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Abstract: In this review, the current status of the influence of added ions (i.e., SiO4
4−, CO3

2−, etc.) and
surface states (i.e., hydrated and non-apatite layers) on the biocompatibility nature of hydroxyapatite
(HA, Ca10(PO4)6(OH)2) is discussed. It is well known that HA is a type of calcium phosphate with
high biocompatibility that is present in biological hard tissues such as bones and enamel. This
biomedical material has been extensively studied due to its osteogenic properties. The chemical
composition and crystalline structure of HA change depending on the synthetic method and the
addition of other ions, thereby affecting the surface properties related to biocompatibility. This review
illustrates the structural and surface properties of HA substituted with ions such as silicate, carbonate,
and other elemental ions. The importance of the surface characteristics of HA and its components,
the hydration layers, and the non-apatite layers for the effective control of biomedical function, as
well as their relationship at the interface to improve biocompatibility, has been highlighted. Since the
interfacial properties will affect protein adsorption and cell adhesion, the analysis of their properties
may provide ideas for effective bone formation and regeneration mechanisms.

Keywords: hydroxyapatite; non-apatitic layer; hydration layer; surface properties; biocompatibility;
bone tissue formation; mineralization

1. Introduction

Bone grafting is one of the surgical treatments for bone defects caused by osteoporosis,
bone tumors, and bone atrophy in dental implants, and is generally performed by using
autologous or allogeneic bone grafts, in which the bone is taken from the patient’s own
or a compatible donor, and then transplanted into the defect site. However, it presents
some problems, such as increased burden on patients due to surgery and limitation of the
amount of bone used [1–4]. Synthetic bone has recently been produced as an alternative
to autogenous bone to address these problems. Calcium phosphate (CP), hydroxyapatite
(HA), ceramics, CP cements, and bioactive glass are generally known as synthetic bone
materials [5–7]. Synthetic bone has the advantages of high biocompatibility, fewer and
minimal requirements for surgery, and low risk of inflammation; however, it is unable to
induce cells associated with bone metabolism from the surrounding tissue after replacing
a bone defect. Accordingly, the improvement of the ability to form new bone has been
researched. Therefore, it is important to elucidate the mechanism of biological bone
formation and to create synthetic bone that resembles biological bone.

Biological bone is composed of an organic matrix, reinforced by the deposition of
inorganic salts consisting mainly of Ca2+ and PO4

3−, with 30 wt.% of organic matrix and
70 wt.% of inorganic salts. Biological bone is metabolically active, with “bone resorption”,
the destruction of old bone, and “bone formation”, the creation of new bone. This cycle of
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bone metabolism is physiologically important, and its functions are to replace brittle old
bone and to strengthen areas subjected to load [8,9]. Figure 1 shows the bone formation
process. Osteocytes are derived from osteoblasts and are formed by the incorporation
of osteoblasts into the bone matrix [10]. Osteocytes act as mechanosensory cells because
they build networks by joining small tubules together [11]. Due to their function, they are
thought to be the cells that detect the mechanical loading of bone and are involved in the
activity and generation of osteoblasts and osteoclasts [12]. Bone resorption is carried out by
phagocytic multinucleated cells called osteoclasts. These cells originate from monocytes
or monocyte-like cells produced in the bone marrow [13]. Bone resorption occurs when
osteoclasts come into contact with bone. During this process, proteolytic enzymes released
from osteoclast lysosomes dissolve the organic substrate of bone. This mechanism releases
several acids, including citric and lactic acids, from mitochondria and secretory vesicles.
This phenomenon results in the dissolution of bone composed of Ca2+ and PO4

