can be computed at flight Reynolds numbers and Mach numbers to
provide a more representative model.

SysID Flight Dynamics
Model Identification

Indicial 
Response ROM 
over range of    
a, b, and M

Dynamic CFD 
Step Simulations

Trajectory Generation for 
Vehicle-State Step Inputs

CFD 
Indicial Responses

Typical SysID 
Specialty Inputs

Aerodynamic response generated in seconds 

SchroederSinusoidal

CN,a

CN,q

(1/rad)

time, sec time, sec

time, sec

a,
 d

eg

a,
 d

eg

Fig. 20 Proposed use of ROM for more efficient System Identification process.

An initial attempt was made to create such a model for the GTT as depicted in Fig. 21. Unfortunately, the wing
exhibits a very unsteady stall behavior between angles of attack of 8◦ and 14◦. Since the indicial response theory
requires the step responses to settle toward an asymptotic steady state, an approach is proposed to modify the unsteady
responses during stall in an attempt to capture the overall lag and sluggesh behavior generally experienced during a
stall. Figure 21 illustrates a smooth fitting of the unsteady data that is ultimately faired to a steady state. With this
modification, an indicial ROM may be able to provide the dominant sensory queues to the pilot during stall, such as the
long time lags and growing instability of pitch between angles of attack 10◦ and 14◦.
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Fig. 21 Proposed approach for creating GTT stall ROM to capture general stall characteristics. Left image
depicts stalled flow at α = 12◦.

B. Efficient Aeroelastic Effects
Driven by the pursuit of unconventional configurations and increasingly flexible structures, there is a growing need

for modeling the nonlinear, unsteady aerodynamic flow phenomena common to present operational flight envelopes.
While notable progress has been made in unsteady aerodynamics reduced-order modeling, a significant gap exists in the
development of multidisciplinary ROMs for predicting the aerodynamic performance in consideration of aeroelasticity
effects. Prior aeroelastic ROM research has been largely confined to the study of aeroelastic instability phenomena
and remains limited for flight performance assessments. In order to advance the field of reduced-order modeling and
enable relevant, practical virtual flight predictions, it is imperative to develop and/or extend reduced-order modeling
methodologies to capture the multidisciplinary interactions present in modern flexible aircraft.

The second author is pursuing a PhD topic titled "An Unsteady Aerodynamics Reduced-Order Modeling Method for
Maneuvering, Flexible Flight Vehicles," which aims to explore the benefits of a surrogate-based, aeroelastic indicial
response ROM. In this approach, aeroelastic indicial responses are simulated via prescribed rigid body motions, which
isolate the effects of angle of attack and sideslip angle from angular rates, while fluid-structure interactions are captured
at the subiterative level through coupling to a linear modal structural solver. As done in the present work, a nonlinear
extension of indicial response theory is demonstrated through application of kriging surrogate modeling to a database
of locally linear step responses, and models are created by applying the mathematical principle of convolution to
interpolated aeroelastic indicial responses.

The validity of traditional reduced-order modeling assumptions is evaluated for use in flexible vehicle modeling. It
is anticipated that the vehicle-state motion parameter dependencies and sampling requirements will change for more
complex configurations. Additionally, indicial responses for positive and negative steps in angles of attack are typically
assumed to be symmetric. However, as shown in the present work, asymmetric loading responses can be encountered for
unconventional configurations. Because flexible vehicles are often designed with asymmetric stiffness properties, it is
likely that more pronounced asymmetric loading responses will be observed relative to rigid vehicles. Furthermore, the
impact of changes in the type and number of structural modes included in the modal structural analysis on the aeroelastic
ROM predictions will be investigated. Results are to be presented for the N+2 low-boom supersonic configuration
undergoing a series of harmonic forced oscillations and the X-56A aircraft undergoing turn maneuvers representative of
flight tests. The efficient reduced-order modeling solutions could provide a practical option for evaluating the vehicle
dynamics of maneuvering, flexible vehicles using high-fidelity simulations.
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VIII. Summary
The Ghoreyshi surrogate-based, indicial response reduced-order model has been evaluated using two NASA

