

Edinburgh Research Explorer

Investigation of selection strategies in branch and bound
algorithm with simplicial partitions and combination of Lipschitz
bounds

Citation for published version:
Paulavicius, R, Zilinskas, J & Grothey, A 2010, 'Investigation of selection strategies in branch and bound
algorithm with simplicial partitions and combination of Lipschitz bounds', Optimization letters, vol. 4, no. 2,
pp. 173-183. https://doi.org/10.1007/s11590-009-0156-3

Digital Object Identifier (DOI):
10.1007/s11590-009-0156-3

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Optimization letters

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Aug. 2022

https://doi.org/10.1007/s11590-009-0156-3
https://doi.org/10.1007/s11590-009-0156-3
https://www.research.ed.ac.uk/en/publications/c71b97d6-5f26-40f5-b4f8-08da95e032e8

Investigation of selection strategies in parallel
branch and bound algorithm

with simplicial partitions
Remigijus Paulavičius
Institute of Mathematics

and Informatics,
Akademijos g. 4, LT-08663

Vilnius, Lithuania
Email: r.paulavicius@vpu.lt

Julius Žilinskas
Institute of Mathematics

and Informatics,
Akademijos g. 4, LT-08663

Vilnius, Lithuania
Email: julius.zilinskas@mii.lt

Andreas Grothey
School of Mathematics,
University of Edinburgh,
Edinburgh EH9 3JZ, UK

Email: A.Grothey@ed.ac.uk

Abstract—Efficiency of parallel branch and bound algorithms
depends on the selection strategy. The influence to the perfor-
mance of parallel MPI branch and bound algorithm with sim-
plicial partitions and aggregate Lipschitz bound using different
selection strategy is evaluated experimentally. The experiments
have been performed solving a number of multidimensional test
problems for global optimization.

I. INTRODUCTION

Many problems in engineering, physics, economics and
other fields may be formulated as optimization problems,
where the maximum value of an objective function must be
found. Standard global optimization problem is formulated as
find such

f∗ = max
x∈D

f(x),

where the objective function f(x), f : Rn → R, is a nonlinear
function of continuous variables, D ⊂ Rn is a feasible region,
n is the number of variables. Besides the global optimum f∗

one or all global optimizers x∗ : f(x∗) = f∗ must be found
or shown that such a point does not exist. In our cases, D is
compact and f is Lipschitz function, therefore the existence
of x∗ assured by the well-known theorem of Weierstrass. In
Lipschitz optimization only a point xopt ∈ D such that f(xopt)
differs from f∗ by no more than a specified accuracy ε can
be found.

Branch and bound is a technique for the implementation of
covering global optimization methods as well as combinatorial
optimization algorithms. An iteration of a classical branch
and bound algorithm processes a node in the search tree
representing a not yet explored subspace of the solution space.
The iteration has three main components: selection of the node
to process, branching of the search tree and bound calculation.
The rules of selection, branching and bounding differ from
algorithm to algorithm.

In the branching process the algorithm detects subspaces, by
evaluating bounds which cannot contain a global optimizer and
discard them from further search. Although hyper-rectangular
partitions are usually used in global optimization, other types

of partitions may be more suitable for some specific prob-
lems. Advantages and disadvantages of simplicial partitions
are discussed in [1]. Since a simplex is a polyhedron in
n-dimensional space with the minimal number of vertices,
simplicial partitions are preferable when the values of an
objective function at the vertices of partitions are used to
compute bounds. Otherwise values at some of the vertices
of hyper-rectangular partitions may be used [2]. However,
for simplicial branch and bound, the feasible region should
be initially covered by simplices. The most preferable initial
covering is face to face vertex triangulation - partitioning of
the feasible region into finitely many n-dimensional simplices,
whose vertices are also the vertices of the feasible region.
We use a standard way [3] of triangulation into n! simplices.
All simplices share the diagonal of the feasible region and
are of equal hypervolume. The number of initial simplices
grows very fast with the dimension of the problem if such
a triangulation is used therefore it can be used only when
the number of variables is small. However there are problems
where feasible region is either already a simplex (for example,
optimization problems over the standard simplex) or may be
reduced to one or a managable number of simplices (for
example, when the objective function has symmetries and
problems with linear constraints [4], [1]. It is also possible
to over-cover the feasible region by one simplex in some
cases [5]. Simplices are subdivided into two by a hyper-plane
passing through the middle point of the longest edge and the
vertices which do not belong to the longest edge.

