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Abstract 
Silo honking is an acoustical emission with a fundamental frequency of several hundred 
Hertz and an intensity often greater than 100 dB. It occurs when a silo is discharging and 
is similar to the `honk' of a lorry horn. The high amplitude of the honk makes it a 
significant noise pollution issue for workers at the site and for neighbouring businesses 
and residents. This paper considers some possible excitation mechanisms that may be 
responsible for honking and presents measurements obtained from a full scale honking 
silo detailing the acoustic emissions and the associated vibration of the silo walls. 
Experimental results are presented which comprise of simultaneous measurements of the 
three components of the wall vibrations and the acoustic pressure. The wall vibrations 
have an initial impulse response with a high amplitude O(100g) and subsequent 
oscillatory accelerations with amplitude O(10g). The frequency spectra of the 
acceleration and acoustic pressure measurements comprises a sharp peak at the 
fundamental acoustic frequency and a harmonic series of peaks at integer multiples of the 
fundamental frequency. It is shown that the honking is not generated by a resonance 
inside the silo, as in a flute or organ pipe; the sound is generated by the silo walls acting 
as large speakers. 
The interaction between the wall and the sliding pellets is considered as a possible 
excitation mechanism for the acoustic emissions. Laboratory friction measurements are 
presented using pellets from the honking silo and a wall sample. The results of these 
measurements show that the particles exhibit a slip-stick behaviour when sheared against 
the wall material. This slip-stick behaviour is characterised under different conditions for 
pellets that are known to produce honking. Particles that have not been observed to honk 
were also tested and did not produce slip-stick motion at the wall. 
  

1 Introduction 
Huge quantities of bulk materials in the form of granular solids are handled each year 
throughout the world.  During emptying from storage structures, many of these granular 
solids, such as plastic pellets (Wei and Johnson, 1974), corn (Roberts and Wiche, 1991), 
coal (Levison and Munch-Andersen, 1994) and rape seeds (Tejchman and Gudehus, 1993) 
induce significant vibrations and dynamic loads on the storage systems.  In addition to 



these dynamic loads, some granular solids, such as PET pellets, nylon pellets and PVC 
powder, emit very loud intermittent honking sounds during discharge from thin-walled 
metal silos.  This honking noise contains much higher frequencies and differs radically in 
nature from the periodic thumping or banging which can be heard in some silos during 
discharge. Honking of silos has been a fairly common industrial problem and has been 
known to exist in thin walled metal silos with differing dimensions and fills in a variety 
of locations worldwide. As noise pollution becomes increasingly unacceptable, silo 
honking has become an issue that needs to be addressed.  Honking with sound pressure 
levels in excess of 100-110dB can cause long term hearing damage if hearing protection 
is not worn. The intermittent nature of silo honking can cause an unexpected distraction 
and create further hazards. The noise can also create problems for the local population 
residing close to industrial plants and in some cases, has been known to cause curtailment 
of normal silo operations (fill levels and operating hours).   

In recent years, the dynamic effects during silo discharge have been studied to a limited 
extent and various descriptive terms such as silo vibration, silo quaking, silo music or silo 
shocks have been used (Roberts and Wiche, 1991; Gudehus and Tejchman, 1992; Roberts, 
1993; Tejchman, 1995; Schulze, 1998).  However all these studies predominantly focused 
on the additional dynamic loads induced on the silo structure during flow and did not 
address, to any significant extent, the acoustic effects of the vibrations.  Indeed a 
significant number of these studies were on concrete structures rather than on thin-walled 
metal silos in which honking occurs. A recent study (Tejchman, 1999) examined the 
displacement and acceleration response of the walls of a honking silo, but did not 
consider the causes of honking. The two main solutions proposed to date are the 
installation of waffle sheets (rough wall plates) or a central discharge tube.  These silo 
modifications can be expensive to implement, interfere considerably with the industrial 
processes, are not well accepted by the industry due their complexity and, since they have 
been developed for specific silos without a comprehensive understanding of phenomenon, 
they may not work in all situations.  Moreover, waffle sheets change the flow pattern and 
introduce additional non-uniform loading on the silo walls that can have serious 
implications on the structural integrity of thin-walled metal silos.  Several sources of the 
dynamic excitations in silos have been proposed (Gudehus and Tejchman, 1992; Roberts, 
1993; Schulze, 1998; Tejchman, 1999).  These include slip-stick behaviour between 
stored solids and silo walls, internal slip-stick behaviour within the stored solids, 
alternating flow patterns during flow, collapsing arches and solid dilation during flow.   

