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ABSTRACT 

 

Deep Eutectic Solvents (DES) are liquid mixtures prepared from solids. As a new class of 

green solvents, DES not only share many properties with ionic liquids, such as low volatility, 

conductivity, tailorable constituents, but also have some advantages over ionic liquids, like easier 

preparation, safe and inexpensive materials, biodegradability, low toxicity, and excellent solubility. 

Because of those attractive properties, DES has been studied in many scientific and engineering 

fields. However, compared with the great number of studies of the application, many questions 

about structure and dynamics of DES are unanswered. To shed light on the mystery of solvent or 

solvation structure and dynamics, we investigated the DES systems with Fourier Transform 

Infrared (FTIR) and Two-Dimensional Infrared spectroscopy (2DIR). Vibrational transitions 

measured by infrared spectroscopy serve as sensitive probes to report the local environment and 

dynamics. We studied the solvation structure and dynamics of choline chloride-based DESs with 

thiocyanate probe. The interactions between solute and solvation shell were assigned by use of 

FTIR and confirmed by Molecular Dynamics (MD) simulation. The vibrational mode of infrared 

probes allowed detection of the solvation dynamics in choline chloride-based DESs as in-place 

and inter-solvation shell motions within picosecond timescale. Assignments were confirmed by 

the analysis of MD simulation. In another project, we studied the effects of the molecular structure 

of hydrogen bond acceptor on the structure and dynamics of acetamide based DES. Our studies 

show that symmetry of the HBA cation will affect the contribution of slow molecular motion of 

the environment. The overall dynamics is rationalized in terms of a microscopic heterogeneous 

structure of the DESs, where the heterogeneities create domains that slow making and breaking of 

the hydrogen bond. Heterogeneity was further supported by the use of MD simulation. Lastly, we 
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investigated the interactions and solvent structure of a non-ionic DES composed of N-

methylacetamide and lauric acid. The interactions among the components were observed with 

FTIR and temperature-dependent experiments. Finally, the heterogeneous structure of DES with 

polar and non-polar domains was proposed, and verified by observed confined dynamics of amide 

band and probes, which is similar to reported water dynamics in reverse micelles. 
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CHAPTER 1 

INTRODUCTION 

 

1.1. Background  

Solvents play an essential role in most areas in chemistry, such as synthetic, analytical, 

pharmaceutical, and environmental.1-2 With the rising demands of chemical processes, the current 

molecular solvents cannot fulfill all new and innovative needs. Conventional solvents, including 

water and organic solvents, are limited by their fixed physical or chemical properties. In addition, 

in the case of conventional solvents by their toxicity, high vapor pressure, safety hazards, and 

waste management issues.3 With the idea of green chemistry, most of the molecular solvents 

cannot meet the requirements of the application in green technology due to properties of being 

environmentally unfriendly and/or having poor recyclability.3-5 This has spurred researchers to 

find alternative solvents that will lower the environmental cost of solvent applications and other 

requirements.  

 During the last several decades, efforts have been made toward the development of 

alternative solvents. These efforts include using supercritical fluids, specifically supercritical 

carbon dioxide (scCO2).5 Because of its unique properties at the supercritical point, methods using 

scCO2 are also considered solventless methods. Supercritical CO2 has been widely employed in 

the separation and the extraction process.6-8 Compared with conventional distillation, the 

efficiency of the supercritical fluid is much higher.8 However, the limited applied conditions of 

the supercritical fluid are a drawback for broad application. The other solution for the alternative 

of molecular solvents is complex solvents, including ionic liquids (ILs) and deep eutectic solvents 

(DESs). 
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 In salts, even at the liquid phase, only ions exist, which causes low vapor pressure. Ionic 

liquids are salts with melting temperatures below 100 °C or below room temperature.9 Even though 

the first ILs, ethylammonium nitrate (EtNH3NO3) was reported in 1914,10 the research of ILs has 

attracted more attention in the last several decades, and the number of published work concerning 

ILs was grown exponentially.11 The primary advantage of ILs is negligible vapor pressure, which 

allows ILs to be stable even at high temperatures and to be non-flammable. Compared with volatile 

organic solvents,12 ILs are also considered to be green solvents.13 Another excellent advantage of 

ILs is that the structure of ILs can be tailored by different combinations of cations and anions. This 

property not only allows the physical or chemical properties of ILs to be tunable but also makes it 

possible to put catalytic groups into the structure, which combines the roles of solvent and 

catalysts.4, 9, 14 Due to the tailorable property, ILs are considered as a class of “Designer Solvent.”15 

Moreover, the other advantages, such as conductivity,16-17 broad electrochemical window,17-18 and 

high solvation power, shows that ILs have promising value as an alternative solvent. 

 Several issues of ILs limit them from wide spread application. First, the cost of starting 

materials and the synthesis process are issues that cannot be ignored, especially when compared 

with conventional solvents. Moreover, the relatively small market for ILs leads to their application 

at the laboratory scale instead of the industrial scale.19 A second issue with ILs is that they are 

sensitive to impurities.20-21 The ILs have to be of very high purity and have to be operated in an 

inert atmosphere because moisture and CO2 in the environment will dissolve in ILs,22 which further 

increases the cost of ILs applications. 

 During the last two decades, Deep Eutectic Solvents (DESs) have been discovered as a 

new class of designer solvents. DESs is the liquid phase mixture of two or more solid components. 

The interaction between the components, such as hydrogen bonding interaction, depresses the 
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melting point of the mixture lower than the melting point of each component. The freezing 

behavior of DESs is presented in figure 1.1.20 The first DES, a mixture of metal chloride and 

quaternary ammonium salt, was reported in 2001 by Abbott et al.23 Later on in 2003, Abbott and 

coworkers reported the DESs composed of quaternary ammonium salt and urea as Hydrogen Bond 

Acceptor (HBA) and Hydrogen Bond Donor (HBD), respectively.24 Since more and more DESs 

have been discovered, the DESs are classified into four types by Abbott and co-workers in 2007, 

as shown in table 1.1.20  

 

 

Figure 1.1. Scheme of a two-component phase diagram 
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Table 1.1. Categories of DESs 

Type I Organic salt + metal salt 

Type II Organic salt + metal salt hydrate 

Type III Organic salt + hydrogen-bond donor 

Type IV Metal salt + hydrogen-bond donor 

 

 

Because the individual components of DESs are solid at room temperature, the vapor 

pressure of DESs is extremely low, which is similar to ILs. In addition, DESs share other properties 

of ILs, like conductivity, nonflammable, and tailorable structure; thus, DESs are considered as an 

analog of ILs.20, 25 Besides the similarity to ILs properties, DESs have several advantages over ILs. 

First, the materials used to make DESs are usually inexpensive and easy to prepare. Choline 

chloride, (2-hydroxyethyl)trimethylammonium chloride, the most popular hydrogen acceptor in 

DESs, is a very inexpensive, quaternary ammonium salt, which can be produced at a rate of a few 

thousand tons per year through a high-efficiency process.26 The materials used as a hydrogen bond 

donor are usually simple organic acids, alcohols, or amides, which are also inexpensive and easily 

acquired. Further, the synthesis simply consists of mixing the components. Compared with the 

preparation of ILs, ion exchange and inert gas atmosphere are necessary.20 The preparation of 

DESs is a 100% atom economy process. These properties ensure the industrial application value 

of DESs. Secondly, even though ILs are considered as “green solvents,” most of the ILs studied 

are toxic or not biodegradable.25, 27 The materials in most DESs are non-toxic and biodegradable. 

For example, choline chloride can be added to chicken feed as a food additive.28 With the demand 

of safer materials used, some Natural Deep Eutectic Solvents (NADES) have been reported. They 
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are composed of natural compounds, especially metabolites, such as organic acids, sugars, and 

amino acids.29-30 Moreover, the structure of both DESs and ILs can be tailored to meet different 

requirements, but DESs allow more freedom than ILs. Not only the type DES can be produced 

from the combinations of different hydrogen bond donors and acceptors, but also the ratios of 

components can adjust the solvent properties.24-25 With the different molar ratios of DESs, the 

physicochemical properties, like melting point, density, ionic conductivity, viscosity, and solvent 

structure, can be varied.  

 

1.1.1. Applications 

 DESs have been studied in various fields including dissolution and separation processes, 

catalysis, electrochemistry processes, polymerization, and recently oil-spill recovery.20,25,31-33 

Most of DESs are composed of hydrogen bond donors and acceptors through strong hydrogen 

bond interaction.34 Because of this feature, DESs can be an excellent solvent with the ability to 

dissolve a wide variety of materials, such as salts, proteins, drugs, amino acids, sugars, 

polysaccharides, etc.35-37 More interestingly, DESs can dissolve various metal oxides, which, when 

combined with conductivity, can be used in metal recovery, metal deposition, and polishing 

processes.38-42 Another benefit of using DESs is drug solubilization. Morrison, et al. reported the 

dissolution of several poorly soluble drugs (macromolecules) in DESs, reline (choline 

chloride/urea), and maline (choline chloride/malonic acid).35 The solubility of studied drugs in 

pure DESs are one to five orders of magnitude times higher than that in pure water. Even for the 

aqueous mixture of DES, the solubility of drugs is enhanced. Combining the feature of low toxicity, 

DESs are accepted as promising carriers for oral dosing of rats during early medicinal 

investigation.43 



6 

 

 One industrial application of DESs is glycerol removal from raw biodiesel due to its high 

polarity. During the transesterification reaction of vegetable oil with either methanol or ethanol, 

glycerol is produced as a by-product, and even after separation, a non-negligible amount of 

glycerol remaining in the biodiesel. Abbott et al. used various quaternary ammonium salts into the 

biodiesel, forming DES to extract glycerol from biodiesel.44 Because of high polarity, these DESs 

are immiscible with biodiesel. Later choline chloride/glycerol, at a molar ratio of 1:1, was found 

to be the best combination of DES to remove residual glycerol from biodiesel.45 Some other DESs 

like choline chloride with ethylene glycol and trifluoroacetamide were also reported as an efficient 

extractor of residual glycerol.46-47 

 DESs have also been applied as electrolytes for electrodeposition or as solvents for 

electrochemistry reactions. Even though ILs have successfully proved their potential over water 

and other organic solution,48-49 the drawback of ILs for electrochemistry application, such as 

sensitive to water and possible degradation, cannot be ignored. Due to many similarities with ILs, 

DESs have successfully replaced ILs in electrochemistry application. A variety of choline 

chloride-based DESs has been reported to be successful electrolyte of electrodeposition.42,50-52  

 DESs have also been studied in polymer synthesis. Mota-Morales have reported frontal 

polymerization in choline chloride-based DESs in 2011.53 During the polymerization process, 

DESs not only play the role of the polymerization medium. The polymerization performance in 

DESs is proven much better than conventional organic solvents and ionic liquids. The components 

of DESs is also the monomer in the polymerization process, which is called all-in-one system.31,54 

The polymerization in DESs with HBD,53,55 and cation of HBA salts56-57 as monomer were studied, 

respectively. The containing of monomers can be modified, which can avoid the uncontrolled 

polymerization problem from using ionic liquids.  
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 A recent application of DESs involves application as a phase-selective gelator in the 

recovery of the oil after an oil spill.32 The DES prepared from N-methylacetamide, and lauric acid 

was found to have the capacity to make oil gelation when added to a mixture of water and oil. 

When compared with previous synthetic gelators, this DES has a significant advantage because 

the only required process for preparation of the gelator is mixing. Even though only lauric acid 

can cause the oil to gel, the structure of DES with a lauric acid makes it easier to apply to an oil-

spill, which is confirmed by comparing DES with lauric acid power and a mixture of lauric acid 

and ethanol. 

 

1.2. Previous study of structure and dynamics of DES 

1.2.1. Solvent structure and interactions between components 

Reports on applications of DESs are abundant.20, 25, 33 In contrast, there are only a few 

studies of structure and dynamics of both solvent and solvation. In 2011, Abbott et al. have 

reported the molecular motion and ion diffusion in choline chloride-based DESs by time-resolved 

Nuclear Magnetic Resonance (NMR) spectroscopy.58 They studied four DESs, which contain 

choline chloride as the hydrogen bond acceptor for all the DESs with ethylene glycol, glycerol, 

urea, or malonic acid as hydrogen bond donors, respectively. Through the result of all the DESs 

from Pulsed Field Gradient NMR (PFG-NMR), the translation of HBDs (alcohols or urea 

molecules) diffuses faster than choline cation, while in malonic based DES are opposite due to the 

acid dimer formation. Moreover, the temperature dependent diffusion coefficients of all the 

samples were measured, and they obey the Arrhenius equation. The diffusion of choline cation is 

more influenced by temperature than the associated HBD molecules. 
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Similar DES systems were also studied by Quasielastic Neutron Scattering (QENS) by 

Mamontov et al.59 The authors used a DES composed of glycerol and choline chloride to reveal 

the differential microscopic motion between choline cations and HBD molecules. Because of the 

strong interaction between chloride anion and the HBDs through hydrogen bonding, the dynamics 

of HBD are restricted, wherein the interaction of choline and chloride ions are weaker. Thus result 

the choline cations experience less restrictive local transient confinement than hydrogen bond 

donor molecules, even though the particle size of choline cation in the DESs is bigger than 

glycerol. 

The interaction of components in the choline chloride-based DESs have also been studied 

by Molecular Dynamics (MD) simulation combined with FTIR spectra by Colina et al.60-61 By 

examining the systems of choline chloride-based DESs with ethylene glycol, glycerol, urea, and 

malonic acid as HBDs, they highlighted the importance of the strong hydrogen bond interaction 

between hydrogen bond donor molecules and chloride anions, which takes more than a 50% 

fraction of the hydrogen bonds in all the DESs. The intermolecular hydrogen bond between HBD 

molecules also appears, but with less significance. Their FTIR spectra of the DES with malonic 

acid, along with each component as comparisons, shows that both the hydroxyl and carbonyl 

region have a vibrational coupling, making the frequencies shift and shapes broader. 

The charge delocalization of DESs was also studied with ab-initio molecular dynamics 

simulation by Mollenhauer et al.62 The authors compared the charge distribution in choline based 

DESs with urea, ethylene glycol, and oxalic acid as HBDs, respectively. Also, the strong hydrogen 

bonding between anions and HBD molecules is confirmed. The author also showed that the varied 

hydrogen bond strengths between anion and HBDs will change the charge distribution of the cation 

on nitrogen and oxygen atoms. Finally, the distance between the anion and atoms of the cations 
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reveals that the major interaction between anion and cation in choline chloride-based DESs is 

through the anion and OH group of the cation. 

Those studies focused on the interactions of cations and HBDs in the pure DES. It is worth 

noting that in Colina’s work, the authors mentioned the interaction through cations and HBDs have 

the smallest hydrogen bond contribution by the analysis of the Radial Distribution Function (RDF). 

Also, Mollenhauer’s work confirms that the hydrogen bonding through choline OH group by the 

charge of oxygen in choline is reduced from the gas phase.62 However, the overall picture of how 

the interaction through OH group of choline and the interactions between the choline hydroxyl 

group and HBDs is not provided. Furthermore, the influence of the chemical structure of the cation 

of HBAs in type III DESs is also a mystery. 

 

1.2.2. Solvation structure and dynamics of DESs 

 The solvation structure and dynamics are equally important as those of the solvent alone 

since they can help to understand the interaction between solute and solvent microscopically and 

lead to developing the application of DESs. Over the last several years, the solvation structure and 

dynamics of solutes in DESs have been investigated.  

 Biswas and his co-workers investigated the solvation structure and dynamics of multiple 

types of DESs via steady-state and time-resolved spectroscopy.63-69 Among them, the acetamide-

electrolyte DES have been extensively studied by femtosecond Raman-induced Kerr effect 

spectroscopy, steady state, and time-resolved fluorescence spectroscopies. In these studies, the 

authors used molecular dyes (chromophore) as the solute to report the solute-solvent interaction. 

The dye molecules of fluorescence can emit light upon light excitation. With this method, the 

translation and rotation of the deep eutectic mixture of acetamide and different alkali metal 
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electrolytes or their combinations are explored.66,69 Their results showed that pronounced solution 

heterogeneity exists in the deep eutectic mixtures of acetamide with alkali metal inorganic salts. 

 The same group also studied the reactive and nonreactive dynamics of the most popular 

type III DESs, choline chloride with urea, by steady and time-resolved fluorescence 

spectroscopy.70 According to their study, the system choline chloride-urea presents moderate 

spatial and dynamical heterogeneity. Interestingly, the solvation and rotation times in the DES 

have different correlations while changing components, while that correlation conventional 

molecular solvent and ionic liquid are considered to be the same. This phenomenon shows that the 

differential rotation and solvation dynamics with the medium. Plus, this study provides evidence 

of deep eutectic solvent differing significantly from ionic liquids. 

 

1.2.3. The solvent structure of non-ionic DES 

 DESs are classified into four types as mentioned,20 but there are several non-ionic based 

DESs that have been reported.32,63,71 these DESs fall outside of the four classes of DES defined by 

Abbott. The structure and dynamics of one of these DESs, composed of acetamide and urea, was 

studied by Biswas et al.63 The non-ionic DES has a spatial and dynamical homogeneity, which 

differs from the same group of measured ionic DESs, with either moderate or pronounced spatial 

and dynamical heterogeneity. The homogeneous solution structure was also supported by the 

analysis of all-atom MD simulation.  

 Later, the hydrophobic DESs composed of menthol and carboxylic acid were reported.71 

The author explored menthol based DES and found the eutectic mixing ratios of each constituent 

and examined the physical properties. It is worth noting that, their viscosity and density are lower 
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than regular ionic DESs. The FTIR spectra of each eutectic mixture confirmed the hydrogen bond 

interaction between menthol and hydrogen bond donor (carboxylic acid). 

 Another hydrophobic non-ionic DES, the mixture of NMA-LA, was reported in 2017, 

which is similar to the menthol based DES.32 This DES has a lot of similarity with the menthol 

based DES, including low density and viscosity, hydrophobicity, and also has hydrogen bond 

interaction between the two components. However, unlike the menthol-based DES, because both 

NMA and lauric acid contain carbonyl group and a OH or NH group, they both have the capacity 

to be considered as a hydrogen bond acceptor and donor. Currently, there is no work investigating 

the interaction between amide and carboxylic acid in the DES system. Interestingly, from the 

polarity view, the NMA molecule is polar and hydrophilic, and because of the long alkane chain, 

lauric acid is hydrophobic. Moreover, their mixture is also hydrophobic. The questions on what is 

the position of NMA in the DES, and will that cause a heterogeneous microstructure in the DES 

are unanswered. 

 

1.3. Structural and dynamical study with infrared spectroscopy 

The structure and dynamics of DESs can be studied experimentally by adding a 

chromophore that can sense the structure or dynamics directly or indirectly. For infrared 

spectroscopy, some groups, like carbonyl, and nitrile groups, are widely employed to study the 

structure and dynamics of the condensed phase.72-79 Compared to molecular dyes previously 

mentioned, the infrared probe is sensitive to the local environmental change because of the small 

size, while common molecular dyes are a large molecules. Moreover, the low energy of the light 

source of time-resolved infrared spectroscopy causes a negligible change in temperature, which  
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ensures that the system equilibrium remains unchanged.80-81. Therefore, the investigation of 

structure and dynamics of DESs are carried out with the steady-state and time-resolved infrared 

spectra of probes in DESs. 

In addition to Fourier Infrared Spectroscopy as a steady-state spectroscopy, Two-

Dimensional Infrared Spectroscopy is another major technique used in this work. 2DIR 

spectroscopy is the infrared analogue of 2D NMR. The advantage of 2DIR is that it is capable of 

measuring the evolution of vibrational transitions of structures in picosecond or even sub-

picosecond timescale. The first femtosecond three pulse infrared photon echo was measured by 

Hochstrasser and co-workers favored from the advent of femtosecond laser.82 The following 

decades 2DIR spectroscopy was used to investigate structure and dynamics in many fields, 

including aqueous systems,83-89 biochemistry,90-93 ionic liquid,94-97 polymer,98, electrolyte,99-100 and 

interface of nanoparticles.101-102  

The signal of 2DIR, vibrational photon echo, is produced by the interaction of three 

femtosecond infrared pulses with a sample. The photon echo generated at the phase-matching 

direction, is measured with heterodyne detection by overlapped with a forth phase-locked pulse, 

called local oscillator. The raw data collected at varied coherence time and detection time but 

constant delay time, will be transferred with Fourier Transform to frequency-domain as coherence 

and detection frequency, respectively. A 2DIR spectrum is contoured intensity of  versus t as 

different T. By comparing the correlation between  and t with different T, the dynamics such 

as chemical exchange, energy transfer, and spectral diffusion can be extracted. 
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1.4. Outline of this thesis 

The focus of the work described in this thesis is to investigate solvent and solvation 

structure and dynamics of Deep Eutectic Solvents using FTIR and 2DIR spectroscopy assisted 

with Molecular Dynamics simulation. In chapter 2, the theory of third-order nonlinear response, 

signal treatment after-acquired, and Liouville pathways are described with the diagrammatic 

approach. The experimental details of 2DIR, like data collecting and methods of data analysis, are 

also described. 