The main strategies of selection are:

• Best first – select a candidate with maximal upper bound.
The candidate list can be implemented using heap or
priority queue.

• Depth first – select the youngest candidate. A node
with the largest level in the search tree is chosen for
exploration. A FILO structure is used for the candidate
list which can be implemented using a stack. In some
cases it is possible to implement this strategy without

Paulavicius, R, Zilinskas, J & Grothey, A 2010, 'Investigation of selection strategies in branch and bound algorithm
with simplicial partitions and combination of Lipschitz bounds' Optimization letters, vol. 4, no. 2, pp. 173-183.

storing of candidates, as it is shown in [6].
• Breadth first – select the oldest candidate. All nodes at

one level of the search tree are processed before any node
at the next level is selected. A FIFO structure is used
for the candidate list which can be implemented using a
queue.

• Improved selection – based on heuristic [7], [8], proba-
bilistic [9] or statistical [5], [10] criteria. The candidate
list can be implemented using heap or priority queue.

In this work statistical selection strategy [10] has been tested.
Using this strategy the candidate with the maximal criterion
value (1) is chosen where f∗ is the global maximum or the
upper bound for it.

The influence to the speed (number of function evaluations
and optimization time) and memory requirements of the se-
quential branch and bound algorithm proposed in [11]. The
goal of this paper is to experimentally investigate the influence
of selection strategies to the speed and efficiency of parallel
algorithms. Although the experiments have been performed
on a particular algorithm described in the section III, similar
features may be expected in other parallel branch and bound
algorithms.

II. LIPSCHITZ OPTIMIZATION

Lipschitz optimization is one of the most deeply investigated
subjects of global optimization. The advantages and disadvan-
tages of Lipschitz global optimization methods are discussed
in [12], [13]. A function f : D → R, D ⊂ Rn, is said to be
Lipschitz if it satisfies the condition

|f(x)− f(y)| ≤ L ‖x− y‖ , ∀x, y ∈ D, (2)

where L > 0 is a constant called Lipschitz constant, D is
compact and ‖·‖ denotes a norm. The Euclidean norm is used
most often in Lipschitz optimization, but other norms can also
be considered.

If the Lipschitz bounds over a sub-regions I ⊆ D are
evaluated using the function values at the vertices, the lower
bound (LB) for the maximal value of f is general for all sub-
regions and is equal to the largest value of the function at a
vertex:

LB(D) = max
v∈V (D)

f(v),

where V (D) = ∪V (I).
The upper bound over a sub-region I ⊆ D is evaluated by

exploiting Lipschitz condition. It follows from (2) that, for all
x, y ∈ D

f(x) ≤ f(y) + L‖x− y‖.

If y ∈ D is fixed, then the concave function

Fy(x) = f(y) + L‖x− y‖ (3)

overestimates f(x) over D. Let T be a finite set of distinct
points in D. Then, the sharpest upper bound over D, given
the function values f(y), y ∈ T , and the Lipschitz constant L,
is provided by

ϕ(D) = max
x∈D

min
y∈T

Fy(x). (4)

In the univariate case, the function min
y∈T

Fy(x) is piecewise

linear, and ϕ can be determined in a simple straightforward
way [12]. Therefore, many univariate algorithms use the bound
ϕ, where the set T is suitably updated in an iterative way.
The most studied of these methods is due to Piyavskii [14].
When D is a two-dimensional rectangle in R2, ϕ can still be
evaluated by geometric arguments which take into account the
conical shape of upper bounding function. For (n > 2), how-
ever, problem (4) constitutes a difficult optimization problem.

Convergent deterministic Lipschitz optimization methods
fall into three main classes. First, multivariate Lipschitz op-
timization can be reduced to the univariate case. Following
this idea, a nested optimization scheme [14] and filling the
feasible region by Peano curve [15], [16] were proposed.

The second class contains direct extensions of Piyavskii’s
method [14] to the multivariate case. Various modifications
using the Euclidean norm [14], [17], [18] or other norms
or close approximations [19], [20], [21], [22] have been
proposed. Most of these algorithms can be improved by
interpreting them using branch and bound method.