2 Silo Honking: Field Measurements 
2.1 Silo Properties 
Measurements were obtained during honking from a full-scale cylindrical aluminium silo 
with diameter of 3 m and height of 21 m above the cone section. The silo is constructed 
from horizontal aluminium strips which have three thicknesses: 4.0 mm, 5.2 mm and 6.2 
mm from top to bottom. The cone half angle to the vertical is 30o and the silo is designed 
such that the PET pellets inside the silo undergo mass flow. 
 
2.2 Instrumentation 
The silo was instrumented using a tri-axial accelerometer consisting of three PCB 
303A02 accelerometers that were calibrated between 1 and 10 kHz. Outwith this range 



they had a maximum error of ± 10% up to 20 kHz. For acoustic recording an Audio-
Technica microphone ATM33a with an approximately flat frequency response between 
200 Hz and 2 kHz and a variation of no more than 5dB between 40Hz and 200 Hz and 
between 2kHz and 20 kHz; and a CEL-254 digital impulse sound level meter with a 
measurement range of 35-135 dB and a frequency range of 10 Hz to 25 kHz, that was 
calibrated with a CEL-282 acoustic calibrator, were used. The combination of the tri-
axial accelerometer and the microphone enabled simultaneous measurements of the 
acoustic emission and the three components of the silo wall vibration in the axial, z; 
radial, r; and circumferential, �, directions, (Figure 1). Measurements were obtained with 
the tri-axial accelerometer at 10 different heights on the silo. Access to these positions 
was obtained by scaffolding that was erected at the back of the silo. The position of the 
accelerometer at each level is described by its axial co-ordinate, z (see Figure 1). The 
origin of the axial co-ordinate was the roof level of a single story building that contained 
the cone section. This is 105 cm below the transition between the cylindrical section and 
the hopper. The key silo dimensions are also indicated in figure 1. The accelerometers 
were placed vertically above each other. Sound pressure measurements were also taken at 
different heights to characterize the acoustical emissions. Acoustic records were obtained 
using the microphone at the base of the silo. 
 
2.3 Results 
2.3.1 Wall acceleration and acoustic pressure measurements 
Figure 2 shows the acceleration measurements obtained from the tri-axial accelerometer 
attached to the silo wall at a height z = 17.7m. Also shown in Figure 2 is the acoustical 
emission measured by the microphone at the base of the silo. Each signal was captured at 
a sampling frequency of 25 kHz. The data acquisition was performed within Matlab and 
was triggered when one of the signals exceeded a preset threshold. The signals were, 
however, continuously sampled, enabling the signal just prior to triggering to be 
recovered from the system’s buffer. This enabled the full honking event to be captured 
including the buildup before the system is triggered (negative time in Figure 2). The 
measurements presented in Figure 2 correspond to one discharge cycle of the silo during 
which the silo was heard to honk 5 times, Honk 1 at t ~ 0.0, Honk 2 at t ~ 0.8, Honk 3 at t 
~ 1.5, Honk 4 at t ~  2.6 and Honk 5 at t ~ 3.5 s. At these times the acceleration plots in 
Figure 2 show corresponding wall accelerations of varying magnitudes that can be 
associated with the acoustic emissions. It is not, however, possible to detect the 
individual honks from a visual display of the pressure readings obtained from the 
microphone; this will be discussed in more detail later.  
 