unstructured flow solvers, USM3D and FUN3D, as a possible means to efficiently augment civil aircraft motion-based
flight training simulators with high-fidelity aerodynamic data. The dynamic stability terms within typical flight simulator
models are based on common S&C damping derivatives developed by measuring the in-phase and out-of-phase
responses from sinusoidal forced oscillations on wind-tunnel models tested at very low Reynolds and Mach numbers.
A high-fidelity CFD-based reduced-order model offers the potential to quickly augment such data with flight-scaled
damping derivatives.

The candidate ROM methodology attempts to match the nonlinear predictive capability of full CFD simulations at a
fraction of the computational cost. This approach requires that indicial step functions be computed through prescribed
grid motion trajectories that directly capture the indicial responses (no training maneuvers), which is in contrast to the
classic approach of identifying indicial functions using assumed parametric model and training maneuvers through
SysID applied to CFD data.

Prior to creating the indicial response data for the tailless SACCON configuration, sensitivities of the flow solutions
to grid density, time step, and subiteration were assessed on an 18-second half Lazy-8 flight maneuver. From this, a
solution strategy was chosen for computing indicial response solutions with each code. Once the 75 indicial responses
were generated, the ROM was exercised for several sinusoidal forced oscillation conditions about the pitch, roll, and yaw
axis. The result was a very good correlation with the moment hysteresis loops from full CFD solutions, even for the
sensitive yawing moments that are extremely small in magnitude for the tailless aircraft. Furthermore, the impulse
transients from the sudden start of motion were captured almost exactly by the ROM, thus demonstrating that the
transient behavior of a full CFD solution can be resolved to the level of time discretization of the indicial response
solution.

A second evaluation was performed by correlating the longitudinal and lateral coefficients from the ROM and
full-order CFD solutions for the SACCON flown through the half Lazy-8 and Immelmann turn maneuvers. General
agreement was found between the ROM and full-order CFD solutions with the exception of the yawing moment
coefficient, where the results suggest modifying the ROM assumptions to include a nonlinear dependency on angle of
attack for the angular rates of rotation. Furthermore, the results confirmed a sensitivity in moment coefficient predictions
for Mach numbers approaching the limits of compressible flow. Despite these observations, reasonable prediction results
were obtained at a computational cost significantly less than what was required for full-order CFD maneuver simulations.
The demonstrated utility of the surrogate-based indicial response approach warrants consideration for future applications
in providing S&C predictions for commercial aircraft at stall conditions and for maneuvering, flexible vehicles.
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Appendix A - Simulating Maneuvering Vehicle Trajectories

A. Coordinate Frames
Figure 22 shows the SACCON configuration and the two primary axes systems: 1) the traditional flight mechanics

reference frame (blue), and 2) the CFD reference frame (red) common to the USM3D and FUN3D flow solvers. The
CFD reference frame differs from the traditional flight mechanics reference frame by a 180 degree rotation about the y
axis.
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$, %
CY, Cm

&, '

body (CFD)
body (traditional)

CX, Cl

$, %

CY, Cm

&, '
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!, #

(

)
*

Fig. 22 Trajectory axes systems.

In the traditional flight reference frame, the aerodynamic force coefficients are:
• Axial force, CX > 0 along x-nose,
• Side force, CY > 0 along y-right, and
• Normal force, CZ > 0 along z-down,

while in the CFD reference frame, the aerodynamic force coefficients are:
• Axial force, CX > 0 along x-tail,
• Side force, CY > 0 along y-right, and
• Normal force, CZ > 0 along z-up.

