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Summary

A linear quantitative–structure activity relationship model is developed in this work using Multiple Linear
Regression Analysis as applied to a series of 51 1-(3,3-diphenylpropyl)-piperidinyl phenylacetamides
derivatives with CCR5 binding affinity. For the selection of the best variables the Elimination Selection-
Stepwise Regression Method (ES-SWR) is utilized. The predictive ability of the model is evaluated against
a set of 13 compounds. Based on the produced QSAR model and an analysis on the domain of its
applicability, the effects of various structural modifications on biological activity are investigated. The
study leads to a number of guanidine derivatives with significantly improved predicted activities.

Introduction

The chemokine receptor CCR5 is expressed on
T-lymphocytes, monocytes, macrophages, den-
dritic cells, microglia and other cell types [1].
These receptors detect and respond to several
chemokines principally ‘‘regulated on activation
normal T-cell expressed and secreted’’ (RANTES)
and macrophage inflammatory proteins (MIP)
MIP-1a and MIP-1b, resulting in the recruitment
of cells of the immune system to sites of disease.
CCR5 is also co-receptor for HIV-1 and other
viruses, enabling these viruses to enter cells.
Individuals, who are homozygous for 32-bp dele-
tion in the gene encoding CCR5, whilst otherwise
healthy, are strongly protected against infection

[2]. Many studies indicate different roles for CCR5
and its ligands in disorders such as rheumatoid
arthritis [3], multiple sclerosis [4], transplant rejec-
tion [5] and inflammatory bowel disease [6]. These
observations suggest that molecules that modulate
the CCR5 receptor would have potential benefit in
a wide range of diseases.

In the past, several attempts have been made to
build QSAR models in the general field of CCR5
binding affinity. Debnath [7] presented predictive
pharmacophore models for CCR5 antagonists
using piperidine and piperazine derivatives. Song
et al. [8] presented a 3D Quantitative Structure
Activity Relationship (QSAR) study using piper-
idine derivatives. Xu et al. [9] using Molecular
Docking and 3D QSAR presented a study
based on 1-amino-2-phenyl-4-(pipridin-1-yl)-
butane derivatives. Finally, Roy and Leonard
presented two validated QSAR studies using
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substituted benzylpyrazole [10] and 3-(4-benzylpi-
peridin-1-yl)-N-phenylpropylamine [11] deriva-
tives. With the latter derivatives [11] 3D-QSAR
and more specifically Molecular Shape Analysis
(MSA), Receptor Surface Analysis (RSA) and
Molecular Field Analysis (MFA) were applied.

In this work, we selected a series of 51 1-(3,
3-diphenylpropyl)-piperidinyl phenylacetamides
amides [1] to investigate their role as CCR5
receptor modulators. Sixty-one physicochemical
and topological descriptors were examined in
terms of their efficacy to determinate and predict
the activity of the investigated derivatives. The
descriptors were calculated using Topix
(www.lohninger.com/topix.html) and ChemSar
which is included in the ChemOffice (Cambridge-
Soft Corporation) suite of programs. Among
them, the most statistically significant descriptors
were selected, using a rigorous variable selection
method. The result of this study was the
development of a new linear QSAR model
containing 7 descriptors. In order to validate
the proposed methodology, we used two strate-
gies: Y-randomization and external validation
using division of the entire data set into training
and test sets. Based on the new QSAR model
and the detection of its domain of applicability,
the effects of various structural modifications on
the biological activity were investigated.

Materials and methods

Data set

In this QSAR study 52 biological data from
Burrows’s et al. [1] work were used. The biological
activities of these 52 compounds were reported in
the same papers [1]. In order to model and predict
the specific activity (CCR5 binding affinity), 61
physicochemical constants, topological and struc-
tural descriptors (Table 1) were considered as
possible input candidates to the model. All the
descriptors were calculated using ChemSar and
Topix.