The third class contains many branch and bound algorithms,
but, in general, considerably weaker bounds [23], [24], [25],
[26], [27], [28], [29], [30]. These algorithms fit into the general
framework proposed by Horst [31], Horst and Tuy [32]. The
algorithms differ in the selection rules, the ways subdivision is
performed and bounds are computed. In general, weaker (than
ϕ type bound) bounds belong to the following two simple
families µ1 and µ2. Let

δ(I) = max{‖x− y‖ : x, y ∈ I}

denote the diameter of I ⊂ D. For example, if I = {x ∈ Rn :
a ≤ x ≤ b} is an n-rectangle, then δ(I) = ‖b − a‖, and if
I is an n-simplex, then the diameter δ(I) is the length of its
longest edge. Afterwards a simple upper bound can be derived
from (3):

µ1(I) = min
y∈T

f(y) + Lδ(I), (5)

where T ⊂ I is a finite sample of points in I , where the
function values of f have been evaluated. If I is a rectangle or
a simplex, the set T often coincides with the vertex set V (I).
A more tight but computationally more expensive than (5)
bound is

µ2(I) = min
y∈T
{f(y) + L max

z∈V (I)
‖y − z‖}. (6)

It is known that

|f (x)− f (y) | ≤ Lp ‖x− y‖q , (7)

where Lp = sup
{
‖∇f (x)‖p : x ∈ D

}
is the Lipschitz con-

stant, ∇f(x) =
(

∂f
∂x1

, . . . , ∂f
∂xn

)
is the gradient of the function

f(x) and 1/p+ 1/q = 1, 1 ≤ p, q ≤ ∞.
A improved µ2 type upper bounds based on the first,

Euclidean and infinite norms over a multidimensional simplex
I was proposed and investigated in [33]:

µ1,2,∞
2 (I) = min

v∈V (I)
{f(v) +K(V (I))} , (8)

ũ(I) = −

(
f∗ − 1

n+1

∑
xv∈V (I)

f(xv)

)2

−

(
max

xv∈V (I)
f(xv)− 1

n+1

∑
xv∈V (I)

f(xv)

)2

min
xv∈V (I)

∥∥∥∥∥xv − 1
n+1

∑
xv∈V (I)

xv

∥∥∥∥∥
2

(1)

K(V (I)) = min

{
L∞ max

x∈V (I)
‖x− v‖1, L2 max

x∈V (I)
‖x− v‖2, L1 max

x∈V (I)
‖x− v‖∞

}
. (9)

where K(V (I)) (9). Piyavskii ϕ type upper bound with the
first norm was proposed in [34]:

ϕ1(I) = max
x∈I

(
min

v∈V (I)
{f(v) + L∞ ‖x− v‖1}

)
. (10)

However the first norm does not always give the best
bounds [34]. In some cases µ1,2,∞

2 bound may give better re-
sults than ϕ1(I). Therefore aggregate Lipschitz bound ϕ1µ2,∞

2

was proposed in [35] and is used in this work:

ϕ1µ2,∞
2 (I) = min

{
ϕ1(I), µ2,∞

2 (I)
}
. (11)

III. PARALLEL BRANCH AND BOUND WITH SIMPLICIAL
PARTITIONS AND AGGREGATE LIPSCHITZ BOUND

A sequential branch and bound algorithm with simplicial
partition and aggregate Lipschitz bound ϕ1µ2,∞

2 (11) was
proposed in [35]. The parallel MPI version with static load
balancing were implemented [36] using a parallel branch
and bound template [37]. When the template is used, only
algorithm specific rules should be described by the user and
the standard parts are implemented in the template. Static
load balancing is used: tasks are initially distributed evenly
(if possible) among p processors. If the initial number of
simplices (n!) is less than the number of processors, the sim-
plices are subdivided until the number of processors is reached.
Then the initial simplices are distributed. After initialization,
the processors work independently and do not exchange any
tasks generated later. Each parallel processor runs the same
algorithm, which is shown in Algorithm 1. The algorithm is
very similar to the sequential algorithm [35]. The differences
are:

• Each processor covers one part of the feasible region.
This is shown symbolically I = ∪Ir, |Ir| ≈ |I|/p using
division by the number of processors.

• The best currently found value of the objective function
LB(Ir) is local – processors do not interchange it. Com-
parison by efficiency and number of function evaluations
criteria using MPI with interchange of the best currently
found function values and without it proposed [36].

• After completion the results Sr of the optimization are
collected.