Figure 3 shows a magnification of the axial acceleration and the acoustic signal around 
Honk 1.The axial component of the acceleration, az, shows peak accelerations of over 
400 g which is in line with the magnitude of acceleration measured elsewhere (Tejchman 
1999), however Figure 3 indicates that these accelerations are non-oscillatory, 
intermittent impulsive responses. In fact, Figure 3 shows that typical acceleration 
amplitudes of the oscillatory response are typically in the range of 10g – 20g. Figure 3 
also shows high acceleration peaks that correspond to the large acceleration values 
observed in Figure 2. These typically correspond to only a single point in the sampled 
record and so last for no longer than 50 �s. Such peaks could not be responsible for 



creating an acoustical emission at an audible frequency. In each case the peaks 
correspond to an acceleration in the positive direction, towards the top of the silo. In 
some of the measurements, acceleration peaks with a similar magnitude were also 
observed in the radial component of acceleration, always in the outward direction, 
however, these were much less common. We also note an impulsive response in the 
microphone signal in Figure 3. Considering only the oscillatory components of the 
measured accelerations and ignoring the impulsive responses, the results show that for 
each honk the wall vibrates rapidly within an envelope. The shape of the envelope is 
similar for each honk and for each component: it builds up rapidly over a few hundredths 
of a second before decaying more gradually over several tenths of a second. The 
amplitude of the envelope varies between different honks. The amplitude of the 
circumferential accelerations is always the smallest and is generally about an order of 
magnitude smaller than the other components (see the radial and circumferential 
components in Figure 2). The radial and axial components are generally similar with the 
radial component slightly larger than the axial component, however, the relative strengths 
of these two components varied with the position at which the accelerometer was placed 
suggesting that the silo is oscillating in a nodal manner. 

 
Figure 2 highlights a number of features of the silo honking which were typical of a large 
number of measurements obtained at different heights on the silo wall. Throughout the 
measurement period the fill level in the silo was maintained between 85% and 100%. 
Typically sound pressure measurements at the base of the silo were in the range 100-110 
dB (this measurement corresponds to the loudest single honk during any discharge cycle). 
Within this variation no noticeable trend was observed due to the position of the 
accelerometers (other than variation discussed above which were attributed to the nodal 
nature of the oscillations) or the fill level. It is, however, known that honking is not a 
problem when the fill level is less than about 40 %, the enforced operating conditions for 
the silo to prevent honking occurring. Sound pressure measurements were also obtained 
at different positions on the scaffolding. Again, the variations observed in the sound 
pressure level at different heights were no more than the general variation between honks. 
 
2.3.2 The Acoustic Signal 
It is clear from Figure 2 that the acoustic honks can be observed in the wall acceleration 
records as regions of high acceleration. Although it is not possible to detect the individual 
honks from a visual inspection of the microphone recording, they are clearly audible 
when playing back the signal through a speaker. The reason for this is the high level of 
background noise that was present at the plant and was measured between 85 and 90 dB. 
During discharge the level was higher due to the additional noise of the particulate solids 
falling through the silo. In Figure 3, however, a difference in the acoustic signal can be 
observed. Before t = -0.1 s and after t ~ 0.15 s the signal is varying slowly in time with a 
period of a few hundredths of  a second corresponding to the low frequency background 
noise with a frequency of the order of tens of Hertz. Between these times the signal is 
varying between positive and negative pressures with a period which is too small to 
determine on the scale of Figure 3: this corresponds to the high frequency honking. This 
can be seen in more detail by considering the frequency spectrum of the acoustic signal 
which is shown in Figure 4. The spectrum shows a series of harmonic peaks with the 



fundamental acoustic frequency at approximately 333 Hz and the higher harmonics at 
integer multiples of this frequency. In general the larger peaks correspond to frequencies 
up to about 4000 Hz; above 6000 Hz the peaks are not significantly larger than the 
background. At frequencies below 150 Hz the spectrum shows the background noise 
which is present and can be ignored in this study. The value of the spectrum is off the 
scale of the graph that was selected to highlight the harmonic nature of the spectrum 
above these frequencies.  
 
2.3.3 Filtering the Acoustic Signal 
It is possible to remove a significant proportion of the noise from the acoustic signal by 
passing it through a high-pass filter. This was done using a 5th order Butterworth filter 
with a cut-off frequency of 250 Hz, selected to be sufficiently lower than the measured 
fundamental acoustic frequency. The result of this filtering action is demonstrated in 
Figure 5 that shows the filtered acoustic signal and the radial component of the wall 
vibration for comparison. The individual honks can now be observed from the filtered 
acoustic signal; for example, at t ~ 2.2 s the acoustic signal in Figure 2 shows what might 
be interpreted as a honk, however Figure 5 makes it clear that there is no honk occurring 
at this time.  
 