The aerodynamic moment coefficients are defined to be positive according to the right-hand rule for the respective
coordinate systems. In the traditional flight reference frame, the aerodynamic moments coefficients are:

• Rolling moment, Cl > 0 with right-wing-down,
• Pitching moment, Cm > 0 with nose-up, and
• Yawing moment, Cn > 0 with nose-right,

while in the CFD reference frame, the aerodynamic moment coefficients are:
• Rolling moment, Cl > 0 with right-wing-up,
• Pitching moment, Cm > 0 with nose-up, and
• Yawing moment, Cn > 0 with nose-left.

35



B. Trajectory Transformation
Vehicle flight trajectories are defined by a wind velocity (α, β, M) and orientation (φ, θ, ψ) at each point in time. The

initial assumption for the trajectory transformation is that the grid orientation at time zero aligns with the inertial or
horizontal axis, i.e., at t = 0, then φ = θ = ψ = 0. Furthermore, at t = 0 the V0 is the freestream velocity in the wind
axis, and α0, β0 are the angle of attack and sideslip angle at time zero. When computing the trajectories for USM3D and
FUN3D, substitute freestream M0 for V0 and M(t) for V(t) in the following.

The initial flow conditions at t = 0 are used to establish a reference velocity for the grid motion. Assuming
φ = θ = ψ = 0, the components of the reference velocity are defined by Eq. 12.

ure f
vre f

wre f

 = V0


cos(α0)cos(β0)

sin(β0)

sin(α0)cos(β0)

 (12)

Next tranform the prescribe time dependent α, β and V from the wind axis to body axis, using Eq. 13.
ub(t)
vb(t)
wb(t)

 = V(t)


cos(α(t))cos(β(t))

sin(β(t))
sin(α(t))cos(β(t))

 (13)

Then transform through the Euler angles (roll, pitch, and yaw) from the body axis to the horizontal axis aligned with the
inertial axes at time t = 0 using Eqs. 14, 15, and 16.

R(t) = Rz(φ(t))Ry(θ(t))Rx(ψ(t)) (14)

Rz(φ) =


cosψ −sinψ 0
sinψ cosψ 0

0 0 1

 , Ry(φ) =


cosθ 0 sinθ

0 1 0
−sinθ 0 cosθ

 , Rx(φ) =


1 0 0
0 cosφ −sinφ
0 sinφ cosφ

 (15)


uh(t)
vh(t)
wh(t)

 = R(t)


ub(t)
vb(t)
wb(t)

 (16)

The final grid velocity is computed by subtracting the reference velocity, Eq. 12, from the horizontal axis velocity
components, Eq. 16, as described in Eq. 17. Note the sign changes that correct for the 180 degree rotation about the
y-axis between the flight and CFD reference systems in Fig. 22.


Uh(t)
Vh(t)
Wh(t)

 =

−uh(t)
vh(t)
−wh(t)

 −

−ure f
vre f

−wre f

 (17)

Finally, the change in translation at each time step in the CFD coordinate system is calculated as the change in position
due to the average translation velocity between two successive time steps, as shown in Eq. 18. Once the translation is
calculated, the position is calculated by the sum of the initial CG position and the translation vector, as shown in Eq. 19.


Tx(ti+1)

Ty(ti+1)

Tz(ti+1)

 =


Tx(ti)
Ty(ti)
Tz(ti)

 + ∆t


Uh (ti+1)+Uh (ti )

2a0
Vh (ti+1)+Vh (ti )

2a0
Wh (ti+1)+Wh (ti )

2a0

 (18)


CGx(t)
CGy(t)
CGz(t)

 =


CGx(t0)
CGy(t0)
CGz(t0)

 +


Tx(t)
Ty(t)
Tz(t)

 (19)
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C. USM3D Motion File Generation
USM3D motion files are defined by time, position (X,Y, Z), and orientation (RX, RY, RZ ), as shown by Table 7.

