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ABSTRACT: Groundwater is a major source of water for domestic, industrial, and 
agricultural sectors in many countries. The main objective of this research was to 
provide an overview of present groundwater quality using parameters such as calcium, 
magnesium, sodium, chloride, sulfate, pH, and electrical conductivity (EC) in the 
Mehran plain, Ilam province using GIS and geostatistical techniques. A total of 23 deep 
and semi-profound wells were selected based on the classified randomized sampling 
method. The sampling locations were obtained by GPS. Plastic containers were used for 
the collection of water samples. These samples were transferred to the laboratory for 
analyzing water quality parameters. Statistical characteristics, qualitative data 
interpolation, and zoning were investigated using SPSS 20 ،GS

+
5.3 and ArcGIS10.1. 

Kolmogorov–Smirnov test were used to test data normality. In order to normalize 
parameters, logarithm, and 1/x were used for sulfate, EC, cation, and anion. Then the 
variogram analysis was performed to select the appropriate model. Results showed that 
co-kriging is the best method for cation and anion, whereas local polynomial 
interpolation is suitable for sulfate. The results of the interpolation of groundwater 
quality factors showed that there is approximately good adaption among groundwater 
factors and geomorphology and topology of the region. Because of inappropriate 
irrigation system, the highest concentration is in the northwest and western parts of the 
region, where there is the minimum height and maximum agricultural land. Growth of 
arable land and agricultural activities has caused increasing concentrations of studied 
elements, especially EC. 
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INTRODUCTION


 

Groundwater is a major source of water for 

domestic, industrial, and agricultural 

sectors in many countries. It is estimated 

that approximately one third of the world’s 
population (about 2 billion people) use 

groundwater for drinking (UNDP, UNEP, 

World Bank, 2000). In arid and semi-arid 
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regions, due to a lack of surface water, 

groundwater has played a major role in 

meeting irrigation demands. In several 

areas of Iran, excessive pumping of 

groundwater has created cracks with a 

depression of 0.5–1 km in length. 

Moreover, excessive use of groundwater 

has resulted in a sharp decline in both level 

and quality of groundwater due to the 

concentration of dissolved solids. 

Pollution, 
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Moreover, groundwater salinity in most 

areas has increased to several thousand 

milligrams per liter. As a consequence of 

old agricultural systems, pesticides, 

overuse of groundwater especially in arid 

and semi-arid regions along with the 

irrigation of water with physical setting 

that includes coarse soils and shallow 

groundwater, there is a significant level of 

pollution in the groundwater (Stites and 

Kraft, 2001; Jalali, 2007). 

Overall, residential, municipal, 

commercial, industrial, and agricultural 

activities can all affect groundwater quality 

(Nas and Berktay, 2010). The assessment of 

groundwater quality can be considered as an 

important index for socio-economic growth 

and development (Ishaku, 2011). Monitoring 

the groundwater quality involves collecting 

samples and carrying out analysis in the lab, 

which makes it expensive. There are two 

main approaches for the optimization of 

monitoring groundwater quality: the 

statistical approach and the hydrogeological 

approach. The widely used statistical method 

is based on kriging (Nunes et al., 2007; 

Feng-guang, 2008) using the model 

variogram. For unsampled locations, kriging 

is a technique to make an impartial and 

optimal estimation of regionalized variables 

(David, 1977). The selected model 

variogram is the one which better represents 

the experimental data with less root mean 

square error (RMSE). This approach uses the 

kriging standard deviation to identify points 

of high variance as the potential points for 

monitoring (Baalousha, 2010). Geostatistics 

can characterize and quantify spatial 

variability, perform rational interpolation, 

and estimate the variance of the interpolated 

values (Pin Lin et al., 2001). 

The main objective of this research was 

to provide an overview of present 

groundwater quality for parameters such as 

calcium, magnesium, sodium, chloride, 

sulfate (SO4), pH and electrical 

conductivity (EC) in the Mehran plain 

using GIS and geostatistical techniques. 

MATERIALS  METHODS 

The study area 
Mehran plain has a surface area of 911 

km
2
. It is located in near Iran’s western 

border with Iraq between 3303′ to 3313′ 
north latitude and 4605′ to 4615′ east 

longitude. The average annual precipitation 

and temperature are 247 mm and 23.5C, 

respectively. Two major rivers, Gavi and 

Kanjanchem, are the major source of 

surface water in Mehran plain; they join 

together in the west of the Mehran city 

(Karimi et al., 2011). For this study, 

groundwater quality data from 23 deep and 

semi-profound wells were used within the 

Mehran plain produced by the Regional 

Water Authority in Ilam province. Figure 1 

shows the location of Mehran plain in Iran 

and wells selected for sampling. 