Stepwise multiple regression

The ES-SWR algorithm was used to select the
most appropriate descriptors. ES-SWR is a
popular stepwise technique [12] that combines

Forward Selection (FS-SWR) and Backward
Elimination (BE-SWR). It is essentially a forward
selection approach, but at each step it considers
the possibility of deleting a variable as in the
backward elimination approach, provided that the
number of model variables is greater than two.
The two basic elements of the ES-SWR method
are described below in more details.

Forward selection
The variable considered for inclusion at any step is
the one yielding the largest single degree of
freedom F-ratio among the variables that are
eligible for inclusion. The variable is included only
if the corresponding F-ratio is larger than a fixed
value Fin. Consequently, at each step, the jth
variable is added to a k-size model if

Fj ¼ maxj
RSSk �RSSkþj

s2kþj

 !
> Fin ð1Þ

In the above in equality RSS is the residual sum
of squares and s is the mean square error. The
subscript k+j refers to quantities computed when
the jth variable is added to the k variables that are
already included in the model.

Backward elimination
The variable considered for elimination at any step
is the one yielding the minimum single degree of
freedom F-ratio among the variables that are
included in the model. The variable is eliminated
only if the corresponding F-ratio does not exceed a
specified value Fout. Consequently, at each step,
the jth variable is eliminated from the k-size model
if

Fj ¼ minj
RSSk�j �RSSk

s2k

� �
<Fout ð2Þ

The subscript k)j refers to quantities computed
when the jth variable is eliminated from the k
variables that have been included in the model so
far.

Cross-validation technique

The reliability of the proposed method was
explored using the cross-validation method. Based
on this technique, a number of modified data sets
are created by deleting in each case one (LOO,
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leave one out) or a small group (leave some out) of
objects [13–15], thus leading to the development of
multiple input–output models. Each model is
evaluated, by measuring its accuracy in predicting
the responses of the remaining data (the ones that
have not been utilized in the development of the
model). In particular, the LOO procedure was
utilized in this study, where the total number of
produced models is equal to the number of
available examples. More precisely, a different
model is produced by deleting each time one
object from the training set. Prediction error sum
of squares (PRESS) is a standard index to measure
the accuracy of a modeling method based on the
cross-validation technique. Using the PRESS
and SSY (sum of squares of deviations of the

experimental values from their mean) statistics,
the RCV

2 and SPRESS values can be easily calcu-
lated. The formulae that calculate the aforemen-
tioned statistics are presented below (Equations 3
and 4):

R2
CV ¼ 1� PRESS

SSY
¼ 1�

Pn
i¼1
ðYexp � YpredÞ2

Pn
i¼1
ðYexp � �YÞ2

ð3Þ

SPRESS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PRESS

n

r
ð4Þ

Table 1. Physicochemical constants, topological and structural descriptors.