3− [14]. On
the other hand, osteoblasts are responsible for bone formation. The mechanism of bone
formation begins with the secretion of collagen molecules and substrate substances by
osteoblasts. Subsequently, osteoblasts form collagen fibers from the collagen molecules to
form allogeneic bone, which incorporates some of the osteoblasts to become osteocytes [15].
Within a few days of the formation of the analogous bone, amorphous calcium phosphate
(ACP) begins to precipitate on the surface of the collagen fibers. The precipitated ACP
is converted to HA over a period of weeks to months, during which atoms are added or
replaced [16,17]. A few percent of HA remains amorphous and is more rapidly absorbed
when Ca2+ is needed in the extracellular fluid. This is the process of bone formation. Also,
in focusing on cells, they have cell-adhesive proteins called integrins on their surfaces. In
these cells, the adhesion function of integrins would be carried out by peptide ligands [18].
Arg-Gly-Asp (RGD) is a type of peptide ligand that has been shown to promote osteoblast
adhesion [19,20]. In the case of the RGD modified with hyaluronan, it has been reported
to stimulate cell adhesion [21]. Glycine-histidine-lysine (GHK) is also the peptide ligand
found in osteonectin that has been reported to enhance osteogenic differentiation [22].
Bioceramics that could facilitate this process have not yet been synthesized, which is a
challenge in the development of synthetic bone.

Biomimetics 2023, 8, x FOR PEER REVIEW 2 of 15 
 

 

wt.% of inorganic salts. Biological bone is metabolically active, with “bone resorption”, 
the destruction of old bone, and “bone formation”, the creation of new bone. This cycle of 
bone metabolism is physiologically important, and its functions are to replace brittle old 
bone and to strengthen areas subjected to load [8,9]. Figure 1 shows the bone formation 
process. Osteocytes are derived from osteoblasts and are formed by the incorporation of 
osteoblasts into the bone matrix [10]. Osteocytes act as mechanosensory cells because they 
build networks by joining small tubules together [11]. Due to their function, they are 
thought to be the cells that detect the mechanical loading of bone and are involved in the 
activity and generation of osteoblasts and osteoclasts [12]. Bone resorption is carried out 
by phagocytic multinucleated cells called osteoclasts. These cells originate from mono-
cytes or monocyte-like cells produced in the bone marrow [13]. Bone resorption occurs 
when osteoclasts come into contact with bone. During this process, proteolytic enzymes 
released from osteoclast lysosomes dissolve the organic substrate of bone. This mecha-
nism releases several acids, including citric and lactic acids, from mitochondria and secre-
tory vesicles. This phenomenon results in the dissolution of bone composed of Ca2+ and 
PO43− [14]. On the other hand, osteoblasts are responsible for bone formation. The mecha-
nism of bone formation begins with the secretion of collagen molecules and substrate sub-
stances by osteoblasts. Subsequently, osteoblasts form collagen fibers from the collagen 
molecules to form allogeneic bone, which incorporates some of the osteoblasts to become 
osteocytes [15]. Within a few days of the formation of the analogous bone, amorphous 
calcium phosphate (ACP) begins to precipitate on the surface of the collagen fibers. The 
precipitated ACP is converted to HA over a period of weeks to months, during which 
atoms are added or replaced [16,17]. A few percent of HA remains amorphous and is more 
rapidly absorbed when Ca2+ is needed in the extracellular fluid. This is the process of bone 
formation. Also, in focusing on cells, they have cell-adhesive proteins called integrins on 
their surfaces. In these cells, the adhesion function of integrins would be carried out by 
peptide ligands [18]. Arg-Gly-Asp (RGD) is a type of peptide ligand that has been shown 
to promote osteoblast adhesion [19,20]. In the case of the RGD modified with hyaluronan, 
it has been reported to stimulate cell adhesion [21]. Glycine-histidine-lysine (GHK) is also 
the peptide ligand found in osteonectin that has been reported to enhance osteogenic dif-
ferentiation [22]. Bioceramics that could facilitate this process have not yet been synthe-
sized, which is a challenge in the development of synthetic bone. 

 
Figure 1. Illustration of the process of bone formation in vivo. Figure 1. Illustration of the process of bone formation in vivo.

As mentioned above, for preparing specific materials that promote bone formation
and are compatible with both bone replacement and therapy, the following conditions
are required:
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(1) Bioceramics that resemble biological bone [23].
(2) Bioceramics with low crystallinity [24].
(3) Bioceramics of nanocrystalline structure [25–27].

Bioceramics that fulfil these conditions can be used to replace bone defects without
toxicity to the bone, and their high bioactivity can elute bone-like components at the
interface between the bone and the bioceramics to promote rapid adhesion between the
bone and the bioceramics, thus facilitating treatment and allowing early treatment of
bone defects [28].