In chapter 3, the solvation dynamics of three choline based DESs with ethylene glycol, 

glycerol, and urea, respectively, were investigated. The nitrile stretching mode in thiocyanate ion 

as an infrared probe detected the solvation dynamics in all the DESs as in-place and inter-solvation 

shell motions within a picosecond timescale. The assignment was confirmed by use of MD 

simulation and ab initio computations. Finally, frequency fluctuations of the probe in DESs 

calculated from the combination FTIR and 2DIR data showed the DES with urea has better 

organized molecular structure than the other two DESs. 

In Chapter 4, my studies focus on the effect of the side chain of hydrogen bond acceptor in 

the amide-based DES. The differential dynamics was extracted from the 2DIR spectra of the 

carbonyl of naturally contained isotope 13C in each DES as a probe. All DESs were observed to 

have hydrogen bond making and breaking dynamics. The symmetry of HBA cation affects the 

contribution of slow molecular motion of the environment. The overall dynamics is rationalized 

in terms of a microscopic heterogeneous structure of the DESs, where the heterogeneities create 

domains that slow the hydrogen bond making and breaking. The heterogeneity was further 

supported by molecular dynamics simulation. 
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Chapter 5 is a presentation of an investigation of the interactions between constituents of a 

non-ionic DES composed of N-methylacetamide (NMA) and lauric acid (LA). In the DES, 

interactions between self-species and inter-species of the two components are observed. The 

heterogeneous structure of DES with polar and non-polar domains was proposed and verified by 

observing confined dynamics of amide I band and probes, which is similar to reported water 

dynamics in reverse micelles.  
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CHAPTER 2 

LINEAR AND NONLINEAR INFRARED SPECTROSCOPY 

 

The following chapter focuses on the theory of linear and two-dimensional infrared 

spectroscopies. The signal of infrared absorption spectroscopy is related to macroscopic 

polarization, which is generated by the interaction of electrical fields and chromophores as a light-

matter response. The polarization was described through several theoretical approaches.1-5 In this 

chapter, a semi-classical approach was adopted, where the chromophore is treated quantum 

mechanically, and the electromagnetic field is considered classically. Vibrational lineshape will 

be discussed quantitatively through a stochastic model. The details about the 2DIR experiment 

including photon echo generation, heterodyne detection, experimental setup, and data collection 

including analysis will be provided. Finally, the experimental details of 2DIR, such as femtosecond 

infrared laser generation and heterodyne detection, will be described. 

 

2.1. Theoretical molecular response 

The time-dependent Hamiltonian of an isolated vibrator is expressed as: 

 𝐻(𝑡) = �̂�0 + �̂�(𝑡) (1) 

where H0 is time independent molecular Hamiltonian and �̂�(t) is time-dependent potential, which 

describes the interaction with the time-dependent electric field. The potential �̂�(𝑡) can be written 

as: 

 �̂�(𝑡) = −µ⃗ ∙ �⃗� (𝑡) (2) 

where µ⃗  is the transition dipole operator, and �⃗� (𝑡) is time dependent electric field. The solution is 

a wave function that fulfills the time dependent Schrodinger equation as  
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𝜕𝜕𝑡 |𝜓⟩ = − 𝑖ℏ �̂�(𝑡)|𝜓⟩. (3) 

 
𝜕𝜕𝑡 ⟨𝜓| = 𝑖ℏ ⟨𝜓|�̂�(𝑡). (4) 

The density operator of a pure quantum state |𝜓⟩ is defined as: 

 𝜌 ≡ |𝜓⟩⟨𝜓|. (5) 

Thus the time evolution of the density operator evolves is given by 

 
𝑑𝑑𝑡 𝜌 = − 𝑖ℏ �̂�(𝑡)𝜌 + 𝑖ℏ𝜌�̂�(𝑡) = − 𝑖ℏ [�̂�(𝑡), 𝜌]. (6) 

Equation 6 is the Liouville-von Neumann equation. The equation above considers the density 

matrix of a pure state, which is described by a single wavefunction. While in condensed-phase 

systems, the density matrix of the ensemble is defined as: 

 𝜌 = ∑𝑝𝑠|𝜓𝑠⟩⟨𝜓𝑠|𝑠  (7) 

where 𝑝𝑠 is the probability of the state |𝜓𝑠⟩, and ∑ 𝑝𝑠𝑠 = 1.  

The wavefunction in the interaction picture: 

 |𝜓(𝑡)⟩ ≡ 𝑒−𝑖ℏ�̂�0(𝑡−𝑡0)|𝜓𝐼(𝑡)⟩ (8) 

with the reference time 𝑡0. The time dependence of wavefunction in interaction picture is caused 

by the perturbation �̂�(𝑡). If the perturbation is zero, the wave function is  

 |𝜓𝐼(𝑡)⟩ = |𝜓(𝑡0)⟩. (9) 

Otherwise,  

 
𝜕𝜕𝑡 |𝜓𝐼(𝑡)⟩ = − 𝑖ℏ𝑉�̂�(𝑡)|𝜓𝐼(𝑡)⟩. (10) 

where the perturbation 𝑉�̂�(𝑡) in the interaction picture is defined as: 

 �̂�𝐼(𝑡) ≡ 𝑒 𝑖ℏ�̂�0(𝑡−𝑡0)�̂�(𝑡0)𝑒−𝑖ℏ�̂�0(𝑡−𝑡0). (11) 
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In the interaction picture, the density matrix is defined as: 

 |𝜓(𝑡)⟩⟨𝜓(𝑡)| = 𝑒−𝑖ℏ�̂�0(𝑡−𝑡0)|𝜓(𝑡)⟩⟨𝜓(𝑡)|𝑒 𝑖ℏ�̂�0(𝑡−𝑡0) (12) 

or  

 𝜌 = 𝑒−𝑖ℏ�̂�0(𝑡−𝑡0)𝜌𝐼(𝑡)𝑒 𝑖ℏ�̂�0(𝑡−𝑡0). (13) 

In addition, the time-dependent Schrödinger Equation translated to the Liouville-von Neumann 

equation is  

 
𝑑𝑑𝑡 𝜌𝐼(𝑡) = − 𝑖ℏ [�̂�𝐼(𝑡), 𝜌𝐼(𝑡)]. (14) 

The power expansion of the density matrix in the interaction picture is 

 

𝜌𝐼(𝑡) = 𝜌𝐼(𝑡0) + ∑ (− 𝑖ℏ)𝑛 ∫𝑑𝜏𝑛𝑡
𝑡0 ∫ 𝑑𝜏𝑛−1 …𝜏𝑛

𝑡0 ∫ 𝑑𝜏1𝜏2
𝑡0

∞
𝑛=1  

[�̂�𝐼(𝜏𝑛), [�̂�𝐼(𝜏𝑛−1),… [�̂�𝐼(𝜏1), 𝜌𝐼(𝑡)]… ]]. (15) 

When the equation above is substituted into equation (13), the density matrix of Schrodinger 

picture is 

 

𝜌(𝑡) = 𝜌(𝑡0) + ∑ (− 𝑖ℏ)𝑛 ∫𝑑𝜏𝑛𝑡
𝑡0 ∫ 𝑑𝜏𝑛−1 …𝜏𝑛

𝑡0 ∫ 𝑑𝜏1𝜏2
𝑡0

∞
𝑛=1  

𝑒−𝑖ℏ�̂�0(𝑡−𝑡0) [�̂�𝐼(𝜏𝑛), [�̂�𝐼(𝜏𝑛−1), … [�̂�𝐼(𝜏1), 𝜌(𝑡0)]… ]] 𝑒 𝑖ℏ�̂�0(𝑡−𝑡0) 
 ≡ 𝜌(0)(𝑡) + ∑ 𝜌(𝑛)(𝑡)∞

𝑛=1 . 
(16) 

Here, the first term is the 0th-order density matrix. Plugging equation (2) into above equation will 

lead the density matrix nth-order density matrix to: 
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𝜌(𝑛)(𝑡) = −(− 𝑖ℏ)𝑛 ∫𝑑𝜏𝑛𝑡
𝑡0 ∫ 𝑑𝜏𝑛−1 …𝜏𝑛

𝑡0 ∫ 𝑑𝜏1𝜏2
𝑡0 𝐸(𝜏𝑛)𝐸(𝜏𝑛−1)…𝐸(𝜏1) 

𝑒−𝑖ℏ�̂�0(𝑡−𝑡0)[�̂�𝐼(𝜏𝑛), [�̂�𝐼(𝜏𝑛−1),… [�̂�𝐼(𝜏1), 𝜌(𝑡0)]… ]]𝑒 𝑖ℏ�̂�0(𝑡−𝑡0) (17) 

A macroscopic polarization is generated after interaction with the radiation. The polarization and 

emitted signal electric field have a 90 degree phase difference, which is expressed as 𝐸𝑠𝑖𝑔(𝑡) =𝑖𝑃(𝑡),  

where the polarization is given according to the matrix density as: 

 𝑃(𝑡) = 𝑇𝑟(�̂�𝜌(𝑡)) ≡ 〈�̂�𝜌(𝑡)〉. (18) 

Then the nth-order polarization can be expressed as: 

 
𝑃(𝑛)(𝑡) = −(− 𝑖ℏ)𝑛 ∫𝑑𝜏𝑛𝑡

𝑡0 ∫ 𝑑𝜏𝑛−1 …𝜏𝑛
𝑡0 ∫ 𝑑𝜏1𝜏2

𝑡0 𝐸(𝜏𝑛)𝐸(𝜏𝑛−1)…𝐸(𝜏1) 

〈�̂�(𝑡)[�̂�(𝜏𝑛), [�̂�(𝜏𝑛−1),… [�̂�(𝜏1), 𝜌(𝑡0)]… ]]〉 (19) 

where the dipole operator is defined as: 

 �̂�(𝑡) = 𝑒 𝑖ℏ�̂�0(𝑡−𝑡0)�̂�𝑒−𝑖ℏ�̂�0(𝑡−𝑡0). (20) 

When the time in equation (19) is replaced by the time step interval,  

 

𝑡0 = −∞ 𝜏1 = 0 𝑡1 = 𝜏2 − 𝜏1 𝑡2 = 𝜏3 − 𝜏2 …… 𝑡𝑛 = 𝑡 − 𝜏𝑛 

(21) 

the equation (19) can be rewritten as: 
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𝑃(𝑛)(𝑡) = −(− 𝑖ℏ)𝑛 ∫ 𝑑𝑡𝑛∞
0 ∫ 𝑑𝑡𝑛−1∞

0 …∫ 𝑑𝑡1∞
0  

𝐸(𝑡 − 𝑡𝑛)𝐸(𝑡 − 𝑡𝑛 − 𝑡𝑛−1)…𝐸(𝑡 − 𝑡𝑛 − 𝑡𝑛−1 − ⋯− 𝑡1) ∙ 〈�̂�(𝑡𝑛 + 𝑡𝑛−1 + ⋯+ 𝑡1)[�̂�(𝑡𝑛−1 + ⋯+ 𝑡1), … [�̂�(0), 𝜌𝑒𝑞] … ]〉 (22) 

Therefore, the nth-order nonlinear response function has the form as: 

 

𝑅(𝑛)(𝑡𝑛, … , 𝑡1) = −(− 𝑖ℏ)𝑛𝜃(𝑡)〈�̂�(𝑡𝑛 + ⋯+ 𝑡1)[�̂�(𝑡𝑛−1 + ⋯+ 𝑡1), … , [�̂�(0), 𝜌𝑒𝑞]… ]〉. (23) 

To explicitly include causality, Heaviside step function 𝜃(𝑡) is inserted. The response function is 

proportional to the polarization. According to the response function, first and third order 

spectroscopy can be accessed. 

 

2.2. Linear response 

The first order or linear response function is expressed as a function of the molecular 

system and its interaction, equation (23), with an incident field: 

 

𝑅(1) = −(− 𝑖ℏ)𝜃(𝑡)〈�̂�(𝑡), [�̂�(0), 𝜌𝑒𝑞]〉 
= (𝑖ℏ)𝜃(𝑡)𝑇𝑟 (�̂�(𝑡)�̂�(0)𝜌𝑒𝑞 − �̂�(𝑡)𝜌𝑒𝑞�̂�(0)) 

= (𝑖ℏ)𝜃(𝑡)(𝐶𝜇(𝑡) − 𝐶𝜇∗(𝑡)) 

(24) 

where 𝐶𝜇(𝑡) is the dipole correlation function. Because the dipole operator is Hermitian, the first 

order response function is the imaginary part of the dipole correlation function.  
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2.3. Third-order response 

Using the similar method of the linear response function, the third order response function 

can be obtained as eight terms, four terms and their complex conjugates. 

 𝑅(3)(𝑡3, 𝑡2, 𝑡1) = −(− 𝑖ℏ)3 𝜃(𝑡1)𝜃(𝑡2)𝜃(𝑡3)∑𝑅𝑖(𝑡3, 𝑡2, 𝑡1) − 𝑅𝑖∗(𝑡3, 𝑡2, 𝑡1)4
𝑖=1 ; (25) 

where the response 𝑅𝑖 is written as: 

 𝑅1(𝑡3, 𝑡2, 𝑡1) = 𝑇𝑟(�̂�(0)�̂�(𝑡1 + 𝑡2)�̂�(𝑡1 + 𝑡2 + 𝑡3)�̂�(𝑡1)𝜌𝑒𝑞) (26) 

 𝑅2(𝑡3, 𝑡2, 𝑡1) = 𝑇𝑟(�̂�(0)�̂�(𝑡1)�̂�(𝑡1 + 𝑡2 + 𝑡3)�̂�(𝑡1 + 𝑡2)𝜌𝑒𝑞) (27) 

 𝑅3(𝑡3, 𝑡2, 𝑡1) = 𝑇𝑟(�̂�(𝑡1)�̂�(𝑡1 + 𝑡2)�̂�(𝑡1 + 𝑡2 + 𝑡3)�̂�(0)𝜌𝑒𝑞) (28) 

 𝑅4(𝑡3, 𝑡2, 𝑡1) = 𝑇𝑟(�̂�(𝑡1 + 𝑡2 + 𝑡3)�̂�(𝑡1 + 𝑡2)�̂�(𝑡1)�̂�(0)𝜌𝑒𝑞) (29) 

Considering the time evolution of the system, response function 𝑅1can be described as: 

 

𝑅1(𝑡3, 𝑡2, 𝑡1) = 〈�̂�(0)�̂�(𝑡1 + 𝑡2)�̂�(𝑡1 + 𝑡2 + 𝑡3)�̂�(𝑡1)𝜌𝑒𝑞〉 = 〈�̂�(𝑡1 + 𝑡2)�̂�(𝑡1 + 𝑡2 + 𝑡3)�̂�(𝑡1)𝜌𝑒𝑞�̂�(0)〉 = 〈𝑈0†(𝑡1 + 𝑡2)�̂�𝑈0(𝑡1 + 𝑡2)𝑈0†(𝑡1 + 𝑡2 + 𝑡3)�̂�𝑈0(𝑡1 + 𝑡2+ 𝑡3)𝑈0†(𝑡1)�̂�𝑈0𝜌𝑒𝑞�̂�(0)〉 = 〈�̂�𝑈0(𝑡3)𝑈0(𝑡2)�̂�𝑈0(𝑡1)𝜌𝑒𝑞�̂�(0)𝑈0†(𝑡1)𝑈0†(𝑡2)�̂�𝑈0†(𝑡3)〉 
(30) 

The evolution of the systems can be seen as: 

 At 𝑡 = 0, the dipole operator acts on the bra side of density matrix. 

 The system evolves under 𝐻0 during 𝑡1, 𝑡2, and 𝑡3. 

 At 𝑡 = 𝑡1, the dipole operator acts on the ket side of density matrix. 

 At 𝑡 = 𝑡1 + 𝑡2, the dipole operator acts on the bra side of density matrix. 
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 At 𝑡 = 𝑡1 + 𝑡2 + 𝑡3, the polarization is generated by multiplying dipole operator on the ket 

side of density matrix and taking the trace. 

 

2.4. Rotating wave approximation and phase matching 

2.4.1. Rotating-wave approximation 

The macroscopic polarization 𝑃(𝑡) is also a function of the electric field 𝐸(𝑡). The precise 

way to include 𝐸(𝑡) is obtained by solving the time dependent Schrodinger equation (1). Equation 

(19) shows that the electric field of the third order polarization at given a time is: 

 
𝐸(𝑡) = 𝐸′(𝑡 − 𝜏1)𝑒−𝑖𝜔0(𝑡−𝜏1)+𝑖�⃗� 1𝑟 + 𝐸′(𝑡 − 𝜏2)𝑒−𝑖𝜔0(𝑡−𝜏2)+𝑖�⃗� 2𝑟 

+ 𝐸′(𝑡 − 𝜏3)𝑒−𝑖𝜔0(𝑡−𝜏3)+𝑖�⃗� 3𝑟 + 𝑐. 𝑐. (31) 

where 𝐸′  is the envelop of electric field, which is a 𝛿-function in time. The electric field are 

described by assuming that all the electric fields have the same center frequency and envelop. 

Therefore, the product of 𝐸(𝑡 − 𝑡1)𝐸(𝑡 − 𝑡1 − 𝑡2)𝐸(𝑡 − 𝑡1 − 𝑡2 − 𝑡3) in equation (19) for third 

order response will have 63 = 216 terms. 

When the center frequency of the pulses are close enough to the vibrational transition 

frequency of the chromophore, some of the phase factors can be canceled. After integration, the 

contribution of the left fast oscillatory factor is much smaller than slowly varying terms. Therefore, 

the fast oscillating term can be neglected, which is known as a rotating-wave approximation. Take 

the linear polarization for example, 

 𝑃(1)(𝑡) = (𝑖ℏ)∫ 𝜃(𝜏)∞
0 𝑑𝜏𝐸(𝑡 − 𝜏)〈�̂�(𝜏)�̂�(0)𝜌𝑒𝑞 − 𝜌𝑒𝑞�̂�(0)�̂�(𝜏)〉 (32) 
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= (𝑖ℏ)∫ 𝜃(𝜏)∞
0 𝑑𝜏 [𝐸′(𝑡 − 𝜏)𝑒−𝑖𝜔0(𝑡−𝜏)+𝑖�⃗� 1𝑟 

+ 𝐸′∗(𝑡 − 𝜏)𝑒+𝑖𝜔0(𝑡−𝜏)+𝑖�⃗� 1𝑟 ] 〈�̂�(𝜏)�̂�(0)𝜌𝑒𝑞〉 + 𝑐. 𝑐. 
And for a two-level system, the linear polarization is given by, 

 

𝑃(1)(𝑡) = (𝑖ℏ)∫ 𝜃(𝜏)∞
0 𝑑𝜏 [𝐸′(𝑡 − 𝜏)𝑒−𝑖𝜔0(𝑡−𝜏)+𝑖�⃗� 1𝑟 +𝑖𝜔0𝜏
+ 𝐸′∗(𝑡 − 𝜏)𝑒+𝑖𝜔0(𝑡−𝜏)+𝑖�⃗� 1𝑟 −𝑖𝜔0𝜏] 〈�̂�(𝜏)�̂�(0)𝜌𝑒𝑞〉 + 𝑐. 𝑐. (33) 

The second term of electric field expression is highly oscillatory and is ignored according to 

rotating-wave approximation. Thus, only the first term appears in the polarization.  

 

2.4.2. Phase matching 

The electric field is also the function of the wavevector and phase, the expression of the 

electric field is described as: 

 𝐸𝑛(𝑡) = 𝐸𝑛′ (𝑡) cos(�⃗� ∙ 𝑟 − 𝜔𝑡 + 𝜙). (34) 

In this case, the rotating-wave approximation also dictates phase and wavevector through an 

electric field, 𝐸(𝑡) ∝ 𝑒−𝑖𝜔𝑡+𝑖∅+𝑖�⃗� ∙𝑟  or 𝐸∗(𝑡) ∝ 𝑒+𝑖𝜔𝑡−𝑖∅−𝑖�⃗� ∙𝑟 . Then the polarization 𝑃1(3)  as a 

function of wavevector, phase, and 𝑅1 is: 

 
𝑃1(3) ∝ 𝑒𝑖(−�⃗� 1+�⃗� 2+�⃗� 3)∙𝑟 𝑒𝑖(−𝜙1+𝜙2+𝜙3) ∫ 𝑑𝑡3∞

0 ∫ 𝑑𝑡2∞
0 ∫ 𝑑𝑡1∞

0 𝐸3′′(𝑡 − 𝑡3)
∙ 𝐸2′′(𝑡 − 𝑡3 − 𝑡2) ∙ 𝐸1′′∗(𝑡 − 𝑡3 − 𝑡2 − 𝑡1)𝑅1(𝑡1, 𝑡2, 𝑡3) 

(35) 

and 𝑃4(3) is  



31 

 

 
𝑃4(3) ∝ 𝑒𝑖(�⃗� 1−�⃗� 2+�⃗� 3)∙𝑟 𝑒𝑖(𝜙1−𝜙2+𝜙3) ∫ 𝑑𝑡3∞

0 ∫ 𝑑𝑡2∞
0 ∫ 𝑑𝑡1∞

0 𝐸3′′(𝑡 − 𝑡3)
∙ 𝐸2′′∗(𝑡 − 𝑡3 − 𝑡2) ∙ 𝐸1′′(𝑡 − 𝑡3 − 𝑡2 − 𝑡1)𝑅4(𝑡1, 𝑡2, 𝑡3) 

(36) 

where 𝐸𝑛′′ is the envelop and time dependent of the electric field.  