ID Description Notation ID Description Notation

1 Molar Refractivity MR 2 Diameter Diam

3 Partition Coefficient (Octanol Water) ClogP 4 Molecular Topological Index TIndx

5 Principal Moment of Inertia Z PMIZ 6 Number of Rotatable Bonds NRBo

7 Principal Moment of Inertia Y PMIY 8 Polar Surface Area PSAr

9 Principal Moment of Inertia X PMIX 10 Radius Rad

11 Connolly Accessible Area SAS 12 Shape attribute ShpA

13 Connolly Molecular Area MS 14 Shape coefficient ShpC

15 Total Energy TotE 16 Sum of Valence Degrees SVDe

17 LUMO Energy LUMO 18 Total Connectivity TCon

19 HOMO Energy HOMO 20 Total Valence Connectivity TVCon

21 Balaban Index BIndx 22 Wiener Index WIndx

23 Cluster Count ClsC 24 Randic 0 Chi0

25 Randic 1 Chi1 26 Randic 2 Chi2

27 Randic 3 Chi3 28 Randic 4 Chi4

29 Randic Information 0 ChiInf0 30 Randic Information 1 ChiInf1

31 Randic Information 2 ChiInf2 32 Randic Information 3 ChiInf3

33 Randic Information 4 ChiInf4 34 Kier-Hall 0 Ki0

35 Randic Mod ChiMod 36 Xu1 Xu1

37 Xu2 Xu2 38 Xu3 Xu3

39 Balaban Topological TopoJ 40 Topological Radius TopoRad

41 Topological Diameter TopoDia 42 Number of Bramches NBranch

43 Number of Rings Nrings 44 WienerDim WienerDim

45 Bertz Bertz 46 AtomCompMean AtomCompMean

47 AtomCompTot AtomCompTot 48 Zagreb1 Zagreb1

49 Zagreb2 Zagreb2 50 Quadratic Quadr

51 ScHultz ScHultz 52 Kappa1 Kappa1

53 Kappa3 Kappa3 54 Kappa2 Kappa2

55 Wiener Distance WienerDistCode 56 Wiener Information InfWiener

57 DistEqMean DistEqMean 58 DistEqTotal DistEqTotal

59 InfMagnitDistTot InfMagnitDistTot 60 Polarity Polarity

61 Gordon Gordon
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Y-randomization test

This technique ensures the robustness of a QSAR
model [16, 17]. The dependent variable vector
(biological action) is randomly shuffled and a new
QSAR model is developed using the original
independent variable matrix. The new QSAR
models (after several repetitions) are expected to
have low R2 and RCV

2 values. If the opposite
happens then an acceptable QSAR model cannot
be obtained for the specific modeling method and
data.

Estimation of the predictive ability of a QSAR
model

According to Tropsha [17] the predictive power of
a QSAR model can be conveniently estimated by
an external RCV,ext

2 (Equation 5).

R2
CV;ext ¼ 1�

Ptest
i¼1
ðYexp � YpredÞ2

Ptest
i¼1
ðYexp � �YtrÞ2

ð5Þ

where �Ytr is the averaged value for the dependent
variable for the training set.

Furthermore Tropsha’s research group [17, 18]
considered a QSAR model predictive, if the
following conditions are satisfied:

R2
CV;ext > 0:5 ð6Þ

R2 > 0:6 ð7Þ

ðR2 � R2
oÞ

R2
<0:1 or

ðR2 � R02o Þ
R2

<0:1 ð8Þ

0:85 � k � 1:15 or 0:85 � k0 � 1:15 ð9Þ

Mathematical definitions of R2
o, R02o , k and k¢ are

based on regression of the observed activities
against predicted activities and vice versa (regres-
sion of the predicted activities against observed
activities). The definitions are presented clearly in
Golbraikh et al. [18], but are not repeated here for
brevity.

Defining model applicability domain

The domain of application [17, 19] of a QSAR
model must be defined if the model is to be used
for screening new compounds. Predictions for only
those compounds that fall into this domain may be
considered reliable. Extent of Extrapolation [17] is
one simple approach to define the applicability of
the domain. It is based on the calculation of the
leverage hi [20] for each chemical, where the QSAR
model is used to predict its activity:

hi ¼ xTi ðXTXÞxi ð10Þ

In Equation (10) xi is the descriptor-row vector of
the query compound and X is the k�n matrix
containing the k descriptor values for each one of
the n training compounds. A leverage value greater
than 3k/n is considered large. It means that the
predicted response is the result of a substantial
extrapolation of the model and may not be
reliable.