Algorithm 1 Parallel simplicial branch and bound with aggre-
gate Lipschitz bound

1: Cover feasible region D by I ← {Ij |D = ∪Ij , j =
1, . . . , n! } using face-to-face vertex triangulation.

2: I evenly (if possible) divided among the p processors I =
∪Ir, |Ir| ≈ |I|/p

3: Sr ← Ø, LB(Ir)← −∞
4: while (Ir 6= Ø) do
5: Choose Irj ∈ Ir using selection strategy, Ir ← Ir\{Irj}

6: LB(Ir)← max{LB(Ir), max
v∈V (Ir

j)
f(v)}

7: Sr ← argmax{f(Sr), max
v∈V (Ir

j)
f(v)}

8: UB(Irj) = ϕ1µ2,∞
2 (Irj)

9: if (UB(Irj)− LB(Ir) > ε) then
10: Branch Irj into 2 simplices: Irj1 , Irj2
11: Ir ← Ir ∪ {Irj1 , I

r
j1
}

12: end if
13: end while
14: Collect Sr

IV. EXPERIMENTAL INVESTIGATION OF SELECTION
STRATEGIES IN PARALLEL BRANCH AND BOUND

ALGORITHM

In this section results of computational experiments are pre-
sented and discussed. Various difficult (with a solution time on
a single processor of more than 1 s.; 3 ≤ n ≤ 6) test problems
[36] for global optimization from [12], [38], [39] have been
used in our experiments. Computational experiments were
performed on the parallel machine Ness at Edinburgh Parallel
Computing Center (http://www.epcc.ed.ac.uk/facilities/ness/).
Ness has a shared-memory architecture which allows users
the option to run large threaded jobs (e.g. OpenMP) as well
as message-passing (MPI) jobs. The system has two back-end
X4600 symmetric multiprocessor (SMP) nodes, both contain-
ing 16 processor-cores (2.6 GHz AMD Opteron (AMD64e))
with 2GB of memory per core. Up to 16 processor-cores have
been used in the experiments.

Parallel branch and bound algorithm using different selec-
tion strategies has been evaluated using the speed criteria:
the number of function evaluations (f.eval.), optimization
time (t(s)) and standard criteria of parallelization: speedup
sp = t1/tp and efficiency ep = sp/p, where tp is time used

by the algorithm implemented on p processors.
The average numbers of function evaluations (f.eval) and

average execution time (t(s)) for different dimensionality
test problems are shown in Table I. The average number of
function evaluations required for the whole optimization are
similar for all selection strategies, although when number of
processors increase the biggest increase of function evaluation
is achieved using depth first selection strategy.

For all dimensionality’s test problems using one processor
the smallest average execution time is achieved when depth
first and breath first selection strategies are used, despite the
fact that sometimes the number of function evaluations is
higher. A possible reason is that the time of insertion and
deletion of elements to/from such a type of structure does
not depend on the number of elements in the list. Best first
and statistical selection strategies require prioritized list of
candidates, and even with heap structure insertion is time
consuming when the number of elements in the list is large.
When the number of processors increase the execution time
using depth first selection strategy is almost always bigger
than when other selection strategies are used, especially when
p > 4.

The diagrams of criteria of parallelization: speedup sp and
efficiency ep for various numbers of processors and various
dimensionality (n) of test problems using different selection
strategies are shown in Figs. 1-4. The averages sp and ep
are shown in Table II. The diagrams show that the efficiency
of parallelization with different selection strategies is similar.
The average efficiency of parallelization is very similar when
best first and statistical selection strategies are used. The
best efficiency of parallelization (especially when p ≥ 4)
is experienced when breadth first and the worst when depth
first selection strategy is used. Using all selection strategies the
efficiency of parallelization decreases less when the number
of processors is increased for difficult test problems (n ≥ 5)
compared with simpler test problems.

V. CONCLUSION

In this paper the speed and efficiency of parallelization of
parallel branch and bound algorithm has been tested and com-
pared for different selection strategies (best first, statistical,
depth first and breadth first).

The number of function evaluations required for the whole
optimization are similar for all selection strategies, although
the depth first selection strategy requires the largest number
of function evaluations.

The smallest optimization time with p ≤ 4 is achieved when
depth first and breath first selection strategies are used. When
p > 4 the optimization time with depth first selection strategy
is almost always bigger than with other selection strategies.
However the influence is less significant for expensive test
problems n ≥ 5 which take longer to evaluate.