The response function 𝑅𝑛(3) ≠ 0 only when 𝑡1 ≥ 0, 𝑡2 ≥ 0, and 𝑡3 ≥ 0. When the pulses 

separate in time, only one set of response functions will be measured in the corresponding phase-

matching direction. When 𝑡1 = 0, the−�⃗� 1 + �⃗� 2 + �⃗� 3  and +�⃗� 1 − �⃗� 2 + �⃗� 3 directions contain the 

same information, but the response function is not the same. 

Among all the combinations of phase matching direction with three pulse wavevectors, only beams 

in −�⃗� 1 + �⃗� 2 + �⃗� 3 and +�⃗� 1 − �⃗� 2 + �⃗� 3 direction are used in 2DIR spectroscopy, and the directions 

are illustrated figure 2.1. 

 

Figure 2.1. Phase matching direction selected in 2DIR spectroscopy. The number 1, 2, and 3 
indicate the input pulses. Through a lens, the non-rephasing (NR) and rephasing (R) are generated 
in the given direction. 
 

 

2.5. Diagrammatic Perturbation Theory: Feynman Diagram approach 

Diagrammatic Perturbation Theory is a simplified way to track the contribution of the 

nonlinear signal in a set of states of the system probed during the experiment. Double-side 

Feynman diagrams are the easiest representation for tracking the state of coherence in different 
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times. Feynman diagram interprets the microscopic origin of the signal by presenting the evolution 

of the density matrix under interaction with the electric field followed by time-propagation. The 

rule of drawing Feynman diagram is summarized as: 

 The vertical line on the left and right indicates the time evolution of the ket and bra of the 

density matrix. Time is increased from bottom to top. 

 Interactions with the light field are presented as arrows. An inward arrow to the vertical 

line represents absorption, and an outward arrow presents emission.  

 Each diagram has a sign (−1)𝑛, where n is the number of interaction on the bra side. The 

minus sign exists because of the interaction on right side in the commutator carrying a 

minus sign. The last interaction is not counted in this sign-rule because it is not a part of 

the commutator. 

 The arrow pointing to the right represents an electric field with 𝑒−𝑖(�⃗� ∙𝑟 −𝜔𝑡+𝜙), whereas the 

arrow pointing to the left represents electric field with 𝑒𝑖(�⃗� ∙𝑟 −𝜔𝑡+𝜙). 
 An arrow pointing towards the system represents an up-climbing of the bra or ket of the 

density matrix. 

 The last interaction must end in a population state. 

The Feynman diagram of corresponding possible Liouville pathways for the two-level 

system is shown in figure 2.2. In the diagram, the time interval of 𝑡1, 𝑡2, and 𝑡3 are replaced with 𝜏, 𝑇, and 𝑡, respectively. In the pathway of 𝑅1 and 𝑅2, the sign of the phase accumulated in 𝜏 and 𝑡 are opposite, which are called rephasing pathways. On the contrary, in the pathway represented 

by 𝑅3 and 𝑅4, the sign of the phase is unaltered and are named nonrephasing pathways. The signal 

emitted through rephasing and nonrephasing pathways in −�⃗� 1 + �⃗� 2 + �⃗� 3  and +�⃗� 1 − �⃗� 2 + �⃗� 3 

phase matching directions, respectively. The signal emitted at the phase matching direction of  
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−�⃗� 1 + �⃗� 2 + �⃗� 3  when the time order of �⃗� 2 preceding �⃗� 1  is the same as the signal at the phase 

matching direction of  +�⃗� 1 − �⃗� 2 + �⃗� 3 when the time order of �⃗� 1 preceding �⃗� 2. Therefore, at the 

direction of −�⃗� 1 + �⃗� 2 + �⃗� 3, both rephasing and nonrephasing signal can be detected by switching 

the pulse ordering (�⃗� 1, �⃗� 2, �⃗� 3) and (�⃗� 2, �⃗� 1, �⃗� 3). 

 

 

Figure 2.2. Feynman diagram of a two-level system 

 

Similarly, the Liouville pathways for three-level system at −�⃗� 1 + �⃗� 2 + �⃗� 3 phase matching 

direction are shown in figure 2.3. The response functions corresponding to the pathways are 

described as: 

 𝑅1(𝜏, 𝑇, 𝑡) = 〈�̂�01(0)�̂�01(𝜏 + 𝑇)�̂�01(𝜏 + 𝑇 + 𝑡)�̂�01(𝜏)〉 (37) 

 𝑅2(𝜏, 𝑇, 𝑡) = 〈�̂�01(0)�̂�01(𝜏)�̂�01(𝜏 + 𝑇 + 𝑡)�̂�01(𝜏 + 𝑇)〉 (38) 

 𝑅3(𝜏, 𝑇, 𝑡) = −〈�̂�01(0)�̂�21(𝜏 + 𝑇 + 𝑡)�̂�21(𝜏 + 𝑇)�̂�01(𝜏)〉 (39) 

 𝑅4(𝜏, 𝑇, 𝑡) = 〈�̂�01(𝜏)�̂�01(𝜏 + 𝑇)�̂�01(𝜏 + 𝑇 + 𝑡)�̂�01(0)〉 (40) 
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 𝑅5(𝜏, 𝑇, 𝑡) = 〈�̂�01(𝜏 + 𝑇 + 𝑡)�̂�01(𝜏 + 𝑇)�̂�01(𝜏)�̂�01(0)〉 (41) 

 𝑅6(𝜏, 𝑇, 𝑡) = −〈�̂�01(𝜏)�̂�21(𝜏 + 𝑇 + 𝑡)�̂�21(𝜏 + 𝑇)�̂�01(0)〉 (42) 

The sign of 𝑅3 and 𝑅6 are negative, and the frequency of coherence state during time 𝑡 are 𝜔21. 

 

 

Figure 2.3. Feynman diagram of a three-level system 

 

2.6. Vibrational lineshape 

In vacuum, the vibrational transition is presented as a line without width. However, the 
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condense phase. It is the time scale and amplitude of fluctuation that determines the width of the 

peak. In this section, the lineshape affected by vibrational dephasing is discussed classically, which 

was first illustrated by Ryogo Kubo over forty years ago.6 The stochastic force of the environment 

acting on the molecule causes the vibrational frequencies to fluctuate randomly with time. Thus 

the frequency of the dipole is considered as time-dependent, 𝜔(𝑡), which is assumed to have a 

Gaussian distribution. The time-dependent transition frequency is described as: 

 

 𝜔(𝑡) = �̅� + 𝛿𝜔(𝑡) 〈𝛿𝜔(𝑡)〉 = 0 

𝑃(𝛿𝜔(𝑡)) = 1𝜎√2𝜋 𝑒−𝛿𝜔(𝑡)2/2𝜎2
 

𝜎 = 〈𝛿𝜔(𝑡)2〉 
(43) 

The classical transition dipole also can be described as the linear relationship with the time-

dependent frequency as: 

 
𝜕𝜇𝜕𝑡 = −𝑖𝜔(𝑡)𝜇 (44) 

And the time-dependent dipole can be solved through 

 
𝜇(𝑡) = 𝜇(0)𝑒−𝑖 ∫ 𝑑𝜏𝑡0 𝜔(𝜏) = 𝜇(0)𝑒−𝑖�̅�𝑡−𝑖 ∫ 𝑑𝜏𝛿𝑡0 𝜔(𝜏) (45) 

Substituting equation (45) into the dipole correlation function result in, 

 〈𝜇(𝑡)𝜇(0)〉 = 〈|𝜇(0)|2𝑒−𝑖�̅�𝑡−𝑖 ∫ 𝑑𝜏𝛿𝑡0 𝜔(𝜏)〉 (46) 

When the treatment is applied with the Condon approximation, assume the magnitude of dipole is 

time-independent. It should be noted here; the dipole is treated without considering the vectorial 

nature. Therefore, the dipole can be taken out from the average as: 
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 〈𝜇(𝑡)𝜇(0)〉 = 𝐶𝜇(𝑡) = 𝜇2𝑒−𝑖�̅�𝑡Φ(𝑡) (47) 

where Φ(𝑡) is the dephasing function as: 

 Φ(𝑡) = 〈𝑒−𝑖 ∫ 𝑑𝜏𝛿𝑡0 𝜔(𝜏)〉. (48) 

Further, for a system with Gaussian statistics, the dephasing function can be simplified by the 

cumulant expansion of the average as: 

 Φ(𝑡) = 𝑒−𝑖 ∫ 𝑑𝑡1〈𝛿𝜔(𝑡1)〉𝑡0 +𝑖22! ∫ 𝑡1𝑡0 ∫ 𝑡2𝑡0 〈𝛿𝜔(𝑡1)𝛿𝜔(𝑡2)〉+⋯. (49) 

In the above equation, the first term of the exponential is zero, and only the second term survives 

for a system with Gaussian statistics. Then the dephasing function can be rewritten with 𝜏 = 𝑡1 −𝑡2 as: 

 

Φ(𝑡) = 𝑒−12∫ 𝑡1𝑡0 ∫ 𝑡2𝑡0 〈𝛿𝜔(𝑡1)𝛿𝜔(𝑡2)〉 = 𝑒−∫ 𝑡1𝑡0 ∫ 𝑡2𝑡0 〈𝛿𝜔(𝑡1−𝑡2)𝛿𝜔(0)〉 
=𝑒−∫ 𝑑𝜏𝑡0 (𝑡−𝜏)〈𝛿𝜔(𝜏)𝛿𝜔(0)〉 = 𝑒−𝑔(𝑡) 𝐶𝛿𝜔𝛿𝜔(𝑡) = 〈𝛿𝜔(𝑡)𝛿𝜔(0)〉 

(50) 

 𝐶𝛿𝜔𝛿𝜔(𝑡)  is the frequency-frequency correlation function. Adding the phenomenological 

vibrational lifetime faction 
12𝑇1, the vibrational lineshape through dipole correlation function is: 

 𝐶𝜇(𝑡) = 𝜇2𝑒−𝑖�̅�𝑡− 𝑡2𝑇1−𝑔(𝑡). (51) 

Thus, the Gaussian stochastic model describes the influence of the frequency fluctuation on the 

vibrational lineshape. 

The nonlinear response can be treated using the similar approach, and the third-order response in 

equations (37) to (42) as: 

 𝑅(01|11|10) = 𝑅1𝑟(𝑡, 𝜏; 𝑇) = 𝜇014 𝑒𝑖𝜔10𝜏−𝑔(𝜏)𝑒−𝑖𝜔10𝑡−𝑔(𝑡)𝑒𝛿𝐺1(𝑡,𝜏,𝑇) (52) 
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 𝑅(01|00|10) = 𝑅2𝑟(𝑡, 𝜏; 𝑇) = 𝑅1𝑟(𝑡, 𝜏; 𝑇) (53) 

 
𝑅(01|11|21) = 𝑅3𝑟(𝑡, 𝜏; 𝑇)= 𝜇122 𝜇012 𝑒𝑖𝜔10𝜏−𝑔(𝜏)𝑒−𝑖(𝜔10−Δ)𝑡−(𝑔(𝜏)+𝑔Δ(𝑡)−2𝑔1Δ(𝑡))𝑒𝛿𝐺1(𝑡,𝜏,𝑇)+𝛿𝐺2(𝑡,𝜏,𝑇) (54) 

 𝑅(10|11|10) = 𝑅4𝑛𝑟(𝑡, 𝜏; 𝑇) = 𝜇014 𝑒−𝑖𝜔10𝜏−𝑔(𝜏)𝑒−𝑖𝜔10𝑡−𝑔(𝑡)𝑒−𝛿𝐺1(𝑡,𝜏,𝑇) (55) 

 𝑅(10|00|10) = 𝑅5𝑛𝑟(𝑡, 𝜏; 𝑇) = 𝑅4𝑛𝑟(𝑡, 𝜏; 𝑇) (56) 

 
𝑅(10|11|21) = 𝑅6𝑛𝑟(𝑡, 𝜏; 𝑇)= 𝜇122 𝜇012 𝑒−𝑖𝜔10𝜏−𝑔(𝜏)𝑒−𝑖(𝜔10−Δ)𝑡−(𝑔(𝜏)+𝑔Δ(𝑡)−2𝑔1Δ(𝑡))𝑒−𝛿𝐺1(𝑡,𝜏,𝑇)−𝛿𝐺2(𝑡,𝜏,𝑇) (57) 

where Δ is the anharmonicity of the vibrational transition. 𝑅(𝑖𝑗|𝑘𝑙|𝑚𝑛) indicates the Liouville 

pathway from 𝜌𝑖𝑗 to 𝜌𝑘𝑙 to 𝜌𝑚𝑛. And the function 𝛿𝐺1(𝑡, 𝜏, 𝑇) and 𝛿𝐺2(𝑡, 𝜏, 𝑇) are indicated 

 𝛿𝐺1(𝑡, 𝜏, 𝑇) = 𝑔(𝑇) − 𝑔(𝜏 + 𝑇) − 𝑔(𝑡 + 𝑇) + 𝑔(𝜏 + 𝑡 + 𝑇) (58) 

 𝛿𝐺2(𝑡, 𝜏, 𝑇) = −𝑔1Δ(𝑇) + 𝑔1Δ(𝜏 + 𝑇) + 𝑔1Δ(𝑡 + 𝑇) − 𝑔1Δ(𝜏 + 𝑡 + 𝑇) (59) 

respectively. The functions 𝑔Δ(𝑥) and 𝑔1Δ(𝑥) indicate the autocorrelation of 〈𝛿Δ(𝑥)𝛿Δ(0)〉 and 〈𝛿ω10(𝑥)𝛿Δ(0)〉, respectively, where 𝛿Δ(𝑥) is the anharmonicity fluctuation from its mean at 

time 𝑥. The two-dimensional infrared spectroscopy spectrum is defined as: 

 𝑆(𝜔𝑡, 𝜔𝜏,𝑇) = ∫ 𝑑𝜏∞
0 ∫ 𝑑𝑡∞

0 [𝑖 ∑𝑅𝑗(𝑡, 𝜏, 𝑇)6
𝑗=1 ]𝑒𝑖(𝜔𝑡𝑡+𝜔𝜏𝜏) (60) 

with the overall phase to zero for simplicity. 

 

2.7. Dynamics from 2DIR: spectral diffusion 

The process of the frequency evolution in the condense phase can be described by the 

Gauss-Markov process, in which the frequency correlation function decays exponentially as 

 〈𝛿𝜔(𝑡)𝛿𝜔(0)〉 = Δ2𝑒−𝑡𝜏 (61) 
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where Δ2 is the variance of frequency fluctuation, and 𝜏 is the correlation time constant. So 𝑔(𝑡) 

can be rewritten as: 

 𝑔(𝑡) = Δ2𝜏2(𝑒−𝑡𝜏 + 𝑡𝜏 − 1) (62) 

Here 𝑔(𝑡) will be discussed with different limits. 

 

2.7.1. Long correlation times 

When 𝑡 ≫ 𝜏, which indicates a homogeneous case where 𝑒−𝑡𝜏 ≈ 0, 𝑡/𝜏 ≫ 1 and  

 𝑔(𝑡) = −Δ2𝜏𝑡. (63) 

Define the homogeneous dephasing time as 

 𝑇2 = 1Γ = 1Δ2𝜏. (64) 

Therefore, the dephasing function decays exponentially as  

 Φ(𝑡) = 𝑒− 𝑡𝑇2∗ (65) 

The lineshape after Fourier transformation is a Lorentzian function as: 

 
𝑅𝑒𝜎(𝜔) ∝ 1(𝜔 − �̅�)2 − 1𝑇22 

(66) 

So, when the system with the frequency fluctuation time scale much faster than the inverse of the 

distribution, 𝜏 ≪ 1Δ, the resonance will be “motionally narrowed” into Lorentzian lineshape. 

 

2.7.2. Short correlation times 

If the 𝜏 ≫ 𝑡 , which corresponding inhomogeneous case, 𝐶𝛿𝜔𝛿𝜔(𝑡) = Δ2 , a constant. 

Expand the exponential term as 
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 𝑒−𝑡𝜏 ≈ 1 − 𝑡𝜏 + 𝑡22𝜏2 + ⋯ (67) 

Then we can get  

 𝑔(𝑡) = Δ2𝜏22  (68) 

Thus the dephasing function is a Gaussian function. After Fourier transforming, the 

inhomogeneous broadening presents a Gaussian distribution centered at the mean frequency, 

which is opposite to the homogeneous case. When the correlation time is much longer than the 

inverse of distribution, 𝜏 ≫ 1Δ, the spectrum presents as Gaussian lineshape. Usually, the case is 

between homogeneous and inhomogeneous case, the lineshape are the mixture of Gaussian and 

Lorentzian distribution. 

 

2.7.3. Spectral Diffusion 

The frequency fluctuation is the phenomenon of spectral diffusion. Previously, we have 

illustrated the frequency fluctuation of the chromophore. The frequency evolution can originate 

from more than one physical process. For example, the nitrile stretching mode in solution can 

experience solvation shell oscillation and diffusion processes. If one assumes that the frequency 

fluctuation is a Markov process, the frequency correlation should decay exponentially.7 In this 

case, the correlation function is the sum of each exponential component, where each exponent 

represents a specific physical process with definite time. 

The frequency-frequency correlation function can be obtained from an experiment from the 

evolution of the frequency of two-Dimensional Infrared spectroscopy. Cho et al. first showed that 

the frequency correlation function is directly proportional to the nodal line slope of the positive 

and negative peaks in the 2DIR spectra.8 Later, Fayer’s group proposed the central line slope 



40 

 

(which is using maximum point instead of the nodal point of Cho’s work) as the metric to estimate 

the correlation function.9  

 

2.8. Heterodyne detection 

The transformation of the photon echo signal from the time domain to the frequency 

domain allows us to measure the intensity and phase of the signal needed to characterize the system. 

Thus, we use a heterodyned detection, which overlaps the photon echo signal with a reference field 

to produce the interference signal. This so-called heterodyne detection is widely used in nonlinear 

spectroscopy.10-13 The reference field employed has the same frequency as the signal and it is 

called the local oscillator. When heterodyned, both the photon echo signal field 𝐸𝑠𝑖𝑔(3)(𝑡) and local 

oscillator field 𝐸𝐿𝑂(𝑡 − 𝑡𝐿𝑂) are incident on a square-law detector,  

 �̃�𝑠𝑖𝑔(𝜔) = ∫ 𝑑𝑡𝐸𝑠𝑖𝑔′ (𝑡)∞
−∞ 𝑒𝑖𝜙𝑠𝑖𝑔−𝑖𝜔𝑡 = 𝐸𝑠𝑖𝑔′ (𝜔)𝑒𝑖𝜙𝑠𝑖𝑔−𝑖𝜔𝑡 (69) 

 �̃�𝐿𝑂(𝜔) = ∫ 𝑑(𝑡 − 𝑡𝐿𝑂)𝐸𝐿𝑂′ (𝑡)∞
−∞ 𝑒𝑖(𝜙𝑠𝑖𝑔−𝜙𝐿𝑂)+𝑖𝜔𝑡𝐿𝑂 = 𝐸𝐿𝑂′ (𝜔)𝑒𝑖𝜙𝑠𝑖𝑔+𝑖𝜔𝑡𝐿𝑂 (70) 

where 𝑡𝐿𝑂 is the time interval between last pulse of three incident pulses and local oscillator. Thus 

the resulting signal in frequency domain is 

 
𝑆(𝜔) = |𝐸𝑠𝑖𝑔′ (𝜔)𝑒𝑖𝜙𝑠𝑖𝑔 + 𝐸𝐿𝑂′ (𝜔)𝑒𝑖(𝜙𝐿𝑂+𝜔𝑡𝐿𝑂)| 

= |𝐸𝑠𝑖𝑔′ (𝜔)|2 + |𝐸𝐿𝑂′ (𝜔)|2 + 2𝐸𝑠𝑖𝑔′ (𝜔)𝐸𝐿𝑂′ (𝜔)cos (Δ𝜙 + 𝜔𝑡𝐿𝑂) (71) 

The term of |𝐸𝑠𝑖𝑔′ (𝜔)|2 is ignored due to too low intensity compared with the other terms. And |𝐸𝐿𝑂′ (𝜔)|2 can be measured by blocking the signal with a chopper. Thus the |𝐸𝐿𝑂′ (𝜔)|2 can be 

subtracted from heterodyned signal. Compared the intensity of photon echo signal, the third term 

in equation (71) is much amplified than before heterodyned.  
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2.9. Experimental setup 

2.9.1. Femtosecond infrared pulse generation 

Our experiment used a femtosecond laser pulse generated from Mai-Tai SP with Spitfire 

Ace high-performance Ti-Sapphire system. Each ultrashort pulse is generated by passive mode 

locking. Mode locking is based on the Kerr-Lens effect of a Ti-Sapphire crystal.14 A pair of prisms 

in the cavity shorten the duration of the pulse and produce the pulse centered at ~800 nm. The 

resulting pulse servers as the seed pulse to be amplified. In the amplifier, the seed pulses are 

amplified through chirped pulse amplification.15 The amplifier is composed of a stretcher, an 

amplification cavity, and a compressor. The seed pulse is initially stretched to sub-nanosecond to 

avoid damaging thresholds of amplification cavity by reducing the peak power. The stretched pulse 

is amplified in amplification cavity. After compressor, the output laser is 800 nm pulse with 5 kHz 

repetition rate with an average power of 1.0 W.  