Results and discussion

For the selection of the most important
descriptors, the aforementioned stepwise multiple
regression technique was used. The procedure was
automated using a software developed in-house
that realizes the ES-SWR algorithm. The seven
most significant descriptors according to the ES-
SWR algorithm are: the Modified Randic index
(ChiMod) followed by Lipophilicity (CLogP),
Randic Information 4 (ChiInfo4), Repulsion
Energy (NRE), Randic Information 3 (ChiInfo3),
Randic Information 1 (ChiInfo1) and finally
LUMO Energy (LUMO). This selection resulted
to the following full linear equation for the
prediction of the inhibitory activity (1/IC50):

logð1=IC50Þ ¼� 0:332CLogPþ 0:226 LUMO

þ 0:021�10�3NREþ 4:22ChiInfl

� 2:95ChiInf3� 1:30ChiInf4

þ 0:058ChiMod� 2:58

F¼ 32:36 R2 ¼ 0:837 RMSE¼ 0:298

R2
CV ¼ 0:755 SPRESS ¼ 0:366

n¼ 52

ð11Þ
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Lipophilicity is known to be important for absorp-
tion, permeability, and in vivo distribution of
organic compounds [21] and has been used as a
physicochemical descriptor in QSARs with great
success [22, 23]. Molecular orbital (MO) surfaces
visually represent the various stable electron dis-
tributions of a molecule. According to the Frontier
Orbital Theory, the shapes and symmetries of the
highest-occupied and lowest-unoccupied molecular
orbitals (HOMO and LUMO) are crucial in
predicting the reactivity of a species and the
stereochemical and regiochemical outcome of a
chemical reaction. All the structures were fully
optimized using the AM1 basis set before the
calculation of the LUMO Energy (eV). The NRE
(eV) contains the energy which is required to keep
two electrons, each on separate p atoms, from
moving apart and the energy which is required to
keep two electrons, occupying the same orbital on
the same p atom, from moving apart. The NRE is
more positive as the atom becomes more electro-
negative. Modified Randic index is based on
reciprocal distance of a molecular graph. Randic
information topological descriptors (ChiInfo1,
ChiInfo3, ChiInfo4) are combinations of topo-
structural and topochemical descriptors [12]. To-
postructure indices encode information on the
adjacency and distance of atoms in the molecular
structure. Topochemical indices quantify informa-
tion on topology but also specific chemical prop-
erties of atoms such their chemical identity and
hybridization state. In our recent work Melagraki
et al. [24] topological information descriptors were
used with great success.

A correlation analysis on the seven selected
descriptors (Table 2) was performed to test for
internal correlations. All the values deviate from
unity considerably so there is no significant corre-

lation between the seven independent variables. In
order to investigate the possibility of having
included outliers in our data set, the extent of the
extrapolation method was applied to the 52
compounds that constitute the entire data set.
The leverages for all 52 compounds were com-
puted (Table 3) and found to be inside the domain
of the model (warning leverage limit 0.461).

The predictive ability of the selected descriptors
was further explored, by dividing the full data set
consisting of 52 1-(3,3-diphenylpropyl)-piperidinyl
phenylacetamides amides into a training set of 39
compounds, and a validation set of 13 compounds.
The data set was partitioned in a way that we
obtained a representative training set and at the
same time a diverse test set in terms of molecular
structure [25]. More specifically the selection of the
derivatives in the training set was made according
to the structure and the scale of the biological
action, so that representatives of a wide range of
structures (in terms of the different substituents,
atoms and action) were included. The distribution
of the activity values for the test set follows the
distribution of the activity values for the training
set. According to Golbraikh and Tropsha [26] this
approach is correct since representative points of
the test set must be close to those of training set
and vice versa.

The compounds that constituted the training
and validation sets are clearly presented in
Tables 4 and 5, where the 52 compounds are
separated in two groups (amides and phenylace-
tamides). The validation examples are marked
with b. The rest of the study will be concentrated
on the model which is constructed from the
training set. Using the seven selected descriptors,
we developed a new MLR equation based on only
the 39 training examples:

Table 2. Correlation matrix of the seven selected descriptors.