In this review, the current status and issues of bone defect sites in the human body
are explained based on examples of conventional HA, and the necessity of regenerative
functions in addition to bone defect sites for biomedical applications is proposed. The
characteristics and properties of HA substituted with heterogeneous ions such as silicate,
carbonate, and other elemental ions are also explained. The importance of the surface
characteristics of HA and its components, the hydration layers, and the non-apatitic layers
for the effective control of biomedical function, as well as their relationship at the interface
to improve biocompatibility, are highlighted. The possibility of a surface layer being formed
between HA and its components is also proposed.

2. Hydroxyapatite (HA) Substituted with Other Ions
2.1. Characteristics of HA

CP is composed of Ca2+ and PO4
3− or P2O7

4− and is classified as a bioceramic. Table 1
shows the classification of CP compounds. It is classified according to the Ca/P molar
ratio, which is the ratio of Ca2+ to PO4

3−. Six types are present in hard tissues in vivo,
with Ca/P molar ratios in the range of 1.0–1.67 [29]. The bioactivity of it is related to their
crystalline structure, porosity, and dissolution rate, which are controlled by changing the
parameters for various biomedical applications. In particular, the porosity of HA containing
nanoparticles or nanopores is expected to function as a drug delivery system [30,31]. The
controlled parameters are known to be dominantly influenced by the Ca/P molar ratio.
Among the CPs, HA is the major component of bone and has been widely studied by
controlling the parameters.

Table 1. Classification of the calcium phosphate compounds.

CP Compound Abbreviation Chemical Formula Ca/P

Dicalcium phosphate dehydrate DCPD Ca (HPO4)2·H2O 1.00
Octacalcium phosphate OCP Ca8H2(PO4)6·5H2O 1.33

Tricalcium phosphate α-TCP
β-TCP Ca3(PO4) 1.50

Hydroxyapatite HA Ca10(PO4)6(OH)2 1.67
Amorphous calcium phosphate ACP CaHPO4·nH2O –

Figure 2 shows the crystalline structure of HA, with (a) the overall view and
(b) the view from [001]. HA has a Ca/P molar ratio of 1.67 and a chemical composi-
tion of Ca10(PO4)6(OH)2. The crystalline structure is hexagonal, the space group is P63/m,
and the unit cell size is a = 0.94 nm and c = 0.69 nm. The calcium in the structure is classified
into Ca(I) (columnar Ca) and Ca(II) (axis Ca), where the Ca(I) is aligned parallel to the c-axis
and the Ca(II) surrounds the c-axis at the four corners of each unit cell where hydroxyl
groups are present [32]. It is also known that HA has a high ion exchange capacity. The
Ca2+ is substituted by Na+, K+, Mg2+, etc.; the PO4

3− by SiO4
4−, CO3

2−, etc.; and the OH−

by F−, Cl−, etc. [33]. These ions are thought to exist within the crystal and on the surface.
They exist by substitution with Ca2+, PO4

3−, and/or OH− when they are present inside
the crystal and by reaction with functional groups such as P-OH and Ca-OH exposed on
the surface when they are present on the surface.
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Amorphous HA can be synthesized by some synthetic methods; highly crystalline
and stable HA can be obtained by calcination of amorphous HA. HA is known to have
high biocompatibility since it is contained in biological hard tissues. Therefore, it is used in
biomaterials such as artificial bones and implants, and as a fixation layer for chromatogra-
phy due to its high protein adsorption capacity [34–36]. Recently, its biocompatibility and
protein adsorption capacity have been investigated for use as a drug delivery system [37,38].

The composition, structure, and morphology of HA vary greatly depending on the
synthetic method. The techniques for synthesizing HA include the hydrothermal method,
chemical precipitation method, emulsion method, and solid phase reaction method [39–43].
In human bodies, HA is synthesized by the biomineralization process. Recent studies on
biomineralization described the biological formation of HA and its nucleation in body
fluids to finally be self-assembled into complex structures such as teeth and bones [44]. The
HA obtained by the biomineralization process promotes osteoblast adhesion, proliferation,
and osseointegration [45,46]. The method for precipitating HA by simulating the biological
fluid environment has been studied. Among these synthetic methods of producing HA,
except for the hydrothermal method, calcium-deficient HA (CDHA) is easily obtained.
Furthermore, ACP can be easily precipitated in aqueous solutions of Ca2+ and PO4

3− at
pH values above 9 for synthetic HA. The obtained ACP can be converted to HA by the
recrystallization method [33,47,48].