Methodology 
A total of 23 deep and semi-profound wells 

were selected to the classified randomized 

sampling method. The sampling locations 

were obtained with the help of Global 

Positioning System (GPS). Figure 1 shows 

the study area and location of the selected 

wells. For the collection of water samples, 

plastic containers were used; these samples 

were carried to the laboratory for analyzing 

the parameters of water quality such as 

calcium, magnesium, sodium chloride, 

SO4, pH and electrical conductivity (EC). 

The specific methods of estimation of these 

parameters are given in Table 1. The value 

of these parameters is shown in Table 2. 

Statistical characteristics, qualitative data 

interpolation, and zoning were investigated 

in SPSS 20 ،GS
+
 5.3 و   ArcGIS 10.1. 

AND 
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Fig 1. LANDSAT Satellite image (TM) of the study area and the location of studied well

Table 1. Specific methods of estimation of parameters 

No. Parameters Methods 

1 

Anion 

Calcium ICP Mass Spectrometry 

2 Magnesium ICP Mass Spectrometry 

3 Sodium Flame Photometric method 

4 
Cation 

Chloride Titrating with standard AgNo3. 

5 Sulfate Turbidity Method 

6  pH Digital pH meter 
 

Table 2. Average value of parameters 

Na (meq/l) Mg (meq/l) Ca (meq/l) Cl (meq/l) SO4 (meq/l) pH EC (µmho/cm) Well Number 

1.94 0.74 3.67 1.17 2.58 7.67 648.42 1 

2.01 1 3.75 1.32 2.37 7.61 668.28 2 

1.58 0.98 4.17 0.77 3.16 7.56 643.57 3 

1.77 2.31 9.37 1.014 9.37 7.42 1234 4 

2.84 2.2 12.8 2.1 11.84 7.44 1629.57 5 

5.77 5.5 21.06 6.07 18.58 7.5 2552.85 6 

12.51 5.81 19.76 12.65 22.61 7.31 3487.66 7 

0.68 1 3.32 0.471 2.2 7.55 495.57 8 

1.16 1.84 7.6 0.86 7.216 7.29 978.8 9 

1.92 2.65 14.11 1.03 14.68 7.49 1681 10 

2.83 1.4 3.23 1.34 3.42 7.72 688.39 11 

2.39 1.1 4.2 0.88 3.9 7.27 662.03 12 

1.73 0.8 3.3 0.90 2.6 7.46 563 13 

2.37 0.8 3.7 0.03 0.3 7.43 670.48 14 

1.45 0.9 0.2 0.74 3.5 7.50 647.67 15 

1.85 0.0 10.6 0.90 11.5 7.23 1266 16 

1.85 0.1 16.4 1.00 17.0 7.20 1661.69 17 

1.52 1.9 7.4 0.80 7.45 7.15 981.12 18 

1.52 0.7 4.1 0.77 3.10 7.40 610.12 19 

1.78 1.4 9.1 1.00 8.02 7.98 1170.23 20 

1.93 1.48 7.3 0.96 7.11 7.44 963.58 21 

0.56 1.2 3.09 0.44 2.25 7.8 475.45 22 

0.52 1.62 8.11 0.94 6.24 7.31 940.32 23 

Pollution, 
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For the analysis of groundwater 

characteristics, spatial variations 

geostatistical approach was used (Reed et 

al., 2010; Cameron and Hunter, 2002; Lee 

et al., 2007). Geostatistical prediction has 

two stages: (a) identification and modeling 

of spatial structure, in which the 

homogeneity and spatial structure of a 

given variable is studied using a 

variogram; (b) geostatistical estimation 

using kriging technique that depends on the 

properties of the fitted variogram, which 

affects all the stages of the process. In this 

study, different types of semi-variogram 

models including ordinary kriging, simple 

kriging, universal kriging, and disjunctive 

kriging were tested for each parameters of 

water quality that are summarized below. 

For the selection of best model, cross 

validation tests including the values of 

mean error (ME) and mean square error 

(MSE) were done. If the predictions were 

unbiased, the ME should be near to zero. 

Due to some important drawbacks, ME 

depends on the scale of the data, and it is 

insensitive to inaccuracy in the variogram. 

Therefore, usually MSE is used on behalf 

of ME. Being ideally zero, that is, an 

accurate model would have a MSE value 

close to zero. The smallest RMSE value 

indicates the most accurate predictions. 

RMSE is derived according to Equation 

(1). 

    2

0

/
n

k

RMSE Z xi z xi n


 
  

 
  (1) 

where Z(xi) is observed value at point xi 

z(xi) is predicted value at point xi, and N is 

number of samples. 

RESULTS  DISCUSSION 

Kriging methods work best if the data are 

approximately normally distributed. 

Kolmogorov–Smirnov test in SPSS was 

used to test the normality of the data. To 

normalize the parameters, logarithm and 

1/x were used respectively for SO4, EC and 

cation, anion. The first step for 

geostatistical application for a set of data is 

variogram analysis. The results of 

variogram analysis in the study area are 

presented in Table 3. 