The efficiency of parallelization is similar when best first,
statistical and breadth first selection strategies are used. The
efficiency of parallelization is worst when depth first selection

strategy is used. The efficiency of parallelization is better for
difficult test problems.

ACKNOWLEDGMENT

The work was funded by the Research Council of Lithuania
(project number MIP-108/2010). The work was partially sup-
ported by the COST Action Open European Network for High
Performance Computing on Complex Environments IC0805.

REFERENCES

[1] J. Žilinskas, “Branch and bound with simplicial partitions for global
optimization,” Mathematical Modelling and Analysis, vol. 13, no. 1, pp.
145–159, 2008.

[2] Y. D. Sergeyev and D. E. Kvasov, “Global search based on efficient
diagonal partitions and a set of Lipschitz constants,” SIAM Journal on
Optimization, vol. 16, no. 3, pp. 910–937, 2006.

[3] M. J. Todt, ser. Lecture Notes in Economics and Mathematical Systems,
1976, vol. 24.

[4] J. Žilinskas, “Reducing of search space of multidimensional scaling
problems with data exposing symmetries,” Information Technology and
Control, vol. 36, no. 4, pp. 377–382, 2007.

[5] A. Žilinskas and J. Žilinskas, “Global optimization based on a statistical
model and simplicial partitioning,” Computers & Mathematics with
Applications, vol. 44, no. 7, pp. 957–967, 2002.

[6] ——, “Branch and bound algorithm for multidimensional scaling with
city-block metric,” Journal of Global Optimization, vol. 43, no. 2–3, pp.
357–372, 2009.

[7] V. Kreinovich and T. Csendes, “Theoretical justification of a heuristic
subbox selection criterion for interval global optimization,” Central
European Journal of Operations Research, vol. 9, no. 3, pp. 255–265,
2001.

[8] T. Csendes, “Generalized subinterval selection criteria for interval global
optimization,” Numerical Algorithms, vol. 37, no. 1–4, pp. 93–100, 2004.

[9] M. Dür and V. Stix, “Probabilistic subproblem selection in branch-and-
bound algorithms,” Journal of Computational and Applied Mathematics,
vol. 182, no. 1, pp. 67–80, 2005.

[10] A. Žilinskas and J. Žilinskas, “P-algorithm based on a simplicial
statistical model of multimodal functions,” TOP, no. submitted, 2009.

[11] R. Paulavičius, J. Žilinskas, and A. Grothey, “Investigation of selection
strategies in branch and bound algorithm with simplicial partitions and
combination of Lipschitz bounds,” Optimization Letters, vol. 4, no. 2,
pp. 173–183, 2010.

[12] P. Hansen and B. Jaumard, “Lipshitz optimization,” in Handbook of
Global Optimization, R. Horst and P. M. Pardalos, Eds. Kluwer
Academic Publishers, 1995, pp. 407–493.

[13] R. Horst, P. M. Pardalos, and N. V. Thoai, Introduction to Global
Optimization. Kluwer Academic Publishers, 1995.

[14] S. A. Piyavskii, “An algorithm for finding the absolute extremum of a
function,” Zh. Vychisl. Mat. mat. Fiz, vol. 12, no. 4, pp. 888–896, 1972.

[15] A. Butz, “Space filling curves and mathematical programming,” Infor-
mation and Control, vol. 12, pp. 319–330, 1968.

[16] R. Strongin, “Algorithms for multi-extremal mathematical programming
problems employing the set of joint space-filling curves,” Journal of
Global Optimization, vol. 2, pp. 357–378, 1992.

[17] R. H. Mladineo, “An algorithm for finding the global maximum of a
multimodal, multivariate function,” Mathematical Programming, vol. 34,
no. 2, pp. 188–200, 1986.

[18] B. Jaumard and T. H. ant H. Ribault, “An on-line cone intersection
algorithm for global optimization of multivariate lipschitz functions,”
Les Cahiers du GERAD, vol. 95, no. 7, 1995.

[19] D. Q. Mayne and E. Polak, “Outer approximation algorithm for nondif-
ferentiable optimization problems,” Journal of Optimization Theory and
Applications, vol. 42, no. 1, pp. 19–30, 1984.

[20] G. R. Wood, “Multidimensional bisection applied to global optimisa-
tion,” Computers & Mathematics with Applications, vol. 21, no. 6-7,
pp. 161–172, 1991.