2.2. Synthesis of HA to Enhance Its Biological Functions: Ion Substitution with Different Elements

HA in biological hard tissues is substituted with various elemental ions, such as
carbonate and silicate ions, that work on the concentration, size, and type of action on
the HA crystal lattice to enhance its physicochemical properties by altering its electron
density and surface conditions [49]. Table 2 shows the different elemental ions that can be
substituted in HA. These substitutions can be a cationic ion (with Ca2+) or an anionic ion
(with PO4

3− and OH−). Ionic substitution affects lattice parameters, crystallinity, surface
charge, and morphology. The Ca2+ sites are mainly replaced by alkali metals and alkaline
earth metals, and partially by transition metals. The lattice constants of the HA crystal
structure are changed by these substitution ions, which is mainly attributed to the deficiency
of OH− and Ca2+ and the change of ionic radius. For example, Mg2+, Sr2+, Mn2+, and Zn2+

ions increase the a-axis and the c-axis, while Na+, SiO4
4−, CO3

2− (type B), and F− ions
decrease the a-axis and increase the c-axis, CO3

2− (type A) and Cl− increase the a-axis and
decrease the c-axis, and K+ decreases the a and c-axis [49].
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Table 2. Different ionic elements substituted into the HA structure for improving its functions.

Substitution Ion Function

Cation

Na+ Excellent osteoconductivity, improvement of cell proliferation
K+ Improvement of thermal stability

Mg2+ Enhancement of crystallization, crystal growth, thermal stability, influence on the dissolution
Sr2+ Inhibition of bone resorption, enhancement of bone formation

Mn2+ Cell adhesion activation
Zn2+ Enhancement of bone formation

Anion

SiO4
4− Enhancement of bioactivity, improvement of dissolution speed

CO3
2− Higher specific surface area, lower crystallite size, excellent osteoconductive properties, higher solubility

F− Higher stability, lower solubility, promotion of remineralization
Cl− Excellent osteoconductive properties, higher solubility

The functions performed by the other elemental ions that are substituting in HA in
biological bone affect various components of the bone metabolic process. The important
phenomena in bone formation and implantation, namely osteoinduction, osteoconduction,
and osseointegration, have been investigated in the previous study [50,51]. Osteoinduction
is the process by which primitive, undifferentiated pluripotent cells are stimulated in
some way to grow into the osteogenic cell lineage and induce osteogenesis [51,52]. In
addition to osteoblasts and osteoclasts, the bones and surrounding tissues contain many
undifferentiated cells. These undifferentiated cells have been reported to develop into
osteocytes over time and are crucially important for bone healing and implant fixation [53].
The other elemental ions have been reported to promote bone formation and other processes
by regulating the expression of genes and proteins involved in various stages of osteogenic
differentiation [54–57]. This is a fundamental biological mechanism that occurs regularly in
bone defect treatment and implantation. Osteoconduction refers to the ability of biomaterial
surfaces to grow bone and is the process of inducing the adaptation of different biomaterial
surfaces to the biological body. Since bone growth at the implant surface is dependent on the
action of differentiated osteocytes, it can be considered that osteoconduction is dependent
on osteoinduction. Moreover, various types of bone growth factors are required for bone
formation and bone growth, including osteoconduction, which cannot occur without an
adequate blood supply [58]. Osteoconduction in implants also depends on the biomaterial
used and its response. In the case of metallic materials, there are reports showing that
osteoconduction is not possible with Ag and Cu while it is possible with Ti and other
materials [50]. Osseointegration is defined as the direct contact between bone and implant
at the order-level by an optical microscope, as well as between the implant and bone via
the cells or other biological tissues, with the result that the bone tissue can be formed at the
bone-implant interface and the implant is directly fixed [59,60]. Osseointegration is not an
isolated phenomenon; it depends on bone induction and osteogenesis. Therefore, materials
that cannot promote bone growth cannot undergo osseointegration. These phenomena are
interrelated, and the development of biomaterials that contribute to these phenomena is
considered very important in the field of implants.