2.3.4 Spectral Analysis of the Wall Accelerations 
Frequency analysis of the acceleration measurements was also performed and is shown in 
Figure 6. The spectrum for each component shows the same harmonic series as was 
obtained for the acoustic signal (Figure 4). The figure indicates that there were significant 
accelerations at frequencies up to 10 kHz for the radial and circumferential components 
and at frequencies up to 20 kHz for the axial acceleration. In Figure 6 each component 
has been measured from a separate honking event with a sampling rate of 50 kHz to 
prevent aliasing. Spectra obtained from the simultaneous measurement of the three 
components shown in Figure 2 showed the same features as Figure 6 except that there 
was some aliasing in the spectrum for the axial component due to the lower sampling rate.  
 
2.3.5 Velocity Spectra 
The wall acceleration spectra in Figure 6 and the spectrum of the acoustical signal in 
Figure 4 all show a harmonic series with a fundamental frequency of 333 Hz. There are 
however a number of differences. In particular, the series of peaks is observed at higher 
frequencies in the wall acceleration spectra and the largest peaks occur at a higher 
frequency. Consider a silo wall that is vibrating in a manner described by the spectra in 
Figure 6. The acceleration can be considered as the superposition of a number of 
sinusoidal oscillations:  

)cos( 0tnaa
n n ω�=  

where n is an integer and �0 = 2�f0 is the fundamental angular frequency with f0 = 333 Hz. 
Integrating this we see that the amplitude of each component is reduced by a factor of 
n�0 . The velocity spectrum in Figure 7 is calculated by integrating the acceleration 
signal in Fourier space, that is by dividing through by the angular frequency. The axial 
and circumferential components were found from the spectra in Figure 6 while the radial 
component was found from the spectra for the radial acceleration of honk1 in Figure 2. 
This means that this velocity spectrum can be compared to the acoustic spectrum in 



Figure 4 since the two measurements were obtained simultaneously. Some effect of 
aliasing can be seen in the spectrum for the radial component in Figure 7 as the small 
peaks approximately equidistant to the harmonic peaks. 

 
2.3.5 Comparison of the Radial Velocity and the Acoustic Pressure Measurements 
For a progressive acoustic wave the velocity with which an air molecule oscillates is 
related to the variation in pressure by (Kinsler et al., 1982) 
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where the pressure is given by p = p0 + p' where p0  is the ambient pressure, p' and u are 
the acoustic pressure and velocity variation due to the sound wave respectively and c is 
the speed of sound. A comparison of the radial velocity spectrum of the silo wall 
vibrations and the acoustic velocity spectrum measured close to the wall is shown in 
Figure 8. The two spectra have the same basic features. For example, in both spectra the 
majority of the largest peaks are for frequencies less than 4 kHz. Comparing the 
magnitudes of the spectra we also observe good agreement between the spectra. 
Therefore there is both qualitative and quantitative agreement between the acoustic 
spectra and the radial velocity spectra, suggesting that the honking is produced by the 
horizontal oscillations of the silo wall acting as a large loud speaker. Clearly we would 
not expect an exact agreement between the velocity measured at a single point on the 
structure and the pressure measurement from a microphone which, although close to the 
wall, corresponds to the combined emission from the whole structure. The sound pressure 
level (SPL) is given by 
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where pf is taken to be 2x10-5 Pa which is the pressure of a 1000 Hz pure tone that is 
barely audible to a person with unimpaired hearing. Now a typical acoustical velocity of 
0.004 m/s corresponds to an acoustical pressure variation p' = 0.4 Pa which has SPL = 86 
dB. Since this corresponds to a single component of the overall honk this is broadly in 
line with the overall measurement of 100 – 110 dB for the sound pressure level. We note 
also that the results presented above have all been on a linear scale while acoustic signal 
are often presented on a log scale since this is the manner in which the sound is heard by 
a human observer. Thus the large differences in the acceleration and pressure levels 
observed between the different honks in Figure 2 will not appear as great when heard by 
the human ear. Listening to the recording of the 5 honks in Figure 5 the relative volume is 
easily detected at loud, medium, soft, medium and loud respectively. These results show 
that honking measured with a microphone close to the silo wall is consistent with the 
measured radial velocity of the wall. This indicates that the acoustical signal can be 
generated solely by the radial wall vibrations. Thus the honking is generated by the 
motion of the silo wall acting as a large loud speaker and cannot be likened to a flute or 
an organ where the sound is generated by resonance inside the object. This conclusion is 
further strengthened by the fixed frequency with which the honking occurs, irrespective 
of the fill level. The resonant frequency of the air-column and/or granular solids within 
the silo will change markedly as the fill level changes; however, no variation in the 
frequency of honking was observed. 