ClogP Lumo NRE ChiInf1 ChiInf3 ChiInf4 ChiMod

ClogP 1

Lumo )0.09 1

NRE 0.13 )0.29 1

ChiInf1 )0.18 )0.04 )0.22 1

ChiInf3 )0.17 )0.10 0.47 0.43 1

ChiInf4 )0.28 )0.19 0.38 0.32 0.74 1

ChiMod 0.11 0.002 )0.70 0.18 )0.53 )0.45 1
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logð1=IC50Þ¼�0:339CLogPþ0:262LUMO

þ0:024�10�3NREþ4:21ChiInfl
�2:66ChiInf3�1:60ChiInf4
þ0:06ChiMod�2:81

F¼17:18R2¼0:801RMSE¼0:324
R2

CV¼0:657SPRESS¼0:425
n¼39 ð12Þ

This equation was used to estimate the CCR5
binding affinities for the training and validation
examples resulting in R2 statistics equal to 0.801
(as shown above) and 0.921 respectively. The
outcomes of the model are presented in the last
two columns of Tables 4 and 5. Graphically,
observed vs. predicted inhibitory activities for the
training and the validation data sets are shown in
Figure 1. The results illustrated once more that
the linear MLR technique combined with a
successful variable selection procedure are ade-
quate to generate an efficient QSAR model for
predicting the CCR5 binding affinity of different
compounds.

The proposed model (Equation 12) also passed
the rest of the tests that we utilized for illustrating
its predictive ability (Equations 6–9)

R2
CV;ext ¼ 0:915 > 0:5

R2 ¼ 0:921 > 0:6

ðR2 � R2
oÞ

R2
¼ �0:1787<0:1

or
ðR2 � R02o Þ

R2
¼ �0:1595<0:1

k ¼ 1:006 and k0 ¼ 0:910

The model was further validated by applying the
Y-randomization test. Several random shuffles of
the Y vector were performed and the results are
shown in Table 6. The low R2 and RCV

2 values
show that the good results in our original model
are not due to a chance correlation or structural
dependency of the training set.

Table 3. Leverages for the entire data set.

Compound Id Leverages

1 0.127

2 0.120

3 0.073

4 0.172

5 0.142

6 0.103

7 0.145

8 0.253

9 0.237

10 0.087

11 0.291

12 0.421

13 0.089

14 0.085

15 0.057

16 0.079

17 0.116

18 0.174

19 0.373

20 0.047

21 0.078

22 0.072

23 0.083

24 0.091

25 0.082

26 0.117

27 0.121

28 0.099

29 0.334

30 0.230

31 0.119

32 0.159

33 0.103

34 0.077

35 0.142

36 0.384

37 0.073

38 0.106

39 0.115

40 0.217

41 0.199

42 0.141

43 0.160

44 0.265

45 0.149

46 0.226

47 0.203

48 0.184

49 0.063

Table 3. Continued.

Compound Id Leverages

50 0.155

51 0.110

52 0.149
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Finally, the extent of extrapolation method was
applied to the compounds that constitute the test
set. The leverages for all 13 compounds are
presented in Table 7. None of the 13 compounds
fell outside the domain of the model (warning
leverage limit 0.615).

The proposed method, due to the high predictive
ability [17, 27], can provide a useful aid to the costly
and time consuming experiments for determining the
CCR5 binding affinity. The method can also be used
to screen existing databases or virtual libraries in
order to identify new potentially active compounds.
In this case, the applicability domain serves as a
valuable tool to filter out ‘‘dissimilar’’ compounds.

Such a group of new derivatives, previously not
tested for the specific biological action, was
subjected to virtual screening using the produced
model (Tables 8–11). The aim was, starting from a
primary hit and using both pharmacophore-based
and substructure-based modifications to discover a
structurally diverse set of potent leads. We have
searched for optimized pharmacophore patterns
by insertions, substitutions, and deletions of phar-
macophoric substituents of the main building
block scaffolds. The searching strategy was similar
to the one followed in [28]. Finally, we identified
the structural trends that lead to improved CCR5
binding affinity.