The substitution of other elemental ions in HA can enhance osteoblast differentiation,
osteoinductive, osteoconductive, and osseointegration functions, such as the release of
substituted ions due to reduced solubility of HA. Substitution of Cu2+, Mg2+, and SiO44−

enhances osteoinduction, whereas substitution of Na+, CO3
2−, and Cl− enhances osteoin-

duction [61–63]. Furthermore, HA substituted with Zn2+ and Sr2+ has various biological
functions, such as enhancement of bone formation and suppression of bone resorption and
osteoporosis. It has been reported that SiO4

4−-substituted HA improves osseointegration
properties and dissolution rate. F−-substituted HA was used to treat osteoporosis; how-
ever, excessive amounts of F− may cause osteosclerosis and other diseases [64–70]. The
combination of these different elemental ion substitutions is considered important for the
synthesis of HA, which retains its beneficial properties for bone formation.
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2.3. Structure and Properties of HA with Silicate Ion Substitution

Studies have found that the human body contains about 1–2 g of silicon (Si), and
biological bone contains 36 ppm [71,72]. In mice and rats, 0.5 wt.% Si is present in the
active growth points of bones [73], and a lack of Si in the diets of mice and rats leads to
abnormal bone growth and cranial deformation [74]. The presence of Si affects bone growth.
In vitro studies demonstrated that the ingestion of Si, in the form of orthosilicate, enhanced
collagen I synthesis and promoted osteoblast differentiation [75]. On the other hand, in
synthetic bioactive ceramics, such as bio-glasses and apatite-wollastonite containing SiO2,
the reactivity of the crystalline surface containing Si affects its bioactivity [76]. SiO4

4−-
substituted HA particles have also been produced in various forms and used as coatings for
titanium implants, showing improved osseointegration properties [66,68,77]. A synthetic
porous SiO4

4−-substituted HA with the trade name Actifuse TM has been successfully used
as a bone replacement material in patients with level 1–2 lumbar degenerative disease and
was found to be as effective as an autologous bone graft [78]. Figure 3 shows the crystal
structures of previously described SiO4

4−-substituted HA [76]. Silicic acid was present
in HA in the form of an anionic substitution. Gibson et al. successfully synthesized the
single-phase SiO4

4−-substituted HA with SiO4
4− substitution (0.4 wt.%) into the PO4

3−

site of HA with a precipitation reaction using calcium hydroxide as the calcium source,
orthophosphoric acid as the phosphoric acid source, and silicon tetraacetate as the SiO4

4−

source. The compositional formula was proposed as shown in Equation (1) [76].

Ca10(PO4)6−x(SiO4)x(OH)2−x (1)
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The experimental results of SiO4
4− substitution of HA showed that the OH− group

decreased with the SiO4
4− substitution, and the SiO4

4−substitution caused changes in
the crystal structure and chemical composition, including a decrease in the a-axis and
an increase in the c-axis [76]. Bianco et al. synthesized SiO4

4−-substituted α-TCP in a
mixed phase with 1.26 wt.% SiO4

4− and CO3
2− with a precipitation reaction using calcium

hydroxide as the calcium source, orthophosphoric acid as the phosphoric acid source, and
tetraethoxysilane (TEOS) as the SiO4

4− source. As a result, these particles were found to
have an increased a-axis and c-axis [79]. In an example of synthesizing SiO4

4−-substituted
HA by varying the added amount of SiO4

4− from 0.8–5.0 wt.%, it was confirmed that the
incorporated concentration of SiO4

4− was up to 1.5 wt.%, and the SiO4
4−-substituted HA

exceeding 1.5 wt.% contained ACP with amorphous silica [80].

2.4. Structures and Properties of Carbonate Ion Substituted HA

Carbonate ion (CO3
2−) is present in biological hard tissues, such as biological bone

and dentin tissue, in an amount of 2.3−8.0 wt.%, in the form of substitution with PO4
3−

and OH− in HA [81,82]. The crystalline structure of CO3
2−-substituted HA is similar to
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that of HA in biological hard tissues. It is suggested to play an important role in bone
metabolism and is expected to be used as a bone replacement material [81–85].

Figure 4 shows the crystalline structure of two types of CO3
2−-substituted HA. It is an

anionic substitution and has two different forms depending on the substitution site [86–88].
The A-type carbonate HA is in Figure 4a. It is called carbonate apatite (CAP), and is the
substitution form in which CO3

2− is substituted with the OH site of HA. The chemical
composition is expressed by the formula in Equation (2).