 

3 Wall Excitations: A Laboratory Study 
3.1 Excitation Mechanisms 
In this section possible excitation mechanisms for the silo walls during discharge are 
considered. There are a number of possible excitation mechanisms which could 
potentially be responsible for exciting the silo walls: 
 
a) Slip-stick behaviour between pellets and silo walls: The wall friction between the 
stored solid and the silo walls is an important parameter in the design of a storage 
structure.  This is often measured using a direct shear tester, in which a shallow box 
containing a sample of the granular solid is sheared against a wall specimen.   For some 
granular solids, the frictional traction needed for the solid to move against the wall 
material fluctuates considerably. It is possible that the slip-stick fluctuations generate the 
vibrations that lead to honking.  
 
b) Internal slip-stick behaviour within the pellets: The stored solid must go through 
considerable deformation and shear failure during discharge. Slip-stick behaviour can 
also occur internally within the granular medium.  This again can be a significant source 
of vibration that occurs during discharge. 
 
c) Changing pattern of flow during discharge: In a cylindrical silo with a hopper, the 
stored solid may flow predominantly either in mass flow or funnel flow.  In mass flow, 
the entire content of a silo is in motion, moving towards the outlet.  In funnel flow, only 
part of the content is in motion whilst the rest remains stationary.  Funnel flow often 
occurs as an internal flow channel with surrounding zones of stationary solid.  Funnel 
flow occurs when the hopper is too shallow, the hopper walls are too rough, or when a 
mass flow silo has not been adequately designed.  It has been suggested that for some 
silos, the changes in the properties of the bulk solid during flow can result in alternating 
flow patterns during discharge. The periodic slips against the hopper walls can induce 
significant vibrations. 
 
d) Dilation of the bulk solid during flow: It has been recognised that most granular solids 
have to dilate to flow.  However the degree of dilation which is required to move a solid 
from its storing state to its flowing state varies considerably between different granular 
solids.  The dilation of the solid leads to reduction in bulk density and a corresponding 
reduction in the magnitude of the stresses within the flow regimes.  The reducing stress 
regimes can then lead to either changing flow patterns, or changing flow boundaries.  
These unstable phenomena can result in significant dynamic effects during flow. 
 

3.2 Particulate Solids and Wall Materials 
Three different particles were used in the laboratory measurements. PET1 pellets are very 
uniform in size and each particle has the shape of an elliptical cylinder with an 
approximately elliptical cross-section.  The average dimensions are 2.0 x 3.2 mm and 
4.0mm long. These have been reported to produce honking in thin walled metal silos. 



PET2 is a “pillow” shaped PET pellet with similar dimensions which is also know to 
have a tendency to honk.  The third type of particle was blue polypropylene pellets which 
have not been reported to exhibiting honking. Aluminium plates were used with the same 
grade and thickness as used in silo constructions.  Stainless steel plates were also used for 
comparison. 
 
 

3.3 Evaluation of the Stress State in a Silo 
The behaviour of particulate solids is highly stress level and stress history dependent.  It 
is thus important to evaluate the stress state in a typical silo, which can then be simulated 
in the laboratory tests. 
 