An Optical Parametric Amplifier15-17 is used to generate the pulse at the mid-infrared region from 

the amplified 800 nm pulse. The schematic layout is shown in figure 2.4. The 800 nm pulse is split 

into three parts: two pump beams and one as the white light seed. The white light is generated by 

the white light seed focusing on a 2 mm thick sapphire plate. First, the white light and one of the 

two pump pulses (~50 μJ) focus on a β-BaB2O4 (BBO, type II, 2 mm crystal thickness) crystal to 

preamplify the frequency component. Second, the other pump beam (~270 μJ) is overlapped with 

the preamplified continuum on the same BBO crystal but on a different spot to generate a signal 

and an idler. Through a dichroic mirror, the signal and idler delay time can be adjusted to provide 

higher stability. At last, the collimated signal and idler can generate the pulse in infrared frequency 

region through an BBO (Type II, 1 mm) Difference Frequency Generation (DFG) crystal. The 
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pulses other than infrared pulse will be filtered by germanium filter so that only infrared laser can 

be transmitted. 

 

Figure 2.4. Optical layout of OPA used for IR pulse. 

 

 

2.9.2. 2DIR experimental setup 

There are several ways to design the experimental setup for measuring a heterodyned photon echo 

signal generated by three incident pulses.10, 18-21 The 2DIR spectroscopy can have a collinear or 

pump-probe configuration, where the probe pulse overlapped with phone echo as a local oscillator. 

The most 2DIR experiment pulses are arranged using box-CARS phase-matching geometry. The 

three incident pulse and oscillator pulse are generated through the setup shown in figure 2.5. The 

path of each beam is modified by a computer controlled translation stages, which can move at the 
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nanometer scale. Thus the accuracy of the time interval between pulses can be controlled with 

femtosecond time resolution. A synchronized chopper at frequency of 5 kHz is placed on the path 

of �⃗� 3 to collect local oscillator signal which is used in heterodyned detection for subtraction from 

interference. The three incident pulses �⃗� 1, �⃗� 2, and �⃗� 3 focus on the sample with a lens. The liquid 

sample is contained between two 25 mm CaF2 windows separated with Teflon spacer with 

different thickness in a mounted liquid sample cell. The photon echo signal is heterodyned with 

the local oscillator by overlapping them on a 5:95 CaF2 beamsplitter. The interfered signal detected 

by a nitrogen cooled 64-element MCT array detector through a monochromator. The 2DIR setup 

is enclosed in an air tight hand-made box, which is purged with CO2 filtered dry air to eliminate 

the influence from moisture and CO2. Most of the experiments are performed by collecting scanned 𝜏 and wavelength 𝜆 in the detector from -4 ps to 4 ps as a 5 fs per step rate for each waiting time. .  

 

2.10. Determination of time zero between pulses 

Before the 2DIR measurement, the time zero between pulse �⃗� 1 , �⃗� 2 , and �⃗� 3  should be 

determined with sub-cycle accuracy (for wavelength of 5 μm, one cycle is ~17 fs) for artifact-free 

2DIR spectra. Although using the IR-FROG approach one can get accurate time zero,22 for the 

solution in a protic solvent, the approach of using thermal grating signal of solvent molecules is 

widely employed. When all the pulses overlap in time, the D2O exhibits a weak, pulsewidth limited 

non-resonant signal. The relative time between two pulses can be determined by fixing the third 

pulse much later than them, for example, 10 ps, and fitted the thermal grating signal vs. time with 

Gaussian function.  
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Figure 2.5. Schematic of the 2DIR spectroscopy setup 
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raw data from 𝐼(𝜏, 𝜆𝑘)  to 𝐼(𝜏, 𝜔𝑡) ,10, 12-13 where 𝜆𝑘  is the wavelength corresponding the 𝑘 th 
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 𝑆(𝜏, 𝑇, 𝑡) = ∑ �̃�(𝜏, 𝑇, 𝜆𝑘)𝑒−𝑖𝜔𝑘𝑡Δ𝜔𝑘64
𝑘=1  (72) 

where 

 𝜔𝑘 = 2𝜋𝑐𝜆𝑘  (73) 

and  

 Δ𝜔𝑘 = 2𝜋𝑐𝜆𝑘 − 12Δ𝜆 − 2𝜋𝑐𝜆𝑘 + 12Δ𝜆 (74) 

Δ𝜆 is the wavelength different between two neighboring elements in the detector. The detection 

time 𝑡 can be obtained from a known time zero. Then, Fourier transform the time domain data 

twice to frequency domain as: 

 �̃�(𝜏, 𝜔𝑡, 𝑇) = ∑𝑆(𝜏, 𝑡, 𝑇)𝑒𝑖𝜔𝑡𝑡Δ𝑡𝑡  (75) 

 �̃�(𝜔𝜏, 𝜔𝑡, 𝑇) = ∑𝑆(𝜏, 𝜔𝑡, 𝑇)𝑒𝑖𝜔𝜏𝜏Δ𝜏𝑡  (76) 

The data analysis process above is followed for both rephrasing and nonrephasing data. The 

resulting frequency domain data need to be corrected by relative phase between the rephrasing and 

nonrephasing signal.  

 

2.12. Conclusion 

In this section, the theoretical formalism of first order and third order nonlinear 

spectroscopy was derived for the interaction between light and matter. Under-rotating wave 

approximation, the linear and third-order response function are derived, and the Feynman diagram 

was introduced. During the electric field-dipole interaction process, the influence of dephasing to 

spectral lineshape was discussed. Also, the 2DIR experimental setup was described in this chapter. 
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The details about femtosecond infrared laser generation, apparatus setup, and heterodyne detection, 

and post-processing of spectra data was provided. 
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CHAPTER 3 

SOLVATION DYNAMICS OF AN IONIC PROBE IN CHOLINE CHLORIDE-BASED 

DEEP EUTECTIC SOLVENTS 

 

3.1. Introduction 

 Deep eutectic solvents (DES) are a new class of designer solvents. Type III DES are formed 

when a mixture of two high melting point compounds, usually a hydrogen bond donor and a 

quaternary ammonium salt, melt into a solution with a fusion temperature lower than either 

individual component. These solvents are considered ionic liquid analogues due to some shared 

properties, such as low vapor pressure and conductivity.1-3 However, DES have many advantages 

over ionic liquids; e.g., easy preparation, low cost, low toxicity, and biodegradability.3-4 The 

advantages of DES have created a wide field of potential applications in electrochemistry,5-6 

catalysis,7 metal oxide dissolution,8 and carbon dioxide capture9 and separation.10  

The DES structure can be simply tailored by modifying the chemical identity of the 

hydrogen bond donor or the ratio of components.3 This is in contrast with ionic liquids for which 

a synthetic procedure is required to alter their structure.11 However, the binary composition of DES 

also results in a more complex molecular arrangement which is not observed in regular molecular 

solvents or pure ionic liquids.12 Hence, the connection between properties and structure of a DES 

is non-trivial. In particular, the different types of molecular interactions with similar energetics 

that contribute to DES physicochemical properties arise from the large variety of chemical   

 

Reproduced by the permission of the PCCP Owner Societies 
Cui, Y., K. D. Fulfer, J. Ma, T. K. Weldeghiorghis, and D. G. Kuroda. Physical Chemistry 

Chemical Physics 2016, 18, 31471-31479. 
DOI: 10.1039/C6CP06318G 
http://pubs.rsc.org/en/content/articlelanding/2016/cp/c6cp06318g#!divAbstract 

 

https://doi.org/10.1039/C6CP06318G
http://pubs.rsc.org/en/content/articlelanding/2016/cp/c6cp06318g#!divAbstract


49 

 

structures of the hydrogen bond donor and acceptor. The presence of spatial heterogeneities in the 

DES structure is a good example of this intricate energetic balance.13 

Both ionic and polar compounds have been found to be soluble in DESs.3 Interestingly, 

DES have much better dissolution power for organic compounds than water, in some cases 

reaching four orders of magnitude larger;14 even though the polarities of DES and water are very 

similar.15 However, the molecular property defining the solubility of DES has yet to be determined.  

The solvation structure and dynamics of various solutes in DES have been investigated in 

previous years. Some of the first examples involved time-resolved fluorescence spectroscopy and 

molecular dynamics simulations.16-17 To date, most experimental studies have relied on 

incorporating molecular dyes in order to gain insights into the solvation and its dynamics in the 

DES;15-16, 18-19 however, dielectric relaxation spectroscopy has also been used to investigate ionic 

DES.20 Here, we have studied the solvent–solute interactions and its dynamics via steady state and 

time-resolved vibrational spectroscopy using a small ionic probe. Compared to the use of 

molecular dyes, the use of a vibrational probe has many advantages. First, it relies on vibrational 

transitions which can be localized to a specific covalent bond.21-30 Second, vibrational modes of 

ions have been shown to be very sensitive to the local environment and as such have been 

successfully applied in a wide variety of problems.31-38 In addition, nonlinear vibrational 

spectroscopic experiments can be performed with energies that only change the temperature of the 

sample by a few Kelvin, making it possible to investigate the system under thermal equilibrium.39-

40 Thus, vibrational probes in conjunction with vibrational photon-echo spectroscopy are ideal for 

studying solvent–solute interactions as well as the DES solvent dynamics sensed by the solute 

under thermal conditions from which one can infer the location of the probe. It should be noted 
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that the window of measurable dynamics via 2DIR is limited by the vibrational lifetime of the 

probe used, which in the case of SeCN ion is ~300 ps.41  

In this study, Fourier Transform Infrared spectroscopy (FTIR) and Two-Dimensional 

Infrared spectroscopy (2DIR) were used to investigate the solvation dynamics and structure of the 

thiocyanate ion in three different DES composed of choline chloride with either ethylene glycol, 

glycerol, or urea (Scheme 3.1). Furthermore, the experimental results are compared with 

Molecular Dynamics (MD) simulations to verify the assigned structure and dynamics. 

 

 

Scheme 3.1. Structures of (a) ethylene glycol (EG), (b) glycerol (G), (c) urea (U), (d) choline ion, 
(e) thiocyanate ion, and (f) azide ion. 
 

 

3.2. Experimental and theoretical methodologies 

3.2.1. Experimental methods 

1. Sample preparation. Ethylene glycol (Sigma Aldrich, 99.8%), glycerol (Fisher) 

and urea (Acros Organics, 99.5%) were used without further purification. Choline chloride (Sigma 

Aldrich, 98%) was dried in a vacuum oven at 100 ˚C and -1.0 bar for 24 hours and then stored in 

a N2-filled glovebox. All of the deep eutectic solvents were prepared in a glovebox with a molar 
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ratio of choline chloride to hydrogen bond donor of 1 : 2 unless otherwise noted. Each DES was 

prepared without heating. DES EG (choline chloride–ethylene glycol) and DES G (choline 

chloride–glycerol) were prepared directly by stirring. DES U (choline chloride and urea) was 

prepared by sonicating the components in a room temperature bath. Ammonium thiocyanate 

(Baker Analyzed Reagent 99.1%) or tetrabutylammonium azide (Santa Cruz Biotech, 490%) were 

added to the DES solutions at a concentration of 100 mM. All of the DES were stored in a moisture-

free environment. 

2. Linear IR spectroscopy. Linear IR measurements were performed using a Bruker 

Tensor 27. All of the samples were measured with 0.5 cm-1 resolution at room temperature, using 

an O-ring sealed sample cell composed of CaF2 windows and a 25 mm spacer, which was prepared 

in a N2-filled glovebox in order to minimize exposure to water. 

3. Two dimensional IR spectroscopy. 2DIR spectroscopy experiments were 

performed in a setup similar to that previously described in the literature.42 In short, a Spectra 

Physics Spitfire Ace Ti:Sapphire amplifier with a 5 kHz repetition rate and OPA-800C were used 

to produce broadband IR pulses with a temporal width of ~60 fs. Three replicas were produced 

from the IR pulses and focused onto the sample in a boxcar configuration.43 The time intervals 

between the first and second pulses (t), between the second and third pulses (Tw), which generates 

the photon echo, and between the fourth pulse and the photon echo (t) were controlled with four 

motorized translation stages (PI Micos). Photon echo in the k1 + k2 + k3 phase matching direction 

was detected interferometrically using a fourth infrared pulse (local oscillator). The interferogram 

was dispersed by a Triax monochromator (75 grooves per mm) and detected using a liquid nitrogen 

cooled MCT array with 64 elements (Infrared Systems Development). All of the 2DIR spectra 

were collected by sampling t, from 3.5 ps to 3.5 ps every 4 fs. For each sample, the waiting time 
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was scanned from 0 ps to 100 ps with steps which increased exponentially starting at 0.5 ps. The 

2DIR spectra were obtained by double Fourier Transformation along t and t from the signal in the 

(t, Tw, t) domain, keeping Tw as a parameter. The sample cell for 2DIR was prepared in the same 

manner as that for FTIR. Furthermore, the 2DIR optical setup is encased in an air-dried box; all 

experiments were performed at o1% humidity. 

4. NMR. Pulse field gradient (PFG) diffusion experiments were performed on a 400 

MHz Bruker AV spectrometer with a wide bore magnet using a Diff60 diffusion probe and Great 

1/60 gradient amplifier. The diffusion probe has a gradient sensitivity of 600 mT A-1 m-1 (60 G A-

1 cm-1). Diffusion data were collected at 25 ⁰C, and the sample temperature was controlled using 

a Bruker BVT 3000 digital variable temperature controller. The probe gradient coil temperature 

was controlled using Neslab Merlin M33 (Thermo Scientific) recirculating chiller. 

Diffusion experiments were done using pulse gradient stimulated echo (diffSTE) sequence 

that uses the same sequences as described in ref. 44. In brief, the diffusion data were collected with 

constant gradient pulse duration (δ) and diffusion time (Δ). A 2 ms homospoil gradient pulse was 

used to remove unwanted signal. For all three samples, gradient pulse duration of 1–2 ms and 

diffusion times between 75–100 ms were used. The maximum gradient strength (g) used was 360 

G cm1 for DES EG, 1000 G cm1 for DES U, and 760 G cm-1 for DES G. The gradient strength 

(g) was varied between the maximum value and 5% of the maximum value linearly in 32 

increments. The diffusion constant (D), was determined by fitting experimental data to the 

Stejskal–Tanner-equation,45 𝑺𝑺𝟎 = 𝒆−𝜸𝟐𝒈𝟐𝜹𝟐(𝚫−𝜹𝟑)𝑫
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where S is signal attenuated by gradient pulses, S0 is the reference signal (with no gradient 

attenuation), γ is the gyromagnetic ratio of the observed nucleus (1H), and the other variables are 

from the pulse sequence. 

 

3.2.2. Theoretical methods 

1. Molecular dynamics. The molecular dynamics simulations were performed using 

the SANDER module of the AMBER 12 program package.46 A quantum mechanics/molecular 

mechanics method was used to model the system. The thiocyanate ion was parameterized 

according to parameterized model number 3 (PM3) semi-empirical formalism while the DES 

components were modeled classically with the GAFF force field. The system consisted of an SCN 

ion embedded in a 40 Å cube containing a variable number of choline chloride and hydrogen bond 

donors at a molar ratio of 1 : 2, respectively. The concentration of thiocyanate was kept at B0.1 M 

assuming that the densities of the solutions are the same as the pure DES.2 Periodic boundary 

conditions were imposed in the simulation. Particle mesh Ewald methodology was used for long-

range electrostatic interactions with a cutoff of 10 Å. The SHAKE algorithm was used to fix the 

bonds involving hydrogen. The simulation was initiated using an initial geometry for the SCN ion 

obtained from ab initio calculations. The system was energy-minimized for 200 steps using the 

steepest descent method followed by 300 steps of the conjugate gradient method. Subsequently, 

the system was equilibrated at normal temperature and pressure (298 K and 1 bar, denoted NTP) 

for 10 ns with a 2 fs step. Finally, a production run at NTP was recorded for 5 ns extracting 

snapshots every 20 fs. All simulations used a Langevin thermostat for temperature control. 

2. Ab initio calculation. DFT calculations were performed at the B3LYP level with 

the 6-311++G** basis set using the GAUSSIAN 09 software package.47 
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3.3. Result 

3.3.1. Linear IR spectra 

 Solvation of the thiocyanate ion in three DES (DES G, DES EG, and DES U) and their 

parental molecular solvents (ethylene glycol and glycerol) was first investigated by FTIR 

spectroscopy. FTIR spectra of the bands corresponding to the nitrile stretch mode of the 

thiocyanate ion in each sample after background subtraction and normalization are shown in Figure 

3.1. All of the samples present a single band, though for some of the solutions this band is 

asymmetric; i.e., the band cannot be modeled with a single Voigt profile (Figure 3.2). Notably, the 

nitrile stretch band is asymmetric only in the two molecular solvents; i.e., G and EG. The major 

difference between the nitrile bands of DES and the molecular solvents is the full width at half 

maximum (FWHM) which is largest (~54 cm-1) in each of the molecular solvents. In contrast, the 

FWHMs of the thiocyanate nitrile bands in DES EG, DES G, and DES U are 40 cm-1, 42 cm-1, and 

32 cm-1, respectively. Contrary to the FWHM, the frequency of the maximum (νmax) of the nitrile 

peaks does not show a significant variation with solvents. The nitrile stretch bands are located at 

~2057 cm-1 in EG, DES EG, and DES G; while in glycerol and in DES U the bands are positioned 

at 2059 cm-1 and 2056 cm-1, respectively. 
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Figure 3.1. FTIR spectra of thiocyanate ion as a probe in EG, G, DES EG, DES G, and DES U. 
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Figure 3.2. Modelling of the thiocyanate nitrile stretch band in (a) ethylene glycol and (b) glycerol 
with a single Voigt profile. Data is shown as black solid lines and modeling is represented by red 
dashed lines. The model line does not correctly model the measured data, as can be seen by the 
residuals from the fit shown in (c) and (d) for ethylene glycol and glycerol, respectively. 
This indicates that the thiocyanate stretch of the probe ion in the ethylene glycol and glycerol 
cannot be modeled with a single Voigt profile. 
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3.3.2. Two dimensional IR spectroscopy 

 Figure 3.3 shows the 2DIR spectra for the nitrile stretch region of thiocyanate in the three 

different DES. The 2DIR spectra, represented as a function of the pump (ωτ) and probe (ωt) 

frequencies, show two peaks. Overlapped with the diagonal of the 2DIR spectrum (i.e., ωτ = ωt; 

the black solid line in Figure 3.3), the red (positive) peak corresponds to the signal arising from 

the n = 1 to n = 0 transitions (i.e., stimulated emission and bleach signals). Conversely, the blue 

peak (negative) arises from the n = 1 to n = 2 transition due to the photoinduced absorption signal. 

The separation of ~20 cm1 between the positive and negative peaks of the 2DIR spectra evidences 

the anharmonicity of the vibrational potential of the thiocyanate nitrile stretch. The observed 

anharmonicity is in agreement with previously measured values in other solvents.48-49 

 The time evolution of the 2DIR spectra shows that the 2DIR peaks are elongated and tilted 

along the diagonal at Tw = 0 ps. In contrast, as Tw increases the peaks acquire a rounder and less 

tilted shape. The time evolution of the 2DIR peak shapes indicates the occurrence of spectral 

diffusion.43 Interestingly, none of the measured spectra acquire a completely upright shape within 

the longest measured Tw of 100 ps. While the nitrile peaks of DES EG exhibit an almost upright 

position at Tw = 100 ps, the corresponding peaks in DES G and DES U remain significantly tilted 

at the same waiting time. It is important to note that no obvious cross peaks appear in the 2DIR 

spectra within 100 ps of waiting time. 
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Figure 3.3. 2DIR spectra of DES EG, DES G, and DES U at Tw=0 ps, 10.7 ps, 46 ps, and 100 ps. 