[21] ——, “The bisection method in higher dimensions,” Mathematical
Programming, vol. 55, pp. 319–337, 1992.

[22] B. Zhang, G. Wood, and W. Baritompa, “Multidimensional bisection:
The performance and the context,” Journal of Global Optimization,
vol. 3, no. 3, pp. 337–358, 1993.

(a) (b)

Fig. 1. Speedup and efficiency of parallel version with best first selection strategy.

(a) (b)

Fig. 2. Speedup and efficiency of parallel version with statistical selection strategy.

(a) (b)

Fig. 3. Speedup and efficiency of parallel version with depth first selection strategy.

TABLE I
AVERAGE NUMBER OF FUNCTION EVALUATIONS AND EXECUTION TIME (S) WITH DIFFERENT SELECTION STRATEGIES

1 p. 2 p. 4 p. 8 p. 16 p.
n f.eval. t(s) f.eval. t(s) f.eval. t(s) f.eval. t(s) f.eval. t(s)

Best First
3 2119769 28.22 2119810 14.18 2131476 9.08 2157114 6.57 2202417 3.52
4 1000209 36.04 1000244 18.20 1000381 9.24 1001977 4.65 1004162 3.00
5 3482357 439.45 3482357 230.56 3484261 121.24 3488265 69.22 3491818 36.76
6 4625659 3221.09 4625659 1694.01 4625659 857.17 4625659 435.98 4625659 227.64

mean 2806998 931.20 2807018 489.23 2810444 249.18 2818254 129.10 2771356 67.73
Statistical

3 2120068 26.64 2123397 13.63 2123173 8.56 2161008 6.16 2206350 3.36
4 999775 36.29 999882 18.30 995246 9.31 1000563 4.65 969116 3.22
5 3455481 431.72 3455481 226.64 3383504 120.62 3462539 67.01 3470742 34.35
6 4625659 3220.28 4625659 1718.71 4625122 859.60 4625659 439.68 4625659 224.93

mean 2800246 928.73 2801105 494.32 2781761 249.52 2812442 129.37 2749411 66.46
Depth First

3 2125589 24.30 2131616 13.59 2157918 8.06 2232471 5.82 2244745 5.81
4 1001147 30.68 1004290 15.82 1009851 8.00 1021786 4.19 1021763 2.81
5 3459535 436.61 3473731 247.10 3476909 125.18 3486792 66.59 3501665 36.46
6 4625659 3220.16 4625659 1804.34 4625659 899.02 4625659 470.92 4625659 236.96

mean 2802982 929.44 2808824 520.21 2817584 260.06 2841677 136.88 2848458 70.51
Breadth First

3 2120347 22.35 2120567 12.47 2121179 7.43 2173839 5.33 2209250 3.03
4 1000431 31.28 1000597 16.11 1000643 8.12 1000729 4.21 1001150 2.93
5 3517276 450.11 3520476 253.29 3520476 127.23 3520478 68.96 3521811 35.30
6 4625659 3216.60 4625659 1781.77 4625659 892.36 4625659 465.88 4625659 234.71

mean 2815928 930.08 2816825 515.91 2816989 258.79 2830176 136.09 2777678 68.99

TABLE II
AVERAGE SPEEDUP AND EFFICIENCY OF PARALLELIZATION WITH DIFFERENT SELECTION STRATEGIES

2 p. 4 p. 8 p. 16 p.
n sp ep sp ep sp ep sp ep

Best First
3 1.97 0.98 3.13 0.78 4.45 0.56 8.18 0.51
4 1.95 0.98 3.73 0.93 7.28 0.91 11.58 0.72
5 1.90 0.95 3.67 0.92 6.70 0.84 12.68 0.79
6 1.82 0.91 3.60 0.90 6.88 0.86 13.36 0.83

mean 1.91 0.96 3.53 0.88 6.33 0.79 11.45 0.72
Statistical

3 1.93 0.96 3.18 0.80 4.61 0.58 8.07 0.50
4 1.96 0.98 3.79 0.95 7.48 0.94 11.23 0.70
5 1.92 0.96 3.64 0.91 6.85 0.86 13.13 0.82
6 1.79 0.90 3.58 0.90 6.86 0.86 13.44 0.84

mean 1.90 0.95 3.55 0.89 6.45 0.81 11.47 0.72
Depth First

3 1.87 0.94 2.98 0.74 4.57 0.57 4.59 0.29
4 1.91 0.96 3.74 0.94 7.02 0.88 10.34 0.65
5 1.81 0.90 3.53 0.88 6.75 0.84 12.40 0.77
6 1.76 0.88 3.52 0.88 6.60 0.83 13.13 0.82