Table 4. Binding biological data of amides. training and test data.

N

N

Me

R2

O

R2 IC50 (lM)

observed

Log(1/IC50)

observed

Training data

log(1/IC50) predicted

Test data

log(1/IC50) predicted

1b – 4.1 )0.61 )0.813
2 4-Pyridinyl 6.1 )0.78 )0.478
3 4-F-C6H4 7.2 )0.86 )0.611
4 3-NO2-phenyl 5.1 )0.71 )0.066
5b 2-Thienyl 8.7 )0.94 )0.832
6 2-Furanyl 7.9 )0.90 )0.608
7b Cyclobutyl 7.4 )0.87 )0.727
8 Isobutyl 3.4 )0.53 )0.916
9b Neopentyl 5.5 )0.74 )0.481
10 Benzyl 0.81 0.09 )0.253
11 O 5.9 )0.77 )0.897

12 Me 6.8 )0.83 )0.962

bTest data.
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Table 5. Binding biological data of phenylacetamides. training and test data.

N

N

R2

O
X

R2 X IC50 (lM)

observed

Log(1/IC50)

observed

Training data

log(1/IC50)

predicted

Test data

log(1/IC50)

predicted

13 Me H 0.77 0.11 )0.182
14 Me 2-Cl 3.60 )0.56 )0.411
15b Me 3-Cl 2.20 )0.34 )0.108
16 Me 4-Cl 0.80 0.10 )0.031
17 Me 3,4-di-Cl 0.78 0.11 0.152

18 Me 2,4-di-Cl 2.60 )0.41 )0.289
19 Me 2-F 1.90 )0.28 )0.703
20b Me 3-F 1.40 )0.15 )0.042
21 Me 4-F 0.66 0.18 0.031

22 Me 3,4-di-F 0.69 0.16 0.256

23 Me 3-OMe 0.68 0.17 0.642

24 Me 4-OMe 0.58 0.24 0.666

25b Me 3,4-di-OMe 0.65 0.19 0.313

26 Me 3,5-di-OMe 2.70 )0.43 0.096

27 Me 2,4,5-tri-OMe 1.10 )0.04 0.715

28 Me 4-Br 0.58 0.24 0.207

29 Me 4-Benzyloxy 3.50 )0.54 )0.384
30 Me 4-Phenyl 2.30 )0.36 )0.319
31 Me 4-CF3 0.37 0.43 0.703

32b Me 4-OCF3 0.29 0.54 0.901

33 Me 4-NHCOMe 0.68 0.17 0.309

34 Me 4-CN 0.06 1.22 0.528

35 Me 4-SO2NH2 0.091 1.04 0.985

36 Me 4-SO2N(Me)2 0.046 1.34 0.823

37b Me 4-SMe 0.56 0.25 0.603

38 Me 4-CO2Me 0.63 0.20 0.322

39 Me 4-OH 0.47 0.33 0.335

40 Me 4-NO2 0.15 0.82 0.734

41 Et 4-OCF3 0.31 0.51 0.066

42 Et 4-CN 0.066 1.18 0.796

43b Et 4-SO2NH2 0.038 1.42 1.359

44 Et 4-SO2N(Me)2 0.018 1.74 1.315

45 Et 4-SO2Me 0.076 1.12 1.277

46b Et 4-NO2 0.11 0.96 0.568

47 Cyclopropyl 4-SO2NH2 0.033 1.48 1.305
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Initially alternative functionalities were con-
sidered for the acetamide core of the starting
N-[1-(3,3-diphenylpropyl)piperidin-4-yl]-N-methyl-
2-[4-(methylsulfonyl)-phenyl]acetamide [log(1/
IC50) 0.904] (Table 8). Introduction of a 2-hydroxy
guanidine core [id 4n, log(1/IC50) 1.698] showed
significant improvement in the activity and re-
mained within the domain of applicability. This
compound id 4n was therefore chosen for further
manipulation. In Table 9 the 4-(methylsulfo-
nyl)phenyl end group of compound id 4n is
replaced with heteroaromatic analogues. With
the exception of pyrrole id 19n all the 5-membered
heteroaromatic systems investigated were outside