 

3.4. Discussion 

The linear IR spectra of the thiocyanate nitrile stretch in the different DES show very 

similar bands located at ~2057 cm-1. It has been previously demonstrated that the thiocyanate 

nitrile stretch transition frequency increases when thiocyanate is hydrogen bonded to other 

molecules through its nitrogen atom.50 In particular, the experimental and theoretical evidence 

demonstrates that thiocyanate in methanol exhibits two bands in the IR spectrum corresponding to 

the nitrile group with and without a hydrogen bond located at ~2070 cm-1 and ~2057 cm-1, 

respectively.50-51 Similar transition frequencies of the thiocyanate nitrile stretch in methanol and 

in DES suggest that the anion is not forming hydrogen bonds through its nitrile group in the three 
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DES. Moreover, the linear spectra of the nitrile stretch do not present an obvious symmetry or 

shoulder in any of the DES samples indicating that the population of thiocyanate ions having a 

hydrogen bond through the nitrogen atom is negligible. In addition, the lack of a significant 

difference in the νmax of the CN stretch transition demonstrates that the molecular environment 

around the anion is very similar in all three DES. This last result is in agreement with a previous 

work where it was shown that the polarities of DES U, DES G, and DES EG are very similar.15 

To confirm the lack of hydrogen bonds through the nitrile end of the thiocyanate ion in the 

DES, the changes in the nitrile stretch of thiocyanate in an EG solution were evaluated as a function 

the concentration of choline chloride (Figure 3.4). In pure EG, the existence of the nitrile hydrogen 

bonded band is evident on the high-frequency side of the peak where a strong shoulder 

is observed. As the concentration of choline chloride is increased the band shape of the nitrile 

stretch becomes more symmetric and narrow, and shifts to lower frequencies. These changes in 

the nitrile bandwidth and location indicate that addition of the hydrogen bond acceptor decreases 

the ability of the DES environment to form hydrogen bonds through the nitrile end of the anion. 

This result agrees with previous experimental work that demonstrated that the chloride ion forms 

a strong complex with the hydrogen bond donor.3,52 It is expected that the thiocyanate ion 

incorporates into the DES molecular structure. In particular, thiocyanate is expected to occupy the 

same places as the chloride ion, which inevitably leads to the formation of hydrogen bonds.  

Linear IR spectroscopy shows no evidence of hydrogen bonding through the nitrile group 

of SCN, but it is very likely that the probe forms hydrogen bonds through its sulphur atom where 

the negative charge is localized.53 In contrast to the nitrile hydrogen bond, the spectroscopic 

signature of the hydrogen bond through the sulphur atom is not seen in the FTIR because the 

sulphur atom does not participate significantly in the nitrile stretch mode (figure 3.5 and table 3.1). 
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Figure 3.4. FTIR spectra of thiocyanate ion probe in EG solutions with varying concentrations of 
choline chloride. 

 

Figure 3.5. The nitrile stretch mode of the thiocyanate ion is localized mainly on the carbon (grey) 
and nitrogen (blue). 
 

Table 3.1. Displacement vectors for the nitrile stretch of the thiocyanate ion. 

 X Y Z 

C 0.00 0.00 0.80 

N 0.00 0.00 -0.61 

S 0.00 0.00 -0.03 
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 To further support the indication that the thiocyanate ion is in an environment where 

hydrogen bonds are formed, the same samples were probed using the azide ion. The azide ion is 

symmetric and has N3
- asymmetric stretch mode which is comprised of all three atoms of the anion. 

As a result, the formation of the hydrogen bond from either end of the molecule is directly observed 

in its linear IR spectrum. FTIR spectra of the azide ion in the three DES and their parental solvents 

are presented in Figure 3.6. The spectra show that the asymmetric stretch band of azide has 

approximately the same FWHM for all of the samples (see Figure 3.6 and Table 3.2) which 

demonstrates that the DES and their parental solvents form hydrogen bonds with anionic solutes. 

Moreover, the νmax of the band for the three DES are very similar (within ~2 cm-1) which reinforces 

the idea that anions observe a very similar environment in all of the DES. Additionally, 2DIR 

spectroscopy of the azide samples in DES, and molecular solvents show that the ion has the same 

dynamics irrespective of the environment (table 3.3). These results strongly support the idea that 

the azide or thiocyanate ions occupy the same places as chloride ions. 
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Figure 3.6. Centralized FTIR spectra of tetrabutylammmonium azide in EG, G, DES G and DES 
EG. Inset shows the non-centralized FTIR spectra. 
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Table 3.2. Fitting parameters used to model the FFCF of the azide ion stretch mode in DES EG, 
EG, DES G, and G. The decorrelation times are very similar for the azide probe in each 
environment. 
 
 𝐴 𝜏 / 𝑝𝑠 𝑦0 

DES EG 0.16±0.01 1.6±0.3 0.66±0.01 

EG 0.29±0.01 1.9±0.3 0.44±0.01 

DES G 0.10±0.01 1.5±0.3 0.75±0.01 

G 0.10±0.01 1.4±0.4 0.73±0.01 

 

 

Table 3.3. Vibrational population relaxation times, T10, for the thiocyanate probe in both molecular 
solvents and in each DES. The T10 times are very similar for all three DES. 

 
 𝑇10 / 𝑝𝑠 

EG 6.6±0.1 

G 8.4±0.1 

DES EG 16.2±0.8 

DES G 17.6±0.9 

DES U 17.4±0.2 

  

The experimental results presented here were further investigated using MD simulations. 

Radial distribution functions (RDFs) of the thiocyanate atoms with different atoms of the DES 

components are presented in Figure 3.7. In the case of the thiocyanate nitrogen atom, the RDFs 

shows that the thiocyanate nitrogen points towards the choline nitrogen with only a small 

percentage of the thiocyanate nitrogen atoms forming hydrogen bonds with the hydrogen bond 

donor in all three DES. Moreover, the RDFs of the thiocyanate sulphur atom reveal that the 
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hydrogen bonds occur primarily through this end of the anion in all of the DES, as previously 

deduced from our experiments. In addition, a comparison between the radial distributions of the 

chloride and thiocyanate ions reveals a strong similarity (Figure 3.8), which confirms that both 

ions occupy the same locations within the DES structure. The IR experiments show that the 

lineshape of the nitrile stretch is not significantly dependent on the molecular structure of the 

hydrogen bond donor forming the DES. However, a close inspection of the FWHM reveals the 

following trend: 

FWHM(DES G) > FWHM(DES EG) > FWHM(DES U). 
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Figure 3.7. Radial distribution functions of the thiocyanate ion in (a and b) DES EG, (c and d) 
DES G, and (e and f) DES U. 
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According to semi-classical theory, the IR lineshape is described by,43 𝐼(𝜔) = 2𝑅𝑒 ∫ 𝜇2exp (𝑖(𝜔 − 〈𝜔10〉)𝑡)exp (−𝑔(𝑡) − 𝑡2𝑇10 − 2𝐷𝑡)𝑑𝑡∞0 , 

where μ is the transition dipole magnitude for the v = 0 to v = 1 transition, 10  is the transition 

frequency, g(t) is the double time integral of the frequency–frequency correlation function 

(FFCF),43 𝑔(𝑡) = ∫ 𝑑𝜏1 ∫ 〈𝛿𝜔10(𝜏2)𝛿𝜔10(0)〉𝑑𝜏2𝜏10𝑡0 , 

T10 is the vibrational population relaxation time, and D is the rotational diffusion coefficient. The  
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Figure 3.8. Radial distribution functions (RDFs) of the chloride ion in (a) DES EG, (b) DES G, 
and (c) DES U. RDFs of the chloride ion show that SCN- and Cl- occupy approximately the same 
space in the DES solutions. 
 

expression of the lineshape shows that the width of the band is defined by the FFCF (g(t)), the 

vibrational lifetime (T10), and rotational diffusion (D). However, the effect of rotational diffusion 
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is neglected here due to the high viscosity of the DES solvents.2 Moreover, the vibrational lifetimes 

of the thiocyanate nitrile stretch in the three DES are found to be nearly identical (table 3.3), and 

so the differences in FWHM for the different DES must arise from the FFCF. 

 Over waiting time, Tw, the pump and probe frequencies lose correlation due to various 

processes occurring in the system, such as the motions of the components of the solvation shell.43 

This loss of correlation is described by the FFCF. The FFCF dynamics, evaluated from the inverse 

slope of the zeroth contour line of the 2DIR spectra,54 shows a significant difference among the 

three DES samples (Figure 3.9). In the case of DES EG, the FFCF decays almost to zero within 

the 100 ps window investigated. In contrast, neither DES G nor DES U shows such a ‘‘fast’’ decay 

of the FFCF. The FFCF dynamics of each sample is well modeled with a biexponential function 

of the form: 𝐴1exp (−𝑡/𝜏1𝑐) + 𝐴2exp (−𝑡/𝜏2𝑐); but only the FFCF of DES EG and DES G are well 

modelled with a stretched exponential. Fitting parameters for each solvent (Table 3.4) show that 

the FFCF of thiocyanate in DES has two characteristic times, one short (~10 ps) and one long 

(≫10 ps), which should correspond to two different molecular motions of the solvent components.  
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Figure 3.9. FFCF of (a) DES EG, (b) DES G, and (c) DES U. 

 

Table 3.4. FFCF fitting parameters. Δ values were obtained from a fitting procedure similar to 
methods described previously.54 

 
 𝐴1 ∆2/𝑐𝑚−2 𝜏1/𝑝𝑠 𝐴2 ∆2/𝑐𝑚−2 𝜏2/𝑝𝑠 

DES EG 0.26±0.06 62.2 9±1 0.65±0.06 162.0 52±3 

DES G 0.13±0.08 33.9 13±5 0.77±0.08 224.7 136±30 

DES U 0.10±0.02 19.1 3±1 0.78±0.02 132.9 184±30 
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It has been previously demonstrated that the solvent dynamics in a two-omponent system 

can be described by a frequency correlation function of the form:55-56 𝐹𝐹𝐶𝐹(𝑡) = 𝐴𝑠𝑜𝑙𝑣 exp (− 𝑡𝜏𝑠𝑜𝑙𝑣) + 𝐴𝑒𝑥𝑐ℎ exp (− 𝑡𝜏𝑒𝑥𝑐ℎ), 

where Ai is the amplitude and τi is the corresponding decay constant for the ith term. According to 

this model, the correlation decays are affected by the in-place motions of the solvent as well as by 

the exchange of molecular components in and out of the solvation shell. The model also assumes 

that the in-place solvent motions are those involving rotations and translations which do not 

significantly change the position of the centre of mass of the molecule. In contrast, the exchange 

dynamics originate from diffusion motions in which the centre of mass of the molecules involved 

is significantly varied. Consequently, the time scale of exchange is expected to have a significantly 

slower dynamics than the dynamics of the solvent motions. Thus, the fast and slow components of 

the FFCF dynamics of thiocyanate ion in the three different DES are assigned to in-place molecular 

motions and exchange diffusion processes, respectively. 

 DES have a structure similar to that of ionic liquids where the positional correlation is well 

defined for many solvation shells; i.e., a pseudo lattice.57 As previously shown, the thiocyanate ion 

is hydrogen bonded to the hydrogen bond donor through its sulphur atom, while its nitrogen points 

toward the choline cation. It is important to note that the highest perturbation to the frequency of 

the thiocyanate nitrile stretch will be produced by motions of the choline cation since the Coulomb 

interaction is the strongest possible molecular interaction among the DES components. Hence, it 

is likely that the nitrile group mainly senses the motions of the choline cation within its solvation 

shell. Moreover, the motions causing different interactions with the thiocyanate ion through its 

sulphur atom will not be probed due to the small participation of this atom in the nitrile stretch 

mode.50 Within this pseudo lattice model, the fast FFCF component should correspond to 
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‘‘oscillations’’ of the lattice, and the slow component should be assigned to motions of the DES 

molecular constituents diffusing in and out of the solvation shell.  

Previously, it was shown that the diffusional motions in and out of the solvation shell have 

a close relationship with the molecular mechanism of viscosity.49 Interestingly, this is also true in 

the case of DES where the slow FFCF correlation decay shows a strong correlation with the 

viscosity (Figure 3.10a). The correlation reveals that the two quantities are related, but does not 

provide a clear molecular mechanism. Pulsed Field Gradient Nuclear Magnetic Resonance (PFG-

NMR) experiments show that the diffusion constant of the choline cations in different DES is 

inversely correlated to the slow FFCF component (Figure 3.10b) which supports the hypothesis 

that the longer decay time might arise from the motions of the choline cations diffusing in and out 

of the solvation shell. It should be noted that another mechanism might appear in the FFCF 

dynamics, which arises from the rotational dynamics of the thiocyanate ion;41 the 2DIR 

experiments presented in this work are not able to distinguish between the two possible 

mechanisms. However, the approximate MD FFCF calculated from the carbon–nitrogen distance 

of the thiocyanate ions from MD simulations (Figure 3.11 and table 3.5) shows not only that the 

slow decay time from our experimentally obtained FFCF have the same time scale, but also that 

they are highly correlated to the time scales of the choline diffusion in and out of the solvation 

shell. These results further support the picture of the slow FFCF component arising due to 

translational diffusion of choline ions from the solvation shell of the thiocyanate ion. 
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Figure 3.10. (a) DES viscosity (from ref. 2) versus slow correlation decay time (R2 = 0.998) and 
(b) choline cation diffusion constant in each DES versus slow correlation decay time (R2 = 0.96). 
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Figure 3.11. Time autocorrelation functions of the number of choline ions (𝑁𝐶ℎ+ ) in the first 
solvation shell of the thiocyanate ion, 𝐶(𝑡) = 〈𝑁𝐶ℎ+(𝜏),𝑁𝐶ℎ+(0)〉, obtained from MD simulations 
for DES EG, DES G, and DES U. 

 

Table 3.5. Amplitude and time constants from modeling the time autocorrelation function of the 
frequency fluctuations as a tri-exponential decay. 

 𝐴1  × 104 𝜏1 / 𝑝𝑠 𝐴2  × 103 𝜏2 / 𝑝𝑠 𝐴3  × 104 𝜏3 / 𝑝𝑠 

DES EG 1.64±0.03 0.24±0.01 7.44±0.05 17.5±0.3 3.864±0.005 268±1 

DES G 2.12±0.02 0.13±0.01 6.90±0.04 17.2±0.2 3.310±0.003 657±2 

DES U 2.25±0.02 0.12±0.01 3.14±0.03 10.0±0.2 1.001±0.001 458±2 

 

 Conversely, the fast component of the FFCF is assigned to the motions of the molecular 

components within the solvation shell of the thiocyanate ion. These in-place motions of the DES 
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components are likely related to the strength of the pseudo lattice which is directly related to the 

interaction between the hydrogen bond donor and the anion of the DES.3 DFT calculations of the 

period of harmonic oscillation computed from the potential energy as a function of anion–

hydrogen bond donor distance (Table 3.6) show a linear relationship with the fast correlation decay 

time (Figure 3.12). This observed correlation further supports the idea that the oscillatory motions 

are related to the strength of the pseudo-lattice or, equivalently, to the strength of the hydrogen 

bond between the donor and the anion.  

 

Table 3.6. Harmonic period (in fs) calculated from the force constant of the interaction between 
the hydrogen bond donors and the chloride ion from DFT calculations. 
 
 Harmonic period (fs) 

EG-Cl 325 

G-Cl 490 

U-Cl 245 

 

 

Figure 3.12. Period, T, of the harmonic oscillatory motions of the hydrogen bond donor–chloride 
ion interaction versus the fast correlation decay time (R2 = 0.82).  
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MD simulations were used to further test the proposed molecular model for the motions 

observed by the thiocyanate ion in the different DES. First, the autocorrelation of the average 

carbon–nitrogen distance, as a measure of the FFCF, shows that the time scales are similar to that 

observed experimentally (Figure 3.13 and Table 3.7). Second, the time autocorrelation function 

for the number of choline ions in the solvation shell of thiocyanate shows that the DES samples 

have motions on the same time scales as the experimentally measured FFCF characteristic times 

(Table 3.7). However, the characteristic times computed from the autocorrelation function of the 

number of the choline ions do not match the observed experimental trends which is likely due to 

the off-the-self models used to parametrize the components of the DES in the MD simulation and 

the arbitrary definition of the first solvation shell cut-off. Thus, the time scale agreement between 

the experimental FFCF and the autocorrelation of the motions of the choline cations, or the 

approximate MD FFCF (Figure 3.14), supports our proposed molecular mechanism for the FFCF. 

Moreover, the simulation results reveal that the fast dynamical component of the autocorrelation 

function corresponds to those choline ions oscillating within or near the solvation shell, while the 

slow component relates to those ions diffusing fully in and out of the solvation shell. However, the 

contributions from the hydrogen bond donor are clearly non-negligible as seen by the difference 

between the autocorrelation timescales of the number of choline ions in the thiocyanate solvation 

shell and of the approximate MD FFCF. 
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Figure 3.13. Time autocorrelation function of the frequency fluctuations ( 〈𝛿𝜔(0), 𝛿𝜔(𝑡)〉 ) 
obtained from CN distance averaged over 150 fs steps of MD simulations for DES U, DES G, and 
DES EG. 
 

Table 3.7. Amplitude and time constants from modeling the time autocorrelation function of the 
frequency fluctuations as a tri-exponential decay. 

 
  1 / ps  2 / ps  3 / ps 

DES EG 0.016±0.001 0.06±0.01 0.0083±0.0002 10.3±0.6 0.0019±0.0002 80±13 

DES G 0.016±0.001 0.06±0.01 0.0092±0.0002 5.8±0.3 0.0190±0.0001 166±3 

DES U 0.017±0.001 0.10±0.01 0.0022±0.0002 3.8±0.6 0.0083±0.0001 119±2 

 

The FFCF dynamics provides a suitable framework for explaining the molecular motions 

that the anionic probe observes in the DES. However, it does not explain the FWHM of the IR 

lineshape of the thiocyanate ion (Figure 3.1). In DES, the IR lineshape is clearly dominated by the 

inhomogeneous distribution of frequencies since the vibrational lifetime is relatively long and only 
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Figure 3.14. Correlation between time scales of diffusion of choline ion and FFCF from the 
average distance between nitrogen and carbon of SCN- ion. 
   

accounts for ~2 cm-1 of the total bandwidth and the FFCF dynamics is relatively slow. 

In the case of thiocyanate where two dynamics have been observed, the width of the line is 

described only by 𝛿2  =  𝛥12  + 𝛥22 in the inhomogeneous limit,43 and corresponds to a FWHM 

of 35.3 cm-1, 37.9 cm-1, and 28.9 cm-1 for DES EG, DES G, and DES U, respectively. Note the 

FWHM values present the same trend as the FWHM of the IR lineshape indicating that the 

system can be well modelled within the inhomogeneous limit. In this case, the inhomogeneous 

width also provides insights of the molecular environment since it shows how many different 

environments the probe is observing. DES G and DES EG do not present a large difference in the 

number of environments, but DES U has a lower number of possible environments. In other 

words, DES G and DES EG have more disorganized molecular structures than DES U. 

 It has been proposed that the density and other properties of DES can be described by hole 

theory.58-59 In this theory, holes (defect sites) arising from the disorder of the DES structure are 

responsible for defining the DES properties. Notably, the inhomogeneous widths show good 
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agreement with the inverse molar volumes of each DES. In the case of DES U and DES EG, which 

have nearly identical molar mass, this may represent a meaningful correlation. However, in the 

case of DES G, which has a much higher molar mass, the correlation may simply be fortuitous. 

Aside from the apparent agreement of solution organization with inverse molar volume, the DES 

organization does not appear to obviously correlate with either the free volume or the average hole 

size as predicted by hole theory for these DES.44 This lack of agreement indicates that hole theory 

alone might not provide the predictors required for linking microscopic and macroscopic 

properties of DES as previously suggested in ref. 44. 

 

3.5. Summary 

The nitrile stretch transition of the thiocyanate ion in three different DES was study by IR 

spectroscopies. These studies show that the thiocyanate anion is hydrogen bonded through its 

sulphur atom in all DES and it observes two solvation processes with different dynamics, both on 

a picosecond time scale. The two dynamical processes are assigned to in-place and diffusional 

motions of the solvation shell components. Molecular dynamics simulations and ab initio 

computations confirm the molecular interpretation of our experimental findings. Finally, 

modelling of the IR lineshape of the thiocyanate nitrile stretch demonstrates that DES are 

disorganized solvents. However, the level of organization observed for the different DES might 

not be sufficient for explaining the macroscopic properties of DES, such as density. 
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CHAPTER 4 

EVIDENCE OF MOLECULAR HETEROGENEITIES IN AMIDE BASED DEEP 

EUTECTIC SOLVENTS 

 

4.1. Introduction 

Deep Eutectic Solvents (DES) are a novel class of room temperature liquids based on the 

well-known eutectic phenomenon.1 Thus, DES are formed when two compounds are mixed and 

the fusion temperature of the mixture is lower than that of either individual component.2-4 DESs 

are typically made by mixing a quaternary ammonium salt and a Lewis or Brønstead acid.4 Similar 

to other designer solvents, such as ionic liquids (ILs), DESs have low vapor pressures and high 

conductivities.4-7 However, DESs present several advantages over other designer solvents. For 

example, they are easily prepared by mixing and can be made with low cost and environmentally 

friendly materials.6, 8-9 In addition, DESs physicochemical properties can be tailored not only by 

changing their components, but also by changing the ratio between components.4, 10 For these 

reasons, DESs have recently gained significant popularity in different areas of science and 

engineering such as: electrochemistry,11-12 metal oxide dissolution,13 catalysis,14-15 carbon dioxide 

absorption,16 separation process,17 oil-recovery,18 polymerization,19 etc. 