The most commonly used theory for calculating stresses in the solid contained in a 
cylindrical vessel is the Janssen theory (Janssen, 1895;Rotter, 2001): 

q = �zo (1 -e-z/zo)         
P = k q          
� = � P                          

and 

zo = 
R

 2µk          

 
where q is the mean vertical stress in the stored material at depth z, P is the normal wall 
pressure (radial stress), � is the wall frictional traction, � = unit weight of the stored 
material, R = radius of the vessel, � is the wall friction coefficient and k = p/q is the 
lateral pressure ratio which is commonly assumed to depend on the angle of internal 
friction of the solid �, and normally lies between 0.3 to 0.7.  In this study k = 0.5 is 
assumed. The following typical silo geometry and pellets properties were used in the 
calculations: R = 2.1 m; � = 0.21; filled height of the cylindrical section, H = 16.0 m; and 
bulk unit weight of the particles γ= 8.0 kN/m3.  
 
Figure 9 shows the normal wall pressure distribution expected for the cylindrical section 
of the silo when it is filled to 16m.  The normal wall pressure or the horizontal normal 
stress in the pellets increases to just over 30 kPa near the hopper transition.  The testing 
of the mechanical behaviour of the pellets was therefore conducted with the stress level 
between 0-30 kPa. 

3.4 Slip-stick Behaviour at the Silo Walls 
This section reports a sample of wall friction tests conducted to investigate the shearing 
behaviour of pellets on a wall material. Tests were performed to investigate the effects of 
shearing rate, stress level and time under load.   
 
The wall friction tests were conducted using a Jenike shear tester with a large shear cell 
of 143 mm in diameter, as shown in Figure 10 (IChE, 1989).  In each test, the shear ring 
was positioned on top of the plate and then carefully filled with the pellets.  After 



levelling the surface of the pellets, a shear lid was placed on top and a normal load was 
applied before the shearing was initiated. The normal stress levels were chosen to reflect 
the stress state in the solid during storage. Four levels of normal stress were considered: 
2.6, 10.2, 17.6 and 25.3 kPa.   
 
Figure 11 shows the shearing response of PET1 pellets on the aluminium plate for the 
four normal stress levels and a shear rate of 1 mm/min.  After the initial period when the 
shear stress increased towards shear failure, there was considerable slip-stick response.  
The pellets appeared to stick against the aluminium plate until the shear stress reached a 
certain magnitude, and then a sudden slip occurred, bringing the shear stress down to a 
lower value before building up again.  The shear stress fluctuated between the peaks and 
the troughs as the pellets slip-stick continually during shearing against the aluminium 
plate.   

 
The slip-stick response is also noted to be very much stress level dependent, with 
considerably larger fluctuations at larger normal stress, and very little fluctuations at very 
low stress levels.  Since the stress level in the real silo is governed by the height of fill, 
this indicates that the slip-stick phenomena at the walls may become significant only 
when the horizontal stress reaches around 10-15 kPa, which equates to z = 11-13 m in 
Figure 9.  This is in line with the industrial experience that honking occurs only after the 
silo fill height is above a certain level. 
 
The upper and lower limiting shear stress during the slip-stick shearing were obtained 
from the shearing response curves in Figure 11. If it is assumed that the wall adhesion is 
zero, then the wall friction coefficient, �, is simply given by the ratio of the shear stress to 
the normal stress and is shown in Figure 12.  The upper and lower limiting values of the 
wall friction coefficient are stress dependent.  At medium to high stresses (>25 kPa), the 
wall friction coefficient fluctuates between 0.185 and 0.235; the median value was used 
in the calculation of the normal wall pressure distribution in Figure 9. 
 
3.4.1 Comparison with Other Pellets  
Figure 13 shows the result of a wall friction test on blue polypropylene pellets that have 
not been reported to exhibit honking.  The fluctuating shear stress noted in the PET1 
pellets (also shown in Figure 13) is not seen in these non-honking pellets.  Measurements 
were also conducted on the PET2 pellets that were thought to have a smaller tendency to 
honk.  The PET2 pellet was found to exhibit a similar slip-stick response to that for PET1 
pellets.   

 

3.4.2 Time of Storage 
When a silo is not discharging, the stored solid is subjected to the storing stress regime 
for a significant period of time.  Previous studies have shown that the properties of the 
stored solid can change as a result of the time under stress.  When a wall friction test was 
conducted in which the normal stress was applied for a total of 16 hours before shearing 
commenced the results were seen to be indistinguishable, from the case where the normal 



stress was applied immediately before shearing. This suggests that time effect is 
negligible in this case. 