Ca10(PO4)6−x(OH)2−2x(CO3)x (2)

Biomimetics 2023, 8, x FOR PEER REVIEW 7 of 15 
 

 

2.4. Structures and Properties of Carbonate Ion Substituted HA 
Carbonate ion (CO32−) is present in biological hard tissues, such as biological bone 

and dentin tissue, in an amount of 2.3−8.0 wt.%, in the form of substitution with PO43− and 
OH− in HA [81,82]. The crystalline structure of CO32−-substituted HA is similar to that of 
HA in biological hard tissues. It is suggested to play an important role in bone metabolism 
and is expected to be used as a bone replacement material [81–85]. 

Figure 4 shows the crystalline structure of two types of CO32−-substituted HA. It is an 
anionic substitution and has two different forms depending on the substitution site [86–
88]. The A-type carbonate HA is in Figure 4a. It is called carbonate apatite (CAP), and is 
the substitution form in which CO32− is substituted with the OH site of HA. The chemical 
composition is expressed by the formula in Equation (2). 

Ca10(PO4)6−x(OH)2−2x(CO3)x (2) 

In general, CAP can be synthesized by heating HA to approximately 1000 °C in a 
carbon dioxide atmosphere [89]. The lattice parameters of CAP prepared by Walleyes 
showed an increase in the a-axis and a decrease in the c-axis in X-ray diffraction. It was 
reported that for every 1 wt.% substitution of CO32− in CAP, the a-axis of the lattice param-
eter was lengthened by 0.0025 nm, with an upper limit of up to 4.4 wt.% [90,91]. 

The B-type carbonate-substituted HA (CHA) shown in Figure 4b is a substitutional 
form in which CO32− was substituted at the PO43− site of HA, and the chemical composi-
tions of the substitutional formulas are given in Equations (3) and (4) [92]. 

Ca10−2x/3(PO4)6−x(CO3)x(OH)2−x/3 (3) 

Ca10−x/2(PO4)6−x(CO3)x(OH)2 (4) 

 
Figure 4. Carbonate-substituted hydroxyapatite crystalline structures of (a) CAP and (b) CHA. 

CHA remains charge neutral due to the loss of Ca2+ and OH− upon CO32− substitution. 
For each 1 wt.% substitution of CO32−, the a-axis of the lattice parameter was shortened by 
0.00006 nm and the c-axis was elongated, which could be up to the maximum inclusion 
content of 22.2 wt.% [91]. The AB-type carbonate-ion-substituted HA, in which carbonate 
ions were substituted at both the PO43− and OH− sites of the HA crystalline structure, was 
also present [93]. The HA showed enhanced dissolution properties in vitro and in vivo, 
and had higher osteoconductivity than the stoichiometric HA. The increased CO32− con-
tent in HA results in the formation of CaO and β-TCP phases by calcination at tempera-
tures where CO32− decomposes, and the mechanical tests showed that CAP had similar 
strength to that of stoichiometric HA [93]. 
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In general, CAP can be synthesized by heating HA to approximately 1000 ◦C in a
carbon dioxide atmosphere [89]. The lattice parameters of CAP prepared by Walleyes
showed an increase in the a-axis and a decrease in the c-axis in X-ray diffraction. It was
reported that for every 1 wt.% substitution of CO3

2− in CAP, the a-axis of the lattice
parameter was lengthened by 0.0025 nm, with an upper limit of up to 4.4 wt.% [90,91].

The B-type carbonate-substituted HA (CHA) shown in Figure 4b is a substitutional
form in which CO3

2− was substituted at the PO4
3− site of HA, and the chemical composi-

tions of the substitutional formulas are given in Equations (3) and (4) [92].

Ca10−2x/3(PO4)6−x(CO3)x(OH)2−x/3 (3)

Ca10−x/2(PO4)6−x(CO3)x(OH)2 (4)

CHA remains charge neutral due to the loss of Ca2+ and OH− upon CO3
2− substitution.