Currently, the most studied DESs are composed of choline chloride and various hydrogen 

bond donors, like urea or glycerol, due to the sustainable nature of all the components.4, 9 While 

there are an increasingly large number of studies on the applications of DESs, experimental and 

theoretical studies concentrating on unraveling the complex structure of choline based DESs have 

only recently started to appear.20-25 These investigations have shown that the hydrogen bond 

network formed among choline ions and, chlorine ions, and the hydrogen bond donors is  

Reprinted with permission from Cui, Y. and Kuroda, D.G., 2018. Evidence of Molecular Heterogeneities 
in Amide Based Deep Eutectic Solvents. The Journal of Physical Chemistry A, 2018, 122 (5), pp 1185–1193. 
Copyright (2018) American Chemical Society. 
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responsible for the melting point depression of the mixture.5 Two recent papers using neutron 

scattering on choline chloride-urea DES confirmed that the hydroxyl group of the choline ion plays 

an important role in the hydrogen bond network of the DES.22, 24 Additionally, it has been proposed 

that hydrogen bonds assist in the charge delocalization of chloride ion by weakening the 

electrostatic interaction between the choline and the chloride ions, which causes the depression of 

the melting point. However, work from Abbott and co-workers demonstrated that the difference 

in the melting point temperature between DESs formed with urea and either choline chloride or 

chlorocholine chloride is only 3 oC,5 indicating that the hydroxyl group and hydrogen bonding 

does not significantly affect the depression of the mixture.  Instead, it has proposed that entropy 

might play a major role in the formation of DESs. Furthermore, a recent ab-initio molecular 

dynamics simulation study did not find any evidence of charge delocalization in three different 

choline chloride based DESs.26 While many previous experimental studies have centered on the 

structure and dynamics of components in different acetamide type I DESs,27-36 a few have 

concentrated on the type III DES,20-22, 25 which is the motivation of this study. Importantly, the 

effects of the chemical structure of the HBA cation on the resulting structure of the DESs remains 

unexplored. 

 

  
 
Scheme 4.1. Structure of (a) trifluoroacetamide (TFAm), (b) choline ion, (c) chlorocholine ion, (d) 
tetramethylammonium ion, (e) tetraethylammonium ion, (f) benzyltriethylammonium ion. 
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Table 4.1. Compositions and abbreviation of the Deep Eutectic Solvents 

HBD (2.5 moles) HBA (1 mol) Abbreviation 

Trifluoroacetamide 

Choline chloride DES1 

Chlorocholine chloride DES2 

Tetramethylammonium chloride DES3 

Tetraethylammonium chloride DES4 

Benzyltriethylammonium chloride DES5 

 

This work focuses on shedding some light onto the effect of the “chemical structure” of 

the HBA cation on the microscopic structure and properties of the DES. We investigate DESs 

formed between trifluoroacetamide (TFAm) and various quaternary ammonium salts; i.e., choline 

chloride, chlorocholine chloride, tetramethylammonium chloride, tetraethylammonium chloride, 

or benzyltriethylammonium chloride (see scheme 4.1). TFAm is selected because it forms DESs 

that are liquids at room temperature.37 In addition, TFAm can be used as a probe of the structure 

and dynamics of the DES molecular components because its amide vibrational mode is known to 

be sensitive to different molecular environments.38-43 To this end, Fourier transform infrared 

spectroscopy (FTIR) and two dimensional infrared spectroscopy (2DIR) are used to characterize 

the vibrational dynamics of the amide mode including its frequency-frequency correlation function, 

which has encoded important information about the molecular motions in the system.44-45 The 

selection of photon echo IR spectroscopy is based on its capability for measuring vibrational 

dynamics on ultrafast time scale; i.e., sub- and picoseconds.44 2DIR spectra have an enhanced 

frequency resolution, which allows one to discriminate different species,44, 46-47 and measure 

transitions that are not clearly observed in the linear spectrum.44, 48-49 Finally, a set of 
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complementary molecular dynamics simulations is used to help interpret and support the molecular 

process giving rise to the observed vibrational dynamics in the investigated DESs. 

 

4.2. Experimental and theoretical methodologies 

4.2.1. Experimental methods 

1. Sample preparation. TFAm (2, 2, 2-trifluoroacetamide, Oakwood Chemical, 

98%) was used as received, with no further purification. TFAm was determined to have 0.04% of 

water via Karl-Fisher titration. The hydrogen bond acceptors, choline chloride (Acros Organics, 

99%), chlorocholine chloride (Alfa Aesar, 98%), and tetramethylammonium chloride (Sigma-

Aldrich, 98%), tetraethylammonium chloride (Alfa Aesar), and benzyltriethylammonium chloride 

(Alfa Aesar, 99%) were dried at 90 oC in a vacuum oven for 24 hours. DESs were prepared by 

mixing the two components at a specific molar ratio of 1 HBA / 2.5 HBD in a vial by sonicating 

in a room temperature bath or by heating the solid mixture at the temperature lower than 70 oC 

until the clear liquid formed. All the chemical reagents and prepared solutions were stored and 

operated in a nitrogen flushed glove box. 

2. Linear IR spectroscopy. The linear infrared measurements were performed on a 

Bruker Tensor 27 with a liquid nitrogen cooled narrow band MCT detector, with the resolution of 

0.5 cm-1. The samples are measured in a sample cell composed of two CaF2 windows without 

spacer (path length ~1 μm). Attenuated total reflectance FTIR (ATR-FTIR) spectra were measured 

on a Bruker Tensor 27 with a Pike diamond/ZnSe ATR crystal and a DTGS detector, with a 

resolution of 4 cm-1. All the linear IR measurements were performed at room temperature. 

3. Two Dimensional IR spectroscopy. The 2DIR spectroscopy measurements were 

performed in a setup similar to that previously described in the literature.50 Briefly, a broadband 
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IR pulse with a temporal width of ~60 fs was generated from a Spectra Physics Spitfire Ace 

Ti:Sapphire amplifier with 5 kHz repetition rate in combination with an optical parametric 

amplifier (Spectra Physics OPA-800C) and difference frequency generation crystal (AgGaS2).  

The photon echo signal was generated by focusing three replicas of the IR femtosecond 

pulses (each with a wavevector of either k1, k2, or k3) on the sample with a lens in a boxcar 

configuration.44 The photon echo in the phase matching direction of -k1 + k2 + k3 was then 

heterodyned by a fourth pulse (local oscillator) and detected with a liquid nitrogen cooled MCT 

array detector (64 elements, Infrared Systems Development) after its dispersion via a 

monochromator (Triax Horiba). The time intervals between pulses, τ (between first and second 

pulses), Tw (between second and third pulses), and t (between third and the photon echo) were 

altered by four computer controlled translation stages (PI Micos). For each waiting time, the 

photon echo signals were collected by sampling τ from -4 ps to 4 ps with a step of 5 fs. In all cases, 

the local oscillator always preceded the signal by ∼0.5 ps. A double Fourier transform along τ and 

t times was used to transform the signal in the time domain (i.e., S[τ, Tw, t]) to the signal in the 

frequency domain (i.e., S[ωτ, Tw, ωt]). The details of the FT analysis can be found in Ref. 51. Note 

that the data corresponding to Tw = 0 ps was not considered in the analysis of the slope because of 

distortions caused by pulse overlap and non-resonant signals from the materials of the sample cell. 

The DES solutions in which the amide band was investigated were measured with a sample 

cell with a CaF2 convex lens (focal length of 1 m and path lengths > 500 nm). The details of the 

lens sample cell can be found in Ref. 52. The 13C=O centered sample was measured in a sample 

cell having two regular CaF2 windows without spacer (path length ~1 μm). The 2DIR spectra of 

DES3 and DES4 were collected at 35 ⁰C with a temperature controlled sample cell (Harrick 
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Scientific) to avoid the solidification of the sample, while the 2DIR spectra data of the other three 

DESs were collected at room temperature.  

4. Differential Scanning calorimetry. The DSC measurements were performed on a 

DSC 2920 (TA instruments) using the empty pan as the reference. The solution sample (~10 mg) 

and reference were held on a hermetic alodined aluminum pan (TA instruments). The DSC cycle 

consisted of first cooling the DES and the reference solvent to -55 °C where they remained for 5 

min to achieve equilibrium, followed by a heating step with a rate of 10 °C/min to achieve a final 

temperature of 40 °C. 

 

4.2.2. Theoretical method 

1. Molecular dynamics. The molecular dynamics simulations were performed using 

the SANDER module of the AMBER 12 program package.53 A quantum mechanics/molecular 

mechanics method was used to model the system. The DES components were modeled classically 

with the GAFF force field. The selection of the unmodified force field is due to its good matching 

with diffusion experiments.54 The system was embedded in a 50 Å cube of a variable number of 

TFAm and different hydrogen bond acceptors (see Scheme 1) at a molar ratio of 2.5:1 between 

hydrogen bond donor and acceptor. The initial box was built using the packmol software 

package.55 Periodic boundary conditions were imposed in the simulation. Particle mesh Ewald 

methodology was used for long-range electrostatic interactions with a cutoff of 10 Å. The SHAKE 

algorithm was used to fix the bonds involving hydrogen. The system was energy-minimized for 

200 steps using the steepest descent method followed by 300 steps of the conjugate gradient 

method, then the system was equilibrated at 400 K and 1 bar (denoted normal temperature and 

pressure, NTP) for 1 ns with a 2 fs per step. This step was followed by another NTP step in which 
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the temperature was held at 300 K. In the two NTP steps, the simulation used a Langevin 

thermostat as temperature control. After 1 ns of NVT, a production run at NVE was recorded for 

10 ns extracting snapshot every 500 fs. 

 

4.3. Result 

4.3.1. Linear IR spectra 

 Steady-state IR spectroscopy was first used to study the structural differences of DES 

having different HBA cations. The FTIR-ATR spectra of all the investigated DESs in the 

frequency range from 1650 to 1775 cm-1 are shown in Figure 4.1. The two observed bands in this 

IR region correspond unequivocally to the vibrational transitions of TFAm, since the different 

cations of the HBAs do not have vibrational transitions in this part of the spectrum (see Figures 

4.2 and 4.3). Furthermore, the strong absorption at 1724 cm-1 and a weak band at 1625 cm-1 have 

been previously assigned to the amide mode and the scissoring mode of the amide hydrogens of 

TFAm, respectively.56 Overall, the amide band of the different samples shows a similar and 

slightly asymmetric line shape, and it is not well modeled with a single Voight profile. Moreover, 

the line shape is significantly different when the TFAm molecule is isolated (Figure 4.4), which is 

consistent with the presence of a vibrational exciton. In addition, the frequency positions of the 

maxima, as well as their bandwidths, do not vary significantly. A similar trend is observed for the 

scissoring mode at 1622 cm-1 (inset of Figure 4.1), though the location of the maximum band is 

slightly different in the different DES samples. 
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Figure 4.1. FTIR spectra of each TFAm based DES in the amide region. Inset shows the spectra 
of the δ(NH2) scissoring mode. 
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Figure 4.2. FTIR spectrum after background subtraction of 0.1 M TFA in DMSO. The sample was 
measured in a CaF2 cell with a 25 μm path length.  
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Figure 4.3. FTIR spectra after background subtraction (D2O) of choline chloride (ChCl), 
chlorocholine chloride (ClChCl), tetramethylammonium chloride (TMACl), tetraethylammonium 
chloride (TEACl), and benzyltriethylammonium chloride (BTEACl) in D2O. All samples have a 
concentration of 0.05 M. The samples were measured in a CaF2 cell with a 25 μm path length. 
 
 
4.3.2. Two dimensional IR spectra 

 The structure and dynamics of the TFAm-based DESs were further studied by 2DIR 

spectroscopy. Because of the excitonic nature of the amide band of TFAm (Figures 4.4 and 4.5), 

the main band was not used to investigate the dynamics and structure of the TFAm-based DES. In 

turn, our studies had focused on the 13C amide band from the natural abundance of carbon-13 

isotope in TFAm, which is ∼1%.57 The amide mode of the isotopically labeled TFAm has a 

transition frequency redshifted by ∼50 cm-1 from 12C amide vibrational mode. To our knowledge 
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Figure 4.4. ATR-FTIR spectra of DES and DES in DMSO at different molar ratio as shown in the 
label. All the DES have a molar ratio of 2.5:1 between TFA and ChCl. 
 

the vibrational frequency of the 13C amide of TFAm has not been reported yet, but the observed 

value is in good agreement with the experimentally measured 40 cm-1 down shift of the amide I 

mode for different secondary amides, as reported in the literature.58-60 Moreover, density functional 

theory (DFT) calculations predict a redshift of ∼60 cm-1 for the vibrational transition of the 13C-

labeled molecule. Note that the observed differences between theory and experiments in the 

frequency shift of isolated transitions could arise from the formation of a vibrational exciton which 

defines the central frequency of the amide band. Finally, analysis of the volume of the peaks 

assigned here to 12C and 13C amide modes of TFAm predict an isotope ratio of 0.5-1.1%, which is 

in good agreement with the ∼1% abundance of 13C. The frequency shift due to the 13C amide is 
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sufficient to disrupt the strong coupling between the 13C and 12C amide band and allow us to 

monitor environment of the TFAm from a local mode, that is, vibrational uncoupled transition.60 

 

   

   

Figure 4.5. 2DIR spectra of DES1 (top) and DES2 (bottom) at the carbonyl region of TFA at T = 0 ps, 3.3 
ps, and 11.3ps. 
 

The 2DIR spectra of different DESs in the 13C-amide region are shown in Figure 4.6. The 

2DIR spectrum displays the absorptive third-order signal as a function of the pump (ωτ) and probe 

(ωt) frequencies for different waiting times (Tw). In each 2DIR spectrum a pair of peaks is observed. 

In each peak pair, the positive (red) peak overlaps with a diagonal line (black line, ωτ = ωt) and 

arises from the ν = 1 to ν = 0 amide vibrational transitions, while the negative (blue) peak is shifted 

to a lower frequency from the positive peak and corresponds to ν = 1 to ν = 2 amide vibrational 

transitions. The frequency difference of ∼25 cm-1 between the maxima of the positive and the 

negative peaks observed in the 2DIR spectra exposes the anharmonic nature of the amide 

vibrational potential. The anharmonicity of ∼13 cm-1, obtained by fitting the trace passing through 
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the maximum on ωτ (Figure 4.7 and table 4.2), is in agreement with previously studied amides.61,62 

The waiting time (Tw) evolution of the 2DIR spectra shows that at Tw = 0 ps the positive and  

 

 

 

Figure 4.6. 2DIR spectra of DES at the 13C=O vibrational frequency region. From top to bottom, 
DES1 to DES5. From left to right, the spectra at 0 ps, 0.5 ps, 1 ps, and 3 ps as waiting time. 



92 

 

 

1600 1650 1700 1750
-22500
-15000

-7500
0

7500
15000
22500
30000

 

 
In

te
ns

ity

t(cm-1)
 

Figure 4.7. Trace of the 2DIR spectra (Figure 4.2 of main text) for DES1 at T= 0 ps. Black line is 
the experimental trace, and red, blue and green line are the modeling. 
 

negative peaks are tilted along the diagonal, and as the waiting time increases, the peak pair loses 

its elongation along the diagonal and acquires a more upright shape. The evolution of the 2DIR 

peak shapes with Tw evidences the changes in the environment (spectral diffusion) sensed by the 

TFAm molecule. 

 

Table 4.2. The trace passing through the maximum of the 2DIR for DES1 at T = 0 ps was fitted 
with two Lorentzian functions. 

 Peak 

 Bleach/Stimulated emission (green line) Photo-induced absorption (red line) 

Ν (cm-1) 1677.0 1664.5 

A (arb. units) 0.99x106 1.14x106 

Γ (cm-1) 23.7 37.4 

FWHM (cm-1) 23.7 37.4 
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4.4. Discussion 

In the FTIR spectra of TFAm-based DESs, the amide band of TFAm does not serve as a 

direct reporter of the molecular environment due to its strong vibrational coupling among states) 

in nature63 and sensitive to both environment and coupling (dipole orientation).64,65 Thus, the 

entanglement between the location and orientation of the various TFAm molecules forming the 

exciton does not allow one to directly probe the motions of the molecular environment. However, 

any perturbation in the arrangement (coupling) of the vibrational oscillators (TFAm molecules) 

should produce a significant change in the exciton transition frequencies and transition dipoles due 

to the strong dependence of the magnitude and sign of the coupling constant with the geometrical 

arrangement of oscillators.63 Thus, a difference in the molecular arrangement of TFAm molecules 

should be directly observed in the FTIR.  

The FTIR spectra of amide band of TFAm show that the profiles are very similar 

irrespective of the HBA structure, indicating that the molecular arrangement of TFAm molecules 

in the investigated DES is not significantly altered by the different HBAs, even though the DES 

have different HBAs with various chemical moieties and symmetries. For example, the HBA 

cation of DES1 (choline ion) has a hydroxyl group capable of forming hydrogen bonds at a molar 

ratio of 1:2.5 with TFAm. While these results seems to be contradictory, it will be shown later that 

they are in agreement with a highly heterogeneous structure of the DES in which the majority of 

the TFAm are forming nanoscopic-sized clusters (or equivalent nanoheterogeneous structures) 

similar to those observed in ionic liquids. The interaction between the HBA and TFAm occurs 

mostly at the interface between the different nanodomains. Although the presence of 

heterogeneities in DES is not a new concept, since it has been proposed in previous studies,34,36,66 

here their presence is experimentally measured. 
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The strong coupling observed in the FTIR makes it hard to analyze the amide vibrational 

transition in terms of local modes. In addition, the naturally occurring 13C amide band of TFAm is 

not observed directly in the linear IR spectra because of its low concentration and its overlap with 

the tail of the excitonic 12C amide band as well as the NH2 bending mode, as seen in Figure 4.1. 

Thus, the diagonal trace of the positive peak at zero waiting time for the 13C amide mode is used 

to describe the distribution of uncoupled vibrational transitions in the amide band. Similar to the 

FTIR, the normalized diagonal trace (NDT) of 2DIR spectra at T = 0 ps can be used to model the 

amide line shape.67 To this end, the NDT is fitted with one or two Gaussian functions, as shown in 

Figure 4.8, and the parameters of the fitting are in Table 4.3. Modeling of the NDT reveals that all 

the DES have very similar line shape parameters including central frequency and width, indicating 

that the TFAm environment is not significantly altered by the change in the HBA cation structure. 

In addition, the small shift observed in the central frequency could account for the small difference 

in the dielectric constant of the medium sense by the amide molecules. This result is in agreement 

with the similarity of the excitonic (12C) amide band observed for the different DESs in the ATR-

FTIR spectra and reinforces the idea that not all the TFAm-based DESs form homogeneous 

solutions at the molecular level.  

The dynamics of the molecular motions of the environment perceived by the TFAm 

molecules was extracted from 2DIR spectra by analyzing the waiting time dependence of the 13C 

amide peaks (Figure 4.6) with the inverse nodal line slope (referred to as slope through the rest of 

the manuscript). The slope is a metric directly related to the frequency-frequency correlation 

function (FFCF),68 and so its waiting time evolution exposes the characteristic time of the 

molecular motions. The slope as a function of Tw for the different samples is shown in Figure 4.9. 
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Figure 4.8. NDT of 2DIR of 13C amide band at Tw = 0 ps for each DES. (black line) The 
experimental NDT. (dashed lines) The fitting with one or two Gaussian functions that correspond 
to the NDT (red) and tail of the 12C amide band (green). 
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Table 4.3. Fitting parameters for the Gaussian modeling of normalized diagonal trace and the 
exponential modeling of slope with waiting time of 13C=O band in their 2DIR spectra in the 
different DESs. 
 

DES 
NDT Slope 𝜈 (𝑐𝑚−1) 𝜎 (𝑐𝑚−1) 𝑦0 𝐴 𝜏 / 𝑝𝑠

1 1674.6 ± 0.1 5.8 ± 0.1 0.24 ± 0.01 0.21 ± 0.02 1.2 ± 0.2 

2 1672.5 ± 0.1 5.3 ± 0.1 0.14 ± 0.01 0.26 ± 0.02 1.5 ± 0.3 

3 1675.8 ± 0.1 5.3 ± 0.1 0.08 ± 0.01 0.29 ± 0.04 1.0 ± 0.2 

4 1674.3 ± 0.2 5.6 ± 0.2 0.10 ± 0.01 0.24 ± 0.02 1.3 ± 0.2 

5 1677.0 ± 0.1 5.5 ± 0.1 0.10 ± 0.02 0.34 ± 0.03 1.6 ± 0.4 

 

It is evident that the loss of frequency correlation in all the samples occurs on a very fast time scale. 