3.4.3 Rate of Shearing 
The shear rate is found to vary between different silos and may be an important factor in 
determining whether honking occurs for a particular silo/pellet combination. Experiments 
were carried out to explore the effect of rate of discharge on the wall friction response. 
 
Figure 14 shows the results obtained for the PET1 pellets on an aluminium wall for a 
shear rate of 1 mm/min (left-hand ordinate) and 10 mm/min (right-hand ordinate). The 
results show that the frequency of fluctuation increases with increasing shear rate while 
the magnitude of fluctuation appears to have slightly decreased.   

3.4 Internal Slip-Stick Behaviour Between the Pellets 
Jenike direct shear tests were conducted to explore the internal stress-strain response of 
the honking PET1 pellets using the internal friction test apparatus shown in Figure 15.  
The testing procedure involved setting up a sample of the pellets within two split rings, 
which were then sheared relative to one another under a certain normal stress.   

 
Figure 16 shows the results of three tests under normal stresses of 5.0, 15.2 and 25.0 kPa 
respectively. At higher stress levels, say above 10-15 kPa, the pellets exhibit some slip-
stick phenomena, but these do not take place on a regular basis.  The results indicate that 
internal particle-particle slip-stick does take place but is probably not significant in this 
bulk solid and is certainly less than the particle-wall slip-stick. 

 

3.5.1 Effect of twisting and time consolidation 
The effect of twisting the sample, as is often performed during Jenike testing, and of time 
consolidation were also investigated.  The twisting consolidated the specimen and gave 
rise to a denser packing, resulting in a higher shear stress at failure.  A noticeable effect 
was found at 25 kPa, but only a negligible difference at 5 kPa.  The magnitude and the 
frequency of the slip-stick fluctuations do not appear to change.  The effect of time under 
stress was investigated by conducting a test for which the test specimen was left under 
the normal stress of 25.3 kPa for a total of 30 hours before shearing. The effect of time 
consolidation was also found to give a negligible difference in the internal slip-stick 
motion. 

4 Conclusions 
The phenomenon of silo honking has been investigated using a two-pronged approach. 
Full scale measurements have been obtained from a honking silo to evaluate the honking 
process and laboratory measurements were performed to investigate the possible 
excitation mechanism(s) that are responsible for generating the honks. 
 
The full scale measurements provided simultaneous measurements of the three 
components of the wall acceleration during honking as well an acoustic recording of the 



honk. Since different honks are not identical the simultaneous measurement is essential to 
obtain a full picture of the phenomenon. Large accelerations were measured of the order 
of several hundred times the acceleration due to gravity. These were associated with short 
impulse-like movements of the silo wall and not with the acoustic emissions. During 
honking the radial and axial components of the silo walls were seen to vibrate within an 
envelope which grew rapidly over a few hundredths of a second before decaying over a 
few tenths of a second. The maximum amplitude of this envelope was typically of the 
order of 10 g, although values of over 100 g were observed. The circumferential 
acceleration was relatively small but not negligible. This was thought to be due to 
irregularities in the symmetry of the silo or asymmetric flow. The relative amplitude of 
the radial and axial accelerations was seen to vary with the position of the accelerometer 
but no general relationship was found between the height of the accelerometer and the 
amplitude. This suggests that the silo is vibrating in a nodal manner. Frequency spectra of 
the three components of the acceleration and of the acoustic emissions all showed a 
harmonic structure with peaks at the fundamental frequency and integer multiples of this 
frequency. The acceleration spectra displayed at least 30-40 such harmonic peaks while 
the acoustic spectrum showed fewer peaks concentrated at the lower harmonic 
frequencies. A comparison of the acoustic spectra with the radial velocity spectrum 
(obtained by integrating the accelerometer signal in the frequency domain) demonstrated 
the similarity of the spectra in terms of shape, frequency and magnitude suggesting that 
the silo walls were acting as a large loud speaker, rather than the honking arising from 
resonances within the silo. The most striking feature of the measurements was the 
constant value of the fundamental frequency of both the acoustic and wall acceleration 
measurements. This was found to be 333 Hz and was totally repeatable and independent 
of the position of the accelerometer, the fill level and other external factors such as 
temperature and humidity and acts as a signature of the silo/particle combination. This 
further supports the assertion that the acoustic emission is due to the wall vibrations 
acting as a speaker since the frequency of an internal resonance would vary with the fill 
level. Further work is required to determine the relative importance of the silo and the 
particles in determining the fundamental frequency. 
 