For each 1 wt.% substitution of CO3
2−, the a-axis of the lattice parameter was shortened by

0.00006 nm and the c-axis was elongated, which could be up to the maximum inclusion
content of 22.2 wt.% [91]. The AB-type carbonate-ion-substituted HA, in which carbonate
ions were substituted at both the PO4

3− and OH− sites of the HA crystalline structure, was
also present [93]. The HA showed enhanced dissolution properties in vitro and in vivo, and
had higher osteoconductivity than the stoichiometric HA. The increased CO3

2− content
in HA results in the formation of CaO and β-TCP phases by calcination at temperatures
where CO3

2− decomposes, and the mechanical tests showed that CAP had similar strength
to that of stoichiometric HA [93].

In dentistry, it was observed that an increase in CO3
2− content increases the dissolu-

tion characteristics of HA in weak acids. This property has been reported to preferentially
dissolve tooth enamel, the surface material of teeth, in the initial stages of dental caries, lead-
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ing to the progression of caries [94,95]. Depending on the progression of caries, secondary
caries and tooth erosion may occur; therefore, proper control of CO3

2− ion substitution is
important [96,97]. Thus, the changes caused by HA dissolution in bone due to CO3

2− ions
should be studied from the viewpoints related to bone remodelling.

3. Surface Layers on HA
3.1. Hydration Layer

As the bioceramics come into the contact with water molecules, the water molecules
are adsorbed onto the surfaces and the hydration layers are formed. The formation of
the hydration layer is caused by various factors, including the interactions between the
bioceramic surfaces, ions, and water molecules. The interactive states play an essential role
in the subsequent biological reactions [98–100].

Figure 5 shows the three hydration layers on the bioceramic surface. In most of the
studies, the hydration layer consists of three layers: unfrozen water, intermediate water, and
free water, and it has been thought that the cell-adhesive proteins are affected by retaining
these layers [101]. Non-freezing and intermediate water are unable to form hydrogen bonds
due to strong interactions with the bioceramic surface, thus, water molecules remain in a
state where they can move and are difficult to freeze. Free water does not directly interact
with the bioceramic surfaces and behave similarly to bulk water, forming hydrogen bonds
with the surrounding H2O. Below 0 ◦C it freezes, thus stopping the molecular motion. The
difference between the three layers was evaluated in terms of the heat balance during the
freezing and melting of water by differential scanning calorimetry (DSC) and the mobility
of water molecules by 1H-NMR [102]. The difference between the three layers was due
to their interaction acting on the bioceramic surfaces, which modifies the melting point
and the mobility. Based on the thermal value at each transition of DSC, non-freezing water
was defined as water that does not freeze at −100 ◦C; intermediate water was water that
froze at temperatures lower than 0 ◦C during the temperature increase process; and free
water was water that froze at temperatures below 0 ◦C and crystallized at −100 ◦C [102].
The layer structure was defined as water that was crystallized at temperatures below 0 ◦C
and crystallizes at −100 ◦C [103]. The structure of the hydration layer rearranges on femto-
to picosecond time scales, and liquid water is an amorphous structure with a disordered
network on very short time scales; however, it has the randomness of a liquid on longer time
scales. In 1H-NMR measurements, the relaxation times of non-freezing water, intermediate
water, and free water were 10−8–10−6 s, 10−10–10−9 s, and 10−12–10−11 s, respectively,
indicating stronger interactions with the bioceramics as well as lower mobility [102]. In
the FT-IR spectra, the layer state could be evaluated by separating the absorption bands
of the stretching vibration of the hydroxyl groups (3600 cm−1, 3400 cm−1, 3200 cm−1)
corresponding to non-freezing water, intermediate water, and free water, respectively [102].
A variety of other analytical methods were used to evaluate the hydration structure (i.e.,
hydrogen molecular bonding state and mobility). However, the layer on the HA surface has
not been studied in detail, thus it is necessary to evaluate the layer bonded to the surface as
an integral part.