To quantify the slope dynamics, the data was modeled with an exponential decay function of the 

form f(t) = y0 + A exp(-Tw/ τ). The fitting parameters for the slope of each DES are listed in table 

2. Interestingly, the 13C amide peaks from TFAm have statistically the same correlation decay 

times (τ ≈ 1 ps) and amplitudes in different DESs, albeit the DES5, which has a slightly higher 

amplitude (A). 

 A characteristic time on the order of ∼1-2 ps has been assigned to the thermal making and 

breaking of hydrogen bonds for water69-72 and methanol.73-75 Thus, it is not surprising that amides 

undergoing making and breaking of hydrogen bonds show a similar characteristic time as 

previously seen in N-methylacetamide.76 In contrast, the offset (y0) representing a slower 

component of the FFCF is not similar for all the DESs. Notably, the offset appears to be correlated 

to the asymmetry of the HBA cation, since the choline ion has the largest value, while the  
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Figure 4.9. FFCFs of the DESs with different HBAs extracted from the 2DIR spectra of 13C amide 
obtained from the nodal line slope method. (■) Slope data. (red line) Slope data fitting with an 
exponential function as described in the text. Note that the slope at Tw = 0 ps was not taken into 
consideration due to the presence of nonresonance signals. Panels correspond to (a) DES 1, (b) 
DES 2, (c) DES 3, (d) DES 4, and (e) DES 5, respectively. 
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tetramethylammonium ion has the smallest offset. In addition, no correlation is observed with the 

viscosity of the solution (Table 4.4). The results indicate that the amide carbonyl group in the DESs 

with different HBAs have the same fast component of the solvation dynamics irrespective of the 

structure of the HBA cation, but the presence of a slower component is significantly altered by the 

cation structure. In addition, the lack of correlation with the viscosity indicates that the 

inhomogeneous term is not a slow dynamics component of the FFCF related to diffusional motions 

of amide solvation shell constituents.25 

 

Table 4.4. Viscosity of selected DES measured as 298 K 

 Viscosity (cp) 

DES 1 128.1 

DES 2 225.0 

DES 4 202.9 

 

 

 This phenomenon further supports our interpretation of the FTIR and NDT where TFAm 

is located in heterogeneous domains where only those TFAm molecules located at the interface of 

the HBD domain are affected, since the asymmetric structure of the HBA cation favors their 

formation. In contrast, TFAm molecules in more homogeneous environments will see a smaller 

contribution of the slow dynamical component, because the probability of finding a TFAm 

molecule next to aggregates is smaller. The observed effect is similar to that seen 

in reverse micelles, where the number water at the interface is responsible for the observed 

slowdown in the dynamics of solvent.77 In this molecular model, one will expect that highly 
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symmetric HBA cations will have the lowest interaction with themselves and the highest with the 

amide molecules, while highly asymmetric and functionalized HBA cations are more likely to 

interact with the same species through its functional groups and simultaneously will disorganize 

the solvent through its asymmetric structure. 

The proposed heterogeneous model was supported by investigating the structure of DES1 

(HBA choline chloride) and DES3 (HBA tetramethylammonium chloride) via molecular dynamics 

(MD) simulations. Only DES1 and DES3 were selected to be studied via MD, because 

experimentally they show the highest and lowest contribution of the slow dynamical component 

(y0 of table 3) among all the investigated DESs. The local structure surrounding the HBA and HBD 

in the different DESs was obtained from the radial distribution function (RDF). RDFs of atoms of 

the components in the DES1 and DES3 are shown in Figure 4.10. The RDF between the oxygen 

and hydrogen atoms of TFAm reveals that TFAm is very likely to be hydrogen bonded to another 

TFAm as seen by the peak located at 1.95 Å (Figure 4.10a). Note that the two sharp peaks at 2.35 

and 3.05 Å correspond to the two hydrogens of the same molecule hydrogen bonded to the oxygen 

atom. Moreover, the RDF between oxygens of TFAm also shows that the structure of the cation 

does not affect significantly the local structure of the amide (Figure 4.10b). Furthermore, the 

number of TFAm molecules in the first solvation shell derived from the RDF of the TFAm oxygen 

atoms shows that the number does not change in two DESs (1.41 for DES1 and 1.42 for DES3). 

The result is in agreement with the excitonic and invariant nature of the amide band of TFAm 

observed in the ATR-FTIR spectra of the different samples. 
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Figure 4.10. RDFs for various atoms for (a) O-H (both from TFAm), (b) O-O (both from TFAm), 
(c) O-N (oxygen from TFAm and N from quaternary ammonium group), (d) N-N (both from 
quaternary ammonium group), (e) O-O (one from TFAm and the other from choline ion), and (f) 
Cl-H (hydrogen from TFAm). Black and red lines correspond to DES1 and DES3, respectively. 
 

 The RDF between oxygen atoms of TFAm and choline ion (DES1) shows a tiny peak at 

1.75 Å (Figure 4.10e) indicating that choline ion can form hydrogen bonds with TFAm, but their 

probability is low. As expected, the RDF of chloride ion with the hydrogen atom bonded to 

nitrogen (TFAm) or oxygen (choline ion) as seen in Figure 4.10f shows that chloride ions have 

hydrogen bond interactions with both HBD and HBA in DES1 but only with HBD in DES3. The 

result for DES1 is in agreement with a recent neutron scattering study, where it was demonstrated 

that the -OH···Cl- interaction is largely conserved in DES.24 The predicted nanoscopic 

heterogeneity is observed in the RDF of the nitrogen atom of quaternary ammonium group (Figure 

4.10d). In this case, the RDFs are significantly different between DES1 and DES3. For example, 

the first solvation shell (defined as the first minimum) is observed at 8.05 Å for DES1 and 7.75 Å 

for DES3. In addition, the coordination number is 3.64 and 3.13 for DES1 and DES3, respectively, 
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which indicates that the probability of finding a second HBA cation next to one another is higher 

for DES1 than for DES3. 

This last result is in agreement with the higher degree of spatial nanoheterogeneity 

predicted from the IR experiments. Finally, the RDF between the oxygen atom of TFAm and the 

nitrogen atom of the quaternary ammonium group of either choline (DES1) or 

tetramethylammonium (DES3) as shown in Figure 4.10c agrees with a more heterogeneous 

environment for DES1, since the number of TFAm molecules in the solvation shell of the 

quaternary ammonium group is smaller for DES1 (1.24) than for DES3 (1.41). In other words, the 

results indicate that more TFAm molecules solvate the HBA cation in the latter than in the former, 

or equivalently, that HBA cations are more aggregated in DES1 than in DES3. 

The proposed structural nanoscopic heterogeneity is strongly supported by DSC. DES1 is 

reported to have a melting point of -43 °C,78 but its endotherm shows an endothermic peak at 

23 °C (see Figure 4.11). The observed endotherm is not related to any observable phase transition,  
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Figure 4.11. DSC thermogram of DES1. (★) The endotherm due to the nanometer-scale 
heterogeneities as described in the text. 
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since DES1 forms a clear liquid in the temperature range from -20 to 40 °C. The presence of an 

endothermic peak is not new, since it was previously observed in ionic liquids with nanometer 

scale heterogeneities.79,80 Thus, the small endothermic peak observed in the DSC thermogram of 

DES1 further supports the existence of a nanoheterogeneous environment in DES1 as deduced 

from the time-resolved IR experiments. 

 

4.5. Summary 

The effect of the HBA cation chemical nature on the overall solution structure in a family 

of TFAm-based DESs is reported. Our results show that TFAm observes a fast dynamical 

component of ∼1 ps corresponding to the hydrogen bond making and breaking in all the 

investigated DESs, which is irrespective of the structure of the HBA cations. However, DESs with 

more symmetric HBA cations have lower contributions of a second slow molecular motion of the 

environment than those with asymmetric cations, which is caused by the interphase between HBA 

and HBD domains. In addition, a DES formed with an asymmetric HBA cation containing a 

hydroxyl group presents a similar contribution of the slow dynamical component compared with 

those where the hydroxyl group is replaced with a chloride atom. Finally, all the DES show very 

similar level of disorganization. The experimental results are interpreted in terms of a molecular 

model in which the HBA cation and the HBA are not homogeneously distributed in space. 

Furthermore, it was found that the level of heterogeneity in the molecular environment increases 

with the asymmetry in the geometry and the interactions of the HBA cations. The proposed 

heterogeneous molecular structure of the DESs is supported by molecular dynamics simulations. 

In addition, the presence of a nanoscopic heterogeneous environment is consistent with an 

endotherm observed in the DSC thermogram, which further supports the proposed DES structure. 
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CHAPTER 5 

SOLVENT STRUCTURE OF NON-IONIC DEEP EUTECTIC SOLVENT COMPOSED 

OF N-METHYLACETAMIDE AND LAURIC ACID 

 

5.1. Introduction 

Deep Eutectic Solvents (DES) are liquids composed of two or more solid components. 

Based on the eutectic phenomenon, the fusion point of the DES is lower than the melting points 

of the individual components of the mixture.1 The selection of solids as individual components 

leads to DES with negligible vapor pressure.2-3 Moreover, the physical or chemical properties can 

be tailored by the various components employed based on the different purpose of applications.4-7 

Because of those properties, DES are considered as designer solvents, similar to ionic liquids.8 

However, DES have some advantages compared with ionic liquids. The materials for preparing 

DES are usually cheap, safe, and easy to produce. In addition, the DES preparation process consists 

of a simple mixing.6,8,9 The properties of DES are tailorable not only by varying the components 

identity, like ionic liquids but also the molar ratio of components.5,10 Due to these advantages, 

DESs are widely studied and applied in scientific and engineering fields, such as: organic 

synthesis,6,11 electrochemistry,12,13 metal oxide dissolution,14 carbon dioxide absorption,15 

separation processes,16 polymerizations,17,18 and lately in oil-spill remediation.19  

The most studied DES have been those composed of quaternary ammonium chloride or 

metal chloride (hydrate), which are “ionic” DESs.2 The dynamics, and structure of choline-based 

DESs are already well studied by either experimental or theoretical.20-24 Based on the ionic nature 

of most DES, it is not surprising that most of the resulting DES are hydrophilic. We have reported 

that N-methylacetamide and lauric acid, a fatty acid, can form a hydrophobic DES at room 

temperature, which is the first of its kind.5,19 Hydrophobic DESs have been reported by Maaike C. 

Kroon as immiscible water extractants.25 They produced DESs with fatty acid and various 
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quaternary ammonium salts having three or four carbon alkyl chains. The authors reported that 

those DESs have low solubility of water in the DES and low leaching of quaternary ammonium 

salt into water. The above results indicate the strong interaction between chloride ion and HBDs, 

which is similar to other choline chloride-based DES. While in the system of NMA-LA, the 

components separate when mixed with water, which is probably due to the relatively weak 

interaction between NMA and LA molecules. However, the investigation of the interaction in non-

ionic DES between components is to be addressed yet. Moreover, Biswas and coworkers studied 

the non-ionic DES of acetamide-urea and showed that the system has both structural and 

dynamical homogeneity.26 Since the structures of acetamide and urea are similar, in the DES, the 

two components can evenly mix and form a homogeneous solvent. However, in the NMA-LA 

system, the two molecules are different in size, water solubility, and polarity. Thus, the system is 

expected to have a different structure from reported acetamide/urea. Moreover, the fusion point of 

the systems of NMA-LA at the molar ratios from 2:1 to 6:1 are below room temperature,19 which 

provides a big window to study the interaction between components with different molar fractions. 

 

(a)  (b)   (c)  (d)   

 
Scheme 5.1. Structure of (a) N-methylacetamide (NMA), (b) lauric acid (LA), 
(c)tetrabutylammonium thiocyanate (TBA SCN), (d) benzyl thiocyanate (BSCN)  
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Table 5.1. Compositions and abbreviation of the Deep Eutectic Solvents 

Component 1 Component 2 
Molar ratio of 

NMA: LA 
Abbreviation 

N-methylacetamide Lauric acid 

2:1 DES2 

4:1 DES4 

6:1 DES6 

 

In this work, we focused on investigating the structure and interaction between components 

in the DES and the molar ratio’s effect on the structure. We studied the DES composed of NMA 

and LA with molar ratio 2:1, 4:1, and 6:1. The carbonyl stretch of NMA and LA are used as a 

probe to report the interaction because the carbonyl stretch is already well studied and proven 

sensitive to the environment change.27-29 The frequency difference of the non-hydrogen bonded 

carbonyl stretching mode of NMA and LA is ~50 cm-1.30-35 The separated bands ensured we 

analyzed each component individually. Moreover, we used both polar and non-polar probed to 

study structure or dynamics to extract the effect from the molar ratio of components. To this end, 

Fourier Transform Infrared (FTIR) and two-dimensional Infrared spectroscopy (2DIR) are used to 

study the vibration of each probe to decode the structure and dynamics in a solution environment. 

The photon echo signal from 2DIR delivers the information, including chemical exchange and 

spectral diffusion, which are important to describe the molecular interaction and motions in sub- 

or picosecond timescale.36,37 
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5.2. Experimental methodologies 

5.2.1. Sample preparation 

Lauric acid (Alfa Aesar, 99.5%), N-methylacetamide (Alfa Aesar, 99%) used for preparing 

DES were used as received. The two components were mixed at varied ratios. The DESs were 

prepared by mixing the two components in a vial, then operating the vial with vortex mixer and 

sonicator until a clear liquid formed. Heating was not applied during the DES preparation process. 

Infrared probe tetrabutylammonium thiocyanate (TCI, 95%), and benzyl thiocyanate (TCI, 99%) 

were used without further purification and added to the DESs. All the DESs and solutions were 

stored and prepared in a nitrogen flushed glove box. 

 

5.2.2. Linear IR spectroscopy 

Linear IR measurements were performed using a Bruker Tensor 27 with a liquid nitrogen 

cooled narrow band MCT detector. All of the samples were measured with 0.5 cm-1 resolution, 

and all the spectra were averaged from 40 scans at room temperature, using an O-ring sealed 

sample cell composed of CaF2 windows and different thickness Teflon spacers, depending on the 

requirement of absorbance. All the sample cells were prepared in a nitrogen-filled glovebox to 

minimize exposure to moisture. 

 

5.2.3. Two-dimensional IR spectroscopy 

The 2DIR spectroscopy measurements were performed in the similar setup which 

described in the literature previously.32 In short, the broadband infrared pulse was generated from 

a Spectra Physics Spitfire Ace Ti: Sapphire amplifier with 5 kHz repetition rate and an optical 

parametric amplifier (Spectra Physics OPA-800C). The photon echo of different samples was 
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generated by three replica IR pulses, with wave vectors of k1, k2, and k3 respectively, through the 

sample cell in a boxcar configuration.36 The photon echo at the phase matching direction of -k1 + 

k2 + k3 or k1 - k2 + k3 depending on rephasing or non-rephasing signal, was overlapped with a 

fourth pulse, the local oscillator, as heterodyne detection. The interference of photon echo and 

local oscillator was detected by a liquid nitrogen cooled MCT 64 elements array detector with a 

monochromator. The time intervals between pulses τ (between first and second pulses), Tw 

(between second and third pulses), and t (between third and the photon echo) were controlled by 

translation stages. For the experimental measurements, the τ was scanned from -4 ps to 4 ps with 

a step 5 fs for each waiting time, and the local oscillator always preceded the signal by ∼0.5 ps. 

To analyze the data, the signal in the time domain ( S(τ, Tw, t) ), was transformed to the signal in 

the frequency domain by double Fourier Transforming with the two coherence times (τ and t) at 

different waiting times (T).38 For the 2DIR measurement of pure DES, no spacer was used. The 

spacer used for DESs with probes in 2DIR measurements were the same as FTIR mentioned 

previously. A lens sample cell was used to reduce the absorbance when acquiring the 2DIR signal 

of amide I band in DES, using the same procedure our group reported previously.39  

 

5.3. Result 

5.3.1. Linear IR spectra 

The normalized FTIR spectra of NMA-LA DES with varied molar ratios appear as two 

groups of peaks corresponding to the vibrational transitions of NMA (in the frequency range 1600 

cm-1 - 1700 cm-1) and lauric acid (in the frequency range 1700 cm-1 - 1775 cm-1) according to the 

assignment done previously.19 The band centered at 1566 cm-1 indicates the amide II band of 

NMA.40 In figure 5.1, the amide band in the NMA has an asymmetric profile with shoulder bands 
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on both sides of the peak and is centered at 1656 cm-1. With increasing concentration of NMA 

(DES2 to DES6), the ratio of area red-side band (at ~1630 cm-1) to the center band increases. In 

contrast, it appears that the blue-side shoulder band of NMA does not show a significant change 

with the different DESs. The spectra of acid have two bands, which are at ~1710 cm-1 and ~1730 

cm-1. The ratio of two bands area varies with concentrations of LA. From DES2 to DES6, the total 

absorbance of acid bands decrease with the decreasing concentration of LA in the DES, and the 

absorbance of the low-frequency band decreases more than the other acid band. 
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Figure 5.1. (a)Normalized FTIR spectra of acid carbonyl band of NMA-LA with a molar ratio of 
2:1 (black line), 4:1 (red line), and 6:1 (blue line). 
 
 

To study the vibrational modes of the NMA-LA system, the FTIR spectra of DES diluted 

with THF, as well as NMA dissolved in THF, were measured for comparison. From the normalized 

spectra in figure 5.2, the NMA bands are asymmetric in THF, and it is clear that there are bands at 

lower and higher frequencies than the central band. Compared with the central band of the sample 

in the spectra, the absorbance of the low-frequency band rises with increased concentration of 
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NMA. The opposite trend occurs for the band at ~1730 cm-1, the absorbance drops with increased 

concentration. The two-band profiles of the acid carbonyl region also affected by the NMA 

concentration in THF solution. The high-frequency band increases and low-frequency band 

decreases as the concentration of NMA is increased. Comparing the spectra of the DES-THF 

mixture with pure NMA in THF, the acid band is absent, and the amide band of NMA also presents 

a two-band profile as seen in DES with THF. At a similar ratio of NMA: THF, the absorbance of 

the low-frequency band at ~1630 cm-1 of DES sample is significantly lower than for NMA in THF. 
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Figure 5.2. The concentration-dependent experiment of NMA-LA in THF as well as NMA in THF. 
The sample molar ratios of NMA-LA-THF mixture are 4:1:1 (black), 4:1:2 (red), 4:1:4 (blue), 
4:1:8 (pink), and NMA in THF at a molar ratio of 4:1 (green). 
 
 

The temperature dependent FTIR spectra were also measured, in order to investigate the 

thermodynamics of interactions in the DES with different molar ratios. The FTIR spectra of DESs 

were measured at the temperatures from 10 °C to 50 °C with 10 °C per step, which is in figure 5.3. 
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In their spectra, the two bands of amide I band in the spectra of different DES present different 

trends with temperature change. When the temperature increases, the band centered at ~ 1630 cm-

1 decreases, and the band at ~1656 cm-1 increases. For the two-band profiles of acid vibrational 

transitions, the spectra present similar changes as the amide band with varied temperature.  
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Figure 5.3 FTIR spectra of DES2, DES4, and DES6 with different temperatures at the carbonyl 
stretching the range of both NMA and lauric acid. The arrow denotes the temperature increasing. 
 

 

 

 

 

 

 

(Figure 5.3. continued) 
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5.3.2. Two dimensional IR spectra 

 The 2DIR spectra centered at amide band region of NMA-LA systems with different molar 

ratios were measured (figure 5.4). The red peaks (positive) at high probe frequency along the 

diagonal line indicate vibrational transitions from ν = 1 to ground state (ν = 0). The blue peaks 

(negative) refer to the transitions from ν = 1 to ν = 2. There are six pairs of peaks located along the 

diagonal line at short waiting time. The two pairs of peaks at ~1710 cm-1 and ~1730 cm-1 indicate 

the carbonyl stretching modes of lauric acid, which are also present in their FTIR spectra. The 

other four pairs of peaks are amide bands of the NMA molecule. The peaks at ~1556 cm-1 are 

amide II bands, and the three peaks at ~1615 cm-1, ~1649 cm-1, and ~1674 cm-1 are amide I bands 

of NMA molecule.41 At early waiting times, all the diagonal peaks are tilted and elongated along 

the diagonal line. The cross peak between middle amide I band and the other two peaks of amide 

I band of NMA are observed at short waiting times. Moreover, the cross peak between middle 

amide I band and amide II band of NMA molecule are identifiable. There are no cross peaks 

observed between amide band and acid carbonyl peaks at short waiting times. With increased 

waiting time, the cross peaks between two positive peaks amide I bands at ~1649 cm-1 and ~1674 

cm-1 overlapped with the negative peaks, making the negative peaks less intense. The other cross 

peaks present at short times also grow with time at different rates, and the cross peak between the 

amide II band and amide I band with the lowest frequency become evidenced. It is worth noting 

that the cross peaks between the acid carbonyl band and amide are present even at the short time 

and grow with increasing waiting time. 
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Figure 5.4. 2DIR spectra centered at the frequency of amide band of NMA in DES2, DES4, and 
DES6 from top to bottom. From left to right, the waiting times are 0.5 ps, 1 ps, 2 ps, and 4 ps. 