Table 5. Continued

R2 X IC50 (lM)

observed

Log(1/IC50)

observed

Training data

log(1/IC50)

predicted

Test data

log(1/IC50)

predicted

48b Cyclopropyl 4-SO2Me 0.051 1.29 1.223

49 Cyclopropyl 4-NO2 0.31 0.51 0.283

50b Allyl 4-OCF3 0.35 0.46 0.291

51 Allyl 4-SO2Me 0.037 1.43 1.494

52 Allyl 4-NO2 0.18 0.74 0.721

bTest data.

Figure 1. Observed vs. predicted activity log(1/IC50) for the training and test set.

Table 6. R2 and RCV
2 values for several Y-randomization

tests.

Iteration R2 R2
CV

1 0.11 0.00

2 0.16 0.00

3 0.05 0.00

4 0.25 0.00

5 0.06 0.00

6 0.24 0.00

7 0.08 0.00

8 0.18 0.00

9 0.07 0.00

10 0.19 0.00
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of the domain of applicability and as such 5-mem-
bered heteroaromatic systems were not considered
further. The 6-membered aza heterocycles, pyri-
dine, pyridazine, pyrimidine and pyrazine were
investigated. With these systems the methylsulfo-
nyl group showed a preference to be para to the
guanidine group and the diaza heterocycles
pyrimidin-5-yl [id 14n, log(1/IC50) 2.095] and
pyrazin-2-yl [id 17n, log(1/IC50) 2.095] gave the
best improvements in activity within the domain of
applicability. Since the model was unable to

differentiate between these two systems we chose
only one of them [the pyrazin-2-yl (id 17n)] to
proceed with our studies and varied the alkyl
group R2 on the guanidine core. Increasing the
length of the alkyl substituent R2 gave improved
activity up to n-Pr [id 25n, log(1/IC50) 2.389], the
n-Bu derivative gave reduced activity as did
branching on the i-Pr analogue. An investigation
of the branched butyl derivatives indicated that the
iso-Bu analogue [id 30n, log(1/IC50) 2.524] had
superior activity.

Next the piperidine core was replaced by 5-
membered heterocycles pyrrolidine and pyrrole
but in both cases the predicted activity was
reduced (Table 10). The alkyl linker between the
piperidine core and the diphenylmethane end
group was also investigated (Table 10). Extending
the alkyl chain by one carbon i.e. propyl (n=2) led
to a peak in predicted activity [id 35n, log(1/IC50)
2.533] but this was improved even further when the
end group diphenylmethane was replaced by
diphenylamine [id 38n, log(1/IC50) 2.605]. Further
modification to the carbazol led to a reduction in
activity (Table 11). Many of the above structures
show an increase in activity and fall well within the
domain of applicability as such they are worthy of
further study. Clearly the model tolerates a wide
variety of structural modification demonstrating
its potential for virtual screening studies.

Table 8. Virtual screening results. Modification of N-[1-(3,3-diphenylpropyl)-piperidin-4-yl]-N-methyl-2-[4-(methylsulfonyl)-
phenyl]acetamide.

N

N

A

B

SO2Me

Id A B Log(1/IC50) predicted Leverages

1n O CH2 0.904 0.169

2n S CH2 0.923 0.155

3n NOH CH2 1.042 0.105

4n NOH NH 1.698 0.288

5n NOH O 1.505 0.201

6n NOH S 1.400 0.167

Leverage limit=0.615.

Table 7. Leverages for the test set.