Table 3. The results of variogram analysis. 
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0.0984 0.0583 0.36 -1.19 linear 0.0004 0.005 13896.22 0.092 0.61 7.262 Cation 
0.1052 0.0632 0.32 -1.27 exponential 0.0016 0.023 46678.77 0.930 0.69 7.653 Anion 
0.8268 0.3819 -0.09 -1.54 exponential 0.054 1.238 55529.55 0.956 0.82 6.207 SO4 
3.062 0.279 0.37 -1.02 exponential 0.0012 0.878 54576.92 0.976 0.96 5.597 EC 

 

As it can be inferred from Table 1, 

exponential semi-variogram and linear 

semi-variogram model are used for our 

study parameters. The strongest spatial 

structure can be observed in EC and SO4 

that is calculated as 0.959 and 0.819, 

respectively. However, cation is the lowest 

in this calculation. In order to find the best 

spatial correlation with the intended 

variable, cross-variogram was calculated in 

GIS +. The results of the cross-variogram 

data are shown in Table 4 and 2–5. 

 

AND 
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Fig 2. Cross variogram of SO4 and EC 

 

Fig 3. Cross variogram of SO4 and anion 

 

Fig 4. Cross variogram of anion and 
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Fig 5. Cross variogram of cation and anion 

Table 4. The results of cross-variogram analysis. 

 

Correlation matrix must be formed to 

predict the water quality in co-kriging. 

After that, one factor is used in this method 

that is known as the auxiliary variable. 

This is the highest correlation with the 

intended variable. Therefore, to estimate 

cation, anion, SO4, and EC, the auxiliary 
variables were used. RMSE was used to 

determine the best method of interpolation. 

Accordingly, the best method has the 

lowest RMSE. Table 5 shows the various 
amounts of RMSE in methods of 

interpolations. 

Table 5. Comparison of the RMSE values of geostatistical techniques 

RMSE 
Techniques 

Cation Anion SO4 EC 
0.0217 0.0231 0.2081 0.09933 Co-Kriging 
0.0481 0.0519 0.213 0.1131 Disjunctive Kriging 
0.0336 0.0366 0.1931 0.1121 Universal Kriging 
0.0479 0.0289 0.2081 0.1190 Simple Kriging 
0.0336 0.0366 0.193 0.111 Ordinary Kriging 
0.0482 0.0253 0.3176 0.234 IDW 
0.0320 0.0361 0.026 0.153 Radial Basis function 
0.0398 0.0429 0.0209 0.0913 Global Polynomial Interpolation 
0.0278 0.0306 0.1970 0.0854 Local Polynomial Interpolation 

 

Table 5 shows that co-kriging is the best
 method for cation and anion, whereas local

 

polynomial interpolation is suitable for

 

SO4. Finally, the maps were interpolated in 

Arc map (Figs  6–9). 

Nugget 

effect Sill R0(Effective 

Range Model 
Spatial 

correlation 

coefficient 

correlation 

coefficient 
Auxiliary 

Variable Variable 

0.00185 0.02410 50956.9348 Exponential 0.656 0.989 Anion Cation 
0.00065 0.00599 31100.00 Linear 0.729 0.989 Cation Anion 
0.0106- -0.192 55373.6643 Exponential 0.711 0.958 Anion SO4 

0.1 1.195 54854.0491 Exponential 0.528 0.925 SO4 EC 

. 
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Fig 6. Variation amplitude of EC value 

 

Fig 7. Variation amplitude of anion value 

 

Fig 8. Variation amplitude of cation value 
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Fig 9. Variation amplitude of SO4 value 

CONCLUSION 
The primary objective of this study was to 

map and evaluate spatial variations 

modeling of groundwater in Mehran plain. 

The results of the interpolation of 

groundwater quality factors (Figs 7–9) 

showed that there is approximately a good 

adaption between selected parameters and 

geomorphology and topology of the region. 

The highest concentration is in the 

northwest and western parts of the region, 

where it has the minimum height and 

agricultural land. Inappropriate irrigation 

system causes the west of the Mehran plain 

to have high concentrations of elements 

(Karimi et al., 2011). However, growth of 

arable land and agricultural activities has 

caused increasing concentration of studied 

elements, especially EC, in this region. 

Groundwater quality gives a clear picture 

about the usability of water for different 

purposes; therefore, choosing the best 

evaluation method is significant. The 

studied variables are spatial and temporal 

parameters that are measured with great 

difficulty because of the large surface area 

of land and also impossible in some areas, 

especially when there is a shortage of time 

and high cost. Therefore, the use of a 

suitable tool to monitor groundwater 

quality parameters using limited sampling 

points is essential. The results indicate that 

geostatistical methods, especially co-

kriging and kriging are appropriate to 

assess the groundwater quality. Our results 

concur with that of studies by Hudak and 

Sanmanee (2003) in Texas, Zehtabian et al. 

(2010) in Garmsar of Iran, Maghami et al. 

(2011) in Abadeh-Iran and Yan et al. 

(2013) in China. 
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