Time, t, is defined by a non-dimensional time, normalized by speed of sound and incremented by a user-prescribed time
step. Beginning from a static initialized solution, the body reference frame is assumed to align with the inertial reference
frame, and thus, the initial position and orientation are zero. USM3D implicitly assumes the position is referenced to
the vehicle CG, and the time-dependent position values are consistent with the translation values calculated in Eq. 18.
The orientation is defined directly by the prescribed Euler angles, with roll and yaw defined to be negative to account for
the difference between the CFD and flight trajectory reference frames.

Table 7 Example format of USM3D rigid body motion file.

TUSM3D X Y Z RX RY RZ

t0 0 0 0 0 0 0
t0 + ∆t TX (t1) TY (t1) TZ (t1) −φ(t1) θ(t1) −ψ(t1)

...
...

...
...

...
...

...

t0 + n∆t TX (tn) TY (tn) TZ (tn) −φ(tn) θ(tn) −ψ(tn)

D. FUN3D Motion File Generation
FUN3D defines all rigid motions via application of 4 x 4 matrices to described affine transformations [24]. The 4 x

4 transformation matrix contains both translation and orthonormal rotation components, as shown in Eq. 20, and maps a
vehicle’s initial position at time t = 0, when aligned with the inertial reference frame, to its translated position at t = t.


x
y

z
1


=


R11 R12 R13 Tx

R21 R22 R23 Ty

R31 R32 R33 Tz

0 0 0 1




x0

y0

z0

1


(20)

For maneuvering vehicle simulations, FUN3D maps from the fixed reference frame to the moving body coordinate
frame through the sequence of "Origin to CG - Rotate about CG - CG to Origin - Translate" as shown by Eq. 21.

[T(t)] = [TCG][RCFD(t)][TCG]
−1 + [Tgrid(t)] (21)

The pure translation to the vehicle’s CG location consists of a transform matrix defined by a 3 x 3 rotation submatrix
consisting of an identity matrix with the final column accounting for the pure translation to the CG position coordinates
from the inertial frame axes origin, as shown in Eq. 22. The rotation matrix consists of a composite rotation matrix
calculated via chained rotation matrices from the flight trajectory Euler angles, as shown in Eq. 23. Note that the roll
and yaw angles are defined to be negative to account for the change between the traditional reference frame and CFD
reference frame. The translation matrix accounting for translation back to the origin is simply the inverse transform
of the original translation matrix, as shown in Eq. 24. The second transform component is the pure grid translation
component, which is calculated based on the time-dependent body velocity transformed into the inertial axes frame via
Eq. 18.

[Tcg] =


1 0 0 CGx(t0)
0 1 0 CGy(t0)
0 0 1 CGz(t0)
0 0 0 1


(22)

[R(t)] = [Rz(−φ(t))][Ry(θ(t))][Rx(−ψ(t))] (23)
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[Tgrid(t)] =


0 0 0 Tx(t)
0 0 0 Ty(t)
0 0 0 Tz(t)
0 0 0 1


(24)

The FUN3D motion files defining the rigid body motion via transform matrices are formatted as outlined by Table
8. Starting from a static initialization, the vehicle CG location is defined relative to the origin with an identity matrix
defining the coincident inertial and body reference frames. For successive iterations, the first line consists of a single
entry defining the non-dimensional time, the second line consists of the updated CG location resulting from the transform
matrix, which is then defined for the given iteration. The motion file should include the initial, intermediate, and final
motion states for the trajectory. For a finer time discretization, FUN3D will interpolate between the motion file entries
to update the vehicle’s position and orientation.

Table 8 Example format of FUN3D rigid body motion file.

t0
CGX (t0) CGY (t0) CGZ (t0)

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

t0 + ∆t
CGX (t1) CGY (t1) CGZ (t1)
R11(t1) R12(t1) R13(t1) Tx(t1)
R21(t1) R22(t1) R23(t1) Ty(t1)
R31(t1) R32(t1) R33(t1) Tz(t1)

0 0 0 1
...

...
...