mean 1.84 0.92 3,44 0.86 6.23 0.78 10.11 0.63
Breadth First

3 1.91 0.95 3.53 0.88 6.40 0.80 10.10 0.63
4 1.93 0.97 3.79 0.95 7.24 0.91 11.84 0.74
5 1.81 0.91 3.61 0.90 6.83 0.85 13.25 0.83
6 1.77 0.89 3.53 0.88 6.63 0.83 13.22 0.83

mean 1.86 0.93 3.61 0.90 6.78 0.85 11.73 0.73

(a) (b)

Fig. 4. Speedup and efficiency of parallel version with breadth first selection strategy.

[23] E. A. Galperin, “The cubic algorithm,” Journal of Mathematical Analysis
and Applications, vol. 112, no. 2, pp. 635–640, 1985.

[24] ——, “Precision, complexity, and computational schemes of the cubic
algorithm,” Journal of Optimization Theory and Applications, vol. 57,
pp. 223–238, 1988.

[25] J. Pinter, “Extended univariate algorithms for n-dimensional global
optimization,” Computing, vol. 36, no. 1, pp. 91–103, 1986.

[26] ——, “Globally convergent methods for n-dimensional multiextremal
optimization,” Optimization, vol. 17, pp. 187–202, 1986.

[27] J. Pintér, “Branch-and-bound algorithms for solving global optimization
problems with Lipschitzian structure,” Optimization, vol. 19, no. 1, pp.
101–110, 1988.

[28] C. C. Meewella and D. Q. Mayne, “An algorithm for global optimization
of Lipschitz continuous functions,” Journal of Optimization Theory and
Applications, vol. 57, no. 2, pp. 307–323, 1988.

[29] ——, “An efficient domain partitioning algorithms for global opti-
mization of rational and lipschitz continuous functions,” Journal of
Optimization Theory and Applications, vol. 61, no. 2, pp. 247–270, 1989.

[30] E. Gourdin, P. Hansen, and B. Jaumard, “Global optimization of
multivariate lipschitz functions: Survey and computational comparison,”
Les Cahiers du GERAD, May 1994.

[31] R. Horst, “A general class of branch-and-bound methods in global
optimization with some new approaches for concave minimization,”
Journal of Optimization Theory and Applications, vol. 51, pp. 271–291,
1986.

[32] R. Horst and H. Tuy, “On the convergence of global methods in multiex-
tremal optimization,” Journal of Optimization Theory and Applications,
vol. 54, no. 2, pp. 253–271, 1987.

[33] R. Paulavičius and J. Žilinskas, “Analysis of different norms and
corresponding Lipschitz constants for global optimization in multidi-
mensional case,” Information Technology and Control, vol. 36, no. 4,
pp. 383–387, 2007.

[34] ——, “Improved Lipschitz bounds with the first norm for function values
over multidimensional simplex,” Mathematical Modelling and Analysis,
vol. 13, no. 4, pp. 553–563, 2008.

[35] ——, “Global optimization using the branch-and-bound algorithm with
a combination of Lipschitz bounds over simplices,” Technological and
Economic Development of Economy, vol. 15, no. 2, pp. 310–325, 2009.

[36] R. Paulavičius, J. Žilinskas, and A. Grothey, “Parallel branch and
bound for global optimization with combination of Lipschitz bounds,”
Optimization Methods and Software, no. submitted, 2010.

[37] M. Baravykaitė, R. Čiegis, and J. Žilinskas, “Template realization of
generalized branch and bound algorithm,” Mathematical Modelling and
Analysis, vol. 10, no. 3, pp. 217–236, 2005.

[38] C. Jansson and O. Knüppel, “A global minimization method: The multi-
dimensional case,” TU Hamburg-Harburg, Tech. Rep., 1992.

[39] K. Madsen and J. Žilinskas, “Testing branch-and-bound methods for
global optimization,” Technical University of Denmark, Tech. Rep.
IMM-REP-2000-05, 2000.

	Introduction
	Lipschitz optimization
	Parallel branch and bound with simplicial partitions and aggregate Lipschitz bound
	Experimental investigation of selection strategies in parallel branch and bound algorithm
	Conclusion
	References