3.2. Non-Apatitic Layer on HA Surface

Figure 6 shows a model of the surface layer bounded with the HA. Biological apatite in
naturally calcified tissue is formed in vivo in an aqueous environment at room temperature.
Thus, recent studies of HA have focused on HA prepared by wet methods, which can
synthesize HA similar to the in vivo environment in order to mimic biological apatite.
The detailed surface structure of the HA synthesized by wet methods has not been fully
elucidated; however, it is predicted that it will be a low-crystalline surface, and such a
structure is being studied by spectroscopic methods such as FT-IR and NMR, which are
sensitive to perturbations of the local ionic environment. FT-IR spectra show an absorption
band in the 680–480 cm−1 region corresponding to the non-apatitic layer on the HA surface,
which is assigned to PO4

3− and HPO4
2− [103]. The coordination environment of phosphate
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and calcium ions and the interaction of these ions were investigated by NMR spectroscopy,
indicating that the HA particles are composed of a highly crystalline core and a non-apatite
layer composed of ACP [104]. The layer is highly reactive due to its unstable structure
composed of divalent ions such as Ca2+, HPO4

2−, and CO3
2−, etc. In particular, it has

been shown from ab initio calculations that the reaction with H2O exhibits moderate Lewis
acidity due to the strong bonding of the exposed ions in the non-apatitic layer (e.g., Ca2+,
HPO4

2−, CO3
2−, etc.) due to electrostatic interactions with the H2O [105,106]. The ions

in the layer are organized in a geometric configuration and are stabilized by a structured
hydrogen bonding network of the hydration layer [106]. In addition to this reaction, the
layer is believed to contribute to the growth of HA nuclei, ion exchange, and the adsorption
of organic molecules. The reactivity of the layer is thought to play a significant role in
biocompatibility, and further research is needed.
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3.3. Relationship between the Surface Layer and Biocompatibility

The biocompatibility of HA is highly related to the cell adhesion behavior, and the
cell-bioceramic interfaces are formed in vivo, as shown in Figure 7 [107,108]. Firstly, the
cell adhesion occurs through three processes upon implantation in the body. In the process,
H2O and ions in body fluid adsorb on the surfaces, forming the hydration layer. Here, the
amount of H2O, the concentration and type of ions in the vicinity of the bioceramics are
important factors for the next processes. In the second process, the proteins are adsorbed
onto the hydration layer, and the protein adsorption is saturated to form the protein
adsorption layer. The type and orientation structure of the adsorbed protein in this process
determine the function of the attached cells. In the third process, the cells are adhered to
the adsorbed protein layer and proliferate with their spreading. The layers formed by the
first and second processes determine the cell behavior. Thus, it is important to control the
first process and then evaluate the protein adsorption layer for the desired cell adhesion
properties in order to consider biocompatibility [109,110]. The highly-reactive surface
layer on HA is known to interact strongly with the substances in surrounding aqueous
solutions [111–113]. The interactions are supported by ion mobility, ion exchange capacity,
and molecular adsorption [114–116]. The interfacial phenomena induce the combination
between HA surface layer and water, such as the dissolution and deposition of ions and the
solid dissolution of organic and mineral phases [117–119]. In other words, the interfacial
phenomena are considered to be the formation process of the HA surface layer that affects
the hydration layer and cell adhesion. In particular, the inclusion of SiO4

4− and CO3
2−

ions in HA induces structural defects and increases its dissolution rate in vivo [120–122].
This promotes hydrogen bonding networks, increases cell and bone attachment rates, and
activates osteoblasts, leading to the activation of surrounding tissues based on increased
rates of ion solubilization and diffusion. This phenomenon is related to the ion exchange
behavior at the non-apatitic layer of the HA surface, where the other elemental ions that
have leached and diffused into the layer by the ion exchange increase the genetic markers
and proteins for inducing osteogenesis, and some reports suggest the increase in the
activity of osteoblasts [54–58]. These surface phenomena of ion-substituted HA affect the
hydration layer, leading to significant changes in the dissolution properties of HA and
contributing to its biocompatibility, resulting in improved protein adsorption, cell adhesion,
and osteogenesis.
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4. Conclusions

In this review, the current status of the effect of substitution ions on the surface prop-
erties and biocompatibility of HA was discussed. Changing the chemical composition
and crystalline structure of HA depending on the synthesis method and added ions was
emphasized, which improved the surface properties of HA and thus affected its biocom-
patibility. In particular, the ability of HA to be substituted by silicate and carbonate is
remarkable for its use as a bioceramic. Furthermore, the characteristics of the HA surface
layers (i.e., hydrated and non-apatite layers) that affect subsequent biological responses
were clearly summarized and categorized. Since the surface layers are important for both
protein adsorption and cell adhesion, analysis of their properties may provide important
clues to gain insight into the efficient mechanisms of bone formation.
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