The laboratory measurements concentrated on investigating the slip-stick behaviour 
which can occur between the particles and the silo wall and internally between particles. 
The measurements were performed at wall pressures typical of those found at different 
height in a realistic silo. Three different pellets were investigated against an aluminium 
plate. The two pellets which were known to exhibit honking displayed a slip-stick motion 
against the wall, while the third pellet which was thought not to exhibit honking showed 
no slip-stick behaviour. The amplitude of the fluctuations in the slip-stick motion was 
seen to increase with increased normal wall pressure. One of the honking pellets was 
tested against a stainless steel plate where it exhibited slip-stick behaviour with a reduced 
amplitude. The time of storage before the test was performed was also investigated but 
found to have little effect on the measurements. These findings are consistent with the 
wall slip-stick behaviour being the excitation mechanism for honking. Pellets which are 
known to honk exhibited slip-stick behaviour while particles which have not been 
observed to honk did not. The amplitude of the slip-stick motion reduces with the normal 
wall pressure, consistent with the fact that (at least on a number of silos which have been 



studied) honking does not occur when the fill level, and hence the normal wall pressure, 
is below a certain level. Also the significantly reduced magnitude of the slip-stick on a 
stainless steel plate compared to an aluminium plate is consistent with anecdotal reports 
of a lesser propensity for steel silos to honk. The frequency of the slip-stick motion was 
seen to increase with increased shear rate, however, the results predict considerably lower 
frequencies for the slip-stick motion in a silo relative to the observed honking frequencies. 
Thus the slip-stick motion on the wall is not transferred directly onto the wall vibrations 
and the manner in which such a transfer could occur requires further investigation.  
Internal slip-stick between the pellets in the silo was also considered. These showed some 
slip-stick properties but this was relatively insignificant when compared to the particle-
wall slip-stick motion.   
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Figure 1: The co-ordinate system for the tri-axial acceleration measurements and the key 
dimensions of the silo. 

 
 

Figure 2: The three components of the acceleration measured 17.7m from the foot of the 
silo and the acoustical signal measured at the silo base. 

 

 

 

 



 

 
 

Figure 3: The axial acceleration and the acoustic signal during the initial honk. 

 
Figure 4: The frequency spectrum of the acoustic signal. 

 
 

 
Figure 5: The filtered acoustic signal and the radial component of the wall acceleration. 

 



 
 

 

 
Figure 6: Frequency spectrum for the three components of the wall acceleration. 
 

 
 

 
Figure 7: The velocity spectrum calculated by calculated by integrating the acceleration 
spectra. 

 
 

 
 

 
 
 
 

 
 
 
 
 
 
 

Figure 8: The acoustic velocity spectrum calculated form the microphone pressure 
reading and the radial wall velocity spectrum calculated by integrating the acceleration 

spectra. 
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Figure 9: Normal wall pressure distribution in a typical silo. 
 

 
 

Figure 10: The Jenike shear tester. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 11: Shearing response of PET1 pellets on an aluminium wall for a shear rate of 
1mm/min. 
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Figure 12: Stress dependency of wall friction for PET1 pellets on aluminium. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 13: Shearing response of blue polypropylene and PET1 pellets on aluminium for 
a shear rate of 1mm/min. 
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Figure 14: Wall shear response for PET1 pellets on an aluminium wall for shear rates of 
1 mm/min and 10 mm/min. The left-hand ordinate is for the shear rate of 1 mm/min and 
the right-hand ordinate for a shear rate of 10 mm/min. 
 

 
 

 
 

Figure 15: The Jenike shear test apparatus for internal stress-strain measurement. 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
 

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6

Displacement, mm

S
he

ar
 s

tr
es

s,
 k

P
a

Max normal stress =  25.0kPa

Max normal stress = 15.2kPa

Max normal stress =  5.0kPa

 
Figure 16: Inter-particle shearing response for PET1 pellets. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 