Compound Id Leverages

1 0.183

5 0.195

7 0.245

9 0.425

15 0.079

20 0.066

25 0.125

32 0.247

37 0.105

43 0.243

46 0.385

48 0.283

50 0.219
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Table 9. Virtual screening results. Modification of 1-[1-(3,3-diphenylpropyl)-piperidin-4-yl]-2-hydroxy-1-alkyl-3-[(methylsulfonyl)
heteroaryl]guanidine.
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N
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S
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S
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S

N
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2
Me
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2
Me

SO
2
Me SO

2
Me

SO
2
Me

SO
2
Me

SO
2
MeSO

2
MeSO

2
MeSO

2
MeSO

2
Me

Id HET R1 Log(1/IC50) predicted Leverages

7n 1 Me 1.560 0.317

8n 2 Me 2.024 0.473

9n 3 Me 1.834 0.476

10n 4 Me 1.673 0.466

11n 5 Me 1.753 0.309

12n 6 Me 2.395 0.760

13n 7 Me 2.366 0.734

14n 8 Me 2.095 0.512

15n 9 Me 1.747 0.506

16n 10 Me 1.905 0.515

17n 11 Me 2.095 0.512

18n 12 Me 1.744 0.505

19n 13 Me 1.722 0.407

20n 14 Me 2.513 0.926

21n 15 Me 2.571 0.841

22n 16 Me 2.682 1.179

23n 17 Me 2.607 0.908

24n 11 Et 2.154 0.519

25n 11 Pr 2.389 0.504

26n 11 i-Pr 2.281 0.425

27n 11 c-Pr 2.406 0.770
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Table 9. Continued.

Id HET R1 Log(1/IC50) predicted Leverages

28n 11 n-Bu 2.327 0.495

29n 11 sec-Bu 2.119 0.453

30n 11 i-Bu 2.524 0.424

31n 11 Tert-Bu 2.026 0.664

Leverage limit=0.615.

Table 10. Virtual screening results. Modification of 1-[1-(3,3-diphenylpropyl)-piperidin-4-yl]-2-hydroxy-1-isobutyl-3-[5-(methylsulfo-
nyl)pyrazin-2-yl]guanidine.

HET
N

NOH

H
N

N

N

SO2Me

Z
n

N
2018N 19N

Id HET N Z Log(1/IC50) predicted Leverages

32n 18 1 CH 2.021 0.271

33n 19 1 CH 2.049 0.278

34n 20 0 CH 2.412 0.397

35n 20 2 CH 2.533 0.435

36n 20 3 CH 2.419 0.453

37n 20 4 CH 2.264 0.539

38n 20 2 N 2.605 0.466

Leverage limit = 0.615.

Table 11. Virtual screening results. Investigation of 1-{1-[3-(9H-carbazol-9-yl)-propyl]piperidin-4-yl}-2-hydroxy-1-isobutyl-3-[5-
(methylsulfonyl)pyrazin-2-yl]-guanidine.

N

N

N

H
N

NOH
N

N

SO2Me

Id Log(1/IC50) predicted Leverages

39n 2.3024 0.567

Leverage limit=0.615.
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Conclusion

The successful results of this study led to the
conclusion that CCR5 binding affinity can be
successfully modeled with physicochemical con-
stants and structural descriptors. The validation
procedures utilized in this work (separation of
data into independent training and validation sets,
Y-randomization) illustrated the accuracy and
robustness of the produced QSAR model not only
by calculating its fitness on sets of training data,
but also by testing the predictive ability of the
model. The proposed method, due to the high
predictive ability, offers a useful alternative to the
costly and time consuming experiments for deter-
mining CCR5 binding affinity. Furthermore, the
produced QSAR model can be used to screen
existing databases or virtual libraries in order to
identify novel potent compounds. An attempt in
this direction was carried out. Synthesis of the
molecules proposed by the aforementioned virtual
screening procedure and experimental evaluation of
their biological activity will show if the method can
be used as a general rational drug discovery tool.
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