 

The structure and dynamics of the DESs of NMA-LA were further studied by 2DIR 

spectroscopy in the acid bands region (figure 5.5). In each 2DIR spectrum, two pairs of peaks are 

observed. The anharmonicity of the two bands is both ~16 cm-1, which agrees with the previous 

study.30 For all the samples, at Tw = 0 ps, the peaks are tilted and elongated along the diagonal line. 

While the waiting time evolves, the shapes of peaks have no apparent change within 3 ps. 

Moreover, in the spectra of DES6, the positive cross peak can be observed, while the cross peaks 

of other samples are not obvious. For the samples of DES4 and DES6, an extra peak grows at ωt 

= ~1710 cm-1 at later waiting time, which disappears at Tw = 0 ps. 
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Figure 5.5. 2DIR spectra centered at the frequency of carbonyl band of LA in DES2, DES4, and 
DES6 from top to bottom. From left to right, the waiting times are 0 ps, 1 ps, 2 ps, and 3 ps. 
 

 

5.4. Discussion 

The amide I band of N-methylacetamide in various solutions has been extensively studied 

by experimental and theoretical methods.27,41-45 Depending on the different interactions with 

solvent molecules around the NMA, the amide I band (carbonyl stretching transition) of NMA 

molecule was assigned as one hydrogen-bond, two hydrogen-bonds or free of the hydrogen-

bond.33,35,41 Also, the vibrational coupling between these amide I bands is confirmed. Our amide I 

band of NMA in THF (molar fraction of 0.8 of NMA) is similar to the spectra of neat NMA 

reported by Cunha et al..41 According to their assignment, the amide I band with hydrogen bond 

(main band), and free band (high-frequency shoulder band) configurations are coupled and 

presented as the profile in figure 5.1. There is a shoulder band at the low frequency of the main 

1700 1720 1740

1700

1710

1720

1730

1740

1750

D
ES

2 
D

ES
4 

D
ES

6 
0 ps 1 ps 2 ps 3 ps 

1700 1720 1740

1700

1710

1720

1730

1740

1750

1700 1720 1740

1700

1710

1720

1730

1740

1750

1700 1720 1740

1700

1710

1720

1730

1740

1750
1700 1720 1740

1700

1710

1720

1730

1740

1750

1700 1720 1740

1700

1710

1720

1730

1740

1750

1700 1720 1740

1700

1710

1720

1730

1740

1750

1700 1720 1740

1700

1710

1720

1730

1740

1750

1700 1720 1740

1700

1710

1720

1730

1740

1750

1700 1720 1740

1700

1710

1720

1730

1740

1750

1700 1720 1740

1700

1710

1720

1730

1740

1750

1700 1720 1740

1700

1710

1720

1730

1740

1750



121 

 

band mentioned by the author. They have assigned the low-frequency shoulder band at ~1630 cm-

1as the bending mode of water contained in the sample. In our case, a similar low-frequency 

shoulder is present in all the samples in figure 5.1. With the concentration of NMA decreasing, the 

shoulder band decreases. Considering the hydrogen bond acceptor nature of THF, the shoulder 

band should relate to hydrogen bond forming with amide I band. Tokmakoff’s work has shown 

that the amide I band can form multiple hydrogen bonds through oxygen.33 It is reasonable to 

assign the shoulder band as two hydrogen-bonds of amide I band. Therefore, the asymmetric 

profile of FTIR spectra of DES at the amide 1 band region are assigned as free, one hydrogen-

bond (1HB), and two hydrogen bond (2HB) of the NMA carbonyl. Interestingly, in the spectra of 

NMA-LA DESs with different molar ratios, the two hydrogen-bonded band increases with 

increasing LA added to the mixtures, indicating that hydroxyl group of LA acts as a hydrogen 

bond donor, forming a hydrogen bond with NMA. The significant change of the profile in the 

FTIR spectra of DES at the lowest frequency amide I band from that profile of NMA in THF 

indicates that the existence of LA influences the hydrogen bond network of NMA, that LA can 

interact with NMA by forming extra hydrogen bond, such as a second hydrogen bond with oxygen 

atom of NMA.  

The spectra of acetic acid in the solvent was reported by Hochstrasser.30 By studying acetic 

acid and deuterated acetic acid in carbon tetrachloride, they assigned the vibration modes of a 

carbonyl group as a free band, one hydrogen-bond and cyclic dimer of acetic acid. In our NMA-

LA systems, the carbonyl stretching modes of LA in each DESs of the FTIR spectra present two-

band profile. The frequencies of the two bands are determined as ~1710 cm-1 and ~1730 cm-1 by 

Voigt function fitting, respectively. We assign the two-band profile of acid peaks in the NMA-LA 

as a hydrogen-bonded at low frequency and free band at high frequency. The frequencies red-shift 
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due to different dielectric constants of the solutions and the frequency difference between two 

bands agrees with the reported result.30 This assignment also can explain the acid carbonyl peaks’ 

behavior in the spectra of diluted DES4 with THF in figure 5.1, where dilution leads the free band 

to grow and hydrogen-bond band to drop. Further evidence to verify the low-frequency band as 

the free band is the spectra of LA in THF with 0.05 M of concentration shown in figure 5.6. At 

low concentration of LA in THF, the spectrum presents as a single symmetric peak, indicating a 

free band of the carbonyl stretching mode. The overlapping of the spectra of DES2 and LA in THF 

shows good agreement, so the blue-side band is assigned as a free band. 

Because the acid bands are overlapped with amide I band, the explicit way to study the 

acid carbonyl stretching mode is by fitting with Voigt profiles. In this case, the two bands profile 

of carbonyl in each DES were fitted with three Voigt functions, where the first band accounts for 

the neighboring amide I band. The ratio of fitted band area of HB band over free band has a linear 
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Figure 5.6. FTIR spectra of lauric acid in THF at a concentration of 0.05 M (black) and spectra of 
DES2 (red). 
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relation with the concentration of LA in the DESs (figure 5.7). Moreover, the similar trend of two 

bands ratio can be observed from the normalized diagonal trace (NDT) of each 2DIR spectra at Tw 

= 0 ps, which is proportional to the square of FTIR signal.36 After normalized according to the 

hydrogen-bonded band, the NDT of each sample is presented in figure 5.8. The blue-side band 

increases with the lowered molar ratio of LA in DESs. The ratio change of acid band area with the 

concentration of LA provides evidence of the interaction between LA and NMA in the DES. 
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Figure 5.7. Area ratios of the HB band over a free band of acid carbonyl in NMA-LA of varied 
molar ratio, the solid line is linear fitting. 
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Figure 5.8. The NDT of acid bands in 2DIR spectra of DESs 
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The thermodynamics of hydrogen-bond in DESs can be extracted from the temperature-

dependent FTIR spectra.46 The FTIR spectra of a 2HB and 1HB band of amide I band in all the 

DESs with varied temperature were fitted with three-band Lorentzian functions, where the first 

peak represents neighboring amide II band. The area ratio of NMA amide I band with the reverse 

of temperature is shown in figure 5.9a. The linear fitting data are listed in table 5.2. Even the 

vibrational coupling between each configuration of amide I band in their spectra is reported,35,41 

and we have confirmed that with our 2DIR spectra of our DESs previously, the linear relations in 

each DES show that the thermodynamics is not significantly affected by coupling. We can still 

extract thermodynamics from the temperature-dependent experiments. Enthalpy of the two 

vibration states of amide I band in DES2, DES4, and DES6 were statistically the same, showing 

that the process of two bands of amide I band in all the DESs are not affected by the changing 

concentration of LA. On the other hand, the entropy is affected by the molar ratio of LA, which 

suggests the interaction between LA and NMA. The similar analysis to temperature-dependent 

acid carbonyl peaks in DESs are conducted (figure 5.9b). The enthalpy of the two acid bands in 

all the DES are similar, indicating the hydrogen bond formed with acid carbonyl is similar. The 

entropy of acid bands is similar in all the DESs, which is different with the entropy of NMA bands. 

For the acid bands, the change in molar ratio cannot influence the thermodynamics significantly. 

The 2DIR spectra of DESs are composed with NMA peaks (amide I band and amide II 

bands), and acid peaks (carbonyl stretch) as described previously in this work. The amide I bands 

in the 2DIR spectra of each DES are similar to the 2DIR spectra of neat NMA reported by Cunha 

et al.,41 which suggests that the amide I band in DESs has a similar local environment to neat NMA. 

In other words, NMA molecules are very likely to be aggregated in the DES. In addition to 

considering the long carbon non-polar side chain of LA, the highly heterogeneous structure of DES 
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can be drawn as a polar domain composed of NMA molecules, and a non-polar domain formed by 

side-chain of acid. The carboxylic group of LA interacts with NMA as the interface to connect 

polar and non-polar domains. 
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Figure 5.9. Natural logarithm of the area ratio of the 2HB band and 1HB band of amide band of 
NMA (a) and acid carbonyl band (b) in DES2 (black), DES4 (red), and DES6 (blue). The solid 
line indicates linear fitting. 
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Table 5.2. Linear fitting parameters of band area ratio vs. reverse of temperature, amide bands (top) 
and acid bands (bottom) 
 

 

 The dynamics of the 2DIR spectra of free amide I band in each DES was also analyzed 

with the CLS method. The CLSs of free amide I band in each DES are shown in figure 5.10, and 

exponential fitting parameters are listed in table 5.3. All the characteristic times are ~1-2 ps, 

indicating the hydrogen bond making and breaking of the solvation shell, as previously seen.27,42,47-

51 In the case of NMA-LA systems, we use the model of confinement in reverse micelles to connect 

the dynamics observed and the heterogeneous structure we proposed. The water dynamics inside 

the reverse micelle has been described by many works.52-55 Fayer and co-workers have used the 

O-D stretch as a probe to study the water dynamics inside reverse micelles relating to the size of 

water pool (reverse micelle) by linear and time-resolved infrared spectroscopy.54,55 In the case of 

large reverse micelles, the dynamics is decoupled into core region, behaving like bulk water, and 

interface observed confinement according to the size of reverse micelle. In the case of small reverse 

micelles, the slowed spectral diffusion was observed with decreasing the size of reverse micelle. 

The size of the polar domain will change with a different ratio between components in the system. 

The identical dynamics of free amide band match well with the core region in Fayer’s model, since 

they are not affected by the pool size. The difference of the offset (y0) refers to a slower motion, 

DES 

Amide bands Acid bands 

slope intercept ΔH/ 

kJ/mol 

ΔS/ 

J/molK 

slope intercept ΔH/ 

kJ/mol 

ΔS/ 

J/molK 

2 -312±12 1.00±0.04 2.6±0.1 8.3±0.3 -213±18 0.40±0.06 1.8±0.1 3.3±0.5 

4 -269±6 1.11±0.02 2.24±0.05 9.2±0.2 -183±6 0.38±0.02 1.5±0.1 3.2±0.2 

6 -266±4 1.22±0.01 2.21±0.03 10.1±0.1 -171±23 0.29±0.08 1.4±0.2 2.4±0.7 
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and y0 increases with the concentration of NMA decreasing, causing the pool size of the polar 

domain to shrink. This phenomenon agrees with the water confined dynamics reported. Therefore, 

our assignment of the heterogeneous structure is well explained with the model of confined 

dynamics in a reverse micelle. 
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Figure 5.10. Spectral diffusion of free amide I band in 2DIR of DES2 (black), DES4 (red), and 
DES6 (blue). The solid black line is single exponential fitting to CLS of each DES. 
 

Table 5.3. Parameters of exponential fitting to CLS in 2DIR spectra of DESs 

 y0 A  Τ / ps 

DES2 0.42±0.01 0.25±0.01 1.9±0.2 

DES4 0.39±0.01 0.25±0.01 1.3±0.1 

DES6 0.36±0.01 0.20±0.01 1.8±0.3 

 

The dynamics of each DESs at acid carbonyl region was extracted from their 2DIR spectra 

with Central Line Slope method (CLS).43 The CLS was learned as a metric to describe the 

correlation change within picosecond time scale, and since the time constants of frequency-



128 

 

frequency correlation function can be extracted from the CLS change with waiting time, then the 

dynamics can be learned. The CLSs of the free band and HB band at different Tw are presented in 

figure 5.11. The CLS of DESs at both acid carbonyl bands decay slowly, and the CLSs of each 

sample exhibit similar slow dynamics. Thus, changing the ratio of the two components does not 

influence the interaction with a carbonyl group.  
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Figure 5.11. CLS of HB band (top) and free band (bottom) of the acid carbonyl group in the DES2 
(black), DES4 (red), and DES6 (blue) from 2DIR spectra. 
 

One interesting fact with the 2DIR spectra of DESs in the acid carbonyl frequency region 

is that the cross peak grows with time only in DES6, while the other DESs have no sign that the 
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cross peak exists within 3 ps. The cross peak intensity between free and HB bands of each DES in 

their 2DIR at various waiting times is shown in figure 5.12. From the cross peak intensity change 

with time, it is clear that compared with DES6, the cross peak in the other DESs is negligible. The 

similar low cross peak intensity of DES2 and DES4 show that the breaking and forming of a 

hydrogen bond with the carbonyl group of acid are not observed during 3 ps by 2DIR spectra. 

Usually, hydrogen bond exchange is expected to be observed in 2DIR spectra of hydrogen bond 

related bands, like the appearance in DES6. The fact of no hydrogen bond exchange with the acid 

carbonyl group in DES2 and DES4 2DIR spectra is probably due to the higher concentration of 

LA confining the hydrogen bond forming and breaking when the polar domain is becoming smaller, 

resulting from the concentration of non-polar group, the side chain of LA, increasing.  
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Figure 5.12. Cross peak is growing with waiting time for DESs. DES2 (black), DES4 (red), and 
DES6 (blue). 
 

We further test the confinement effect with ionic and molecular thiocyanate probes to 

confirm our model of the DES systems. For comparison, the probes in NMA were also measured. 
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Because of their polarity, we expect the probes will reside in the polar domain. The FTIR spectra 

of these two probes are shown in figure 5.13. For the ionic probe, all the spectra have asymmetric  
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Figure 5.13. Normalized TFIR spectra of TBASCN (a) BSCN (b) probe in NMA (black), DES4 
(blue), and DES2 (red).  
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profiles. Among them, the spectra of DES with 2:1 ratio is centered at 2056 cm-1, while the other 

spectra are centered at 2054 cm-1. The probe in NMA has the narrowest profile, and with the 

concentration of NMA decreasing in DESs, the peak becomes broader from the blue-side of the 

peak, while leaving the red-side almost the same for all the samples.  

The spectra after background subtraction and normalization of BSCN as a probe in DES 

and NMA are slightly asymmetric, and the central frequencies of NMA, DES2, and DES4 are 

2155.2 cm-1, 2155.7 cm-1, and 2155.9 cm-1, respectively. The spectra of DES2 and DES4 have the 

same lineshape. Comparing the spectra of NMA, the width of the spectra of DESs are slightly 

broader. 

The structure and dynamics of NMA-LA systems were also studied with infrared probed 

by 2DIR spectroscopy. Figure 5.14 shows the 2DIR spectra for the nitrile stretch region of the 

thiocyanate ion in the DESs and NMA as a comparison as well. The positive and negative peaks 

are separated by ~23 cm-1, the anharmonicity of the vibrational potential of the thiocyanate nitrile 

stretch, which agrees previous published.20 At Tw = 0 ps, the positive and negative peaks of all the 

spectra are tilted and elongated along the diagonal line. All the spectra at this time are similar to 

each other. With longer waiting times, the peaks acquire rounder shapes and become less tilted. At 

the later waiting times, the spectra of NMA are nearly round or square shape, while the spectra of 

DES4 and DES2 are still slightly tilted. The shapes of the spectra show clear evidence that cross 

peaks exist in the 2DIR, which are absent at Tw = 0 ps.  
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Figure 5.14. 2DIR spectra of TBA SCN in DES4 (top), DES2 (middle), and NMA (bottom) at Tw 
= 0 ps, 10.7 ps, 30.9 ps, and 68 ps. 
 

 
With benzyl thiocyanate as the molecular infrared probe, in DES4, DES2, and NMA were 

measured with 2DIR spectroscopy, and the 2DIR spectra are given in figure 5.15. Compared with 

ionic thiocyanate probe, the spectra have larger anharmonicities, ~25 cm-1. Similar to the 2DIR 

spectra of TBA SCN probe, the spectra of the molecular probe in DESs and NMA present tilted 

and elongated ellipsis along the diagonal line at short or no waiting time. With the waiting time 

evolution, the spectra exhibit almost upright and round shapes. The spectra of BSCN in NMA 

already looks round from Tw = 68 ps on, while the probe in DES2 and DES4 still exhibit slightly 

elongated shapes. In the 2DIR spectra of BSCN in DESs and NMA, no obvious cross peaks appear 

within 100 ps of waiting time. 
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Figure 5.15. 2DIR spectra of BSCN in DES4 (top), DES2 (middle) and NMA (bottom) at Tw = 
0.5 ps, 10.7 ps, 30.9 ps, and 68 ps. 

 

The spectral diffusion of the ionic and molecular probes with time is shown in figure 5.16, 

and the parameters of the exponential decay fitting are shown in table 5.4. Compared to probes in 

NMA, we observe the slowdown of the time constant in both probes, similar to what has been 

observed in reverse micelles. These results confirm the confinement effect, showing the confined 

dynamics from the other domain. For the ionic probe, we observed the larger characteristic time 

of DES2 than that of DES4, where DES4 has a lower concentration of LA. However, the time 

constants of correlation decay in DES2 and DES4 with the molecular probe are identical. There 

are two possible explanations: one is the probe location in the DES is in the center of the polar 

domain where it is not sensing the confinement from the region near interface; the other reason 

could be that the probe is not sensitive enough to show the difference in time. 
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Figure 5.16. Frequency-frequency correlation decay of thiocyanate ion in DES2 (red), DES4 
(black), and NMA (blue) solution. 
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Table 5.4. Exponential decay fitting parameters of FFCF dynamics of SCN- 2DIR spectra 

 Ionic probe Molecular probe 

y0 A τ y0 A1 τ1 A2 τ2 

DES2 0.15±0.01 0.64±0.01 30±1 0.07±0.01 0.19±0.04 2.7±0.9 0.41±0.04 19±3 

DES4 0.01±0.02 0.80±0.01 27±1 0.02±0.02 0.19±0.04 1.4±0.7 0.39±0.03 19±3 

NMA 0.06±0.01 0.73±0.02 12±1 0.03±0.01 0.16±0.03 1.0±0.4 0.46±0.02 10±1 

 

 

The cross peak growing with waiting time in 2DIR of TBA SCN in DESs and NMA is 

shown in figure 5.17. The cross peak intensity is fitted with an exponential function, 𝑓(𝑡) = 𝐴(1 −𝑒−𝑡/𝜏), and fitting data are in table 5.5. The time constants for all the DESs are statistically the 

same, while that of the NMA sample is a little bit slower. The cross peaks of SCN ion in DESs 

show that the hydrogen bond dynamics around the probe are similar regardless of the mixing ratio 

of components, indicating ionic probes are probing polar pool. 
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Figure 5.17. Cross peak intensity changes with waiting time of ionic SCN probe in DES2 (red), 
DES4 (black), and NMA (blue). 
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Table 5.5. Exponential fitting parameters of the cross peak intensity of 2DIRspectra of TBA SCN 
in DESs and NMA. 
 
 A t / ps 

DES2 -0.84±0.03 9.6±0.9 

DES4 -1.39±0.04 8.4±0.6 

NMA -1.52±0.06 17±1 

 

 

5.5. Summary 

In the DES composed of N-methylacetamide and lauric acid, the interactions and dynamics 

of NMA and LA in the DES with the different molar ratios were investigated by linear and time-

resolved infrared spectroscopy. With the probe of C=O group both in NMA and LA, the 

interactions between components in DESs are revealed. Inside the DES, C=O group of NMA can 

form one hydrogen bond, two hydrogen-bond, or free of the hydrogen-bond, and the carbonyl of 

the acid can form one hydrogen bond or none. The interactions between self-species and inter-

species are observed in FTIR studies. Based on the interactions between components and dynamics 

probed by free amide I bond, as well as introducing ionic and molecular probe, we proposed the 

NMA-LA system possesses a heterogeneous structure. The dynamics of probes is confined by the 

smaller pool size, which is similar to the well-studied confined water dynamics in reverse micelles. 

Our observation of slowing down dynamics of probes in a lower molar ratio of NMA in the DES 

provides the indirect evidence of the heterogeneous structure. The study of the NMA-LA system 

with the non-polar region and X-ray spectroscopy of the DES are expected to be conducted in 

order to provide direct evidence. 
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