...

tn
CGX (tn) CGY (tn) CGZ (tn)
R11(tn) R12(tn) R13(tn) Tx(tn)
R21(tn) R22(tn) R23(tn) Ty(tn)
R31(tn) R32(tn) R33(tn) Tz(tn)

0 0 0 1
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Appendix B - Indicial Response Data

This appendix contains the plots of indicial response data for the cases in Tables 3 and 4. All responses were
computed to an smax = 10 where asymptotic convergence is achieved. The abscissa on the following plots is compressed
to illuminate the initial transients.

α

(a) linear CLα functions

α

(b) linear Cmα functions

(c) linear CLq functions (d) linear Cmq functions

Fig. 23 The linear lift and pitching moment indicial functions with a unit step change of angle of attack (a-b)
and normalized pitch rate (c-d). USM3D (dashed) and FUN3D (solid).
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(a) nonlinear CLα functions (M = 0.05)
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α
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α

(b) nonlinear Cmα functions (M = 0.05)

α

α

α

α

(c) nonlinear CLα functions (M = 0.15)

α
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α

α

(d) nonlinear Cmα functions (M = 0.15)

α

α

α

α

(e) nonlinear CLα functions (M = 0.3)

α

α

α

α

(f) nonlinear Cmα functions (M = 0.3)

Fig. 24 The nonlinear lift and pitching moment indicial functions with a unit step change of angle of attack at
different Mach numbers. USM3D (dashed) and FUN3D (solid).
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β

(a) linear CYβ functions

β

(b) linear Clβ functions

β

(c) linear Cnβ functions

(d) linear CYp functions (e) linear Clp functions (f) linear Cnp functions

(g) linear CYr functions (h) linear Clr functions (i) linear Cnr functions

Fig. 25 The linear side-force, rolling moment, and yawing moment indicial functions with a unit step change
of sideslip angle (a-c), normalized roll rate (d-f), and normalized yaw rate (g-i). USM3D (dashed) and FUN3D
(solid).
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(a) nonlinear CYβ functions (M = 0.05)
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α

(b) nonlinear CYβ functions (M = 0.15)

β

α

α

α

(c) nonlinear CYβ functions (M = 0.3)

β

α

α

α

(d) nonlinear Clβ functions (M = 0.05)

β

α

α

α

(e) nonlinear Clβ functions (M = 0.15)

β

α

α

α

(f) nonlinear Clβ functions (M = 0.3)

β

α

α

α

(g) nonlinear Cnβ functions (M = 0.05)

β

α

α

α

(h) nonlinear Cnβ functions (M = 0.15)

β

α

α

α

(i) nonlinear Cnβ functions (M = 0.3)

Fig. 26 The nonlinear side-force, rolling moment, and yawing moment indicial functions with a unit step
change of sideslip angle at different Mach numbers. USM3D (dashed) and FUN3D (solid).

42


	Introduction
	Geometry
	Computational Tools
	USM3D
	FUN3D
	Grid Motion

	Grid Generation
	Reduced-Order Modeling
	Aerodynamic Indicial Response Theory
	Kriging Surrogate Modeling

	Results & Discussion
	Description of Evaluation Flight Maneuvers
	Half Lazy-8
	Immelmann turn
	Sinusoidal forced oscillation

	Sensitivities to CFD Parameters
	Effect of grid refinement on static angle-of-attack sweep
	Effect of grid refinement and solution strategy on the half Lazy-8 maneuver

	Generation of Indicial Response Solutions
	Assessment of Reduced-Order Model (ROM)
	Roll, pitch, and yaw forced oscillations
	Half lazy-8 and Immelmann turn maneuvers
	Cost/benefit assessment of ROM


	Future Work
	Efficient System Identification
	Efficient Aeroelastic Effects

	Summary
	Coordinate Frames
	Trajectory Transformation
	USM3D Motion File Generation
	FUN3D Motion File Generation


